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ABSTRACT. A typical example of a Cartan calculus consists of the Lie deriv-
ative and the contraction with vector fields of a manifold on the derivation
ring of the de Rham complex. In this manuscript, a second stage of the Car-
tan calculus is investigated. In a general setting, the stage is formulated with
operators obtained by the André—Quillen cohomology of a commutative dif-
ferential graded algebra A on the Hochschild homology of A in terms of the
homotopy Cartan calculus in the sense of Fiorenza and Kowalzig. Moreover,
the Cartan calculus is interpreted geometrically with maps from the rational
homotopy group of the monoid of self-homotopy equivalences on a space M
to the derivation ring on the loop cohomology of M. We also give a geomet-
ric description to Sullivan’s isomorphism, which relates the geometric Cartan
calculus to the algebraic one, via the I'1 map due to Félix and Thomas.
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1. INTRODUCTION

In the previous work [KNWY21], we consider a method to describe the string
bracket [CS99] on the rational S!-equivariant homology of the free loop space LM
of a simply-connected manifold M in terms of the Gerstenhaber bracket on the
loop homology of M, namely, the homology of LM. In particular, the reduction is
possible if M is BV ezact; that is, the reduced Batalin—Vilkovisky (BV) operator
on the loop homology is exact; see [KNWY21l Definition 2.9, Theorem 2.15 and
Corollary 2.16] for more details.

The result [KNWY21, Assertion 1.2] summarizes relationships between the BV
exactness and other traditional homotopy invariants containing the formality of a
space. Especially, we show that a simply-connected space is BV exact if the space
admits positive weights; see [KNWY21, Theorem 2.21]. The key to proving the
theorem is that two particular derivations on a Sullivan algebra associated with the
space satisfy the Cartan magic formula; see Proposition [3.6] for the derivations that
we use therein. The appearance of the formula has inspired us to consider algebraic
and topological backgrounds for the derivations. In this article, we investigate such
derivations in the framework of homotopy Cartan calculi introduced by Fiorenza
and Kowalzig [FK20] and moreover give geometric descriptions to the Lie derivative
and the contraction operator, which induce the two derivations mentioned above.

In order to describe our results in more detail, we first recall the classical Cartan
calculus of the differential forms on a manifold M together with Connes’ result
on the Hochschild cohomology. The space of vector fields on M is considered
a Lie algebra Der(C*°(M)) of derivations on C*°(M) the R-algebra of smooth
functions on M. The result [Con85l IT Section 6. Example] due to Connes asserts
that the continuous Hochschild cohomology (HHY, .,(C*(M)), B) with Connes’
B-operator B is isomorphic to the de Rham complex (Q*(M),d) as a complex
provided M is compact. Thus the Lie derivative Lx and the contraction (interior
product) ¢x for each vector field X are incorporated in the framework of a Cartan
calculus
(1.1)  Der(C>=(M)) % (Der(2*(M)),d) = ( Der(H H;:

conti(coo (M)))v B)
in the sense that L ) is a Lie algebra representation and ¢( ) is a linear map which
satisfy, for any vector field X, Cartan’s magic formula

LX = [da LX]'

The André—Quillen cohomology Hgé (A) of a commutative differential graded
algebra A is an important invariant for such differential objects; see, for example,
[BLO5] for its applications. Thus we may apply again cyclic theory, namely cyclic
homology and Hochschild homology to the de Rham complex (Q*(M), d) involving
the André—Quillen cohomology. Let Der (A) denote the derivation subalgebra of
the endomorphism Lie algebra End (A) of a differential graded algebra A. While
the assignment Der () is not functorial, the André—Quillen cohomology is defined
as a derived version of Der(A); see [BL05] and also Section [ for the definition.

Let M be a simply-connected manifold and aut; (M) the monoid of self-homotopy
equivalences on M. Then, we obtain the isomorphism

® oy (auty (M) © R —= H35(Q* (M)
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of Lie algebras due to Sullivan [Sul77]; see [FLS10, Theorems 3.6 and 4.3] and also
SectionPlfor the definition of ®. Here, the homotopy group . (aut1 (M)) is regarded
as a Lie algebra endowed with the Samelson product. Main results (Propositions
3 4 and Theorem[B.]) in this article enable us to obtain a Cartan calculus on the
de Rham complex Q*(M) with values in the endomorphism ring of the Hochschild
homology of Q*(M) and its geometric interpretation with the free loop space LM.
More precisely, the assertions are summarized as follows.

Theorem 1.1. Under the same notations and assumptions as above, there exists
a commutative diagram

H (2 (M)) —— (End(HH. (2" (M))), B)

o] = [
m(auty (M) @ R # (Der(H*(LM;R)),A)
- €
for x= > 1 in which the upper row sequence is a Cartan calculus induced by a homo-
topy Cartan calculus in the sense of Fiorenza and Kowalzig [FK20] and the bottom
row sequence is a Cartan calculus given geometrically by applying the loop con-
struction to the adjoint of an element of homotopy group of auti(M); see (4.1) and

(#2). In particular, the calculi give the formulae
oLy =[B,e;] and Lg = [A, £eg]

forn € Hjn(Q"(M)) and 0 € m.(aut;(M)) ® R. Here B and A denote Connes’
B-operator on the Hochschild homology and the Batalin—Vilkovisky operator on the
loop cohomology, respectively. Moreover, the right vertical map ¢ is a monomor-
phism induced by the isomorphism between the loop cohomology and the Hochschild
homology in [BV88, Theorem 2.4] preserving operators A and B.

Remark 1.2. The contraction operator e in the upper sequence in Theorem [ is
defined for * > 1. However, the operator e in the bottom sequence is defined for
* > 1; see ([@2) below.

We observe that the square above for ,L and L is commutative even if * = 1;
see the proof of Theorem [[LT] in the end of Section A1l Moreover, it follows from
Lemma B4 and Theorem IZ:[I that the maps ,L and L are morphisms of Lie
algebras, respectively.

We give more comments on Theorem [ Tland its related results in this article. By
the Cartan calculus in ([IL]), we can regard the de Rham complex as appearing via
the Hochschild homology theory for C°°(M). The calculus in the upper sequence
in the theorem is obtained by applying again the Hochschild homology theory to
the de Rham complex. Therefore, it seems that the pair (,L,e) of maps is in a
second stage of Cartan calculi for the manifold M.

On the other hand, the dual of the calculus in the lower sequence in the theorem
gives a Cartan calculus on the homology H,(LM;R). The second author reveals a
relationship between the calculus and algebraic structures in string topology theory;
see [Nai24, Theorem 1.1].

We stress that the pair in the upper sequence consists of the Lie derivative L
and the contraction operator e in the homotopy Cartan calculus [FK20, Definitions
3.1 and 3.7] associated with the Hochschild complex H and the Burghelea—Vigué-
Poirrier complex £ of Q*(M) in [BV8S], respectively. As a consequence, we see that
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the two homotopy calculi coincide with each other on homology level; see Theorem
B8 We remark that the Cartan magic formula holds in the complex £ before
taking homology, but not in H in general; see Propositions and Bl Moreover,
it is worth mentioning that the contraction e for the complex H is defined with the
cap product between the Hochschild cochain and chain complexes of a commutative
differential graded algebra; see, for example, [Menl11] for the cap product.
Moreover, the contraction operator e is non-trivial in the following sense:

Theorem 1.3. For a simply-connected closed manifold M, the contraction operator
e: mi(aut1 (M)) ® R — Der(H*(LM;R)) is injective.

This is an immediate consequence of Corollary B.11] and Proposition 4l The
former is proved by showing that the map invariably detects the fundamental class
of a manifold M; see Theorem B.10

As for Sullivan’s isomorphism ®, we show that the isomorphism factors through
the map I'y from 7, (auty(M)) = m._1(Qauty(M)) to the loop homology of simply-
connected closed manifold M introduced by Félix and Thomas in [FT04]; see The-
orem 71 Since the map I'; is induced by the evaluation map of the space of
sections of the evaluation fibration evy : LM — M, it can be said that we give the
isomorphism ® a geometric interpretation. It is worth mentioning that the Brown—
Szczarba model [BS97] for a function space plays a vital role in the argument on
the geometric description of the isomorphism .

We give comments on the André—Quillen cohomology. As mentioned above,
taking the derivation algebra Der (A) for a commutative differential graded algebra
A is not functorial. However, we see that a Sullivan model ¢: (AV,d) = (A,d)
induces a morphism @ : H*(Der(A)) — H*(Der(AV)) which is compatible with
Cartan calculi for A and AV. This is attained in Proposition Such a map
¢ induced by ¢ is an isomorphism if the codomain A is also a Sullivan algebra;
see Corollary However, a quasi-isomorphism ¢: (AV,d) = (A,d) does not
necessarily induce a quasi-isomorphism between Der (A) and Der (AV) in general;
see Remark

The rest of this manuscript is organized as follows. Section [2] recalls results in
rational homotopy theory with which we develop our arguments. In Section [3] we
recall the homotopy Cartan calculus mentioned above. Important examples of the
calculi which come from a Sullivan algebra and the Hochschild complex of a DGA
are given. The naturality of a Cartan calculus are discussed in Section 34l Section
[ is devoted to investigating geometric descriptions of the homotopy Cartan calculi
considered in Section Bl In Section [l after explaining geometric constructions
of the operations L and e, we prove Theorem [T In the rest of the section,
we elaborate the proof of Theorem [£77] mentioned above. Section [l deals with
computational examples of the Lie derivative L and the contraction operator e
described in Theorem [I.1]

In Appendix [A]l we give a Sullivan representative for an adjoint map by using
twice Brown—Szczarba models for function spaces. The result plays a crucial rule
in giving the geometric description of Sullivan’s isomorphism ®. In Appendix [B]
we discuss an extension of the Lie derivative L to cyclic theory and its geometric
counterpart with the cobar-type Eilenberg-Moore spectral sequence converging to
the S'-equivariant cohomology of the free loop space LM; see Theorem and
Proposition
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2. PRELIMINARIES

We begin with the definitions of the Hochschild complex of a differential non-
negatively graded algebra (DGA for short) over a field, the endomorphism ring of a
DGA and Sullivan’s isomorphism ® which are used repeatedly in this manuscript.
We assume that the underlying field is of characteristic zero unless otherwise stated.

Let A = (A,d) be an augmented DGA, which is not necessarily graded commu-
tative. We use the cohomological grading on A and then deg d = +1. While the
homological degree of a graded vector space W, is also used, we freely apply the
translation for homological and cohomological degrees with W, = W —*.

Let C.(A) = (A®T(sA),d = dy +dz) be the Hochschild chain complex of (A, d).
Here, A denotes the augmentation ideal of A and sA denotes the suspension of A;
that is, (sA)" = A"*+1. The differentials d; and dy are defined by d; = > di; and
dg = 21 d27i with

_ [ daolas]---lan] (i=0),
dl’i(%[“l"”'“"”‘{ (1) Haofar] - da| - -Jan] (0 <i <),
(=1)le0lagar [as| - - - |an] (i=0),
dai(aofar] - lan]) = & (=1)F* aglar] - - - |aiairs|---|an] (0 << n),
(=Dl agaglay| - -an—1] (i =mn),

where €; = |ag| + Zj<i |5aj|'

Definition 2.1. (1) Let (C,d) be a cochain complex. A triple (C,d,B) is a

mized compler if B: C — C is a differential of degree —1 with [d, B] :=
dB + Bd = 0.

(2) A mized DGA is a mixed complex (A, d, B) together with a graded algebra
structure on A such that d and B are derivations with respect to it.

(3) A mized differential graded (dg) Lie algebra is a mixed complex (h,d, B)
together with a graded Lie algebra structure [, ] on h such that d and B
are derivations with respect to [, |.

Let (C,d,B) be a mixed complex. We denote by End(C) the endomorphism
ring Hom(C, C) of linear maps (of any degree). The ring End(C) is considered the
Lie algebra with the bracket [ , | defined by [f,g] = fg — (—=1)/ll9lgf for f and
g € End(C). We observe that End(C) is endowed with a dg Lie algebra structure
whose differential is defined by [d,—] with the bracket and the differential d of C.
We see that a triple (End(C), [d, ],[B, ]) is a mixed dg Lie algebra. Moreover, for a
DGA A, we define a differential graded Lie subalgebra Der(A) of End(A) consisting
of derivations on A. If (4, d, B) is a mixed DGA, we observe that Der(A) is a mixed
dg Lie subalgebra of End(A).

We recall a derived version of the non-positive derivations. Let A be a commuta-
tive differential graded algebra A (CDGA for short). Following Block and Lazarev
[BLO5], the André-Quillen cohomology H},(A) of A for * <0 is defined by

Hjo(A) := H*(Der(QA, A)) = H*(Der(QA, QA), [dga, )

with a cofibrant replacement (QQA, dga) of A in the category of CDGAs; see [BGT6).
We regard H},(A) as a Lie algebra with the Lie bracket on H*(Der(QA, QA)).
Here we may choose as QA a Sullivan model of A; see [FHTO1, Section 12] for a
general theory of Sullivan algebras.
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Let (AV,d) be a Sullivan algebra for which V! = 0. Then we define a mixed
DGA (AV ® AV, d, s), where s is the derivation of degree (—1) defined by sv = ¥
and sv = 0 for v € V and the differential d is the unique extension of d: AV — AV
which satisfies the condition that [d,s] = 0. For simplicity of notation, we write
L = AV ® AV together with a decomposition £ = @D L) of complexes, where
Ly =NV® AFV. Observe that H(L) is isomorphic to the Hochschild homology
of (AV,d); see [BV8S|, Theorem 2.4(ii)].

Let X be a simply-connected space whose rational cohomology H*(X;Q) is of
finite type; that is, dim H*(X; Q) < oo for each i > 0. Let LX be the free loop space
which is the space of maps from S' to X endowed with compact-open topology.
Suppose that (AV,d) is a Sullivan model for X. Then the complex £ mentioned
above is a Sullivan model for LX; see [VPST76].

We recall Sullivan’s isomorphism & described in Theorem [Tl Consider a se-
quence of the homotopy sets

T (auty (X)) 2= [S™ x X, X] 2 [Mx, Mgnxx],

where My denotes a minimal Sullivan model for a space Y and p assigns a map f a
Sullivan representative for f. We may replace Mgn x with the DGA H*(S™;Q)®
Mx. Then we write

(hok)(O) =1® 1y +1® 0,

where ¢ is the generator of H"(S™;Q). Then, Sullivan’s isomorphism ® of Lie
algebras

@ (aut1 (X)) ® Q = H " (Der(Mx), [d,-]) = H 1 (Ap (X))
is defined by ®(0) = ¢’; see [SulT7| and also [FLS10, Theorems 3.6 and 4.3].

3. ALGEBRAIC CARTAN CALCULI

The homotopy Cartan calculus due to Fiorenza and Kowalzig [FK20] provides a
systematic way to endow the shifted homology of a mixed complex MC' with the
Batalin-Vilkovisky algebra structure and to give the Chas-Sullivan-Menichi [CS99,
?] bracket to the negative cyclic homology of MC'; see [FK20, Theorem D]. Thus,
it is crucial to consider examples of such a homotopy calculus.

In this section, we recall the homotopy Cartan calculus with a slight generaliza-
tion. Roughly speaking, the calculus consists of two operations (e and L) between
complexes and two homotopies (S and T') between the two operations. We give
examples of the calculi by using a Sullivan model of the free loop space of a simply-
connected space and the Hochschild chain complex of a differential graded algebra
(DGA). While the operations of the two homotopy calculi are identified on the ho-
mology level if a given DGA is a Sullivan algebra; see Theorem [B.8] the difference
between the homotopy calculi appears in the homotopy between operations; see
Proposition and Proposition B.7

3.1. Homotopy Cartan calculus with slight generalization. Let (g,0) be a
chain complex and (h,d, B) a mixed complex.

Definition 3.1 (cf. [FK20, Definition 3.1]). A tuple (g,b,e, L, S) consisting of
linear maps e, L, S: g — b of degrees 1, 0 and —1, respectively, is a homotopy
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pre-Cartan calculus if the equalities
Ly = B(eg) + d(Se) + Sse,
d(eg) +es9 =0 and
B(Sp) =0
hold for any 6 € g. The linear maps e and L are called a contraction operator (or

cap product) and a Lie derivative, respectively.

The first two conditions imply that e and L are chain maps of degree 1 and 0,
respectively.

Definition 3.2. [cf. [FK20, Definition 3.7]] Let (g,d,[, ]) be a dg Lie algebra and
(h,d,B,[, ]) a mixed Lie algebra; see Definition 211 A homotopy Cartan calculus
(g,h,e,L,5,T) is a homotopy pre-Cartan calculus (g, b,e, L, S) equipped with a
linear map T': g ® g — b satisfying the following equalities for any 0, p € g

leg, Ly] — epo.p) = d(To,p) — Ts0, — (= 1) Ty 5,

[Se, L,] — S, ) = B(Ts,p)-
Here T is called a Gelfan’d-Daletskii- Tsygan homotopy.
Remark 3.3. These definitions are equivalent to [FK20, Definitions 3.1 and 3.7] if
(b,d,B,[, ]) is the tuple (End(C),[d’, ],[B’, ],[ , ]) which is given by a mixed

complex (C,d’,B’). In this case, we may call the calculus a homotopy Cartan
calculus on the mixed complex C.

The following is one of fundamental properties of a homotopy Cartan calculus.

Lemma 3.4 (cf. [FK20, Lemmas 3.4 and 3.10]). Let (g,b,¢e,L,S,T) be a homotopy
Cartan calculus. Then the map L: g — b is a morphism of dg Lie algebras.

In particular, we see that a homotopy Cartan calculus (g,b,e,L,S,T) gives a
(H(g),[, ])-module structure to H(h) via the map H(L) : H(g) — H(h). Moreover,
it follows that H(e) : H(g) — H(h) is a morphism of (H(g),[, ])-modules.

If the linear map T in a homotopy Cartan calculus is trivial, then the map
e: g — b is regarded as a morphism of (g,d,[ , ])-modules, where the g-module
structure of h is given by the morphism L of Lie algebras. We observe that our
examples of homotopy Cartan calculi are in such a case; see Propositions and

B.7 below.

3.2. Homotopy Cartan calculus on the Sullivan model of free loop spaces.
In this section, we give a homotopy Cartan calculus induced by a Sullivan algebra.
We recall the CDGA L described in Section

Definition 3.5. For a derivation 8 on AV, we define derivations Lg and eg on L
by

Lov = 0v, Lgv = (—1)%ls00,
egv =0, egv = (—1)%00

for v € V. This defines linear maps L: Der(AV) — Der(L) of degree 0 and
e: Der(AV) — Der(L) of degree (—1).

These derivations are introduced in [KNWY21l Proof of Theorem 2.21] by mod-
ifying constructions in [Vig94, Proposition 5].
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Proposition 3.6. The above maps give a homotopy Cartan calculus of the form
(Der(AV),Der(L),e,L,S =0,T = 0).

Proof. Since S =T = 0, we can reduce the equalities in Definition [B.] and Defini-
tion to

L@ = [S, 69],

[d, eq] + eso = 0,

leg, Lp) — eqg,5) = 0.
A straightforward computation enables us to deduce that the equalities above hold

on V@ V. Since ey and Ly are derivations for any § € Der(AV), we have the
result. 0

3.3. Homotopy Cartan calculus on the Hochschild chain complex. In this
section, we consider a homotopy Cartan calculus on the Hochschild chain complex of
an augmented DGA. While the domain of our calculus is restricted to the derivation
ring of a DGA, the calculus is regarded as a DGA version of a homotopy Cartan
calculus on the Hochschild chain complex of an associative algebra described in
[FK20, Example 3.13].

We recall the Hochschild complex C,(A) of a DGA (A, d) mentioned in Section
Then, Connes’ B operator B : C,(A) — C.(A) is defined by

By = Blagrn(eay = 50 (L 4ty + - +t7)
forn > 0. Here, t,, : AQT"(sA) — ART"(sA) and s : AQT"(sA) = AQRT"!(sA)
are morphisms given by tg = 1 and
tu(aolar] -+ |an]) = (=1)l** 1 Day [ag| - an—1],
s(aolar] -+ -[an]) = aolar| - - |an],

where ¢; is the notation described in Section Then, it follows from [BV8S|
Example 1] that the triple (C\(A),d, B) is a mixed complex.

Let A’ be an augmented DGA and ¢ : A — A’ a morphism of DGAs. For a
derivation 6 € Der(A, A’), we define Ly : C(A) = Cy(A") by Lo =, Lg; and

[ el fea)] - plan) (i=0),
Bauteolel -~ f) = { (e o ot (121
We also define e : Ci(A) = C.(A’) by eg|la =0 and

eo(aolar] -+ Jan]) = (=1) el 010l o (a0)0(ar ) [p(az)] - [ (an)].

Let ej, be the element in the Hochschild cochain complex C*(A; A’) given by

, o _ [ (=1)lellacl+IO1Flaclp(ag)0(ar ) plaz)  (n = 1),

ch(anlar] -+ lanlan) = { § )
Then we see that eg = e N—, where the right-hand side is the cap product with ej,

; see [Menl1l §3] for the cap product. Moreover, we define Sy : C(A) — Ci(A’) by
Spla = 0 and, for n > 1,

n n—j
Slrermin =33 (zsotz) Lo,
1 k=0

Proposition 3.7. Let e, L and S be the morphisms described above.
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(1) The tuple (Der(A, A"),Hom(C\(A),Cx(A")), e, L, S) is a homotopy pre-Cartan
calculus.
(2) The tuple (Der(A),End(Cy(A)),e, L, S,T = 0) is a homotopy Cartan cal-
culus on the mized complex (C«(A),d, B).
Proof. In order to prove it suffices to check the following equalities:

(i) Lo = [B,eg] + [d, So] + Sse,
(ii) [d, 69] +es9 =0,
(iii) [B, So] = 0.

A straightforward computation allows us to deduce that
[d1, Se] = S50,
Lo = (~1)1%ley 0 B, + (dao + dans1) 0 Sy and
B, 10ep+ (Z d27i> oSy + (—1)‘9‘59 ody = 0.
i=1

By combining the equalities, we obtain the formula (i). The linear maps dy ;, da;
and ey satisfy the followings relations:

_ [ (=Dl o(dyo +dia) —eso (i =0),
(3.1) dy;oeg = { (=) eg o dy i1q (1<i<n-—1),
do:oen = (—1)\9\+leeo(d2,0—|—d211) (i =0),
S (—1)‘9‘“69 odait1 (1<i<n-1).

Then, we have the formula (ii) by combining the equalities (31]). Since so s =0,
t,os =0 and

(3.2) Lojos=(—1)soLy;

for ¢ > 1, it is immediate to verify the relation (iii). As a consequence, we have
We consider the case where A = A’. In order to prove the assertion we show
the following equalities

(iv) [eg, L, — ep,p) =0 and

(V) [Sg, LP] - S[O,p] =0.

Observe that eg = dag o Lg,;. Moreover, we have

- 7 (—1)|0|d2,0 o (L970 + Le,l) (Z = 0)7

(3.3) Lg;odso = { (=1)l?ldy 0 Lg.it1 (i>1) and
- o LGp,i (Z = j)v

(3.4) LoioLy;= { (=))1NPIL, o Loy (i # J).

The equalities B.3]) and ([B.4]) enable us to obtain the formula (iv). It is readily
seen that

. _ tn o LO,n (7’ = O)’
(3.5) Lyiotn = { tnoLpis (1<i<n).

Therefore, we have the formula (v) by combining (8:2), (34) and @3). O
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3.4. Comparison among Cartan calculi. In this section, we compare two Car-
tan calculi defined in Section and Section 3.3 see Theorem [3.8] We also show
that a Sullivan model induces morphisms of graded Lie algebras on the homology
of Cartan calculi on the Hochschild complexes; see Proposition [3.91

As mentioned in the beginning of Section[3] the homotopy Cartan calculi of a Sul-
livan algebra in Proposition[3.6] and the Hochschild complex in Proposition 3.7 coin-
cide with each other on homology. To see this, we identify the Hochschild homology
HH,(AV) with the homology H*(L) by the quasi-isomorphism © : C,(AV) — L
defined by O(agla1|- - |an]) = Zapsai - - - san; see [BVSS, Theorem 2.4]. Here s
is the unique derivation on L stated in Section We also recall the morphism
O : L — C.(AV) defined by ©(agsay - - san) = ag * [a1] * - - - % [an], where * de-
notes the shuffle product on the Hochschild complex; see [GJ90, Section 4]. Observe
that © o ©® = 1. Our main result in this section is described as follows.

Theorem 3.8. With the same notation as above, one has a commutative diagram

Ly

H(Dex(\V)) ———= End(HH.(\V)
(resp.e
Der(H*(L)),

where i is the monomorphism defined by the isomorphism H(O).
Proof. In order to prove the assertion, it suffices to show that the squares

o’

C.(AV) L CL(AV) L
N
Cy(AV) — L, Ci(NV) ——L

are commutative for § € Der(AV'). Observe that [Lg, s] = 0 in End(£) by Definition
Then, we get

© o Ly(ao[a1|az|- - - |ax])

k
1 .
=7 (9(ao)salsa2 csa + Z(—l)“"(““)aosal cs0(a) - - Sak)
=1

k
1 .
=5 (9(ao)salsa2 e sap + Z(_l)\e\slaosal .- Lg(say) - -- sak>
i=1

=Lg o O(aoai|az] - - - |ak])
which implies the commutativity of the left-hand side square. On the other hand,

given av10z -+ U € L for a € AV and v; € V. The induction on k enables us to
deduce that the shuffle product on C\(AV') satisfies

O (a1t -+ ) = ax [va] * [va] -+ % [ox] = D (=1 Dafve) o)+ Vo],
ce6
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where &y, is the symmetric group of degree k£ and ( 1)5(%) is the Koszul sign defined
by the equality (— )5(0)00(1)00(2) Vg (k) = U102 -+ U in L. Thus we have

©oepo O (avyVy - V)

o a a 1 = =
= Z (_1)5( )F10llal+101+] Imae(va’(l))va@) ' "'Ucr(k)

UEGk

72 \9\\a\+|0|+\a\+|vz|(|v1\+ i 1|)a9( )01 -+ Vi 10; 5

Vi—1Vi41 " - Uk

_Z 1)l6llal+al+ 11+ ) (o140 D - 5o (5:)Tiga - - - T
—69((1’1)1’02 D).

This yields the commutativity of the right-hand side square. O

Let ¢: (AV,d) = (A,d) be a (not necessarily connected) Sullivan model of an
augmented CDGA (A,d). In the rest of this section, we show that the quasi-
isomorphism ¢ induces a morphism of Lie algebras between the homology Lie al-
gebras of derivations. Moreover, we relate two homotopy Cartan calculi

(Der(A),End(Cy(A)),e,L,S,0) and (Der(AV),End(Cy(AV)),e, L, S,0).
We refer the reader to Proposition B:ZI for the calculi.
Proposition 3.9. There exist a homomorphism H*(Der(A)) — H*(Der(AV)) and
an isomorphism H*(End(C.(A))) =N H*(End(C(AV))) of graded Lie algebras
such that the following diagrams commute:

H*(Der(AV)) 22 1 (End(CL (AV))) H* (Der(aV)) 2L

H*(Der(A)) L g+ (End(C,(4))),  H*(Der(A)) -

2 B End(CL (AV)))

T T “f

O e+ (End(C, (A))).

1R

Proof. First we prove the proposition in the case where ¢: (AV,d) — (A, d) is a sur-
jective quasi-isomorphism. The morphism ¢ of CDGAs gives rise to a commutative
diagram

H(L),H(e)

Der(AV))

lg -

H(Der(AV, A O mnd(0. (AV), CL(A))

T -

H(Der(4)) — O g End(C,(A))).
Since the functor C.(—) preserves quasi-isomorphisms, it follows that the right
vertical maps are isomorphisms. Corollary implies that the upper left map
s is an isomorphism. Now we need to prove that the two vertical composites are
morphisms of Lie algebras. Since the right one can be proved similarly to (and

easier than) the left one, we give only a proof for the left one.
It follows from Proposition that the map ¢, : Der(AV) — Der(AV, A) is a
surjective quasi-isomorphism. Then, for any elements [f],[g] € H(Der(A)), there
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are cocycles f/,¢g" € Der(AV) such that fo = ¢f’ and gy = ¢g’. Therefore, we see

that (o«)71 o ©*[f] = [f'] and (¢«)~! 0 ©*[g] = [¢']. By a straightforward compu-
tation, we have [f,9]e = ¢[f’, ¢'] and this completes the proof for the particular
case.

Next we deal with a general case. To this end, the “surjective trick” is applicable.
In fact, the map ¢: (AV,d) — (4,d) factors as (AV,d) —i—) (AV,d) ® (E(A),9) %)
(A,d) with a contractible algebra (E(A), ) and the canonical maps i and ¢'; see
[FHTO1, Section 12 (b)] for details. Now we have a homotopy inverse r: (AW, d) —
(AV,d) of i defined by sending A to zero, where (AW, d) = (AV,d) ® (E(A),9).
Observe that W =V & A® §A. Then r and ¢’ are surjective quasi-isomorphisms
and hence the first half of the proof gives the following diagram:

H(Der(AV)) — MO g End(c, (aV)))
H(Der(AW, AV)) L mna o, (AW, G (aV))

Ty | 22

1R

T x

H(L),H(e)

H(Der(AW)) H(End(Cy(AW)))
H(Der(AW, 4)) T mrgna(c, (aw), C.(4))
H(Der(4)) — 1O g End(c, (A))).

The upper left map r* is an isomorphism with the inverse i* by Corollary -.
This completes the proof of the general case.

3.5. Injectivity of the contraction ¢ on homology. Let (AV,d) be a simply-
connected Sullivan algebra whose homology satisfies the Poincaré duality. We as-
sume that the fundamental class is in H™(AV). In this section, we study properties
of the derivation H(eg): H(L) — H(L) and show injectivity of this map. We recall
the differential graded module L) defined in Section 3.2

Theorem 3.10. Let (Der(AV),Der(L),e, L,0,0) be the homotopy Cartan calculus
in Proposition [T.8. For any [0] #0 € H~""1(Der(AV)), there exists a cohomology
class [o] € H™ (L)) such that H(eg)[a] is the same as the fundamental class in
H™(AV) C H™(L).

This theorem immediately implies the following corollary.

Corollary 3.11. Suppose that H*(AV') satisfies the Poincaré duality. Then the
map H*(Der(AV)) — Der* ™ (H(L)) induced by the contraction e: Der*(AV) —
Der*t1 (L) is a monomorphism and hence so is the map H*(e): H*(Der(AV)) —
H*t1(Der(L)).

Thanks to Corollary [3.11] and Proposition [£.4] below, we have Theorem [[L3] It is
expected that the contraction operator e is injective for more general spaces.

The rest of this section is devoted to proving Theorem Let (AV,d). be
the linear dual of (AV,d) and D: (AV,d) — (AV,d). the duality map; that is, a
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quasi-isomorphism of (AV,d)-modules of degree (—m) given by the cap product
with the representing cycle of the fundamental class. For a (non-negative) integer
k, define a quasi-isomorphism pd by the composition

adjoint

pd: HOInAv(,C(k), /\V) % HomAV(E(k), (/\V)*) T Hom(ﬁ(k),(@) = (ﬁ(k))*

and denote its adjoint by ad(pd): Hom, (L), AV) @ EEZ;’" — Q.
By a straightforward computation, we have

Lemma 3.12. For any integer n and k, we have a commutative diagram

n mtn  2d(pd)
Hom/\v(ﬁ(k)v AV) ® ‘C(k;_ —Q

\ch %Tevl

AV ——L2  (AV),)N.

Proposition 3.13. Let n and k be integers.
(1) The pairing

Hev): H_"(HomAV(E(k), AV)) ® Hm+n(£(k)) — H™(AV) = Q

is non-degenerate.

(2) For any [f] # 0 € H™"(Homay (Lx), AV)), there is a cohomology class
[a] € H™ ™ (L)) such that [f(a)] € H™(AV) is the same as the funda-
mental class.

Proof. Since D induces an isomorphism on homology, Lemma 312 identifies H (ev)
and H(ad(pd)) up to isomorphism. Hence the proposition follows from the fact
that H(pd) is an isomorphism. O

In order to prove Theorem [B.10, we represent the contraction e as a compos-
ite of maps. Proposition below asserts that the linear map A: Der(AV) —
Homuy (L(1), AV) = Hom(V,AV) defined by A(0)(v) = (—1)¢(v) for v € V
and 0 € Der(AV) is an isomorphism of complexes of degree 1. Moreover, we de-
fine a chain map é: Homay (L(1), AV) — Der(L) of degree 0 by é(f)(v) = 0 and
é(f)(v) = f(v) for v e V and f € Homay (L(1), AV). Then we have a commutative
diagram

Der(AV) ° Der(L)

(A
L
(

1),/\V).

IR

HOm/\V (

Proof of Theorem[310l Take an element [0] # 0 € H ""1(Der(AV)). Since A
is an isomorphism, we have H(\)[0] # 0 € H™"(Homay (L), AV)). Hence, by
Proposition there exists a cohomology class [a] € H™¥" (L)) such that
A(0)(a)] € H™(AV) is the same as the fundamental class. Then we see that
[(eX(0))(a)] € H™(L) is nothing but the fundamental class. Therefore, the theorem
follows from the above commutative diagram. O
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4. GEOMETRIC COUNTERPARTS OF CARTAN CALCULI

In this section, we assume that the underlying field is of arbitrary character-
istic. Theorem asserts that the operations L and e appeared in Proposition
coincide with the Lie representation and the contraction in Proposition [3.7]
on homology, respectively. In this section, we consider geometric constructions of
the operations L and e on homology. Moreover, as mentioned in Introduction, a
geometric description of the isomorphism ® of Lie algebras in Theorem [[Tlis given.

4.1. Geometric descriptions of the operations L and e. Given 6 € 7, (aut; (X))
which is represented by 6 : S™ — aut;(X). Let ad(f) : S™ x X — X be the adjoint
of 8 and consider the map between the free loop spaces L(ad(f)) : LS" x LX — LX
defined by (L(ad(0)(l,v))(t) = ad(0)(L(t),v(t)) for (I,~) € LS™ x LX and t € S*.
Let evg : LS™ — S™ be the evaluation map at 0. We define L : m,(aut; (X)) —
End " (H*(LX)) by the composite

L(ad(6))" Jism
_—

(4.1) Lo : H*(LX) H*(LS™ x LX) —~ H*(LX),

where f[ sn) denotes the integration along the image of the fundamental class of S™
by the map evy : H"(S™) — H™(LS™). The rotation on S! induces the action
w: St x LX — LX on the free loop space. By definition, the BV-operator A on
H*(LX) is the composite

A HA(LX) S H¥(SY x LX) 225 -1 (LX),

where [q, is the integration along the fundamental class of S'. Let [S"] be the
cohomology class in H"~1(LS™) which is the image of the fundamental class of S™
by the composite

*

H7(S™) —% Hn(LS") —2> H=Y(LS™).
Then, we define a linear map e : 7, (aut; (X)) — End~""'(H*(LX)) by the com-
posite

() from
(4.2) eo : (LX) e (s x £x) 5% g (0X).

We first consider properties of the operation L.

Theorem 4.1. (1) The map L : m.(aut;(X)) — Der” *(H*(LX)) is a mor-
phism of Lie algebras.
(2) For each 0 in . (aut1(X)), the derivation Ly commutes with the BV oper-
ator A : H*(LX) — H*Y(LX).

We postpone the proof to Appendix [B} see the argument after Theorem[B.2l The
operation L in (&1 is extended to that on the equivariant cohomology H, (LX).
Theorem [4.1] is proved by considering a result on the equivariant version of the
operator L.

Remark 4.2. One might expect that the same construction as that in (@) and
([#2) is applicable to other element in H*(LS™), or more generally in H*(LS) for
a simply-connected space S. In fact, it is possible. Moreover, we see that such
operations incorporate e and L together with interesting properties, for instance,
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the Cartan formula such as that for Steenrod operations. The topic will be discussed
in more detail in [NW22].

In the rest of this section, we assume that the underlying field and the coefficients
of cohomology rings of spaces are rational unless otherwise specified.

We relate Sullivan’s isomorphism ® mentioned in Section 2] with the Lie deriva-
tive L( )

Proposition 4.3. Let X be a simply-connected space of finite type and AV the
minimal Sullivan model for X. Then there exists a commutative diagram

mo(auty (X)) ® Q == Der ™ (H*(LX; Q))

élg B

H,.(Der(AV)) Der™*(H*(L)).

L

We prove Proposition in Appendix [B] together with its equivariant version;
see Theorem [B.6l Next we give a relationship between the operation e and the
isomorphism ®.

Proposition 4.4. Under the same assumption as in Proposition [{.3, there exists
a commutative diagram

n(ats (X)) ® Q 2% End L (H*(LX; Q)

o l =] T a monomorphism
H,(Der(AV)) = Der " TH(H*(L)).

Proof. We first consider a rational model for eg described in (42)). Let Mgn be the
Sullivan model for S™ which is of the form

Mgn = { (A(u),0) (n : odd),

(A(u, ), du’ =u?) (n:even),

where |u| = n, |u'| = 2n — 1. Let Lg» be the Sullivan model for LS™ induced by
Mgn and ¢ : AV — Mgn ® AV a Sullivan representative for ad(6); see Section
It follows from Lemma .10 that a Sullivan representative Lo : £ — Lgn ® L for
L(ad(0)) is given by

(4.3) Lo(v) = ¢(v) and Lp(v) = sp(v)

for v € V. We define a morphism fﬁ : Lgn — Q of chain complexes of degree —n+1
by [ (@) =1 and [ (w) = 0 for bases w with w # @. Since the cohomology class

[S™] is represented by @, the definition of ey implies that the composite ( [, ®1)o Ly
is a rational model for eg. Now, we may write

p)=10v+u®b (v)

for v € V modulo (Mgn)>™ @ AV. By definition, we see that ®(0)(v) = 6'(v).
Therefore, it follows from (@3] that

Low)=1®@v+u®d (v),
Lo@)=s(1v+u®(W)=100+u0®0 (v)+ (=1)"u® st (v)

modulo (Lgn)”™ ® L. We have ([, ®1) o Lo(v) = 0 and ([, ®1) o Lop(v) =
(—=1)"eg(v). This completes the proof. O
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Finally we are ready to prove Theorem [I.1]

Proof of Theorem [I1l. We observe that all results in this manuscript remain true
even if the underlying field Q is replaced with R. In fact, after taking the tensor
product — ®g R, we have these results. Moreover, we recall the fact that there
exists a sequence of quasi-isomorphisms connecting Q*(M) with Apr(M) Qq R,
where Apy, (M) denotes the CDGA of polynomial differential forms on a manifold
M; see [FHTOI, Section 11 (d)] for the details. Therefore, a Sullivan minimal
model AW = Apy (M) gives rise to a minimal model m : AV = QQ*(M) in which
V = W ®qg R. Here QQ*(M) denotes a cofibrant replacement of Q*(M) in the
category A of CDGAs endowed with the model category structure described in
IBGT6].

Let M be a simply-connected manifold. To prove Theorem [[.I] we first con-
struct an isomorphism between H,(Der(QQ*(M))) and H,(Der(AV)), by applying
the proof of [BLO5, Theorem 2.8]. With the notation above, the map m has a
factorization

AV m QQ* (M)

S

in A, where 7 is a trivial cofibration and p is a fibration, namely an epimorphism.
Observe that p is also a quasi-isomorphism. Therefore, we have a right splitting
g of p with p o g = idgg-(ny) and a map h; : Der(A) — Der(QQ*(M)) defined
by h1(f8) = po 6o g. Moreover, since each object in 4 is fibrant, it follows that
i admits a left splitting r : A — AV with r o7 = iday. Thus, a chain map
hs : Der(A) — Der(AV) is defined by ho(8) = r o 6 oi. As a consequence, we have
a diagram consisting of commutative squares

H,(Der(QQ*(M))) —= End~* (HH..(Q*(M)))

(’“’*T% zTHmp)o( )oHH(g)
H.(Der(A)) —~— End~*(HH.(A))
(hg)*l/% %\LHH(T)O( YoH H (i)

H.(Der(AV)) ——=— End ™ *(HH.,(AV)).

We observe that left maps (h1). and (hs). are isomorphisms; see the proof of [BL0S,
Theorem 2.8 (1)].

Finally Theorem [3.8] Propositions 3] and [£.4] enable us to obtain the commu-
tative diagram in Theorem [T11 (I

4.2. The map I'y due to Félix and Thomas. Throughout this section, we
assume that M is a simply-connected closed manifold of dimension m. Let AV =
(AV,d) be the minimal Sullivan model for M and C.(AV) the Hochschild chain
complex of AV. Recall the direct sum decomposition £ = AV @ AV = ©rLy) of
complexes from Section2l Thus we have decompositions H* (L) = ©rH* (L)) and
H.(LM;Q) = @, H ™ *(Hom(Lx),Q)) which are called the Hodge decompositions.
We put

H®(LM) := H™*(Hom (L), Q)).
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Since the Hochschild cohomology HH*(AV, A) with coefficients in a AV-module
A is isomorphic to the homology of the complex Homay (£, A), we also have the
direct sum decomposition HH*(AV, A) = @xHH;,(A\V, A), where

HH(*]C) (/\V, A) =H* (HOmAv(ﬁ(k) R A))
By a direct computation, we have

Proposition 4.5. The map X : Der(AV, A) — Hompay (L(1), A) = Hom(V, A) of
degree 1 defined by \(0)(v) = (=1)110(v) for 6 € Der(AV,A) and v € V is an
isomorphism of complexes of degree 1.

Corollary 4.6. Letn: AV — A be a morphism of CDGAs, where AV is a Sullivan
algebra.

(1) For any quasi-isomorphism ¢ : A — B of CDGAs, the map @, : H,(Der(AV, A)) —
H.(Der(AV, B)) induced by ¢ is an isomorphism, where B in the codomain
is regarded as a AV -module via the composite o o 1.
(2) For any quasi-isomorphism ¢ : AW — AV of Sullivan algebras, the map
v* : Hy(Der(AV, A)) — H.(Der(AW, A)) induced by ¢ is an isomorphism,
where A in the codomain is regarded as a AW -module via the composite

no.

Proof. The differential graded module L) is a semifree AV-module. Then the

results follow from [FHTO1, Theorem 6.10] and the naturality of A in Proposition
O

Poincaré duality for manifolds gives rise to a duality between the direct sum-
mands H® (LM) and HH(,(AV, A). To see this, let A be an m-dimensional
Poincaré duality model for a simply-connected manifold M introduced in [LS08]
equipped with ¢ : AV — A a quasi-isomorphism of CDGAs. Denote by A, :=
Hom(A, Q) the linear dual of A with the differential defined by a + —(—1)!*laoda
for a € A., where d4 denotes the differential of A; see Remark EE121 Let {a;}Y,
be a homogeneous basis with ay = w4 a representative of the fundamental class
of M. We denote by {a}X, the dual basis. Let Ds : A — A, be the duality
map; that is, D4 is an isomorphism of A-modules defined by D4(a)(b) = w? (ab).
Observe that A is regarded as a AV-module via ¢.

Put L4 := A,y L= A® AV. We observe that £4 is also a rational model for
LM. The direct sum decomposition of £ mentioned above induces a decomposition
LA = @kﬁf}c)v where E(}C) = A®av L) Then, we have an isomorphism

D g

(4.4) PD : HH}}, (AV) ——— HH[}, (A\V, A) === HH{} ;™ (\V, A.)
adjoint

~

(Ta®1)* (k)

H"_m(Hom(E(}c) Q) — H o (LM).

Let Qauty (M) be the connected component of the based loop space Qaut (M)
containing the constant loop at id € autq (M ). We here recall the morphism I'; due
to Félix and Thomas. Let g : Qauty(M)o x M — LM be a map defined by

9(v; 2)(t) = v () (=)
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for v € Qauty (M), # € M and t € St. In [FT04], Félix and Thomas show that
the morphism I'; defined by the composite

Hur

7, (Qauty (M)o) ® Q Hy,(Qauty (M)o; Q)

X[M]l

Hypm (Qauty (M )o x M;Q) —=> Hyy o (LM; Q)

is injective for n > 1 and that the image of I'; is isomorphic to Hfllsz(LM ), where
Hur denotes the Hurewicz map and [M] € H,, (M) is the fundamental class.

The main theorem in this section is as follows.

Theorem 4.7. With the notation above, the diagram

7 (aity (M)) ® Q e H,(Der(AV))

BT: |

-1
Tt (Qant; (M)g) © Q ———= HY, (LM) 2= HH ™ (AV)

1R

is commutative, where O is the adjoint map.

We note that Theorem [L.7] gives another proof of [FT04] Theorem 2]. In order to
prove Theorem 7], we first observe rational models for Qaut; (M) and the adjoint
map 0 by using the rational models for function spaces due to Brown and Szczarba
[BS97]. Remark that the proof of the theorem due to Félix and Thomas uses a
rational model for Ty constructed by a Haefliger model [Hae82] for the space of
sections of a fibration. )

Let (A(V®@A,),d) and AS,, = (A ((V RA) ®(Ve A*)Z2) ,d) be the Brown-
Szczarba models for Map(M, M) and auty (M), respectively. For the details of
Brown-Szczarba models, see [BS97, BM06, [HKOOQS] and also Appendix [Al

Let Mg1 = (A(u),0) be the Sullivan model for S* with |u| = 1. Since aut; (M)
is connected, nilpotent space [HMRT5] of finite type, it follows that the function
space Lautq (M) admits a Brown-Szczarba model of the form (A(S, ® A(u)4),d).
A Sullivan representative for the constant loop in Laut; (M) at id € auty (M) is of
the form AS, — A(u) defined by w +— 0 for w € S,. This induces an augmentation
e : A(Sp @ A(u)y) = Q of the model for Laut;(M). Therefore, by virtue of [BMOG,
Corollary 4.7], we have a model

(AS.,d) = (/\ ((S@ @A), @ (S, ® /\(u)*)ZQ) ,d) ,

for the connected component Lauty (M )g of Lauty (M) containing the constant loop.
Moreover, it follows from [BMOG, Proposition 4,2, Theorem 4.5] that the CDGA
morphism

pr(w®f) (jlwep|>1)
0 (lw® Bl =0)

for w € S, and 8 € A(u)« is a model for the inclusion Laut,(M )y < Lautq (M),
where pr is the projection (S, ® A(u)«)=! — S.. The result [BM06, Corollary 4.7]
yields that a morphism

A(Sy @ A(u)s) = ASe, w® B {

wo 1 NSy — ASe
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of CDGAs, which is defined by the projection onto (S, ® /\(u)*)1 in S}, and wo(w) =
w® 1* for w € 5’52, is a rational model of the evaluation map at the base point
evg : Lauty (M) — auty (M).

Lemma 4.8. The fiber of wo at the canonical augmentation of NS, over Q is a
Sullivan model for Qauty (M )o.

We remark that the result [BM06, Corollary 4.8] is not applicable to the mor-
phism wy since auty (M) is not a simply-connected in general.

Proof of Lemma[{.8 For proving the assertion, it is enough to show that wy is a
KS-extension; that is, AS. is a relative Sullivan algebra with base AS, and wy is
the canonical inclusion; see, for example, [FHTO1] Section 14] for relative Sullivan
algebras. Observe that

(S0 © A).)" = SL @ Qu' and (S, ® A(w).)! = (S5 © QL) & (52 © Qu°).
It is readily seen that (S, ® /\(u)*)1 coincides with the complement of the morphism

0,do®1)

* ( * *
S ® Qu —— (S ® Q1*) @ (52 ® Qu*),

where dj is the linear part of the differential of AS,,. It follows that AS; is isomor-
phic to

A ((Sw ® Q1) @ (S_f,@ 853) ®Qu*) ~AS, ® A ((S_g,@ S§3) ® Qu*)

which is a relative Sullivan algebra with base AS,. Here, S’_g is the quotient space
S2/do(S}). Therefore, the morphism wy of CDGAs is a KS-extension with the

fiber A ((5_3,69 553) ® Qu*). Since autq (M) is an H-space, we have a homotopy
equivalence
auty (M) x Qauty (M) ~ Lauty (M)o

defined by (z,7) — 2« -~. A homotopy, which defines the holonomy action of
mi(auty (M)) on H*(Qauty(M)y), factors through the product. This implies that
the mi(auty(M))-action is trivial and hence nilpotent. Therefore, by virtue of

[Hal83, 20.3 Theorem|, we see that the fiber A ((S_?a e 5’53> ® Qu*) is a Sullivan
model for Qauty (M ).

Now, we recall facts on rational homotopy groups of nilpotent spaces. Let X be
a connected nilpotent space of finite type and Mx = (AW, d) a Sullivan model for
X. Tt follows from [BG76, 11.3] that there is a natural isomorphism

v:mp(X)®Q — Hom(H™(W,dy), Q)

provided 7, (X) is abelian, where dy is the linear part of the differential d. Let
f 8™ — X be a map which represents an element in m,(X) ® Q. Then, the image
v(f) is defined by the linear part of My a Sullivan representative of the map f.
We denote by Mg the Sullivan model for S™ described in [FHTO01) §12 Example
1] and fSn : Mgn — Q the chain map which assigns 1 to a representative of the
fundamental class of S™. Since M f(w) is indecomposable for any w in (AW)™, it
follows that v(f) coincides with the map induced by the chain map f gn oM |w on
H™(W, do).
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Let M be a simply-connected manifold. The monoid aut (M) and Qaut, (M)
are connected nilpotent H-spaces; see [HMRT5]. Therefore, by the models men-
tioned above, we see that the dual spaces of 7, (aut; (M))®Q and 7, (Q.aut, (M))®

Q are isomorphic to the homology of S, and (S_f, <) 553) ® Qu* the linear parts
of the Sullivan models for auty (M) and Qauty (M)o, respectively. Observe that the
fundamental groups m (auty (M)) and w1 (Qauty (M )g) are abelian.
In what follows, we put
T, := S_?a ® SEB,

where the differential of T, is induced by the linear part (S,,do). Let ¢ : S, = T, ®
Qu* be the composite of the inclusion T}, = T,,@Qu* defined by w + (—1)"lw@wu*
and the projection pr’ : (S,)=2 — T,,.

Proposition 4.9. The morphism ¢ is a rational model for the adjoint map O; that
is, the diagram

Tp—1(Qauty (M)g) ® Q —— Homg (H"_l (T, @ Qu*) ,Q)

o~

%J{a lH(L)*

T (auty (M) © Q ———Z—— Homg(H"(S,,), Q),
is commutative for n > 2. As a consequence, the morphism H(t) : H"(S,) —
H" YT, ® Qu*) induced by ¢ is an isomorphism for n > 2.

Proof. We may assume that M is a rational space without loss of generality.
Let f : 8" ! — Qauti(M)o be a based map which represents an element in
Tn—1(Qauty (M)o) = mp—1(Qauty (M)o) ® Q. Consider a commutative diagram

(4.5) sn x\

srtagt I Qauty (M) A S' —=—= aut; (M)

T ! |

Sn—lx St Lﬁautl(M)o x ST — = auty (M),

where ev is the evaluation map. Let inc’ : Qauty(M)o < Laut; (M) be the inclu-
sion. By the construction of the model for Qaut;(M)g in the proof of Lemma
A8 the CDGA morphism M, @ A(Sy @ Aw)s) = A (T, ® Qu*) defined by

Mipe (w® 1*) =0 and
| o [0 (ol = 1)
Mine @0 ={ Py o (fu] =2

for w € S,, is a rational model for inc’. Therefore, by combining the rational models
of inc” and the evaluation map Laut; (M) x S — aut; (M) due to Buijs and Murillo
[BMOG], we see that ev admits a Sullivan representative

Mey : NSy = AT, @ Qu™) ® A(u)

defined by Mey(w) = —(pr'(w) ® u*) @ u. Let My : A(T,, ® Qu*) - Mgn-1 and
Mgy : NSy — Mgn be Sullivan representatives of f and 9(f), respectively. Then
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we have the following homotopy commutative diagram of CDGAs

Moy Man Jsn
. M iﬂ ‘on—-1® [1 H
/\S@ L) /\(Tw ® QU*) ® /\(U) r®1 M5n71 ® /\(U) Q Q
o ¢1®fsl » l1®fsl H
AT, © Qu) Mg g

where 7 is the canonical morphism which sends the fundamental class of S™ to
the fundamental class of S"~! x S! on cohomology. The uniqueness up to homo-
topy of a Sullivan representative and commutativity of the diagram (LIl enable
us to conclude that the top and left-hand side diagram is homotopy commutative.
Therefore, we have

ve 6(f) = (fS" OMa(f)) |Sv> = (fS"*l OMf ° /\L) |S<P
= (fgn-1 oMy) |1, 00u* 0t = V(f) o t.

This completes the proof. (I

We next consider a rational model for T'y. Let A(V ® A(u),) be the Brown—
Szczarba model for LM, where AV is a Sullivan model for M. Then we identify

the model with the CDGA £ mentioned in Section 2l by the isomorphism & : £ =
AV @ A(u)y), defined by v = v ®@ 1* and ¥ — (—1)I"lv @ u* for v € V.

Lemma 4.10. Let AV; be a minimal Sullivan model of a simply-connected space
X, for each i =1 and 2. Let Lx, be the Sullivan model for LX; and v : A\Vo —
AV1 a Sullivan representative for f : X1 — Xa. Then, a CDGA morphism L) :
Lx, = Lx, defined by Lyp(v) = o(v) and LY(D) = sp(v) for v € Vo is a Sullivan
representative for the map Lf : LX; — LX5.

Proof. Let A(V; @ A(u).) = AAV; @ A(us))/Z be the Brown—Szczarba model for
LX;; see Appendix [Al A naturality of Brawn-Szczarba models implies that the
induced morphism

A R1): A(AVa @ AN(us))/Z — AN(AVa @ A(us))/T
is a rational model for Lf. It is readily seen that the square

Lo

IR | o
] o

A(Va @ A (u)x) Lx, Lx, A1 @ A(u)«)

plu ”l’”

AAVs © Aw.))/T Awen AAVE @ Au.)) /T

is commutative, which proves the lemma. (I

By the restriction of the isomorphism £ mentioned above to the direct summands
of the Hodge decomposition, we see that Ly is isomorphic to AV @ A (V @ Qu¥)
which is a direct summand of A(V ® A(u),). Define the morphism Mp, of CDGAs
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by the composite

proj

AV (VeQu) L2 Ae (Ve Qu)
Da®1

(4.6) L L)

o

A ®(VOQu) —>V® A ©Qu =2

Here, the map T is defined by T'(a@v®u*) = (=1)l4"h@aeu* and pr” : Ve A, —
T, denotes the canonical projection.

Proposition 4.11. The morphism Mr, is a rational model for the dual of I'y.

Proof. We first consider the composite
g’ : Qauty (M) —2> Lauty (M) —%> Map(S* x M, M) <22 Map(M, LM),

where ad and ad’ are the adjoint maps. By virtue of Lemma [A.2] we see that the
map ad is modeled by the morphism Maq : A(V @ (A(u) @ A)s) = A(Sp @ A(w)s)
given by

Mag(v®a) =p~* (Minc(v ®ag) @ 1" + (=) My (v @ ar) ® U*>

for a € (AN(u)®A), and (o) = 1I*@ap+u*@a;. Here, p and ¢ are the isomorphisms
described in Appendix [Al

Since M is simply-connected, it follows that LM is connected. Thus, the same
argument as in the proof of Lemma [A.2] enables us to obtain a model for ad’ of the
form Maug : A(V @ (A(u) @ A)x) = A(V @ A(u)s) ® A,) which is induced by the
isomorphisms ¢ : (A(u)®A)x =2 A(u)s® Ax. Therefore, the composite M, 0 Maqo
./\/la_dl, is a model for ¢/, where Mj, is the model of inc’ described in the proof of
Proposition 9 Let ev’ : Map(M, LM) x M — LM be the evaluation map. Then
we have a model for ev’ of the form My : A(VRA(u)x) = A(VRA (1)) QAR A
defined by

Mew(v®B) = (-D*(ve B) @) @ as.

This follows from [BM06, Theorem 1.1] and [Kur06, Theorem 4.5]. We remark that
the sign of the model M., is different from the original model due to Buijs and
Murillo. For details of the sign, see Remark [£12] after the proof.

Since the map g coincides with the composite ev’ o (¢’ x 1), it follows that

Mg = (Miner 0 Mag o M;dl’ ® 1) o Meys
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is a rational model for g. Explicitly, we compute
My (v) = (Miner © Mag 0 M;dl/ ®1)o Moy (v®1%)

= (Miner © Mag ® 1) <Z(—1)|‘“ (v (1®a))® ai>

= (Mipe ©1) (Z(—U"“p_l (Minc(v®a}) @ 1%) @ ai>

= Z ai(p(v)) ®a; and

lail=[v]

M,y(0) = (1) (Miner 0 Mag o MJ, @ 1) 0 My (v @ u”)

= (=) Miper 0o Mag ®1) (Z(_l)ai((v ®(u®a)")® ai>

= ()M (Mipe ® 1) <Z P (Minc(v @ af) @ u*) @ )

= (=1l Z (pr’"(v®@af) @u*) ® a;.

lai|<|v]

Recall wg € A™ the representative of the fundamental class [M] described above,
and define IWA : A = Q a linear map of degree —m which maps w4 to 1. It is
immediate that fwA is a rational model of the dual of Q — H,(M;Q) defined by
1+ [M]. Therefore, the definition of T'; implies that the composite

M, 1/, roi
L —i> AV @ Au)s) — N (T, @ Qu*) ® A —A (T, ® Qu*) i T, ® Qu*

induces the dual of I'; on homology.

In order to complete the proof, it suffices to show that the composite above coin-
cides with Mr, in (46) on L;). We observe that p(v) =), ai(¢(v))a; for v e V.
Moreover, we may write D4 (a;, -+ a;, ) = i, i) forsome A, i ) € Q.
Thus it follows that fwA (@i, -+ aa;) = wi(ag, - aia;) = Dalag, -+ ai,)(a;) =
A(is,...,in,i)- Then, the definition of Mr, yields that

MF1 (’Ul cee Uk’lj)
=(pr" ®1)oTo(Ds®1)
(oM 32 antetn) i, (plun)ag -0, @vou”)

(415000s0k)

=@ DT ((EDM Y a(e(w0)-+ @k () (3 A yal) v O ')

(31,--+50k)

=(-1)"! Z (=1)llas (p(o1) - af, (@(or))pr" (0 © af) @ WAy, igi)-
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Moreover, we see that
(roj) o (1@ [, ) o My o &(vr -+ vyd)
=(=)Pproj)o (1@ [, ) o My (11 @ 1)+ (04 © 1) (0 @ ')

=(=1)""!(proj) o (1 ® LA)

Z ai, (p(v1)) -+~ aj, (p(ve))ai, - - a;, (Z(Pf"(v@@af)@u*)@ai)

:(_1)|v\ (_1)(|ai|*m)(\v|+\ai|+1)+m(|v\+|ai|+1)
(315-0k %)
aj, (p(v1)) -~ ai, ((vr))pr” (v @ a7) @ w )N\, iy i) -

Observe that Mg, .. 4, s = 0if m # |a;, - - - a;, |+ |a;|. Thus, we have the result. [

.....

Remark 4.12. The sign of the rational model M, for the evaluation map in the
proof of Proposition A1 is different from the model due to Buijs-Murillo [BM06]
and Kuribayashi [Kur06]. It is caused by the difference of sings appeared in the
differential of the dual space A,. The differential d, of A, in[BS97, BMO06, Kur(06]
is defined by d.(a) = awody for a € A, with the differential d4 of A. In this
paper, we adopt the differential d, of A, defined by d.(a) = —(—1)I*la 0 d4 with
the Koszul sign convention.

In [BMOS], §2], Buijs and Murillo define a quasi-isomorphism
VU : Der(AV, A) — Hom(S,,Q)

by ¥(0)(v®a) := (—=1)IPHIDIelq 0 g(v) for 6 € Der(AV, A) and v®a € S,,. Then,
the isomorphism H (¥) on homology is related to Sullivan’s isomorphism ®.

Lemma 4.13. There exists a commutative diagram

o (aut: (M) ® Q H~*(Der(AV))

”lg gl%

Hom(H*(S,), Q) <=— H~*(Hom(S,, Q) et H=*(Der(AV; A)),

IR |

where the unnamed arrow denotes the natural isomorphism.

Proof. Given f € mp(aut1(M)) ® Q which is represented by f : S™ — auty(M).
Here we assume that M is a rational space. Let ad(f) : S™ x M — M be the adjoint
of f and Mgy : AV — Mgn @ AV a Sullivan representative for ad(f). Note that
(1® ) o Maq(y) is also a Sullivan representative for ad(f). By the definition of @,
we have

A7) euo®(f) = o {([5. ®1) 0 Maa(p) } = (Jgu @1) 0 (1@ ) © Ma(y)-
On the other hand, the adjoint ad(f) coincides with the composite

incx1

(4.8)  ad(f): 5™ x M L auty (M) x M 2L Map(M, M) x M —> M,
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where ev” is the evaluation map. Let My : AS, — Mgn be a Sullivan represen-
tative for f and Mgy : AV = A(V ® A.) ® A the rational model for ev”’ defined
by
Meyr(v) =3 (-1l (v ® a}) @ a;

J
for v € V. Let My be the rational model for inc described in Appendix [Al It
follows from (A.8) that the composite (M; o Minc ® 1) 0 Mgy of morphisms of
CDGAs is also a rational model for ad(f) and then it is homotopic to (1 ® ¢) o
Mq(p)- Therefore, by (A1), we have

Po Px © (I)(f)(’U & a:) = (_:l)(‘fl—i_‘vl)lai‘a‘z< {((fsn OMf 0 Mine ® 1) o My (’U)}

= (=1)(fFHlwDlail g Z(—l)‘“jl (Jgn oMs(v @ a3)) a;
J
= JonoMsw®af) = v(f)(v @ a])
forv®a; € S,. O

Proof of Theorem[{.7 By making use of isomorphisms V = V ® Qu* and S, ®
Qu* =2 S, defined by 7 = v ®@ v* and w ® u* — (—=1)I*lw, respectively, we obtain
morphisms A : Der(AV) — Hom(V ® Qu*, A) and ¥’ : Hom(V ® Qu*, A) —
Hom(S, ® Qu*, Q) of chain complexes which fit in the commutative diagram

Hom(V, A) ; Der(AV, A) Hom(S,, Q)

e |-

Hom(V ® Qu*, A) v Hom(S, ® Qu*,Q).

N4

R

Recall the morphisms PD in ([@4) and My, in (@G). Then, a straightforward
computation shows that the following diagram

Hom(S,, Q) h Der(AV, A)
Hom(T, ® Qu*, Q) Hom(S, ® Qu*,Q) G
(pr”"®1)" v’ A
M, Hom(A, ® V @ Qu*,Q) % Hom(V ® Qu*, A)
(Daop®1)0&)” =
Hom(L(1y, Q) D Hom(V, A).

is commutative. Therefore, by Proposition .9 .11l and Lemma T3] we have the
commutativity of the diagram in the assertion. O

5. EXAMPLES

In this section, we describe explicitly the Lie representation L and the contraction
e in Propositions and [£4] for manifolds and interesting spaces. For a Sullivan
algebra AV, we denote by (v, «) the derivation on AV that takes a generator v in
V to an element a in AV and the other generators to 0.
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Example 5.1. Let G be a simply-connected compact Lie group and aq,...,q
the indecomposable elements of H*(G;Q) with maximal degree. The cohomol-
ogy H*(LG;Q) is generated by aq,...,q; as an algebra with the BV operator and
derivations Ly for suitable elements 6 € m.(aut1(G)) ® Q. In this case, the Lie
derivative L : m.(aut1(G)) ® Q — Der.(H*(LG;Q)) is faithful.

Example 5.2. Let X be the complex projective plane CP2. Then a Sullivan minimal
model Mx for X is given by (A(z,y),d) with |z| = 2, |y| = 5, de = 0 and
dy = x3. Moreover, the free loop space LX admits the Sullivan minimal model
L = (AN(z,y,Z,7),d) for which |Z| = 1, || = 4, dz = 0, dy = 23, dZ = 0 and
dy = —32%%. Recall the result [KY97, Theorem 2.2(ii)] which asserts that

Qlz] @ A7)
(23, 22%)
as an algebra, where (z,7)4 is the ideal of A := Q[z] ® A(Z)/(23,2?Z). We choose

a basis for H*(LX;Q) of the form

H(LX;Q) = o (@8a®Q ) |o| =gl =4

{17 &€ 71'2, x (: CYQ) ,.’I],’E, Qp, TQp, ﬁnuxﬁn}nZh
where o, = Z§" and 8, = 27" + 3nZyy"'. Observe that

H*(DQF(MX)) = Q{(% 1)7 (y,x)}

Let ey := ey,1) = —(9,1), e2 := eo) = (§,2), L1 := L1y = (y,1) and Ly :=
Ly = (y,x) + (g,7). Then we see that ei(an) = non_1, ea(an) = nra, 1,
er(f1) = =z, e1(Bn) = —nfp-1 (n > 1), e2(B1) = 2%, ea(Bn) = nafn_1 (n > 1),
Li(an) = La(a,) =0, L1(Bn) = —3nay,—1 and La(B,) = —2nza,—1. Thus L and
e are injective.

Note that the calculations of the operations L and e yield that e; (z®2") = —na®
2 leg(r@2") =n2? @2 e (Z®2") =nE @ 2" (T ® ") = nat @ 2L,
Ly (2®2") = —=3nz®2" 1, Ly(x®2") = —2na?®2" "1 and L1(2®2") = Ly (2®2") =
0.

Remark 5.3. We see that H,(Der(H*(CP?;Q))) = Der,(H*(CP%Q)) = 0. In fact,
with the same notation as in Example 5.2 every derivation assigning an element
in H°(CP?% Q) = Q to the generator z should be trivial. As mentioned above, the
homology Lie algebra H,(Der(Mgcpz2)) is non trivial. Observe that CP? is formal;
see [FHTO1l §12(c)]. Thus, a quasi-isomorphism does not induce an isomorphism
between the homology Lie algebras of derivations in general.

Ezxample 5.4. Let X be a non-formal space whose minimal model M x has the
form (A(z,y,z2),d), where de = dy = 0, dz = zy, |z| = |y| = 3 and |z] =
5. We observe that Mx is realized by a manifold of dimension 11; see [Sul7T,
Theorem 13.2]. Then H,(Der(Mx)) = Q{(z,1)} and H*(X;Q) = Az,y) ®
Qlw, u)/(zy, Tw, yu, ru + yw, w?, wu, u?) for w = [z2] and v = [yz]. Thus the nat-
ural map ¢ : H.(Der(Mx)) — Der.(H*(X;Q)) is faithful since ¥(z,1)(w) = [z].
Moreover e and L are injective since e(, 1)([ryzZz]) = [zyz] and L, 1)([ryzz]) =
[xyZz].

In the following examples, we rely on the software Kohomology [Wak] for deter-
mining bases for H*(X;Q) and H*(LX;Q) and computing actions of Ly and eg on
H*(LX;Q) with data of a Sullivan model for a given space X.
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Ezxample 5.5. Let X be a non-formal manifold of dimension 14 whose minimal
model Mx is of the form (A(a, z,y,b,v,w),d), where |a| = 2, |z| = |y| = 3, |b] = 4,
|v] =5, lw| =7, da = dv =0, dy = a?, db = ax, dv = ab + zy, dw = 22v + b?; see
[FHTO01, p.439] and [Sul77, Theorem 13.2]. Note that H*(X; Q) is generated by
{a,z,xb, av — yb, a*w — abv + xyv, 3azw + b3}

as an algebra. Then H.(Der(Mx)) = Q{(w,1),(w,a)} and the natural map
¥ @ H.(Der(Mx)) — Der,.(H*(X;Q)) is zero though Der,(H*(X;Q)) # 0; see
[Yam05]. However, the Lie representation L : H,(Der(Myx)) — Der,(H*(LX;Q))
is non-trivial. Indeed, we see that L, 1) # 0 and L, 4) # 0 since

Lw,1)(xbv — azww) = 2zvb + azw and
_ 1 _ _
L(w,a)(—azww + wbvw + rvwb) = 3(§a2xw + axvb) + (axbv + axwa + rybb)

as non-zero cohomology classes [Wak|. Thus it follows that the representation
L : H.(Der(Mx)) — End,(H*(L(1))) is faithful. Here L) = AV @ AFV for
Mx = (AV,d) in Section[2

The contraction e is injective as seen in Corollary .11l In this case, we can
check the faithfulness with explicit calculations. Indeed, we see in [Wak| that

e(w,1)(a*Tww — axbvw — 2azvwb) = a’rw — zbva and

€(w,a) (@TWW — TbVW — 2zvwb) = a’zw — rbua,
where [a®zw — zbva] € H'*(X;Q)(= H'*(L(g))) is the fundamental class of X.

Ezample 5.6. When X does not have positive weights, L : H,(Der(Mx)) —
End. (H*(L(1))) may not be faithful. Let X be an elliptic manifold of dimension
228 with

Mx = (A1, 22,91, Y2,Y3,2), d)

given in [ALOO, Example 5.2], where |z1| = 10, |z2| = 12, |y1]| = 41, |ya2| = 43,
lys| = 45, |z| = 119 and the differential is defined by

dr1 =0 dy; = x?xg dz = xo(y1me — 21Yy2)(Y2xe — T1Y3) + x}2 + x%o.
dre =0  dys = 2723
dys = xlxg

Then we see that Ly : H.(Der(Mx)) — End.(H*(L())) is not zero except 6 =
(z,29), (z,2322) and (2, 2123) [Wak]. Observe that Lg : H,(Der(Mx)) — End, (H*(L4)))
for 0 = (z,2%222) and (z,x123) is non trivial for elements of degree 221 and 219 of
H*(L(4)), respectively. Unfortunately, a calculation of L, ,9) : Hi(Der(Mx)) —

Der,. (H*(LX;Q)) with Kohomology [Wak] shows that the representation is trivial

for degrees less than or equal to 355.

We do not know whether the operator L is a faithful representation in general.
In Example[5.0] it is expected that Lg is not zero for some derivation 6 with higher
degree.

Problem 5.7. Is L : H.(Der(Mx)) — Der.(H*(LX;Q)) faithful when X is a closed
manifold ?
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APPENDIX A. A SULLIVAN REPRESENTATIVE FOR AN ADJOINT MAP

We begin by recalling the rational models due to Brown and Szczarba [BS97].
Let AV be a minimal Sullivan algebra, A a finite dimensional CDGA and A7 = 0
for ¢ < 0. We denote by A, = Hom(A4, Q) the dual of A with the coproduct A4 of
A, induced by the multiplication of A; see Remark We consider the CDGA
ANAV @ A,) and the differential ideal Z of A(AV ® A,) generated by 1®1* — 1 and

wiwy © o = 30 (=1)1 (wy © o) (w2 ® o),

where w; € AV, a € A, and As(a) = Y ol ® o. Then, it follows from [BS97,
Theorem 3.5] that the composite

pi ANV @A) 2 ANV @A) 22 AWV © AL)/T

is an isomorphism of graded algebras. We define the differential dps of A(V ® A,)
by p~tdp, where d is the differential of A(AV ® A.)/Z.

Assume that AV is a minimal Sullivan model for a connected nilpotent space
Y of finite type and A is a finite dimensional commutative model for a finite CW
complex X. Then, we see that (A(V ® A,),dpg) is a rational model of Map(X,Y);
see [BS97, Theorem 1.3].

Let ¢ : AV — A be a Sullivan representative for a continuous map f : X —
Y. The morphism of CDGAs induces the augmentation ¢ : A(V ® A,) — Q
which is denoted by the same notation. It follows from [BM06, Proposition 4.2,
Theorem 4.5] and [HKOO8, Remark 3.4] that the connected component Map ;(X,Y")
of Map(X,Y’) containing f has a Sullivan model of the form

—_1
(NSprd) = (AN (VEAT & (Ve 4)?) d),
where (V ® A*)1 is the complement of the image of the composite

(V® A4)° —L (AV ® 4.))' — (A(V © A)/K,) 22 (V9 AL)!
in which K, is the differential ideal of A(V @ A,) generated by (V ® A,)<° and
{w—pw) | we (Ve A)°}. We observe that the differential d is induced by the
differential dgg of A(V ® A.); see [BMOG, The proof of Proposition 4.2]. Moreover,
the morphism M, : A(V ® A.) = AS, of CDGAs defined by

pr(w) (|lw|>0),
Minc(w) = p(w)  (jw|=0),
0 (Jw| < 0)
is a rational model for the inclusion inc : Map;(X,Y’) < Map(X,Y’), where pr :
(V® A,)Z! — S, is the canonical projection.
In what follows, let X; and Y; be connected nilpotent spaces of finite type for
i = 1,2. We further assume that X; is a finite CW complex. Moreover, let A; be
a finite dimensional commutative model for X; and AV; a minimal Sullivan model
for Y;. We first construct a rational model for the map

— % g: Map(X1,Y1) = Map(X; x X»,Y1 x Y3)
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defined by f +— f x g with a continuous map g : Xo — Y5. Let ¢; : A; — A1 ® Ag
denote the inclusion which is a rational model for the projection pr; : X1 x Xo — X;.
Remark that AV; @ AVa & A(V4 @ V3) is a Sullivan model for Y7 x Ya; that is, the
Brown-Szczarba model for Map(X; x Xa,Y; x Ys) is of the form A((V; ® V) ® (A1 @
As)y). Let ¢ : AVa — Ay be a Sullivan representative for g. Then, we define the
CDGA morphism 1Z as the following composite;

ANV @ Vo) @ (A @ Ag)y) —;> ANAVI @ AVa @ (A1 ® Ag)4)/T
/\(1®1Z1®1)\L
ANAVI ® A2 @ (A1 ® A2).)/T

B g

- ANAVE ® A1)/T,

o~

/\(Vl & Al*)

where 77 is the CDGA morphism which is induced by the natural isomorphism
C: (A1 ® Ag). = A1 ® Ag, and the paring 1 : Ay ® Az, — Q.

Lemma A.1. The morphism 12)\ is a rational model for — x g.

Proof. First, we see that the map — x g coincides with the composite

(1709)
(A1) Map(X1, Y1)

Map(X1, Y1) x Map(Xa, Y2)

Map (X, x X3,Y7) x Map(X; x Xa,Y2) —> Map(X; x X, V1 x V3),

where ¢, : Map(X1, Y1) — Map(Xa, Y2) is the constant map at g. Let Map, (X2, Y2)
be the connected component of Map(Xs,Y>) containing g. We also see that ¢4 is
regarded as the composite

Map(X1, Y1) — pt —> Map, (X2, ¥2) —2> Map(Xa, Y2).

It follows from the rational model for the inclusion Map,(Xa,Y2) — Map(Xz, Y2)
described in [BMO6l Proposition 4.2, Theorem 4.5] and [HKOO8| Remark 3.4] that
the morphism
Mcg : /\(‘/2 & AQ*) — /\(‘/1 ® Al*)

defined by vy ® ap +— (=1)IU2l102lay (h(vy)) for vy ® ay € Vo ® As, is a rational
model of c,. We choose the inclusion ¢; into the ¢th factor as a model for the
projection pr; in the ith factor. Then the description (AT]) and the naturality of
the Brown-Szczarba models shows that the composite

(A2) A((Vh @ Vo) ® (A ® Ay).) i%(yl ® (A1 ® A3),) ® A(Va ® (A1 ® As))

LM,
AVI @ A1) @ A(Va @ Aay)

is a model for the map — x g. For any element « € (41 ® Az)., we may write
Cla)=aoy; @1 4+ 1" @aowy+a

with @ € (A]). ® (A ).. Observe that 1 ® & is zero in A(AV ® Ay,)/T for any
a1 € (A7).. Therefore, we can check that the composite (A2) coincides with 1)
and the proof is complete. O
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We are ready to construct a rational model for the adjoint map
(A.3) ad : Map(X1,Map;(X2,Y)) — Map(X1 x X3,Y)

defined by ad(g)(w1,22) = g(w1)(22) for f: Xo =Y, g: X1 — Map,(X2,Y) and
x; € X;. In order to apply the rational models due to Brown and Szczarba to our
objects, we need to consider the connected component Map f(XQ, Y) containing f.

Let ¢ be a Sullivan representative for f, ¢ : A(V ® Aa.) — Q the augmentation
induced by ¢ and AS, the Brown-Szczarba model for Map;(X2,Y) mentioned
above. Since Map f(XQ,Y) is a connected and nilpotent space of finite type; see
[HMRT5], by applying the construction of the Brown-Szczarba model to X; and
Map;(X2,Y), we have a model for Map(X1, Map;(X2,Y")) of the form A(S, ® A1)

Proposition A.2. The morphism Mauq : A(V ® (A1 @ A2)s) = NSy ® A1) of
CDGAs defined by

Maa(w®a) =Y (=11 (Mine(v @ az) ® i)

is a rational model for the adjoint map ad in (A3), where v € V, a € (A1 ® Az).
and (o) = > a1 @ aa; see the paragraph before Lemma Al for the maps p and (.

Proof. The map ad fits in the commutative diagram

Map(X1, Map;(X2,Y)) - Map(X;1 x X2, Y)

\Xid> 6/7

Map(X1 X XQ,Mapf(XQ,Y) X XQ),

where ev : Map;(X2,Y) x Xo — Y is the evaluation map. The result [BM0G,
Theorem 1.1] enables us to obtain a Sullivan model

Moy : AV = AS, @ Ay

for ev defined by My (v) = 3, (—=1)|% Mipc(v@a}) ®a;, where {a;} is a basis of A,
and {a}} is the dual basis of As.. By the surjective trick [FHT01l p.148], there exist
a Sullivan model AW for X, and a surjective Sullivan representative o : AW — Ag
for the identity on X5. The lifting lemma [FHT01, Lemma 12.4] shows that there
exists a morphism M, : AV — AS,® AW such that (1®0)o M., = Me,. Lemma
[ATlis applicable to the map — x id. Thus we see that the composite

(A.4) AV @ (A1 ® Ag).) ——= AAV @ (A1 @ As).)/T
lA(M;‘,@l)
ANASy, @ AW @ (A1 @ A2)4)/T

gipfl

A(Sy @ Ay) <$— AN(Sy & AW) ® (A1 @ A2)y)



CARTAN CALCULI ON THE FREE LOOP SPACES 31

is a model for ad, where 1Z is the morphism of CDGAs defined in the paragraph
before Lemma [A 1l Explicitly, we compute

Fopto ML, ®1)0 plo® a)
=p oo AMey ® 1) (v ® )

=ploi <Z(—1)‘“’Mmc(v ®aj)®a; ® a)

=p (Z 3 (—pylaittezlast e v (v © af) - as(as) © Oq)

:Z(_l)‘alllaz‘P_l (Mine(v®@ ag) @ 1) .

Therefore, the model (A4) for the adjoint map ad is nothing but the morphism
Mq mentioned in the assertion. O

APPENDIX B. AN EQUIVARIANT VERSION OF THE LIE DERIVATIVE L

B.1. A geometric construction of a Lie derivative. In this section, we assume
that the underlying field is of arbitrary characteristic.

We discuss an equivariant cohomology (cyclic homology) version of the Lie de-
rivative L that we consider in Section[£.J1 We begin by recalling a morphism of Lie
algebras related to the Hochschild homology and the cyclic homology of an algebra.
Let A be an unital algebra over a commutative ring k. For a derivation D on A,
we define a map Lp on the Hochschild complex C,(A) by

LD(CL(), ceey CLn) = Z(ao, ey Aj—1, DCLl', Ajg1yeey an).
i>0
We also recall the Hochschild cohomology HH*(A, A) of A. In particular, the first

cohomology HH*(A, A) is isomorphic to Der(A)/{inner derivations} as a k-module.
Then, we have

Proposition B.1. ([Lod98, 4.1.6 Corollary]) There are well-defined homomor-
phisms of Lie algebras [D] — Lp:

HH'(A,A) — End,(HH,(A)) and HH"'(A,A) — Endy(HC,(A)).

In the body of this manuscript, we discuss a geometric description of the Lie
derivative on the endomorphism algebra of the Hochschild homology of a DGA.
The above result motivates us to consider its cyclic version. In this section, we
deal with the topics. As a consequence, our main theorem, Theorem [B.6l below is
obtained.

We work on the category of compactly generated spaces [Ste67] or the category
NG of numerically generated spaces, which is obtained by adjoint functors between
the category of topological spaces and that of diffeological spaces; see [SYHIS].
Thus, we can consider a space in such a Cartesian closed category without changing
the weak homotopy type. Observe that the category NG is also complete and
cocomplete.

Let X be a simply-connected space of finite type and aut; (X ) the monoid of self-
homotopy equivalences on X. We recall that the homotopy group 7. (aut,(X)) is a
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Lie algebra with the Samelson product; see [Whi78, Chapter III]. For an element 6
in the homotopy group 7, (aut; (X)) for n > 1, we define a map ug by the composite

ug := L( )oincod: S —s auty(X) — Map(X, X) —L>Map(LX,LX),

where inc denotes the inclusion and L is the map which assigns Lf : LX — LX
defined by Lf(l) = fol to amap f: X — X. Then, the adjoint map ad(ug) :
S™ x LX — LX gives rise to the derivation
1 (LX) Y (57) @ HE (LX) o H* (LX)
0

on the cohomology H*(LX), where |, gn denotes the integration along the fiber.
The map Ly in (&I) is regarded as the composite [, o(s x 1)* o L(ad(6))*, where
s: 8™ — LS™ is the section of the evaluation map evq defined by s(z)(t) = « for
z € S"and t € S'. Since ad(ug) = L(ad(f)) o (s x 1), it follows that L}, coincides
with Lg in (@I). In what follows, we may write Ly for Lj,.

Observe that the adjoint map ad(ug) : S x LX — LX is an S'-equivariant
map, where the S'-action on S™ is defined to be trivial. Thus, we have a map
ad(ug) xg1 1: (S"x LX) x g1 ES* — LX x g1 ES! between the Borel constructions.
Therefore, the same construction as that of Ly with the integration enables us to
obtain a derivation

Lo : HY (LX) — HG " (LX)
of degree —n.

The assertion below describes geometric counterparts of the morphisms of Lie

algebras described in Proposition [B.1l

Theorem B.2. The map L y : m.(auty (X)) — Der,(HZ: (LX)) is a morphism of
Lie algebras.

Proofs of Theorems[{.1] and[B-2 As mentioned above, the map ad(ug) is an S'-
equivariant map. Then, the operation Lj commutes with the BV operator. We

have Theorem Iﬂl
In order to prove Theorem E1I[(1)] and [B:2] we first recall that

Lo = / _oH*(ad(L.(9))) and Ly = / oH*(ad(L,(0)) x 51 1ps1)

for 6 € 7, (auty (X)). We may write ad(L.(0))? for ad(L.(0)) X1 1gs1. The map L
mentioned above induces a homomorphism L, : 7, (auty (X)) — m.(aut; (LX)). Let
61 and 02 be homotopic maps which represent an element in 7, (aut;(X)). Then, we
see that the maps ad(L.(01)) and ad(L.(f2)) from S™ x LX to LX are homotopic
with an S'-equivariant homotopy. This implies that Ly and Ly are well defined. In
what follows, we prove that f( y is a morphism of Lie algebras. The same argument
as that for f( ) is applicable to showing the result on L( ). As a consequence, we

have Theorem Iﬂl
We apply the same strategy as that for [FLS10, Lemma 4.1 and Theorems 3.6,

4.2 and 4.3]. In order to prove that f( ) is @ homomorphism, we consider a diagram

(57 VS x LX x g BSY el 0dB-0D7)_ v gt

TXlT AL (046"))7 =ad(L.(8)+L.(6")"

S" x LX xg1 ES?
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in which (ad(L+(0))? | ad(L(0"))7)oi1 = ad(L+«(0))? and (ad(L.(6))? | ad(L.(6"))?)o
io = ad(L.(0"))?, where 7 is the pinch map and i; is the map induced by the in-
clusion S™ — S™ Vv S™ in the j factor. Then, it follows that the horizontal arrow
assigns x + uLg(x) + vLg () to an element x € H*(LX xg ES'), where (u,0)
and (0,v) denotes the generators of H™(S™V S™). The definition of the summation
in m,(auty(LX)) implies that the diagram above is commutative. Moreover, by
definition, the slant arrow induces f@+9/. This yields that Lo+ Ly = fg+9/.

Let 6 be the inverse of § in 7, (aut; (X)) with respect to the multiplication of the
monoid aut(X). Since L( y is a homomorphism, it follows that Ly = —Lg.

We recall the Samelson product { , ) on the homotopy group m(aut;(X)). For
elements 6 : mp(aut; (X)) and 6" € my(autq (X)), the product is induced by the map
v 1 SP x 87 — auty (X) defined by y(z,y) = () o 6'(y) o 8(z) o (y). Then, we
have

(Loy)(@,y) = Lu(0)(x) o Lu(0)(y) o Lu(0) () o L. (") (y).

Observe that L is a morphism of monoids. Therefore, the adjoint I" to L o~y fits in
the commutative diagram

SP x S x LX xleSllwspxSPxququLXxsl ES?
Lsp xTx1gax1Lx X g1 1561
SP x S9x 8P x 87 x LX xg1 EST
\L[FxG]XsllEsl
LX % ES!

FXSll

where Diag is the diagonal map, T denotes the transposition and [F, G] is defined
by the composite

ad(L.(0)) o (1s» x ad(L+(0))) o (Lsrxsa % ad(Ly(@))) o (Lssxsaxse x ad(Ly(@))).

The commutativity follows from the same consideration as in the proof of [FLS10,
Theorem 4.3]. Moreover, the same computation as in [FLS10, page 394] works well
on homology. It turns out that f<979/> =TLoLo — (—1)1"139/39. This completes the
proof of Theorem O

B.2. An algebraic construction of L. In what follows, we assume that the un-
derling field is rational. The assertion below shows that the geometric derivations
Ly and f( ) are related to the Loday’s derivations ,L() and af( ) in Proposi-
tion [BI] respectively. Observe that ,Lg is the derivation Lg in Definition

Proof of Proposition [{.3 The standard algebraic model for the evaluation map ev :
LX x S' — X plays an important role in our proof; see [VPS76] for the model for
ev. We consider the following commutative diagram consisting of continuous maps

(B.1) Map (8™, Map(X, X)) —> Map(S™, Map(LX, LX))
adl% E\Ladl
ad(L,)

Map(S™ x X, X) ———> Map(S™ x LX, LX)

Wi=adsoad(D3 %la@
Map(S™ x LX x St X).
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It follows that ady(ug) = ad(L.)(ad(d)) for § € Map(S™, Map(X, X)) and ¢ (¢) =
¢ o (1l xev)for p € Map(S™ x X, X). In what follows, we may assume that X is a
rational space. Then, we have the following diagram for the homotopy sets

o (ats (X)) — (57 x X, X] 225 (g s DX, LX) <% (57 x LX x S, X]

as ae B e

(Mx, Msnxx] Mrx, Msnxrx] Mx, Mgnyrxxs1]

which are given by the sets of continuous maps mentioned above. Here k is induced
by the adjoint ad mentioned above and My denotes a minimal Sullivan model for
a space Y and p is the Sullivan—de Rham correspondence between rational spaces
and CDGAs; see, for example, [BGT6]. We use the same notation for a map as that
for its homotopy class.

We may replace Mgn x x with the CDGA H*(S™; Q) ® M x; see [FHTO1], Propo-
sition 12.9]. Then we write (uok)(6') = 1® 1, +¢®80, where ¢ is the generator of
H™(S™:; Q). Observe that, by definition, ®(#') = 6 for the map ® in Proposition[4.3]
In order to prove Proposition 43| it suffices to show

Lemma B.3. For 6 € m,(auty (X)), one has (noad(L.)ok)(0') = 1®@1pm, x +taLo.

In fact, applying the integration | gn to the equality in Lemma B3lon the cohomol-
ogy yields the commutativity of the diagram in Proposition 0

Proof of Lemma[B.3. We consider the adjoint map ad,. The uniqueness of the
adjoint correspondence shows that if we have a morphism L(6’) of CDGAs which
makes the following triangle

H*(S™;Q) @ Mrx ® A(t) Leel Mpx ® A(t)

W(Lxev)ops (0 =ia(k(8" Y (LR ﬂ

MX:(/\V,d

commutative up to homotopy, the map L(#’) is nothing but the map (p o ad(L,) o
k)(0"). In fact, the map ads assigns the realization |L(6")| of L(#’) to the realization
| (k(0")o(1xev))|, which is homotopic to adzoad(L,)(0") = k(8" )o(1xev)). Observe
that the equality follows from the commutativity of the diagram (B). Then we
have ada(|L(0")|) =~ |u(k(0") o (1 x ev))| =~ ada(ad(L.)(k(0"))). The injectivity of
the map ady yields that |L(0")| ~ ad(L.)(k(6’)). This implies that the map L(8")
is a model for ad(L.)(k(8")); that is, L(6') = (1w o ad(Ly) o k)(8').

We recall the Sullivan model My x = £ described in Section Moreover, we
may choose a model p(ev) for the evaluation map so that plev)(w) = w ® 1 +
(—D)“I=lsw @t for w € V; see [VPST6]. Since (o k)(0) = 1@ lay +1® 0, it
follows from the commutativity for the triangle that

L0w @1+ (1) L0 (sw) @ t
= 1wel+ (D) lwet)+1e W) @1+ (-1)“I1s0(w) @ t)
for w € V. Therefore, we see that L(0 )w = 1 ® w + f(w) and L(¢')(sw) =

1® sw+ (—1)1%s0(w). The definition of ,Lg shows that L(6") = 1® 1, + taLe.
This completes the proof. (I
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Next we review the relationship with cyclic homology. Let C = (C,d, B) be a
non-negatively graded mixed complex. We introduce a variable u of degree 2 and
consider the graded module C[u] = C ® Q[u].

Definition B.4. The cyclic complex CC(C) of C is the complex (C[u], d,), where
d,, is the Q[u]-linear map defined by d,, = d + uB. Its cohomology will be called
the cyclic cohomology of C and denoted by HC(C).

We recall the mixed DGA (L£,d, s) mentioned in Section With the model,
the minimal Sullivan model £ of the orbit space ES! x g1 LX is defined by & :=
(L[u],d + us); see [VPB85, Theorem A]. Thus we have an isomorphism H(E) =
H*(ES! xg1 LX;Q). Observe that CC(L) is nothing but the complex & defined
above and then H(CC(L)) is isomorphic to the cyclic homology [BV8§] of (AV, d).

Let (g,e, L, S,T) be a homotopy Cartan calculus on C. For § € g, define ,Lg €
End(CC(C)) by extending Ly to a Q[u]-linear map. This gives a linear map ,L: g —
End(CC(C)).

Lemma B.5 (JFK20, Lemmas 3.4 and 3.10]). The map ,L: g — End(CC(C)) is a
morphism of dg Lie algebras.

For the homotopy Cartan calculus in Proposition B.6] we obtain the morphism
oL(y : Der(AV) — Der(€) defined by oLy = Lo @ gy on & for § € Der(AV).
We recall the cobar-type Eilenberg-Moore spectral sequence (EMSS) in [KNWY21],
Theorem 7.5] converging to the string cohomology H, (LX; Q) with

Ey" = Cotory. 1.0y (H"(LX;Q),Q).
Let {FP}>0 be the decreasing filtration of H, (LX;Q) associated with the EMSS.

Theorem B.6. There exists a commutative diagram

e (aut; (X)) @ Q i; Der,(HZ: (LX;Q))

gl@ lz
H,(Der(AV)) — Der, (H*(£))
oLy
modulo the filtration of the EMSS in the sense that (,Lo — Lg)(FP) C FPT! for 0 in
T (aut1 (X)) ® Q and p > 0, where {FP} is the filtration of H, (LX;Q) associated
with the EMSS mentioned above.

Proof. The key to proving the result is that the projection of a model for the
derivation Lg on H 1 (LX;Q) is the model 4Ly the derivation on £ considered in
the proof of Proposition [£3l Let ug be the map stated in section [B.1l Consider
the commutative diagram

(8" x LX) xg1 ES' =<— S" x LX
/

BS?
\

ladl(uQ)X1E51_vg ladl(ug)_vg
LX xg BES' < IX

whose row sequences are the fibrations associated with the universal S'-bundle
St — ES' — BS!. For simplicity, we put vy := adi(ug) and Ty := ad;(ug) x
1pg1. Observe that vg is an S'-equivariant map. We moreover consider the relative
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Sullivan models for the fibrations and the morphism between them described in
[FHTO1l (15.9) pages 204-205]. Then we have a commutative diagram

H*(S™Q) @& — H*(S™Q)® L
Qlu] — TM(W) TM(_G)
& L

in which M(7g) and M (7g) are algebraic models for Ty and vy, respectively. Then
Lemma[B.3limplies that f gn oM(Tg) is chain homotopic to 4 Lg; that is, there exists
a homotopy hj, of degree —1 with fs" oM () — oLg = dhy+hjpd in L. Observe that
M (Tg) is a morphism of Q[u]-modules. Thus we see that for € FP := & - Q=P[u],

(B.2) (/ OM(%) — oLl ® 1Q[u]) xr = (dh9 + hgd).%‘ + g,z

with hg = 1+ (gn) ® hy and for some g, in Frl, By construction, the filtration
{FP},>¢ gives rise to the EMSS that we deal with. Moreover, the filtration {F},},>0
associated with the EMSS is induced by {f‘p}pzo.

Suppose that = is a cocycle with respect to the differential D := d + us of £.
We may write x = (z°,21,...). By applying D to the both sides of the equality
(B2), we have 0 = D(dhg + hed)z® + Day, ., where oy , := (dhg + hed)z=" + g 4.
Observe [, oM(Tg) and 4Ly ® gy, are cochain maps. Since dz® = 0, it follows

that 0 = us(dhgz®) + Daj . Thus we see that the element —ushez® + ajf , is a

cocycle in FP+1 Tt turns out that
(/ oM(vp) — aLlo ® 1Q[u]> T = Dhé}xo + (—USh(.):ZTO + 0/9795)-

By definition, we have f gn OM (Tg) = Ly and ,Lg ® Lo = «Lg on the homology.
This fact and the equality above yield the result. ([

In a particular case, the square in Theorem [B.6] is commutative. To see this,

we first recall the BV-exactness of a space, which is a new homotopy invariant
introduced in [KNWY21].

Definition B.7. ([KNWY21l Definition 2.9]) A simply-connected space X is BV
exact if Im A = Ker A for the reduced BV operator A : H. (LX) — H,1(LX).

We observe that a formal space and a space which admits positive weights are
BV exact; see [KNWY21], Assertion 1.2].

Corollary B.8. Let X be a BV exact space. Then the diagram in Theorem [B.0 is
indeed commutative.

Proof. By assumption, the space X is BV exact. Then it follows from [KNWY21
Corollary 7.4] that the EMSS collapses at the Es-term. Moreover, the result
[KNWY21, Lemma 7.5] implies that F? = 0 for p > 1. This completes the
proof. O

Remark B.9. Let M be a BV-exact manifold. Then the results [KNWY21l Theorem
2.15 and Corollary 2.16] assert that the string bracket [ , ] on HS' (LM) is a
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restriction of the loop bracket { , } on the loop homology H, (LM ). More precisely,
we have a commutative diagram

~ inc. ®2
HS (LM;K)®2 — %% (Ker A @ Ku))®2 220" g, (LM;K)®2
[,] +={,} the loop product | @
HE' (LM; K) ———— (Ker A @ K[u]) «<———— H.(LM;K),

where +{a, b} := (=1)l%/{a, b} for a,b € Ker A, |u| = 2, A is the BV operator, inc.
denotes the inclusion and ® is the isomorphism described in [KNWY21 Theorem
2.15].

It seems that the representation L has a different property from that for L.

Ezample B.10. (cf. Example [.2) We determine explicitly the Lie representation
L : m,(aut(X))®Q = H,(Der(Mx)) — Der.(H%: (LX;Q)) for a simply-connected
space X whose rational cohomology is isomorphic to Q[z]/(2"T!) as an algebra,
where n > 1. Let M x be the minimal model for X. We see that M x = (A(z,y),d)
in which do = 0 and dy = 2"*1. Then the results [KY97, Theorem 2.2] and [KY00),
Theorem 0.2] yield that

H (LX;Q) = @r>0,1<j<nQ{a(f, k) } @ Q[u]

as an algebra, where a(j, k) = [27~'Z7*]. Moreover, we see that

H,(Der(Mx)) = Q{(y, 1), (y. ), , (y.2" ")}
Since oLy o) (277 Zy*) = kizd 'z 2y = 0for 0 < i < nand oLy i) (27 7'2) =
0, it follows that L : H.(Der(Mx)) — Der,(H, (LX;Q)) is trivial. The space X
is formal and especially BV-exact. Thus Corollary [B.8 yields that L = 0.

We conclude this appendix with a brief discussion on the Lie representation L
for a more general simply-connected space X, which is not necessarily BV exact.
We consider a behavior of the operator Ly in the EMSS for each element 6 €
7« (auty (X)) ® Q. Let {E**,d,} be the EMSS mentioned above and {F?},>¢ the
filtration of the target H§,(LX;Q) associated with the EMSS. Then, we have a
decomposition

H%4H(LX;Q) = (HiH (LX;Q)/FY @ F*.
Moreover, it follows that the map i* : HZ, (LX;Q) — H*(LX;Q) defined by the
inclusion of the fibration LX - LX xg1 ES' — BS"! induces a monomorphism
" Hi (LX;Q)/FY — H*(LX;Q).
We also recall the decomposition of the EMSS
{Epr,d} = @{n B d} @ {Qlu], 0}
NezZ

introduced in [KNWY21] Section 7].

The derivation Ly is well-behaved in the vertical edge of the EMSS while it acts
trivially apart from the edge. As seen in the proof of the proposition below, the
Cartan calculus, in particular, the contraction e plays a crucial role in describing
the property of L in the EMSS.
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Proposition B.11. For each 0 in 7. (aut1(X)) ® Q and p > 1, Ly(FP) C FP*1.

In order to prove Proposition [B.11], we recall the Cartan calculus on a Sullivan
algebra in Section The proof of Proposition allows us to obtain

Lemma B.12. For each 0 € 7. (aut1(X)) ® Q, one has [eg,d] =0, [eg, B] = o Lg.
Proof of Proposition [B.11. By Lemma [B.I2] we see that [equ!,d + uB] = 4Ly in

Q™ [u] - €. This implies that (,Lg)(FP) = 0 for 0 in m.(aut1 (X)) ®Q and p > 0. By
virtue of Theorem [B.6 we have the result. O

Proposition B.13. (1) For r > 2 and n > 1, there exist morphisms of Lie
algebras
Z( X 7 (aut1 (X)) ® Q — Dery, o(Er™)  and
I( K ﬂ'n(autl(X)) RQ — Endnyo((N)E:’*)

for which Ly is compatible with the differential d, and respects to the derivation Lg
on H%, (LX;Q) in the Ex-term for each 6 € m,(aut1(X)) ® Q. Moreover, up to
isomorphism, the morphism Ly of Lie algebras coincides with the map oL .

(2) The map Z( ) acts trivially on EX9 for ¢ > 1. As a consequence, for 0 €
mn(auty (X)) ® Q, one has a commutative diagram

5(LX;Q)/F' ———~ H*(LX;Q)

’ -

Hi™M(LX;Q)/F' "> H*"(LX;Q).

Proof. We first observe that the multiplication on E}»* induces the map (n)EP? @
(N/)E}_’/’q/ — (N+N/)E£+p/’q+q/. The definition of the decomposition gives the result;
see the discussion after [KNWY21, Remark 7.1].

We use a rational model £ for the Borel construction LX x g1 ES' described
above. Then, for an element 6§ € m,(auty(X)), the morphism M(7g) : € —
H*(S™;Q) ® £ of CDGAs in the proof of Theorem gives rise to a linear map
Ly : EP9 — EP~™4 for p,q > 0. In fact, the map M (7g) preserves the filtra-
tion which constructs the EMSS. Therefore, we also see that Ly is compatible
with the differential of each term of the EMSS. The equality (B:2)) enables us to
deduce that the map Ly on Ef "* coincides with the derivation ,Lg. The map
oLy mi(aut; (X)) ® Q — Der*%(E*"*") is a morphism of Lie algebras and the
S0 is f( )- This completes the proof of

Let 0 be a representative of an element in 7, (aut; (X)) ® Q. A mentioned in
the proof of Proposition [BI1] it follows that ,Lg(z) = 0 for z € E*? with ¢ > 1.
In fact, such element z is represented by one in the ideal QT [u] - £. Thus, the first
half of the assertion of follows from the result

As for the latter half of the assertion, we have a commutative diagram

i*

/\
H5 (LX;Q)/FY —— E3° H*(LX;Q)

e e

HE "(LX;Q)/F! —> B3 ™0 H*(LX; Q).
\—/2

i*
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The commutativity of the diagrams containing ¢* follows from a property of the
EMSS. By the definition of ,Ls and Proposition [£3] we see that the right-hand
side diagram is commutative. It follows from that the left-hand side diagram is
commutative. We have the result. (]

Corollary B.14. Let x be an element in the image of the derivation Ly : EX* —
E%* for some 6. Then d,(x) = 0.

Proof. The operation Ly is compatible with the differential d,. Proposition [B.13l

implies the result. (|
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