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CARTAN CALCULI ON THE FREE LOOP SPACES

KATSUHIKO KURIBAYASHI, TAKAHITO NAITO, SHUN WAKATSUKI,
AND TOSHIHIRO YAMAGUCHI

Abstract. A typical example of a Cartan calculus consists of the Lie deriv-
ative and the contraction with vector fields of a manifold on the derivation
ring of the de Rham complex. In this manuscript, a second stage of the Car-
tan calculus is investigated. In a general setting, the stage is formulated with
operators obtained by the André–Quillen cohomology of a commutative dif-
ferential graded algebra A on the Hochschild homology of A in terms of the
homotopy Cartan calculus in the sense of Fiorenza and Kowalzig. Moreover,
the Cartan calculus is interpreted geometrically with maps from the rational
homotopy group of the monoid of self-homotopy equivalences on a space M

to the derivation ring on the loop cohomology of M . We also give a geomet-
ric description to Sullivan’s isomorphism, which relates the geometric Cartan
calculus to the algebraic one, via the Γ1 map due to Félix and Thomas.
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1. Introduction

In the previous work [KNWY21], we consider a method to describe the string
bracket [CS99] on the rational S1-equivariant homology of the free loop space LM
of a simply-connected manifold M in terms of the Gerstenhaber bracket on the
loop homology of M , namely, the homology of LM . In particular, the reduction is
possible if M is BV exact; that is, the reduced Batalin–Vilkovisky (BV) operator
on the loop homology is exact; see [KNWY21, Definition 2.9, Theorem 2.15 and
Corollary 2.16] for more details.

The result [KNWY21, Assertion 1.2] summarizes relationships between the BV
exactness and other traditional homotopy invariants containing the formality of a
space. Especially, we show that a simply-connected space is BV exact if the space
admits positive weights; see [KNWY21, Theorem 2.21]. The key to proving the
theorem is that two particular derivations on a Sullivan algebra associated with the
space satisfy the Cartan magic formula; see Proposition 3.6 for the derivations that
we use therein. The appearance of the formula has inspired us to consider algebraic
and topological backgrounds for the derivations. In this article, we investigate such
derivations in the framework of homotopy Cartan calculi introduced by Fiorenza
and Kowalzig [FK20] and moreover give geometric descriptions to the Lie derivative
and the contraction operator, which induce the two derivations mentioned above.

In order to describe our results in more detail, we first recall the classical Cartan
calculus of the differential forms on a manifold M together with Connes’ result
on the Hochschild cohomology. The space of vector fields on M is considered
a Lie algebra Der(C∞(M)) of derivations on C∞(M) the R-algebra of smooth
functions on M . The result [Con85, II Section 6. Example] due to Connes asserts
that the continuous Hochschild cohomology (HH∗

conti(C
∞(M)), B) with Connes’

B-operator B is isomorphic to the de Rham complex (Ω∗(M), d) as a complex
provided M is compact. Thus the Lie derivative LX and the contraction (interior
product) ιX for each vector field X are incorporated in the framework of a Cartan
calculus

(1.1) Der(C∞(M))
L( )

ι( )

//
(
Der(Ω∗(M)), d

)
∼=
(
Der(HH∗

conti(C
∞(M))), B

)

in the sense that L( ) is a Lie algebra representation and ι( ) is a linear map which
satisfy, for any vector field X , Cartan’s magic formula

LX = [d, ιX ].

The André–Quillen cohomology H−∗
AQ(A) of a commutative differential graded

algebra A is an important invariant for such differential objects; see, for example,
[BL05] for its applications. Thus we may apply again cyclic theory, namely cyclic
homology and Hochschild homology to the de Rham complex (Ω∗(M), d) involving
the André–Quillen cohomology. Let Der (A) denote the derivation subalgebra of
the endomorphism Lie algebra End (A) of a differential graded algebra A. While
the assignment Der ( ) is not functorial, the André–Quillen cohomology is defined
as a derived version of Der(A); see [BL05] and also Section 2 for the definition.

LetM be a simply-connected manifold and aut1(M) the monoid of self-homotopy
equivalences on M . Then, we obtain the isomorphism

Φ : π∗(aut1(M))⊗ R
∼= // H−∗

AQ(Ω
∗(M))
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of Lie algebras due to Sullivan [Sul77]; see [FLS10, Theorems 3.6 and 4.3] and also
Section 2 for the definition of Φ. Here, the homotopy group π∗(aut1(M)) is regarded
as a Lie algebra endowed with the Samelson product. Main results (Propositions
4.3, 4.4 and Theorem 3.8) in this article enable us to obtain a Cartan calculus on the
de Rham complex Ω∗(M) with values in the endomorphism ring of the Hochschild
homology of Ω∗(M) and its geometric interpretation with the free loop space LM .
More precisely, the assertions are summarized as follows.

Theorem 1.1. Under the same notations and assumptions as above, there exists
a commutative diagram

H−∗
AQ(Ω

∗(M))
aL

e
// (End(HH∗(Ω

∗(M))), B)

π∗(aut1(M))⊗ R
L

(−1)∗e
//

Φ ∼=

OO

(Der(H∗(LM ;R)),∆)

ℓ

OO

for ∗ > 1 in which the upper row sequence is a Cartan calculus induced by a homo-
topy Cartan calculus in the sense of Fiorenza and Kowalzig [FK20] and the bottom
row sequence is a Cartan calculus given geometrically by applying the loop con-
struction to the adjoint of an element of homotopy group of aut1(M); see (4.1) and
(4.2). In particular, the calculi give the formulae

aLη = [B, eη] and Lθ = [∆,±eθ]

for η ∈ H∗
AQ(Ω

∗(M)) and θ ∈ π∗(aut1(M)) ⊗ R. Here B and ∆ denote Connes’
B-operator on the Hochschild homology and the Batalin–Vilkovisky operator on the
loop cohomology, respectively. Moreover, the right vertical map ℓ is a monomor-
phism induced by the isomorphism between the loop cohomology and the Hochschild
homology in [BV88, Theorem 2.4] preserving operators ∆ and B.

Remark 1.2. The contraction operator e in the upper sequence in Theorem 1.1 is
defined for ∗ ≥ 1. However, the operator e in the bottom sequence is defined for
∗ > 1; see (4.2) below.

We observe that the square above for aL and L is commutative even if ∗ = 1;
see the proof of Theorem 1.1 in the end of Section 4.1. Moreover, it follows from
Lemma 3.4 and Theorem 4.1 (1) that the maps aL and L are morphisms of Lie
algebras, respectively.

We give more comments on Theorem 1.1 and its related results in this article. By
the Cartan calculus in (1.1), we can regard the de Rham complex as appearing via
the Hochschild homology theory for C∞(M). The calculus in the upper sequence
in the theorem is obtained by applying again the Hochschild homology theory to
the de Rham complex. Therefore, it seems that the pair (aL, e) of maps is in a
second stage of Cartan calculi for the manifold M .

On the other hand, the dual of the calculus in the lower sequence in the theorem
gives a Cartan calculus on the homology H∗(LM ;R). The second author reveals a
relationship between the calculus and algebraic structures in string topology theory;
see [Nai24, Theorem 1.1].

We stress that the pair in the upper sequence consists of the Lie derivative aL
and the contraction operator e in the homotopy Cartan calculus [FK20, Definitions
3.1 and 3.7] associated with the Hochschild complex H and the Burghelea–Vigué-
Poirrier complex L of Ω∗(M) in [BV88], respectively. As a consequence, we see that
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the two homotopy calculi coincide with each other on homology level; see Theorem
3.8. We remark that the Cartan magic formula holds in the complex L before
taking homology, but not in H in general; see Propositions 3.6 and 3.7. Moreover,
it is worth mentioning that the contraction e for the complex H is defined with the
cap product between the Hochschild cochain and chain complexes of a commutative
differential graded algebra; see, for example, [Men11] for the cap product.

Moreover, the contraction operator e is non-trivial in the following sense:

Theorem 1.3. For a simply-connected closed manifold M , the contraction operator
e : π∗(aut1(M))⊗ R → Der(H∗(LM ;R)) is injective.

This is an immediate consequence of Corollary 3.11 and Proposition 4.4. The
former is proved by showing that the map invariably detects the fundamental class
of a manifold M ; see Theorem 3.10.

As for Sullivan’s isomorphism Φ, we show that the isomorphism factors through
the map Γ1 from π∗(aut1(M)) ∼= π∗−1(Ωaut1(M)) to the loop homology of simply-
connected closed manifold M introduced by Félix and Thomas in [FT04]; see The-
orem 4.7. Since the map Γ1 is induced by the evaluation map of the space of
sections of the evaluation fibration ev0 : LM →M , it can be said that we give the
isomorphism Φ a geometric interpretation. It is worth mentioning that the Brown–
Szczarba model [BS97] for a function space plays a vital role in the argument on
the geometric description of the isomorphism Φ.

We give comments on the André–Quillen cohomology. As mentioned above,
taking the derivation algebra Der (A) for a commutative differential graded algebra

A is not functorial. However, we see that a Sullivan model ϕ : (∧V, d)
≃
−→ (A, d)

induces a morphism ϕ̃ : H∗(Der(A)) → H∗(Der(∧V )) which is compatible with
Cartan calculi for A and ∧V . This is attained in Proposition 3.9. Such a map
ϕ̃ induced by ϕ is an isomorphism if the codomain A is also a Sullivan algebra;

see Corollary 4.6. However, a quasi-isomorphism ϕ : (∧V, d)
≃
−→ (A, d) does not

necessarily induce a quasi-isomorphism between Der (A) and Der (∧V ) in general;
see Remark 5.3.

The rest of this manuscript is organized as follows. Section 2 recalls results in
rational homotopy theory with which we develop our arguments. In Section 3, we
recall the homotopy Cartan calculus mentioned above. Important examples of the
calculi which come from a Sullivan algebra and the Hochschild complex of a DGA
are given. The naturality of a Cartan calculus are discussed in Section 3.4. Section
4 is devoted to investigating geometric descriptions of the homotopy Cartan calculi
considered in Section 3.1. In Section 4, after explaining geometric constructions
of the operations L and e, we prove Theorem 1.1. In the rest of the section,
we elaborate the proof of Theorem 4.7 mentioned above. Section 5 deals with
computational examples of the Lie derivative L and the contraction operator e
described in Theorem 1.1.

In Appendix A, we give a Sullivan representative for an adjoint map by using
twice Brown–Szczarba models for function spaces. The result plays a crucial rule
in giving the geometric description of Sullivan’s isomorphism Φ. In Appendix B,
we discuss an extension of the Lie derivative L to cyclic theory and its geometric
counterpart with the cobar-type Eilenberg–Moore spectral sequence converging to
the S1-equivariant cohomology of the free loop space LM ; see Theorem B.6 and
Proposition B.13.
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2. Preliminaries

We begin with the definitions of the Hochschild complex of a differential non-
negatively graded algebra (DGA for short) over a field, the endomorphism ring of a
DGA and Sullivan’s isomorphism Φ which are used repeatedly in this manuscript.
We assume that the underlying field is of characteristic zero unless otherwise stated.

Let A = (A, d) be an augmented DGA, which is not necessarily graded commu-
tative. We use the cohomological grading on A and then deg d = +1. While the
homological degree of a graded vector space W∗ is also used, we freely apply the
translation for homological and cohomological degrees with W∗ =W−∗.

Let C∗(A) = (A⊗T (sĀ), d = d1+d2) be the Hochschild chain complex of (A, d).
Here, Ā denotes the augmentation ideal of A and sĀ denotes the suspension of Ā;
that is, (sĀ)n = Ān+1. The differentials d1 and d2 are defined by d1 =

∑
i d1,i and

d2 =
∑
i d2,i with

d1,i(a0[a1| · · · |an]) =

{
da0[a1| · · · |an] (i = 0),
(−1)εi+1a0[a1| · · · |dai| · · · |an] (0 < i ≤ n),

d2,i(a0[a1| · · · |an]) =





(−1)|a0|a0a1[a2| · · · |an] (i = 0),
(−1)εi+1a0[a1| · · · |aiai+1| · · · |an] (0 < i < n),

(−1)εn|san|+1aka0[a1| · · · |an−1] (i = n),

where εi = |a0|+
∑

j<i |saj |.

Definition 2.1. (1) Let (C, d) be a cochain complex. A triple (C, d, B) is a
mixed complex if B : C → C is a differential of degree −1 with [d,B] :=
dB +Bd = 0.

(2) A mixed DGA is a mixed complex (A, d,B) together with a graded algebra
structure on A such that d and B are derivations with respect to it.

(3) A mixed differential graded (dg) Lie algebra is a mixed complex (h, d, B)
together with a graded Lie algebra structure [ , ] on h such that d and B
are derivations with respect to [ , ].

Let (C, d, B) be a mixed complex. We denote by End(C) the endomorphism
ring Hom(C, C) of linear maps (of any degree). The ring End(C) is considered the
Lie algebra with the bracket [ , ] defined by [f, g] = fg − (−1)|f ||g|gf for f and
g ∈ End(C). We observe that End(C) is endowed with a dg Lie algebra structure
whose differential is defined by [d, –] with the bracket and the differential d of C.
We see that a triple (End(C), [d, ], [B, ]) is a mixed dg Lie algebra. Moreover, for a
DGA A, we define a differential graded Lie subalgebra Der(A) of End(A) consisting
of derivations on A. If (A, d,B) is a mixed DGA, we observe that Der(A) is a mixed
dg Lie subalgebra of End(A).

We recall a derived version of the non-positive derivations. Let A be a commuta-
tive differential graded algebra A (CDGA for short). Following Block and Lazarev
[BL05], the André–Quillen cohomology H∗

AQ(A) of A for ∗ ≤ 0 is defined by

H∗
AQ(A) := H∗(Der(QA,A)) ∼= H∗(Der(QA,QA), [dQA, –])

with a cofibrant replacement (QA, dQA) of A in the category of CDGAs; see [BG76].
We regard H∗

AQ(A) as a Lie algebra with the Lie bracket on H∗(Der(QA,QA)).

Here we may choose as QA a Sullivan model of A; see [FHT01, Section 12] for a
general theory of Sullivan algebras.
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Let (∧V, d) be a Sullivan algebra for which V 1 = 0. Then we define a mixed
DGA (∧V ⊗ ∧V , d, s), where s is the derivation of degree (−1) defined by sv = v̄
and sv̄ = 0 for v ∈ V and the differential d is the unique extension of d : ∧V → ∧V
which satisfies the condition that [d, s] = 0. For simplicity of notation, we write
L = ∧V ⊗ ∧V together with a decomposition L =

⊕
k L(k) of complexes, where

L(k) = ∧V ⊗ ∧kV . Observe that H(L) is isomorphic to the Hochschild homology
of (∧V, d); see [BV88, Theorem 2.4(ii)].

Let X be a simply-connected space whose rational cohomology H∗(X ;Q) is of
finite type; that is, dimHi(X ;Q) <∞ for each i ≥ 0. Let LX be the free loop space
which is the space of maps from S1 to X endowed with compact-open topology.
Suppose that (∧V, d) is a Sullivan model for X . Then the complex L mentioned
above is a Sullivan model for LX ; see [VPS76].

We recall Sullivan’s isomorphism Φ described in Theorem 1.1. Consider a se-
quence of the homotopy sets

πn(aut1(X))
k // [Sn ×X,X ]

µ // [MX ,MSn×X ],

where MY denotes a minimal Sullivan model for a space Y and µ assigns a map f a
Sullivan representative for f . We may replace MSn×X with the DGA H∗(Sn;Q)⊗
MX . Then we write

(µ ◦ k)(θ) = 1⊗ 1MX
+ ι⊗ θ′,

where ι is the generator of Hn(Sn;Q). Then, Sullivan’s isomorphism Φ of Lie
algebras

Φ : π∗(aut1(X))⊗Q → H−∗(Der(MX), [d, –]) = H−∗
AQ(A

∗
PL(X))

is defined by Φ(θ) = θ′; see [Sul77] and also [FLS10, Theorems 3.6 and 4.3].

3. Algebraic Cartan calculi

The homotopy Cartan calculus due to Fiorenza and Kowalzig [FK20] provides a
systematic way to endow the shifted homology of a mixed complex MC with the
Batalin-Vilkovisky algebra structure and to give the Chas-Sullivan-Menichi [CS99,
?] bracket to the negative cyclic homology of MC; see [FK20, Theorem D]. Thus,
it is crucial to consider examples of such a homotopy calculus.

In this section, we recall the homotopy Cartan calculus with a slight generaliza-
tion. Roughly speaking, the calculus consists of two operations (e and L) between
complexes and two homotopies (S and T ) between the two operations. We give
examples of the calculi by using a Sullivan model of the free loop space of a simply-
connected space and the Hochschild chain complex of a differential graded algebra
(DGA). While the operations of the two homotopy calculi are identified on the ho-
mology level if a given DGA is a Sullivan algebra; see Theorem 3.8, the difference
between the homotopy calculi appears in the homotopy between operations; see
Proposition 3.6 and Proposition 3.7.

3.1. Homotopy Cartan calculus with slight generalization. Let (g, δ) be a
chain complex and (h, d, B) a mixed complex.

Definition 3.1 (cf. [FK20, Definition 3.1]). A tuple (g, h, e, L, S) consisting of
linear maps e, L, S : g → h of degrees 1, 0 and −1, respectively, is a homotopy
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pre-Cartan calculus if the equalities

Lθ = B(eθ) + d(Sθ) + Sδθ,

d(eθ) + eδθ = 0 and

B(Sθ) = 0

hold for any θ ∈ g. The linear maps e and L are called a contraction operator (or
cap product) and a Lie derivative, respectively.

The first two conditions imply that e and L are chain maps of degree 1 and 0,
respectively.

Definition 3.2. [cf. [FK20, Definition 3.7]] Let (g, δ, [ , ]) be a dg Lie algebra and
(h, d, B, [ , ]) a mixed Lie algebra; see Definition 2.1. A homotopy Cartan calculus
(g, h, e, L, S, T ) is a homotopy pre-Cartan calculus (g, h, e, L, S) equipped with a
linear map T : g⊗ g → h satisfying the following equalities for any θ, ρ ∈ g

[eθ, Lρ]− e[θ,ρ] = d(Tθ,ρ)− Tδθ,ρ − (−1)|θ|Tθ,δρ,

[Sθ, Lρ]− S[θ,ρ] = B(Tθ,ρ).

Here T is called a Gelfan’d-Daletskĭı-Tsygan homotopy.

Remark 3.3. These definitions are equivalent to [FK20, Definitions 3.1 and 3.7] if
(h, d, B, [ , ]) is the tuple (End(C), [d′, ], [B′, ], [ , ]) which is given by a mixed
complex (C, d′, B′). In this case, we may call the calculus a homotopy Cartan
calculus on the mixed complex C.

The following is one of fundamental properties of a homotopy Cartan calculus.

Lemma 3.4 (cf. [FK20, Lemmas 3.4 and 3.10]). Let (g, h, e, L, S, T ) be a homotopy
Cartan calculus. Then the map L : g → h is a morphism of dg Lie algebras.

In particular, we see that a homotopy Cartan calculus (g, h, e, L, S, T ) gives a
(H(g), [ , ])-module structure to H(h) via the map H(L) : H(g) → H(h). Moreover,
it follows that H(e) : H(g) → H(h) is a morphism of (H(g), [ , ])-modules.

If the linear map T in a homotopy Cartan calculus is trivial, then the map
e : g → h is regarded as a morphism of (g, δ, [ , ])-modules, where the g-module
structure of h is given by the morphism L of Lie algebras. We observe that our
examples of homotopy Cartan calculi are in such a case; see Propositions 3.6 and
3.7 below.

3.2. Homotopy Cartan calculus on the Sullivan model of free loop spaces.

In this section, we give a homotopy Cartan calculus induced by a Sullivan algebra.
We recall the CDGA L described in Section 2.

Definition 3.5. For a derivation θ on ∧V , we define derivations Lθ and eθ on L
by

Lθv = θv, Lθv̄ = (−1)|θ|sθv,

eθv = 0, eθ v̄ = (−1)|θ|θv

for v ∈ V . This defines linear maps L : Der(∧V ) → Der(L) of degree 0 and
e : Der(∧V ) → Der(L) of degree (−1).

These derivations are introduced in [KNWY21, Proof of Theorem 2.21] by mod-
ifying constructions in [Vig94, Proposition 5].
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Proposition 3.6. The above maps give a homotopy Cartan calculus of the form
(Der(∧V ),Der(L), e, L, S = 0, T = 0).

Proof. Since S = T = 0, we can reduce the equalities in Definition 3.1 and Defini-
tion 3.2 to

Lθ = [s, eθ],

[d, eθ] + eδθ = 0,

[eθ, Lρ]− e[θ,ρ] = 0.

A straightforward computation enables us to deduce that the equalities above hold
on V ⊕ V . Since eθ and Lθ are derivations for any θ ∈ Der(∧V ), we have the
result. �

3.3. Homotopy Cartan calculus on the Hochschild chain complex. In this
section, we consider a homotopy Cartan calculus on the Hochschild chain complex of
an augmented DGA. While the domain of our calculus is restricted to the derivation
ring of a DGA, the calculus is regarded as a DGA version of a homotopy Cartan
calculus on the Hochschild chain complex of an associative algebra described in
[FK20, Example 3.13].

We recall the Hochschild complex C∗(A) of a DGA (A, d) mentioned in Section
2. Then, Connes’ B operator B : C∗(A) → C∗(A) is defined by

Bn := B|A⊗Tn(sĀ) = s ◦ (1 + tn + · · ·+ tnn)

for n ≥ 0. Here, tn : A⊗T n(sĀ) → A⊗T n(sĀ) and s : A⊗T n(sĀ) → A⊗T n+1(sĀ)
are morphisms given by t0 = 1 and

tn(a0[a1| · · · |an]) = (−1)|san|(εn+1)an[a0| · · · |an−1],

s(a0[a1| · · · |an]) = 1[a0|a1| · · · |an],

where εi is the notation described in Section 2. Then, it follows from [BV88,
Example 1] that the triple (C∗(A), d, B) is a mixed complex.

Let A′ be an augmented DGA and ϕ : A → A′ a morphism of DGAs. For a
derivation θ ∈ Der(A,A′), we define Lθ : C∗(A) → C∗(A

′) by Lθ =
∑

i Lθ,i and

Lθ,i(a0[a1| · · · |an]) =

{
θ(a0)[ϕ(a1)|ϕ(a2)| · · · |ϕ(an)] (i = 0),
(−1)|θ|(εi+1)ϕ(a0)[ϕ(a1)| · · · |θ(ai)| · · · |ϕ(an)] (1 ≤ i ≤ n).

We also define eθ : C∗(A) → C∗(A
′) by eθ|A = 0 and

eθ(a0[a1| · · · |an]) = (−1)|θ||a0|+|θ|+|a0|ϕ(a0)θ(a1)[ϕ(a2)| · · · |ϕ(an)].

Let e′θ be the element in the Hochschild cochain complex C∗(A;A′) given by

e′θ(a0[a1| · · · |an]an+1) =

{
(−1)|θ||a0|+|θ|+|a0|ϕ(a0)θ(a1)ϕ(a2) (n = 1),
0 (n 6= 1).

Then we see that eθ = e′θ ∩ –, where the right-hand side is the cap product with e′θ
; see [Men11, §3] for the cap product. Moreover, we define Sθ : C∗(A) → C∗(A

′) by
Sθ|A = 0 and, for n ≥ 1,

Sθ|A⊗Tn(sĀ) =
n∑

j=1

(
n−j∑

k=0

s ◦ tkn

)
◦ Lθ,j.

Proposition 3.7. Let e, L and S be the morphisms described above.
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(1) The tuple (Der(A,A′),Hom(C∗(A), C∗(A
′)), e, L, S) is a homotopy pre-Cartan

calculus.
(2) The tuple (Der(A),End(C∗(A)), e, L, S, T = 0) is a homotopy Cartan cal-

culus on the mixed complex (C∗(A), d, B).

Proof. In order to prove (1), it suffices to check the following equalities:

(i) Lθ = [B, eθ] + [d, Sθ] + Sδθ,
(ii) [d, eθ] + eδθ = 0,
(iii) [B,Sθ] = 0.

A straightforward computation allows us to deduce that

[d1, Sθ] = Sδθ,

Lθ = (−1)|θ|eθ ◦Bn + (d2,0 + d2,n+1) ◦ Sθ and

Bn−1 ◦ eθ +

(
n∑

i=1

d2,i

)
◦ Sθ + (−1)|θ|Sθ ◦ d2 = 0.

By combining the equalities, we obtain the formula (i). The linear maps d1,i, d2,i
and eθ satisfy the followings relations:

d1,i ◦ eθ =

{
(−1)|θ|+1eθ ◦ (d1,0 + d1,1)− eδθ (i = 0),
(−1)|θ|+1eθ ◦ d1,i+1 (1 ≤ i ≤ n− 1),

(3.1)

d2,i ◦ eθ =

{
(−1)|θ|+1eθ ◦ (d2,0 + d2,1) (i = 0),

(−1)|θ|+1eθ ◦ d2,i+1 (1 ≤ i ≤ n− 1).

Then, we have the formula (ii) by combining the equalities (3.1). Since s ◦ s = 0,
tn ◦ s = 0 and

(3.2) Lθ,i ◦ s = (−1)|θ|s ◦ Lθ,i−1

for i ≥ 1, it is immediate to verify the relation (iii). As a consequence, we have (1).
We consider the case where A = A′. In order to prove the assertion (2), we show
the following equalities

(iv) [eθ, Lρ]− e[θ,ρ] = 0 and
(v) [Sθ, Lρ]− S[θ,ρ] = 0.

Observe that eθ = d2,0 ◦ Lθ,1. Moreover, we have

(3.3) Lθ,i ◦ d2,0 =

{
(−1)|θ|d2,0 ◦ (Lθ,0 + Lθ,1) (i = 0),
(−1)|θ|d2,0 ◦ Lθ,i+1 (i ≥ 1)

and

(3.4) Lθ,i ◦ Lρ,j =

{
Lθρ,i (i = j),

(−1)|θ||ρ|Lρ,j ◦ Lθ,i (i 6= j).

The equalities (3.3) and (3.4) enable us to obtain the formula (iv). It is readily
seen that

(3.5) Lθ,i ◦ tn =

{
tn ◦ Lθ,n (i = 0),
tn ◦ Lθ,i−1 (1 ≤ i ≤ n).

Therefore, we have the formula (v) by combining (3.2), (3.4) and (3.5). �
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3.4. Comparison among Cartan calculi. In this section, we compare two Car-
tan calculi defined in Section 3.2 and Section 3.3; see Theorem 3.8. We also show
that a Sullivan model induces morphisms of graded Lie algebras on the homology
of Cartan calculi on the Hochschild complexes; see Proposition 3.9.

As mentioned in the beginning of Section 3, the homotopy Cartan calculi of a Sul-
livan algebra in Proposition 3.6 and the Hochschild complex in Proposition 3.7 coin-
cide with each other on homology. To see this, we identify the Hochschild homology
HH∗(∧V ) with the homology H∗(L) by the quasi-isomorphism Θ : C∗(∧V ) → L
defined by Θ(a0[a1| · · · |an]) = 1

n!a0sa1 · · · san; see [BV88, Theorem 2.4]. Here s
is the unique derivation on L stated in Section 2. We also recall the morphism
Θ′ : L → C∗(∧V ) defined by Θ′(a0sa1 · · · san) = a0 ∗ [a1] ∗ · · · ∗ [an], where ∗ de-
notes the shuffle product on the Hochschild complex; see [GJ90, Section 4]. Observe
that Θ ◦Θ′ = 1. Our main result in this section is described as follows.

Theorem 3.8. With the same notation as above, one has a commutative diagram

H(Der(∧V ))
L( )

(resp.e( ))
//

L( )

(resp.e( )) **❱❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
End(HH∗(∧V ))

Der(H∗(L)),

i

OO

where i is the monomorphism defined by the isomorphism H(Θ).

Proof. In order to prove the assertion, it suffices to show that the squares

C∗(∧V )

Lθ ��

Θ // L

Lθ

��
C∗(∧V )

Θ
// L,

C∗(∧V )

eθ
��

L
Θ′

oo

eθ
��

C∗(∧V )
Θ

// L

are commutative for θ ∈ Der(∧V ). Observe that [Lθ, s] = 0 in End(L) by Definition
3.5. Then, we get

Θ ◦ Lθ(a0[a1|a2| · · · |ak])

=
1

k!

(
θ(a0)sa1sa2 · · · sak +

k∑

i=1

(−1)|θ|(εi+1)a0sa1 · · · sθ(ai) · · · sak

)

=
1

k!

(
θ(a0)sa1sa2 · · · sak +

k∑

i=1

(−1)|θ|εia0sa1 · · ·Lθ(sai) · · · sak

)

=Lθ ◦Θ(a0[a1|a2| · · · |ak])

which implies the commutativity of the left-hand side square. On the other hand,
given av̄1v̄2 · · · v̄k ∈ L for a ∈ ∧V and vi ∈ V . The induction on k enables us to
deduce that the shuffle product on C∗(∧V ) satisfies

Θ′(av̄1v̄2 · · · v̄k) = a ∗ [v1] ∗ [v2] ∗ · · · ∗ [vk] =
∑

σ∈S

(−1)ε(σ)a[vσ(1)|vσ(2)| · · · |vσ(k)],
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whereSk is the symmetric group of degree k and (−1)ε(σ) is the Koszul sign defined
by the equality (−1)ε(σ)v̄σ(1)v̄σ(2) · · · v̄σ(k) = v̄1v̄2 · · · v̄k in L. Thus we have

Θ ◦ eθ ◦Θ
′(av̄1v̄2 · · · v̄k)

=
∑

σ∈Sk

(−1)ε(σ)+|θ||a|+|θ|+|a| 1

(k − 1)!
aθ(vσ(1))v̄σ(2) · · · v̄σ(k)

=

k∑

i=1

(−1)|θ||a|+|θ|+|a|+|v̄i|(|v̄1|+···+|v̄i−1|)aθ(vi)v̄1 · · · v̄i−1v̄i+1 · · · v̄k

=
k∑

i=1

(−1)|θ||a|+|a|+(|θ|+1)(|v̄1|+···+|v̄i−1|)av̄1 · · · v̄i−1eθ(v̄i)v̄i+1 · · · v̄k

=eθ(av̄1v̄2 · · · v̄k).

This yields the commutativity of the right-hand side square. �

Let ϕ : (∧V, d)
≃
−→ (A, d) be a (not necessarily connected) Sullivan model of an

augmented CDGA (A, d). In the rest of this section, we show that the quasi-
isomorphism ϕ induces a morphism of Lie algebras between the homology Lie al-
gebras of derivations. Moreover, we relate two homotopy Cartan calculi

(Der(A),End(C∗(A)), e, L, S, 0) and (Der(∧V ),End(C∗(∧V )), e, L, S, 0).

We refer the reader to Proposition 3.7 (2) for the calculi.

Proposition 3.9. There exist a homomorphism H∗(Der(A)) → H∗(Der(∧V )) and

an isomorphism H∗(End(C∗(A)))
∼=
−→ H∗(End(C∗(∧V ))) of graded Lie algebras

such that the following diagrams commute:

H∗(Der(∧V ))
H(L) // H∗(End(C∗(∧V )))

H∗(Der(A))
H(L) //

OO

H∗(End(C∗(A))),

∼=

OO
H∗(Der(∧V ))

H(e) // H∗+1(End(C∗(∧V )))

H∗(Der(A))
H(e) //

OO

H∗+1(End(C∗(A))).

∼=

OO

Proof. First we prove the proposition in the case where ϕ : (∧V, d) → (A, d) is a sur-
jective quasi-isomorphism. The morphism ϕ of CDGAs gives rise to a commutative
diagram

H(Der(∧V ))
H(L),H(e) //

∼=ϕ∗

��

H(End(C∗(∧V )))

∼= ϕ∗

��
H(Der(∧V,A))

H(L),H(e)// H(End(C∗(∧V ), C∗(A)))

H(Der(A))
H(L),H(e) //

ϕ∗

OO

H(End(C∗(A))).

∼= ϕ∗

OO

Since the functor C∗(−) preserves quasi-isomorphisms, it follows that the right
vertical maps are isomorphisms. Corollary 4.6 (1) implies that the upper left map
ϕ∗ is an isomorphism. Now we need to prove that the two vertical composites are
morphisms of Lie algebras. Since the right one can be proved similarly to (and
easier than) the left one, we give only a proof for the left one.

It follows from Proposition 4.5 that the map ϕ∗ : Der(∧V ) → Der(∧V,A) is a
surjective quasi-isomorphism. Then, for any elements [f ], [g] ∈ H(Der(A)), there
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are cocycles f ′, g′ ∈ Der(∧V ) such that fϕ = ϕf ′ and gϕ = ϕg′. Therefore, we see
that (ϕ∗)

−1 ◦ ϕ∗[f ] = [f ′] and (ϕ∗)
−1 ◦ ϕ∗[g] = [g′]. By a straightforward compu-

tation, we have [f, g]ϕ = ϕ[f ′, g′] and this completes the proof for the particular
case.

Next we deal with a general case. To this end, the “surjective trick” is applicable.

In fact, the map ϕ : (∧V, d) → (A, d) factors as (∧V, d)
i
−→
≃

(∧V, d) ⊗ (E(A), δ)
ϕ′

−→
≃

(A, d) with a contractible algebra (E(A), δ) and the canonical maps i and ϕ′; see
[FHT01, Section 12 (b)] for details. Now we have a homotopy inverse r : (∧W,d) →
(∧V, d) of i defined by sending A to zero, where (∧W,d) = (∧V, d) ⊗ (E(A), δ).
Observe that W = V ⊕ A ⊕ δA. Then r and ϕ′ are surjective quasi-isomorphisms
and hence the first half of the proof gives the following diagram:

H(Der(∧V ))
H(L),H(e) //

∼=r∗

��

H(End(C∗(∧V )))

∼= r∗

��
H(Der(∧W,∧V ))

H(L),H(e)// H(End(C∗(∧W ), C∗(∧V )))

H(Der(∧W ))
H(L),H(e) //

∼=ϕ∗

��

∼=r∗

OO

H(End(C∗(∧W )))

∼= ϕ∗

��

∼= r∗

OO

H(Der(∧W,A))
H(L),H(e)// H(End(C∗(∧W ), C∗(A)))

H(Der(A))
H(L),H(e) //

ϕ∗

OO

H(End(C∗(A))).

∼= ϕ∗

OO

The upper left map r∗ is an isomorphism with the inverse i∗ by Corollary 4.6 (2).
This completes the proof of the general case. �

3.5. Injectivity of the contraction e on homology. Let (∧V, d) be a simply-
connected Sullivan algebra whose homology satisfies the Poincaré duality. We as-
sume that the fundamental class is in Hm(∧V ). In this section, we study properties
of the derivation H(eθ) : H(L) → H(L) and show injectivity of this map. We recall
the differential graded module L(k) defined in Section 3.2.

Theorem 3.10. Let (Der(∧V ),Der(L), e, L, 0, 0) be the homotopy Cartan calculus
in Proposition 3.6. For any [θ] 6= 0 ∈ H−n−1(Der(∧V )), there exists a cohomology
class [α] ∈ Hm+n(L(1)) such that H(eθ)[α] is the same as the fundamental class in
Hm(∧V ) ⊂ Hm(L).

This theorem immediately implies the following corollary.

Corollary 3.11. Suppose that H∗(∧V ) satisfies the Poincaré duality. Then the
map H∗(Der(∧V )) → Der∗+1(H(L)) induced by the contraction e : Der∗(∧V ) →
Der∗+1(L) is a monomorphism and hence so is the map H∗(e) : H∗(Der(∧V )) →
H∗+1(Der(L)).

Thanks to Corollary 3.11 and Proposition 4.4 below, we have Theorem 1.3. It is
expected that the contraction operator e is injective for more general spaces.

The rest of this section is devoted to proving Theorem 3.10. Let (∧V, d)∗ be
the linear dual of (∧V, d) and D : (∧V, d) → (∧V, d)∗ the duality map; that is, a
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quasi-isomorphism of (∧V, d)-modules of degree (−m) given by the cap product
with the representing cycle of the fundamental class. For a (non-negative) integer
k, define a quasi-isomorphism pd by the composition

pd: Hom∧V (L(k),∧V )
D∗−−→
≃

Hom∧V (L(k), (∧V )∗)
adjoint
−−−−→

∼=
Hom(L(k),Q) = (L(k))∗

and denote its adjoint by ad(pd): Hom−n
∧V (L(k),∧V )⊗ Lm+n

(k) → Q.

By a straightforward computation, we have

Lemma 3.12. For any integer n and k, we have a commutative diagram

Hom−n
∧V (L(k),∧V )⊗ Lm+n

(k)

ev
��

ad(pd) // Q

(∧V )m
D // ((∧V )∗)

0.

ev1∼=

OO

Proposition 3.13. Let n and k be integers.

(1) The pairing

H(ev): H−n(Hom∧V (L(k),∧V ))⊗Hm+n(L(k)) → Hm(∧V ) ∼= Q

is non-degenerate.
(2) For any [f ] 6= 0 ∈ H−n(Hom∧V (L(k),∧V )), there is a cohomology class

[α] ∈ Hm+n(L(k)) such that [f(α)] ∈ Hm(∧V ) is the same as the funda-
mental class.

Proof. Since D induces an isomorphism on homology, Lemma 3.12 identifies H(ev)
and H(ad(pd)) up to isomorphism. Hence the proposition follows from the fact
that H(pd) is an isomorphism. �

In order to prove Theorem 3.10, we represent the contraction e as a compos-
ite of maps. Proposition 4.5 below asserts that the linear map λ : Der(∧V ) →
Hom∧V (L(1),∧V ) ∼= Hom(V ,∧V ) defined by λ(θ)(v̄) = (−1)|θ|θ(v) for v ∈ V
and θ ∈ Der(∧V ) is an isomorphism of complexes of degree 1. Moreover, we de-
fine a chain map ẽ : Hom∧V (L(1),∧V ) → Der(L) of degree 0 by ẽ(f)(v) = 0 and
ẽ(f)(v̄) = f(v̄) for v ∈ V and f ∈ Hom∧V (L(1),∧V ). Then we have a commutative
diagram

Der(∧V )
e //

∼= λ
��

Der(L)

Hom∧V (L(1),∧V ).

ẽ
66♠♠♠♠♠♠♠♠♠♠♠

Proof of Theorem 3.10. Take an element [θ] 6= 0 ∈ H−n−1(Der(∧V )). Since λ
is an isomorphism, we have H(λ)[θ] 6= 0 ∈ H−n(Hom∧V (L(1),∧V )). Hence, by

Proposition 3.13 (2), there exists a cohomology class [α] ∈ Hm+n(L(1)) such that
[λ(θ)(α)] ∈ Hm(∧V ) is the same as the fundamental class. Then we see that
[(ẽλ(θ))(α)] ∈ Hm(L) is nothing but the fundamental class. Therefore, the theorem
follows from the above commutative diagram. �
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4. Geometric counterparts of Cartan calculi

In this section, we assume that the underlying field is of arbitrary character-
istic. Theorem 3.8 asserts that the operations L and e appeared in Proposition
3.6 coincide with the Lie representation and the contraction in Proposition 3.7
on homology, respectively. In this section, we consider geometric constructions of
the operations L and e on homology. Moreover, as mentioned in Introduction, a
geometric description of the isomorphism Φ of Lie algebras in Theorem 1.1 is given.

4.1. Geometric descriptions of the operations L and e. Given θ ∈ πn(aut1(X))
which is represented by θ : Sn → aut1(X). Let ad(θ) : Sn×X → X be the adjoint
of θ and consider the map between the free loop spaces L(ad(θ)) : LSn×LX → LX
defined by (L(ad(θ)(l, γ))(t) = ad(θ)(l(t), γ(t)) for (l, γ) ∈ LSn × LX and t ∈ S1.
Let ev0 : LSn → Sn be the evaluation map at 0. We define L : πn(aut1(X)) →
End−n(H∗(LX)) by the composite

(4.1) Lθ : H
∗(LX)

L(ad(θ))∗// H∗(LSn × LX)

∫
[Sn] // H∗(LX),

where
∫
[Sn] denotes the integration along the image of the fundamental class of Sn

by the map ev∗0 : Hn(Sn) → Hn(LSn). The rotation on S1 induces the action
µ : S1 × LX → LX on the free loop space. By definition, the BV-operator ∆ on
H∗(LX) is the composite

∆ : H∗(LX)
µ∗

// H∗(S1 × LX)

∫
S1 // H∗−1(LX),

where
∫
S1 is the integration along the fundamental class of S1. Let [Sn] be the

cohomology class in Hn−1(LSn) which is the image of the fundamental class of Sn

by the composite

Hn(Sn)
ev∗

0 // Hn(LSn)
∆ // Hn−1(LSn).

Then, we define a linear map e : πn(aut1(X)) → End−n+1(H∗(LX)) by the com-
posite

(4.2) eθ : H
∗(LX)

L(ad(θ))∗// H∗(LSn × LX)

∫
[Sn] // H∗(LX).

We first consider properties of the operation L.

Theorem 4.1. (1) The map L : π∗(aut1(X)) → Der−∗(H∗(LX)) is a mor-
phism of Lie algebras.

(2) For each θ in π∗(aut1(X)), the derivation Lθ commutes with the BV oper-
ator ∆ : H∗(LX) → H∗−1(LX).

We postpone the proof to Appendix B; see the argument after Theorem B.2. The
operation L in (4.1) is extended to that on the equivariant cohomology H∗

S1(LX).
Theorem 4.1 is proved by considering a result on the equivariant version of the
operator L.

Remark 4.2. One might expect that the same construction as that in (4.1) and
(4.2) is applicable to other element in H∗(LSn), or more generally in H∗(LS) for
a simply-connected space S. In fact, it is possible. Moreover, we see that such
operations incorporate e and L together with interesting properties, for instance,
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the Cartan formula such as that for Steenrod operations. The topic will be discussed
in more detail in [NW22].

In the rest of this section, we assume that the underlying field and the coefficients
of cohomology rings of spaces are rational unless otherwise specified.

We relate Sullivan’s isomorphism Φ mentioned in Section 2 with the Lie deriva-
tive L( ).

Proposition 4.3. Let X be a simply-connected space of finite type and ∧V the
minimal Sullivan model for X. Then there exists a commutative diagram

π∗(aut1(X))⊗Q
L //

∼=Φ
��

Der−∗(H∗(LX ;Q))

∼=
��

H∗(Der(∧V ))
L

// Der−∗(H∗(L)).

We prove Proposition 4.3 in Appendix B together with its equivariant version;
see Theorem B.6. Next we give a relationship between the operation e and the
isomorphism Φ.

Proposition 4.4. Under the same assumption as in Proposition 4.3, there exists
a commutative diagram

πn(aut1(X))⊗Q
(−1)ne //

Φ ∼=
��

End−n+1(H∗(LX ;Q))

Hn(Der(∧V ))
e // Der−n+1(H∗(L)).

a monomorphism

OO

Proof. We first consider a rational model for eθ described in (4.2). Let MSn be the
Sullivan model for Sn which is of the form

MSn =

{
(∧(u), 0) (n : odd),
(∧(u, u′), du′ = u2) (n : even),

where |u| = n, |u′| = 2n − 1. Let LSn be the Sullivan model for LSn induced by
MSn and ϕ : ∧V → MSn ⊗ ∧V a Sullivan representative for ad(θ); see Section 2.
It follows from Lemma 4.10 that a Sullivan representative Lϕ : L → LSn ⊗ L for
L(ad(θ)) is given by

(4.3) Lϕ(v) = ϕ(v) and Lϕ(v̄) = sϕ(v)

for v ∈ V . We define a morphism
∫
ū
: LSn → Q of chain complexes of degree −n+1

by
∫
ū
(ū) = 1 and

∫
ū
(w) = 0 for bases w with w 6= ū. Since the cohomology class

[Sn] is represented by ū, the definition of eθ implies that the composite (
∫
ū
⊗1)◦Lϕ

is a rational model for eθ. Now, we may write

ϕ(v) ≡ 1⊗ v + u⊗ θ′(v)

for v ∈ V modulo (MSn)>n ⊗ ∧V . By definition, we see that Φ(θ)(v) = θ′(v).
Therefore, it follows from (4.3) that

Lϕ(v) ≡ 1⊗ v + u⊗ θ′(v),

Lϕ(v̄) ≡ s(1 ⊗ v + u⊗ θ′(v)) = 1⊗ v̄ + ū⊗ θ′(v) + (−1)nu⊗ sθ′(v)

modulo (LSn)>n ⊗ L. We have (
∫
ū
⊗1) ◦ Lϕ(v) = 0 and (

∫
ū
⊗1) ◦ Lϕ(v̄) =

(−1)neθ(v̄). This completes the proof. �
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Finally we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. We observe that all results in this manuscript remain true
even if the underlying field Q is replaced with R. In fact, after taking the tensor
product – ⊗Q R, we have these results. Moreover, we recall the fact that there
exists a sequence of quasi-isomorphisms connecting Ω∗(M) with APL(M) ⊗Q R,
where APL(M) denotes the CDGA of polynomial differential forms on a manifold
M ; see [FHT01, Section 11 (d)] for the details. Therefore, a Sullivan minimal

model ∧W
≃
→ APL(M) gives rise to a minimal model m : ∧V

≃
→ QΩ∗(M) in which

V = W ⊗Q R. Here QΩ∗(M) denotes a cofibrant replacement of Ω∗(M) in the
category A of CDGAs endowed with the model category structure described in
[BG76].

Let M be a simply-connected manifold. To prove Theorem 1.1, we first con-
struct an isomorphism between H∗(Der(QΩ∗(M))) and H∗(Der(∧V )), by applying
the proof of [BL05, Theorem 2.8]. With the notation above, the map m has a
factorization

∧V
m

≃
//

i

≃

$$❏❏
❏❏

❏❏
QΩ∗(M)

A
p

77♦♦♦♦♦♦

in A, where i is a trivial cofibration and p is a fibration, namely an epimorphism.
Observe that p is also a quasi-isomorphism. Therefore, we have a right splitting
g of p with p ◦ g = idQΩ∗(M) and a map h1 : Der(A) → Der(QΩ∗(M)) defined
by h1(θ) = p ◦ θ ◦ g. Moreover, since each object in A is fibrant, it follows that
i admits a left splitting r : A → ∧V with r ◦ i = id∧V . Thus, a chain map
h2 : Der(A) → Der(∧V ) is defined by h2(θ) = r ◦ θ ◦ i. As a consequence, we have
a diagram consisting of commutative squares

H∗(Der(QΩ∗(M)))
L

e
// End−∗(HH∗(Ω

∗(M)))

H∗(Der(A))
L

e
//

∼=(h2)∗
��

∼=(h1)∗

OO

End−∗(HH∗(A))

HH(r)◦( )◦HH(i)∼=
��

HH(p)◦( )◦HH(g)∼=

OO

H∗(Der(∧V ))
L

e
// End−∗(HH∗(∧V )).

We observe that left maps (h1)∗ and (h2)∗ are isomorphisms; see the proof of [BL05,
Theorem 2.8 (1)].

Finally Theorem 3.8, Propositions 4.3 and 4.4 enable us to obtain the commu-
tative diagram in Theorem 1.1. �

4.2. The map Γ1 due to Félix and Thomas. Throughout this section, we
assume that M is a simply-connected closed manifold of dimension m. Let ∧V =
(∧V, d) be the minimal Sullivan model for M and C∗(∧V ) the Hochschild chain
complex of ∧V . Recall the direct sum decomposition L = ∧V ⊗ ∧V = ⊕kL(k) of
complexes from Section 2. Thus we have decompositions H∗(L) = ⊕kH

∗(L(k)) and

H∗(LM ;Q) ∼= ⊕kH
−∗(Hom(L(k),Q)) which are called the Hodge decompositions.

We put

H
(k)
∗ (LM) := H−∗(Hom(L(k),Q)).
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Since the Hochschild cohomology HH∗(∧V,A) with coefficients in a ∧V -module
A is isomorphic to the homology of the complex Hom∧V (L, A), we also have the
direct sum decomposition HH∗(∧V,A) ∼= ⊕kHH

∗
(k)(∧V,A), where

HH∗
(k)(∧V,A) = H∗(Hom∧V (L(k), A)).

By a direct computation, we have

Proposition 4.5. The map λ : Der(∧V,A) → Hom∧V (L(1), A) ∼= Hom(V ,A) of

degree 1 defined by λ(θ)(v̄) = (−1)|θ|θ(v) for θ ∈ Der(∧V,A) and v̄ ∈ V is an
isomorphism of complexes of degree 1.

Corollary 4.6. Let η : ∧V → A be a morphism of CDGAs, where ∧V is a Sullivan
algebra.

(1) For any quasi-isomorphism ϕ : A→ B of CDGAs, the map ϕ∗ : H∗(Der(∧V,A)) →
H∗(Der(∧V,B)) induced by ϕ is an isomorphism, where B in the codomain
is regarded as a ∧V -module via the composite ϕ ◦ η.

(2) For any quasi-isomorphism ψ : ∧W → ∧V of Sullivan algebras, the map
ψ∗ : H∗(Der(∧V,A)) → H∗(Der(∧W,A)) induced by ψ is an isomorphism,
where A in the codomain is regarded as a ∧W -module via the composite
η ◦ ψ.

Proof. The differential graded module L(1) is a semifree ∧V -module. Then the
results follow from [FHT01, Theorem 6.10] and the naturality of λ in Proposition
4.5. �

Poincaré duality for manifolds gives rise to a duality between the direct sum-

mands H
(k)
∗ (LM) and HH∗

(k)(∧V,A). To see this, let A be an m-dimensional

Poincaré duality model for a simply-connected manifold M introduced in [LS08]
equipped with ϕ : ∧V → A a quasi-isomorphism of CDGAs. Denote by A∗ :=
Hom(A,Q) the linear dual of A with the differential defined by α 7→ −(−1)|α|α◦dA
for α ∈ A∗, where dA denotes the differential of A; see Remark 4.12. Let {ai}

N
i=1

be a homogeneous basis with aN = wA a representative of the fundamental class
of M . We denote by {a∗i }

N
i=1 the dual basis. Let DA : A → A∗ be the duality

map; that is, DA is an isomorphism of A-modules defined by DA(a)(b) = ω∗
A(ab).

Observe that A is regarded as a ∧V -module via ϕ.
Put LA := A⊗∧V L ∼= A⊗∧V . We observe that LA is also a rational model for

LM . The direct sum decomposition of L mentioned above induces a decomposition
LA = ⊕kL

A
(k), where LA(k) := A⊗∧V L(k). Then, we have an isomorphism

PD : HHn
(k)(∧V )

ϕ∗

∼=
// HHn

(k)(∧V,A)
DA∗

∼=
// HHn−m

(k) (∧V,A∗)

adjoint

∼=uu❧❧❧❧
❧❧
❧❧
❧❧
❧❧

Hn−m(Hom(LA(k),Q))
(ϕ⊗1)∗

∼=
// H(k)

−n+m(LM).

(4.4)

Let Ωaut1(M)0 be the connected component of the based loop space Ωaut1(M)
containing the constant loop at id ∈ aut1(M). We here recall the morphism Γ1 due
to Félix and Thomas. Let g : Ωaut1(M)0 ×M → LM be a map defined by

g(γ, x)(t) = γ(t)(x)
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for γ ∈ Ωaut1(M)0, x ∈ M and t ∈ S1. In [FT04], Félix and Thomas show that
the morphism Γ1 defined by the composite

πn(Ωaut1(M)0)⊗Q
Hur // Hn(Ωaut1(M)0;Q)

×[M ]

��
Hn+m(Ωaut1(M)0 ×M ;Q)

g∗ // Hn+m(LM ;Q)

is injective for n ≥ 1 and that the image of Γ1 is isomorphic to H
(1)
n+m(LM), where

Hur denotes the Hurewicz map and [M ] ∈ Hm(M) is the fundamental class.
The main theorem in this section is as follows.

Theorem 4.7. With the notation above, the diagram

πn(aut1(M))⊗Q
Φ
∼=

// Hn(Der(∧V ))

λ∼=
��

πn−1(Ωaut1(M)0)⊗Q
Γ1

∼=
//

∂ ∼=

OO

H
(1)
n+m−1(LM)

PD−1

∼=
// HH−n+1

(1) (∧V )

is commutative, where ∂ is the adjoint map.

We note that Theorem 4.7 gives another proof of [FT04, Theorem 2]. In order to
prove Theorem 4.7, we first observe rational models for Ωaut1(M)0 and the adjoint
map ∂ by using the rational models for function spaces due to Brown and Szczarba
[BS97]. Remark that the proof of the theorem due to Félix and Thomas uses a
rational model for Γ1 constructed by a Haefliger model [Hae82] for the space of
sections of a fibration.

Let (∧(V ⊗A∗), d) and ∧Sϕ =
(
∧
(
(V ⊗A∗)

1
⊕ (V ⊗A∗)

≥2
)
, d
)
be the Brown-

Szczarba models for Map(M,M) and aut1(M), respectively. For the details of
Brown-Szczarba models, see [BS97, BM06, HKO08] and also Appendix A.

Let MS1 = (∧(u), 0) be the Sullivan model for S1 with |u| = 1. Since aut1(M)
is connected, nilpotent space [HMR75] of finite type, it follows that the function
space Laut1(M) admits a Brown-Szczarba model of the form (∧(Sϕ ⊗ ∧(u)∗), d).
A Sullivan representative for the constant loop in Laut1(M) at id ∈ aut1(M) is of
the form ∧Sϕ → ∧(u) defined by w 7→ 0 for w ∈ Sϕ. This induces an augmentation
ε : ∧(Sϕ ⊗∧(u)∗) → Q of the model for Laut1(M). Therefore, by virtue of [BM06,
Corollary 4.7], we have a model

(∧Sε, d) =
(
∧
(
(Sϕ ⊗ ∧(u)∗)

1
⊕ (Sϕ ⊗ ∧(u)∗)

≥2
)
, d
)
,

for the connected component Laut1(M)0 of Laut1(M) containing the constant loop.
Moreover, it follows from [BM06, Proposition 4,2, Theorem 4.5] that the CDGA
morphism

∧(Sϕ ⊗ ∧(u)∗) → ∧Sε, w ⊗ β 7→

{
pr(w ⊗ β) (|w ⊗ β| ≥ 1)
0 (|w ⊗ β| = 0)

for w ∈ Sϕ and β ∈ ∧(u)∗ is a model for the inclusion Laut1(M)0 →֒ Laut1(M),
where pr is the projection (Sϕ ⊗∧(u)∗)

≥1 → Sε. The result [BM06, Corollary 4.7]
yields that a morphism

ω0 : ∧Sϕ → ∧Sε
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of CDGAs, which is defined by the projection onto (Sϕ ⊗ ∧(u)∗)
1
in S1

ϕ and ω0(w) =

w ⊗ 1∗ for w ∈ S≥2
ϕ , is a rational model of the evaluation map at the base point

ev0 : Laut1(M)0 → aut1(M).

Lemma 4.8. The fiber of ω0 at the canonical augmentation of ∧Sϕ over Q is a
Sullivan model for Ωaut1(M)0.

We remark that the result [BM06, Corollary 4.8] is not applicable to the mor-
phism ω0 since aut1(M) is not a simply-connected in general.

Proof of Lemma 4.8. For proving the assertion, it is enough to show that ω0 is a
KS-extension; that is, ∧Sε is a relative Sullivan algebra with base ∧Sϕ and ω0 is
the canonical inclusion; see, for example, [FHT01, Section 14] for relative Sullivan
algebras. Observe that

(Sϕ ⊗ ∧(u)∗)
0 = S1

ϕ ⊗Qu∗ and (Sϕ ⊗ ∧(u)∗)
1 = (S1

ϕ ⊗Q1∗)⊕ (S2
ϕ ⊗Qu∗).

It is readily seen that (Sϕ ⊗ ∧(u)∗)
1
coincides with the complement of the morphism

S1
ϕ ⊗Qu∗

(0,d0⊗1) // (S1
ϕ ⊗Q1∗)⊕ (S2

ϕ ⊗Qu∗),

where d0 is the linear part of the differential of ∧Sϕ. It follows that ∧Sε is isomor-
phic to

∧
(
(Sϕ ⊗Q1∗)⊕

(
S2
ϕ ⊕ S≥3

ϕ

)
⊗Qu∗

)
∼= ∧Sϕ ⊗ ∧

((
S2
ϕ ⊕ S≥3

ϕ

)
⊗Qu∗

)

which is a relative Sullivan algebra with base ∧Sϕ. Here, S2
ϕ is the quotient space

S2
ϕ/d0(S

1
ϕ). Therefore, the morphism ω0 of CDGAs is a KS-extension with the

fiber ∧
((
S2
ϕ ⊕ S≥3

ϕ

)
⊗Qu∗

)
. Since aut1(M) is an H-space, we have a homotopy

equivalence

aut1(M)× Ωaut1(M)0 ≃ Laut1(M)0

defined by (x, γ) 7→ x · γ. A homotopy, which defines the holonomy action of
π1(aut1(M)) on H∗(Ωaut1(M)0), factors through the product. This implies that
the π1(aut1(M))-action is trivial and hence nilpotent. Therefore, by virtue of

[Hal83, 20.3 Theorem], we see that the fiber ∧
((
S2
ϕ ⊕ S≥3

ϕ

)
⊗Qu∗

)
is a Sullivan

model for Ωaut1(M)0. �

Now, we recall facts on rational homotopy groups of nilpotent spaces. Let X be
a connected nilpotent space of finite type and MX = (∧W,d) a Sullivan model for
X . It follows from [BG76, 11.3] that there is a natural isomorphism

ν : πn(X)⊗Q −→ Hom(Hn(W,d0),Q)

provided πn(X) is abelian, where d0 is the linear part of the differential d. Let
f : Sn → X be a map which represents an element in πn(X)⊗Q. Then, the image
ν(f) is defined by the linear part of Mf a Sullivan representative of the map f .
We denote by MSn the Sullivan model for Sn described in [FHT01, §12 Example
1] and

∫
Sn : MSn → Q the chain map which assigns 1 to a representative of the

fundamental class of Sn. Since Mf (w) is indecomposable for any w in (∧W )n, it
follows that ν(f) coincides with the map induced by the chain map

∫
Sn ◦Mf |W on

Hn(W,d0).
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Let M be a simply-connected manifold. The monoid aut1(M) and Ωaut1(M)0
are connected nilpotent H-spaces; see [HMR75]. Therefore, by the models men-
tioned above, we see that the dual spaces of πn(aut1(M))⊗Q and πn(Ω∗aut1(M))⊗

Q are isomorphic to the homology of Sϕ and
(
S2
ϕ ⊕ S≥3

ϕ

)
⊗ Qu∗ the linear parts

of the Sullivan models for aut1(M) and Ωaut1(M)0, respectively. Observe that the
fundamental groups π1(aut1(M)) and π1(Ωaut1(M)0) are abelian.

In what follows, we put

Tϕ := S2
ϕ ⊕ S≥3

ϕ ,

where the differential of Tϕ is induced by the linear part (Sϕ, d0). Let ι : Sϕ → Tϕ⊗

Qu∗ be the composite of the inclusion Tϕ →֒ Tϕ⊗Qu∗ defined by w 7→ (−1)|w|w⊗u∗

and the projection pr′ : (Sϕ)
≥2 → Tϕ.

Proposition 4.9. The morphism ι is a rational model for the adjoint map ∂; that
is, the diagram

πn−1(Ωaut1(M)0)⊗Q

∂∼=
��

ν

∼=
// HomQ

(
Hn−1 (Tϕ ⊗Qu∗) ,Q

)

H(ι)∗

��
πn(aut1(M))⊗Q

ν

∼=
// HomQ(H

n(Sϕ),Q),

is commutative for n ≥ 2. As a consequence, the morphism H(ι) : Hn(Sϕ) −→
Hn−1(Tϕ ⊗Qu∗) induced by ι is an isomorphism for n ≥ 2.

Proof. We may assume that M is a rational space without loss of generality.
Let f : Sn−1 → Ωaut1(M)0 be a based map which represents an element in
πn−1(Ωaut1(M)0) ∼= πn−1(Ωaut1(M)0)⊗Q. Consider a commutative diagram

(4.5) Sn ∂(f)

**
Sn−1 ∧ S1 f∧1 // Ωaut1(M)0 ∧ S

1 ev // aut1(M)

Sn−1 × S1 f×1 //

OOOO

Ωaut1(M)0 × S1 ev //

OOOO

aut1(M),

where ev is the evaluation map. Let inc′ : Ωaut1(M)0 →֒ Laut1(M) be the inclu-
sion. By the construction of the model for Ωaut1(M)0 in the proof of Lemma
4.8, the CDGA morphism Minc′ : ∧(Sϕ ⊗ ∧(u)∗) → ∧ (Tϕ ⊗Qu∗) defined by
Minc′(w ⊗ 1∗) = 0 and

Minc′(w ⊗ u∗) =

{
0 (|w| = 1)
pr′(w) ⊗ u∗ (|w| ≥ 2)

for w ∈ Sϕ is a rational model for inc′. Therefore, by combining the rational models
of inc′ and the evaluation map Laut1(M)×S1 → aut1(M) due to Buijs and Murillo
[BM06], we see that ev admits a Sullivan representative

Mev : ∧Sϕ → ∧ (Tϕ ⊗Qu∗)⊗ ∧(u)

defined by Mev(w) = −(pr′(w) ⊗ u∗) ⊗ u. Let Mf : ∧(Tϕ ⊗ Qu∗) → MSn−1 and
M∂(f) : ∧Sϕ → MSn be Sullivan representatives of f and ∂(f), respectively. Then
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we have the following homotopy commutative diagram of CDGAs

MSn

∫
Sn //

π
��

Q

∧Sϕ
Mev //

M∂(f) ..

∧ι **❱❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱ ∧(Tϕ ⊗Qu∗)⊗ ∧(u)
Mf⊗1 //

1⊗
∫
S1��

MSn−1 ⊗ ∧(u)

∫
Sn−1 ⊗

∫
S1 //

1⊗
∫
S1

��

Q

∧(Tϕ ⊗Qu∗)
Mf // MSn−1

∫
Sn−1 // Q,

where π is the canonical morphism which sends the fundamental class of Sn to
the fundamental class of Sn−1 × S1 on cohomology. The uniqueness up to homo-
topy of a Sullivan representative and commutativity of the diagram (4.5) enable
us to conclude that the top and left-hand side diagram is homotopy commutative.
Therefore, we have

ν ◦ ∂(f) =
(∫
Sn ◦M∂(f)

)
|Sϕ

≃
(∫
Sn−1 ◦Mf ◦ ∧ι

)
|Sϕ

=
(∫
Sn−1 ◦Mf

)
|Tϕ⊗Qu∗ ◦ ι = ν(f) ◦ ι.

This completes the proof. �

We next consider a rational model for Γ1. Let ∧(V ⊗ ∧(u)∗) be the Brown–
Szczarba model for LM , where ∧V is a Sullivan model for M . Then we identify

the model with the CDGA L mentioned in Section 2 by the isomorphism ξ : L
∼=
−→

∧(V ⊗ ∧(u)∗), defined by v 7→ v ⊗ 1∗ and v̄ 7→ (−1)|v|v ⊗ u∗ for v ∈ V .

Lemma 4.10. Let ∧Vi be a minimal Sullivan model of a simply-connected space
Xi for each i = 1 and 2. Let LXi

be the Sullivan model for LXi and ψ : ∧V2 →
∧V1 a Sullivan representative for f : X1 → X2. Then, a CDGA morphism Lψ :
LX2 → LX1 defined by Lψ(v) = ϕ(v) and Lψ(v̄) = sψ(v) for v ∈ V2 is a Sullivan
representative for the map Lf : LX1 → LX2.

Proof. Let ∧(Vi ⊗ ∧(u)∗) ∼= ∧(∧Vi ⊗ ∧(u∗))/I be the Brown–Szczarba model for
LXi; see Appendix A. A naturality of Brawn-Szczarba models implies that the
induced morphism

∧(ψ ⊗ 1) : ∧(∧V2 ⊗ ∧(u∗))/I −→ ∧(∧V2 ⊗ ∧(u∗))/I

is a rational model for Lf . It is readily seen that the square

∧(V2 ⊗ ∧(u)∗)

ρ ∼=

��

LX2

ξ

∼=
oo Lϕ // LX1

ξ

∼=
// ∧(V1 ⊗ ∧(u)∗)

ρ∼=

��
∧(∧V2 ⊗ ∧(u∗))/I

∧(ψ⊗1) // ∧(∧V1 ⊗ ∧(u∗))/I

is commutative, which proves the lemma. �

By the restriction of the isomorphism ξ mentioned above to the direct summands
of the Hodge decomposition, we see that L(k) is isomorphic to ∧V ⊗ ∧k(V ⊗Qu∗)
which is a direct summand of ∧(V ⊗∧(u)∗). Define the morphism MΓ1 of CDGAs
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by the composite

L
proj // L(1) ∼=

ξ // ∧V ⊗ (V ⊗Qu∗)
ϕ⊗1 // A⊗ (V ⊗Qu∗)

DA⊗1

∼=rr❡❡❡❡❡❡
❡❡❡

❡❡❡
❡❡❡

❡❡❡
❡❡❡

❡❡❡
❡

A∗ ⊗ (V ⊗Qu∗) ∼=

T // V ⊗A∗ ⊗Qu∗
pr′′⊗1 // Tϕ ⊗Qu∗.

(4.6)

Here, the map T is defined by T (a⊗v⊗u∗) = (−1)|a||v|v⊗a⊗u∗ and pr′′ : V ⊗A∗ →
Tϕ denotes the canonical projection.

Proposition 4.11. The morphism MΓ1 is a rational model for the dual of Γ1.

Proof. We first consider the composite

g′ : Ωaut1(M)0
inc′ // Laut1(M)

ad // Map(S1 ×M,M) Map(M,LM),
ad′

∼=
oo

where ad and ad′ are the adjoint maps. By virtue of Lemma A.2, we see that the
map ad is modeled by the morphism Mad : ∧(V ⊗ (∧(u) ⊗A)∗) → ∧(Sϕ ⊗ ∧(u)∗)
given by

Mad(v ⊗ α) = ρ−1
(
Minc(v ⊗ α0)⊗ 1∗ + (−1)|α1|Minc(v ⊗ α1)⊗ u∗

)

for α ∈ (∧(u)⊗A)∗ and ζ(α) = 1∗⊗α0+u
∗⊗α1. Here, ρ and ζ are the isomorphisms

described in Appendix A.
Since M is simply-connected, it follows that LM is connected. Thus, the same

argument as in the proof of Lemma A.2 enables us to obtain a model for ad′ of the
form Mad′ : ∧(V ⊗ (∧(u) ⊗ A)∗) → ∧((V ⊗ ∧(u)∗) ⊗ A∗) which is induced by the
isomorphisms ζ : (∧(u)⊗A)∗ ∼= ∧(u)∗⊗A∗. Therefore, the composite Minc′ ◦Mad◦
M−1

ad′ is a model for g′, where Minc′ is the model of inc′ described in the proof of
Proposition 4.9. Let ev′ : Map(M,LM)×M → LM be the evaluation map. Then
we have a model for ev′ of the form Mev′ : ∧(V ⊗∧(u)∗) → ∧((V ⊗∧(u)∗)⊗A∗)⊗A
defined by

Mev′(v ⊗ β) =
∑

(−1)|ai|((v ⊗ β)⊗ a∗i )⊗ ai.

This follows from [BM06, Theorem 1.1] and [Kur06, Theorem 4.5]. We remark that
the sign of the model Mev′ is different from the original model due to Buijs and
Murillo. For details of the sign, see Remark 4.12 after the proof.

Since the map g coincides with the composite ev′ ◦ (g′ × 1), it follows that

Mg = (Minc′ ◦Mad ◦M
−1
ad′ ⊗ 1) ◦Mev′
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is a rational model for g. Explicitly, we compute

Mg(v) = (Minc′ ◦Mad ◦M
−1
ad′ ⊗ 1) ◦Mev′(v ⊗ 1∗)

= (Minc′ ◦Mad ⊗ 1)

(
∑

i

(−1)|ai|(v ⊗ (1 ⊗ ai)
∗)⊗ ai

)

= (Minc′ ⊗ 1)

(
∑

i

(−1)|ai|ρ−1 (Minc(v ⊗ a∗i )⊗ 1∗)⊗ ai

)

=
∑

|ai|=|v|

a∗i (ϕ(v)) ⊗ ai and

Mg(v̄) = (−1)|v|(Minc′ ◦Mad ◦M
−1
ad′ ⊗ 1) ◦Mev′(v ⊗ u∗)

= (−1)|v|(Minc′ ◦Mad ⊗ 1)

(
∑

i

(−1)|ai|((v ⊗ (u⊗ ai)
∗)⊗ ai

)

= (−1)|v|(Minc′ ⊗ 1)

(
∑

i

ρ−1 (Minc(v ⊗ a∗i )⊗ u∗)⊗ ai

)

= (−1)|v|
∑

|ai|<|v|

(pr′′(v ⊗ a∗i )⊗ u∗)⊗ ai.

Recall ωA ∈ Am the representative of the fundamental class [M ] described above,
and define

∫
ωA

: A → Q a linear map of degree −m which maps ωA to 1. It is

immediate that
∫
ωA

is a rational model of the dual of Q → H∗(M ;Q) defined by

1 7→ [M ]. Therefore, the definition of Γ1 implies that the composite

L ∼=

ξ // ∧(V ⊗ ∧(u)∗)
Mg // ∧ (Tϕ ⊗Qu∗)⊗A

1⊗
∫
ωA// ∧ (Tϕ ⊗Qu∗)

proj // Tϕ ⊗Qu∗

induces the dual of Γ1 on homology.
In order to complete the proof, it suffices to show that the composite above coin-

cides with MΓ1 in (4.6) on L(1). We observe that ϕ(v) =
∑

i a
∗
i (ϕ(v))ai for v ∈ V .

Moreover, we may writeDA(ai1 · · · aik) =
∑
j λ(i1,...,ik,j)a

∗
j for some λ(i1,...,ik,j) ∈ Q.

Thus it follows that
∫
ωA

(ai1 · · · aikai) = ω∗
A(ai1 · · · aikai) = DA(ai1 · · ·aik)(ai) =

λ(i1,...,ik,i). Then, the definition of MΓ1 yields that

MΓ1(v1 · · · vkv̄)

=(pr′′ ⊗ 1) ◦ T ◦ (DA ⊗ 1)
(
(−1)|v|

∑

(i1,...,ik)

a∗i1(ϕ(v1)) · · · a
∗
ik
(ϕ(vk))ai1 · · · aik ⊗ v ⊗ u∗

)

=(pr′′ ⊗ 1) ◦ T
(
(−1)|v|

∑

(i1,...,ik)

a∗i1(ϕ(v1)) · · · a
∗
ik
(ϕ(vk))(

∑

i

λ(i1,...,ik,i)a
∗
i )⊗ v ⊗ u∗

)

=(−1)|v|
∑

(i1,...,ik,i)

(−1)|ai||v|a∗i1(ϕ(v1)) · · · a
∗
ik
(ϕ(vk))pr

′′(v ⊗ a∗i )⊗ u∗)λ(i1,...,ik,i).
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Moreover, we see that

(proj) ◦
(
1⊗

∫
ωA

)
◦Mg ◦ ξ(v1 · · · vkv̄)

=(−1)|v|(proj) ◦
(
1⊗

∫
ωA

)
◦Mg ((v1 ⊗ 1∗) · · · (vk ⊗ 1∗)(v ⊗ u∗))

=(−1)|v|(proj) ◦
(
1⊗

∫
ωA

)






 ∑

(i1,...,ik)

a∗i1(ϕ(v1)) · · · a
∗
ik
(ϕ(vk))ai1 · · ·aik



(
∑

i

(pr′′(v ⊗ a∗i )⊗ u∗)⊗ ai

)


=(−1)|v|
∑

(i1,...,ik,i)

(−1)(|ai|−m)(|v|+|ai|+1)+m(|v|+|ai|+1)

a∗i1(ϕ(v1)) · · · a
∗
ik
(ϕ(vk))pr

′′(v ⊗ a∗i )⊗ u∗)λ(i1,...,ik,i).

Observe that λ(i1,...,ik,i) = 0 if m 6= |ai1 · · · aik |+ |ai|. Thus, we have the result. �

Remark 4.12. The sign of the rational model Mev′ for the evaluation map in the
proof of Proposition 4.11 is different from the model due to Buijs-Murillo [BM06]
and Kuribayashi [Kur06]. It is caused by the difference of sings appeared in the
differential of the dual space A∗. The differential d∗ of A∗ in[BS97, BM06, Kur06]
is defined by d∗(α) = α ◦ dA for α ∈ A∗ with the differential dA of A. In this
paper, we adopt the differential d∗ of A∗ defined by d∗(α) = −(−1)|α|α ◦ dA with
the Koszul sign convention.

In [BM08, §2], Buijs and Murillo define a quasi-isomorphism

Ψ : Der(∧V,A) → Hom(Sϕ,Q)

by Ψ(θ)(v⊗α) := (−1)(|θ|+|v|)|α|α ◦ θ(v) for θ ∈ Der(∧V,A) and v⊗α ∈ Sϕ. Then,
the isomorphism H(Ψ) on homology is related to Sullivan’s isomorphism Φ.

Lemma 4.13. There exists a commutative diagram

π∗(aut1(M))⊗Q
Φ
∼=

//

ν ∼=
��

H−∗(Der(∧V ))

ϕ∗∼=
��

Hom(H∗(Sϕ),Q) H−∗(Hom(Sϕ,Q))
∼=oo H−∗(Der(∧V,A)),

H(Ψ)

∼=
oo

where the unnamed arrow denotes the natural isomorphism.

Proof. Given f ∈ πn(aut1(M)) ⊗ Q which is represented by f : Sn → aut1(M).
Here we assume thatM is a rational space. Let ad(f) : Sn×M →M be the adjoint
of f and Mad(f) : ∧V → MSn ⊗∧V a Sullivan representative for ad(f). Note that
(1⊗ ϕ) ◦Mad(f) is also a Sullivan representative for ad(f). By the definition of Φ,
we have

(4.7) ϕ∗ ◦ Φ(f) = ϕ∗

{(∫
Sn ⊗1

)
◦Mad(f)

}
=
(∫
Sn ⊗1

)
◦ (1⊗ ϕ) ◦Mad(f).

On the other hand, the adjoint ad(f) coincides with the composite

(4.8) ad(f) : Sn ×M
f×1 // aut1(M)×M

inc×1 // Map(M,M)×M
ev′′

// M,
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where ev′′ is the evaluation map. Let Mf : ∧Sϕ → MSn be a Sullivan represen-
tative for f and Mev′′ : ∧V → ∧(V ⊗ A∗) ⊗ A the rational model for ev′′ defined
by

Mev′′(v) =
∑

j

(−1)|aj|(v ⊗ a∗j )⊗ aj

for v ∈ V . Let Minc be the rational model for inc described in Appendix A. It
follows from (4.8) that the composite (Mf ◦ Minc ⊗ 1) ◦ Mev′′ of morphisms of
CDGAs is also a rational model for ad(f) and then it is homotopic to (1 ⊗ ϕ) ◦
Mad(f). Therefore, by (4.7), we have

Ψ ◦ ϕ∗ ◦ Φ(f)(v ⊗ a∗i ) = (−1)(|f |+|v|)|ai|a∗i
{(

(
∫
Sn ◦Mf ◦Minc ⊗ 1

)
◦Mev′′(v)

}

= (−1)(|f |+|v|)|ai|a∗i




∑

j

(−1)|aj |
(∫
Sn ◦Mf (v ⊗ a∗j )

)
aj





=
∫
Sn ◦Mf(v ⊗ a∗i ) = ν(f)(v ⊗ a∗i )

for v ⊗ a∗i ∈ Sϕ. �

Proof of Theorem 4.7. By making use of isomorphisms V ∼= V ⊗ Qu∗ and Sϕ ⊗

Qu∗ ∼= Sϕ defined by v̄ 7→ v ⊗ u∗ and w ⊗ u∗ 7→ (−1)|w|w, respectively, we obtain
morphisms λ′ : Der(∧V ) → Hom(V ⊗ Qu∗, A) and Ψ′ : Hom(V ⊗ Qu∗, A) →
Hom(Sϕ ⊗Qu∗,Q) of chain complexes which fit in the commutative diagram

Hom(V ,A) Der(∧V,A)
Ψ //

λ′∼=
��

λ

∼=
oo Hom(Sϕ,Q)

∼=
��

Hom(V ⊗Qu∗, A)
Ψ′

//
∼=

hh❘❘❘❘❘❘❘❘❘❘❘❘
Hom(Sϕ ⊗Qu∗,Q).

Recall the morphisms PD in (4.4) and MΓ1 in (4.6). Then, a straightforward
computation shows that the following diagram

Hom(Sϕ,Q)
∼=

**❯❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

❯
Der(∧V,A)

Ψoo

λ

��

λ′

uu

Hom(Tϕ ⊗Qu∗,Q)

M∗
Γ1

++

(pr′′⊗1)∗

��

ι

OO

Hom(Sϕ ⊗Qu∗,Q)
(pr⊗1)∗

tt✐✐✐✐
✐✐
✐✐
✐✐
✐✐
✐✐

Hom(A∗ ⊗ V ⊗Qu∗,Q)

((DA◦ϕ⊗1)◦ξ)∗

��

Hom(V ⊗Qu∗, A)

Ψ′

OO

adj

∼=
oo

∼=

))❘❘
❘❘

❘❘
❘❘

❘❘
❘

Hom(L(1),Q) Hom(V ,A).
PDoo

is commutative. Therefore, by Proposition 4.9, 4.11 and Lemma 4.13, we have the
commutativity of the diagram in the assertion. �

5. Examples

In this section, we describe explicitly the Lie representation L and the contraction
e in Propositions 4.3 and 4.4 for manifolds and interesting spaces. For a Sullivan
algebra ∧V , we denote by (v, α) the derivation on ∧V that takes a generator v in
V to an element α in ∧V and the other generators to 0.
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Example 5.1. Let G be a simply-connected compact Lie group and α1, . . . , αl
the indecomposable elements of H∗(G;Q) with maximal degree. The cohomol-
ogy H∗(LG;Q) is generated by α1, . . . , αl as an algebra with the BV operator and
derivations Lθ for suitable elements θ ∈ π∗(aut1(G)) ⊗ Q. In this case, the Lie
derivative L : π∗(aut1(G)) ⊗Q → Der∗(H

∗(LG;Q)) is faithful.

Example 5.2. LetX be the complex projective plane CP 2. Then a Sullivan minimal
model MX for X is given by (∧(x, y), d) with |x| = 2, |y| = 5, dx = 0 and
dy = x3. Moreover, the free loop space LX admits the Sullivan minimal model
L = (∧(x, y, x̄, ȳ), d) for which |x̄| = 1, |ȳ| = 4, dx = 0, dy = x3, dx̄ = 0 and
dȳ = −3x2x̄. Recall the result [KY97, Theorem 2.2(ii)] which asserts that

H∗(LX ;Q) ∼=
Q[x]⊗ ∧(x̄)

(x3, x2x̄)
⊕
(
(x, x̄)A ⊗Q+[z]

)
; |z| = |ȳ| = 4

as an algebra, where (x, x̄)A is the ideal of A := Q[x]⊗ ∧(x̄)/(x3, x2x̄). We choose
a basis for H∗(LX ;Q) of the form

{1, x , x2, x̄ (= α0) , xx̄, αn, xαn, βn, xβn}n≥1,

where αn = x̄ȳn and βn = xȳn + 3nx̄yȳn−1. Observe that

H∗(Der(MX)) = Q{(y, 1), (y, x)}.

Let e1 := e(y,1) = −(ȳ, 1), e2 := e(y,x) = (ȳ, x), L1 := L(y,1) = (y, 1) and L2 :=
L(y,x) = (y, x) + (ȳ, x̄). Then we see that e1(αn) = nαn−1, e2(αn) = nxαn−1,

e1(β1) = −x, e1(βn) = −nβn−1 (n > 1), e2(β1) = x2, e2(βn) = nxβn−1 (n > 1),
L1(αn) = L2(αn) = 0, L1(βn) = −3nαn−1 and L2(βn) = −2nxαn−1. Thus L and
e are injective.

Note that the calculations of the operations L and e yield that e1(x⊗z
n) = −nx⊗

zn−1, e2(x⊗ zn) = nx2 ⊗ zn−1, e1(x̄⊗ zn) = nx̄⊗ zn−1, e2(x̄⊗ zn) = nxx̄⊗ zn−1,
L1(x⊗z

n) = −3nx̄⊗zn−1, L2(x⊗z
n) = −2nx2⊗zn−1 and L1(x̄⊗z

n) = L2(x̄⊗z
n) =

0.

Remark 5.3. We see that H∗(Der(H∗(CP 2;Q))) = Der∗(H
∗(CP 2;Q)) = 0. In fact,

with the same notation as in Example 5.2, every derivation assigning an element
in H0(CP 2;Q) = Q to the generator x should be trivial. As mentioned above, the
homology Lie algebra H∗(Der(MCP 2)) is non trivial. Observe that CP 2 is formal;
see [FHT01, §12(c)]. Thus, a quasi-isomorphism does not induce an isomorphism
between the homology Lie algebras of derivations in general.

Example 5.4. Let X be a non-formal space whose minimal model MX has the
form (∧(x, y, z), d), where dx = dy = 0, dz = xy, |x| = |y| = 3 and |z| =
5. We observe that MX is realized by a manifold of dimension 11; see [Sul77,
Theorem 13.2]. Then H∗(Der(MX)) = Q{(z, 1)} and H∗(X ;Q) = ∧(x, y) ⊗
Q[w, u]/(xy, xw, yu, xu+ yw,w2, wu, u2) for w = [xz] and u = [yz]. Thus the nat-
ural map ψ : H∗(Der(MX)) → Der∗(H

∗(X ;Q)) is faithful since ψ(z, 1)(w) = [x].
Moreover e and L are injective since e(z,1)([xyzz̄]) = [xyz] and L(z,1)([xyzz̄]) =
[xyz̄].

In the following examples, we rely on the software Kohomology [Wak] for deter-
mining bases for H∗(X ;Q) and H∗(LX ;Q) and computing actions of Lθ and eθ on
H∗(LX ;Q) with data of a Sullivan model for a given space X .
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Example 5.5. Let X be a non-formal manifold of dimension 14 whose minimal
model MX is of the form (∧(a, x, y, b, v, w), d), where |a| = 2, |x| = |y| = 3, |b| = 4,
|v| = 5, |w| = 7, da = dx = 0, dy = a2, db = ax, dv = ab + xy, dw = 2xv + b2; see
[FHT01, p.439] and [Sul77, Theorem 13.2]. Note that H∗(X ;Q) is generated by

{a, x, xb, av − yb, a2w − abv + xyv, 3axw + b3}

as an algebra. Then H∗(Der(MX)) = Q{(w, 1), (w, a)} and the natural map
ψ : H∗(Der(MX)) → Der∗(H

∗(X ;Q)) is zero though Der∗(H
∗(X ;Q)) 6= 0; see

[Yam05]. However, the Lie representation L : H∗(Der(MX)) → Der∗(H
∗(LX ;Q))

is non-trivial. Indeed, we see that L(w,1) 6= 0 and L(w,a) 6= 0 since

L(w,1)(xbvw̄ − axww̄) = 2xvb̄+ axw̄ and

L(w,a)(−axww̄ + xbvw̄ + xvwb̄) = 3(
1

2
a2xw̄ + axvb̄) + (axbv̄ + axwā+ xybb̄)

as non-zero cohomology classes [Wak]. Thus it follows that the representation
L : H∗(Der(MX)) → End∗(H

∗(L(1))) is faithful. Here L(k) = ∧V ⊗ ∧kV for
MX = (∧V, d) in Section 2.

The contraction e is injective as seen in Corollary 3.11. In this case, we can
check the faithfulness with explicit calculations. Indeed, we see in [Wak] that

e(w,1)(a
2xww̄ − axbvw̄ − 2axvwb̄) = a2xw − xbva and

e(w,a)(axww̄ − xbvw̄ − 2xvwb̄) = a2xw − xbva,

where [a2xw − xbva] ∈ H14(X ;Q)(= H14(L(0))) is the fundamental class of X .

Example 5.6. When X does not have positive weights, L : H∗(Der(MX)) →
End∗(H

∗(L(1))) may not be faithful. Let X be an elliptic manifold of dimension
228 with

MX = (∧(x1, x2, y1, y2, y3, z), d)

given in [AL00, Example 5.2], where |x1| = 10, |x2| = 12, |y1| = 41, |y2| = 43,
|y3| = 45, |z| = 119 and the differential is defined by

dx1 = 0 dy1 = x31x2 dz = x2(y1x2 − x1y2)(y2x2 − x1y3) + x121 + x102 .

dx2 = 0 dy2 = x21x
2
2

dy3 = x1x
3
2

Then we see that Lθ : H∗(Der(MX)) → End∗(H
∗(L(1))) is not zero except θ =

(z, x92), (z, x
2
1x2) and (z, x1x

2
2) [Wak]. Observe that Lθ : H∗(Der(MX)) → End∗(H

∗(L(4)))

for θ = (z, x21x2) and (z, x1x
2
2) is non trivial for elements of degree 221 and 219 of

H∗(L(4)), respectively. Unfortunately, a calculation of L(z,x9
2)

: H∗(Der(MX)) →

Der∗(H
∗(LX ;Q)) with Kohomology [Wak] shows that the representation is trivial

for degrees less than or equal to 355.

We do not know whether the operator L is a faithful representation in general.
In Example 5.6, it is expected that Lθ is not zero for some derivation θ with higher
degree.

Problem 5.7. Is L : H∗(Der(MX)) → Der∗(H
∗(LX ;Q)) faithful when X is a closed

manifold ?
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Appendix A. A Sullivan representative for an adjoint map

We begin by recalling the rational models due to Brown and Szczarba [BS97].
Let ∧V be a minimal Sullivan algebra, A a finite dimensional CDGA and Aq = 0
for q < 0. We denote by A∗ = Hom(A,Q) the dual of A with the coproduct ∆A of
A∗ induced by the multiplication of A; see Remark 4.12. We consider the CDGA
∧(∧V ⊗A∗) and the differential ideal I of ∧(∧V ⊗A∗) generated by 1⊗ 1∗− 1 and

w1w2 ⊗ α−
∑

(−1)|w2||α
′
i|(w1 ⊗ α′

i)(w2 ⊗ α′′
i ),

where wi ∈ ∧V , α ∈ A∗ and ∆A(α) =
∑
α′
i ⊗ α′′

i . Then, it follows from [BS97,
Theorem 3.5] that the composite

ρ : ∧(V ⊗A∗)
incl // ∧(∧V ⊗A∗)

proj // ∧(∧V ⊗A∗)/I

is an isomorphism of graded algebras. We define the differential dBS of ∧(V ⊗A∗)
by ρ−1dρ, where d is the differential of ∧(∧V ⊗A∗)/I.

Assume that ∧V is a minimal Sullivan model for a connected nilpotent space
Y of finite type and A is a finite dimensional commutative model for a finite CW
complex X . Then, we see that (∧(V ⊗A∗), dBS) is a rational model of Map(X,Y );
see [BS97, Theorem 1.3].

Let ϕ : ∧V → A be a Sullivan representative for a continuous map f : X →
Y . The morphism of CDGAs induces the augmentation ϕ : ∧(V ⊗ A∗) → Q

which is denoted by the same notation. It follows from [BM06, Proposition 4.2,
Theorem 4.5] and [HKO08, Remark 3.4] that the connected component Mapf (X,Y )
of Map(X,Y ) containing f has a Sullivan model of the form

(∧Sϕ, d) =
(
∧
(
(V ⊗A∗)

1
⊕ (V ⊗A∗)

≥2
)
, d
)
,

where (V ⊗A∗)
1
is the complement of the image of the composite

(V ⊗A∗)
0 d // (∧(V ⊗A∗))

1 // // (∧(V ⊗A∗)/Kϕ)
1 (V ⊗A∗)

1
∼=

projoo

in which Kϕ is the differential ideal of ∧(V ⊗ A∗) generated by (V ⊗ A∗)
<0 and

{w − ϕ(w) | w ∈ (V ⊗ A∗)
0}. We observe that the differential d is induced by the

differential dBS of ∧(V ⊗A∗); see [BM06, The proof of Proposition 4.2]. Moreover,
the morphism Minc : ∧(V ⊗A∗) → ∧Sϕ of CDGAs defined by

Minc(w) =





pr(w) (|w| > 0),
ϕ(w) (|w| = 0),
0 (|w| < 0)

is a rational model for the inclusion inc : Mapf (X,Y ) →֒ Map(X,Y ), where pr :

(V ⊗A∗)
≥1 → Sϕ is the canonical projection.

In what follows, let Xi and Yi be connected nilpotent spaces of finite type for
i = 1, 2. We further assume that Xi is a finite CW complex. Moreover, let Ai be
a finite dimensional commutative model for Xi and ∧Vi a minimal Sullivan model
for Yi. We first construct a rational model for the map

−× g : Map(X1, Y1) → Map(X1 ×X2, Y1 × Y2)
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defined by f 7→ f × g with a continuous map g : X2 → Y2. Let ιi : Ai →֒ A1 ⊗ A2

denote the inclusion which is a rational model for the projection pri : X1×X2 → Xi.
Remark that ∧V1 ⊗ ∧V2 ∼= ∧(V1 ⊕ V2) is a Sullivan model for Y1 × Y2; that is, the
Brown-Szczarba model for Map(X1×X2, Y1×Y2) is of the form ∧((V1⊕V2)⊗(A1⊗
A2)∗). Let ψ : ∧V2 → A2 be a Sullivan representative for g. Then, we define the

CDGA morphism ψ̂ as the following composite;

∧((V1 ⊕ V2)⊗ (A1 ⊗A2)∗)
ρ

∼=
// ∧(∧V1 ⊗ ∧V2 ⊗ (A1 ⊗A2)∗)/I

∧(1⊗ψ⊗1)
��

∧(∧V1 ⊗A2 ⊗ (A1 ⊗A2)∗)/I

η̃
��

∧(V1 ⊗A1∗) ∧(∧V1 ⊗A1∗)/I,
ρ−1

∼=
oo

where η̃ is the CDGA morphism which is induced by the natural isomorphism

ζ : (A1 ⊗ A2)∗
∼=
→ A1∗ ⊗A2∗ and the paring η : A2 ⊗A2∗ → Q.

Lemma A.1. The morphism ψ̂ is a rational model for − × g.

Proof. First, we see that the map −× g coincides with the composite

(A.1) Map(X1, Y1)
(1,cg) // Map(X1, Y1)×Map(X2, Y2)

pr∗1×pr∗2

ss❢❢❢❢❢
❢❢❢

❢❢❢
❢❢❢

❢❢❢
❢❢

Map(X1 ×X2, Y1)×Map(X1 ×X2, Y2)
∼= // Map(X1 ×X2, Y1 × Y2),

where cg : Map(X1, Y1) → Map(X2, Y2) is the constant map at g. Let Mapg(X2, Y2)
be the connected component of Map(X2, Y2) containing g. We also see that cg is
regarded as the composite

Map(X1, Y1) // pt
cg // Mapg(X2, Y2)

inc // Map(X2, Y2).

It follows from the rational model for the inclusion Mapg(X2, Y2) →֒ Map(X2, Y2)
described in [BM06, Proposition 4.2, Theorem 4.5] and [HKO08, Remark 3.4] that
the morphism

Mcg : ∧(V2 ⊗A2∗) → ∧(V1 ⊗A1∗)

defined by v2 ⊗ α2 7→ (−1)|v2||α2|α2(ψ(v2)) for v2 ⊗ α2 ∈ V2 ⊗ A2∗ is a rational
model of cg. We choose the inclusion ιi into the ith factor as a model for the
projection pri in the ith factor. Then the description (A.1) and the naturality of
the Brown-Szczarba models shows that the composite

(A.2) ∧((V1 ⊕ V2)⊗ (A1 ⊗A2)∗)
∼= // ∧(V1 ⊗ (A1 ⊗A2)∗)⊗ ∧(V2 ⊗ (A1 ⊗A2)∗)
ι∗1⊗ι

∗
2

rr❡❡❡❡❡❡
❡❡❡

❡❡❡
❡❡❡

❡❡

∧(V1 ⊗A1∗)⊗ ∧(V2 ⊗A2∗)
1·Mcg // ∧(V1 ⊗A1∗)

is a model for the map −× g. For any element α ∈ (A1 ⊗A2)∗, we may write

ζ(α) = α ◦ ι1 ⊗ 1∗ + 1∗ ⊗ α ◦ ι2 + α̃

with α̃ ∈ (A+
1 )∗ ⊗ (A+

2 )∗. Observe that 1 ⊗ α̃1 is zero in ∧(∧V ⊗ A1∗)/I for any

α̃1 ∈ (A+
1 )∗. Therefore, we can check that the composite (A.2) coincides with ψ̂

and the proof is complete. �
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We are ready to construct a rational model for the adjoint map

(A.3) ad : Map(X1,Mapf (X2, Y )) → Map(X1 ×X2, Y )

defined by ad(g)(x1, x2) = g(x1)(x2) for f : X2 → Y , g : X1 → Mapf (X2, Y ) and
xi ∈ Xi. In order to apply the rational models due to Brown and Szczarba to our
objects, we need to consider the connected component Mapf (X2, Y ) containing f .

Let ϕ be a Sullivan representative for f , ϕ : ∧(V ⊗A2∗) → Q the augmentation
induced by ϕ and ∧Sϕ the Brown-Szczarba model for Mapf (X2, Y ) mentioned
above. Since Mapf (X2, Y ) is a connected and nilpotent space of finite type; see
[HMR75], by applying the construction of the Brown-Szczarba model to X1 and
Mapf (X2, Y ), we have a model for Map(X1,Mapf (X2, Y )) of the form ∧(Sϕ⊗A1∗).

Proposition A.2. The morphism Mad : ∧(V ⊗ (A1 ⊗ A2)∗) → ∧(Sϕ ⊗ A1∗) of
CDGAs defined by

Mad(v ⊗ α) =
∑

(−1)|α1||α2|ρ−1 (Minc(v ⊗ α2)⊗ α1)

is a rational model for the adjoint map ad in (A.3), where v ∈ V , α ∈ (A1 ⊗A2)∗
and ζ(α) =

∑
α1 ⊗ α2; see the paragraph before Lemma A.1 for the maps ρ and ζ.

Proof. The map ad fits in the commutative diagram

Map(X1,Mapf (X2, Y ))
−×id

,,❳❳❳❳❳
❳❳❳

❳❳❳
❳

ad // Map(X1 ×X2, Y )

Map(X1 ×X2,Mapf (X2, Y )×X2),

ev∗
33❢❢❢❢❢❢❢❢❢❢❢❢

where ev : Mapf (X2, Y ) × X2 → Y is the evaluation map. The result [BM06,
Theorem 1.1] enables us to obtain a Sullivan model

Mev : ∧V → ∧Sϕ ⊗A2

for ev defined by Mev(v) =
∑
i(−1)|ai|Minc(v⊗a

∗
i )⊗ai, where {ai} is a basis of A2

and {a∗i } is the dual basis of A2∗. By the surjective trick [FHT01, p.148], there exist
a Sullivan model ∧W for X2 and a surjective Sullivan representative σ : ∧W → A2

for the identity on X2. The lifting lemma [FHT01, Lemma 12.4] shows that there
exists a morphism M′

ev : ∧V → ∧Sϕ⊗∧W such that (1⊗σ)◦M′
ev = Mev. Lemma

A.1 is applicable to the map −× id. Thus we see that the composite

(A.4) ∧(V ⊗ (A1 ⊗A2)∗)
ρ

∼=
// ∧(∧V ⊗ (A1 ⊗A2)∗)/I

∧(M′
ev⊗1)

��
∧(∧Sϕ ⊗ ∧W ⊗ (A1 ⊗A2)∗)/I

ρ−1∼= ��
∧(Sϕ ⊗A1∗) ∧((Sϕ ⊕ ∧W )⊗ (A1 ⊗A2)∗)

ψ̂oo
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is a model for ad, where ψ̂ is the morphism of CDGAs defined in the paragraph
before Lemma A.1. Explicitly, we compute

ψ̂ ◦ ρ−1 ◦ ∧(M′
ev ⊗ 1) ◦ ρ(v ⊗ α)

=ρ−1 ◦ η̃ ◦ ∧(Mev ⊗ 1)(v ⊗ α)

=ρ−1 ◦ η̃

(
∑

i

(−1)|ai|Minc(v ⊗ a∗i )⊗ ai ⊗ α

)

=ρ−1

(
∑

i

∑
(−1)|ai|+|α2|(|ai|+|α1|)Minc(v ⊗ a∗i ) · α2(ai)⊗ α1

)

=
∑

(−1)|α1||α2|ρ−1 (Minc(v ⊗ α2)⊗ α1) .

Therefore, the model (A.4) for the adjoint map ad is nothing but the morphism
Mad mentioned in the assertion. �

Appendix B. An equivariant version of the Lie derivative L

B.1. A geometric construction of a Lie derivative. In this section, we assume
that the underlying field is of arbitrary characteristic.

We discuss an equivariant cohomology (cyclic homology) version of the Lie de-
rivative L that we consider in Section 4.1. We begin by recalling a morphism of Lie
algebras related to the Hochschild homology and the cyclic homology of an algebra.
Let A be an unital algebra over a commutative ring k. For a derivation D on A,
we define a map LD on the Hochschild complex C∗(A) by

LD(a0, ..., an) =
∑

i≥0

(a0, .., ai−1, Dai, ai+1, ..., an).

We also recall the Hochschild cohomology HH∗(A,A) of A. In particular, the first
cohomologyHH1(A,A) is isomorphic to Der(A)/{inner derivations} as a k-module.
Then, we have

Proposition B.1. ([Lod98, 4.1.6 Corollary]) There are well-defined homomor-
phisms of Lie algebras [D] 7→ LD:

HH1(A,A) → Endk(HHn(A)) and HH1(A,A) → Endk(HCn(A)).

In the body of this manuscript, we discuss a geometric description of the Lie
derivative on the endomorphism algebra of the Hochschild homology of a DGA.
The above result motivates us to consider its cyclic version. In this section, we
deal with the topics. As a consequence, our main theorem, Theorem B.6 below is
obtained.

We work on the category of compactly generated spaces [Ste67] or the category
NG of numerically generated spaces, which is obtained by adjoint functors between
the category of topological spaces and that of diffeological spaces; see [SYH18].
Thus, we can consider a space in such a Cartesian closed category without changing
the weak homotopy type. Observe that the category NG is also complete and
cocomplete.

Let X be a simply-connected space of finite type and aut1(X) the monoid of self-
homotopy equivalences on X . We recall that the homotopy group π∗(aut1(X)) is a
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Lie algebra with the Samelson product; see [Whi78, Chapter III]. For an element θ
in the homotopy group πn(aut1(X)) for n > 1, we define a map uθ by the composite

uθ := L( ) ◦ inc ◦ θ : Sn // aut1(X) // Map(X,X)
L // Map(LX,LX),

where inc denotes the inclusion and L is the map which assigns Lf : LX → LX
defined by Lf(l) = f ◦ l to a map f : X → X . Then, the adjoint map ad(uθ) :
Sn × LX → LX gives rise to the derivation

L′
θ : H

∗(LX)
(ad(uθ))

∗

// H∗(Sn)⊗H∗(LX)

∫
Sn // H∗−n(LX)

on the cohomology H∗(LX), where
∫
Sn denotes the integration along the fiber.

The map Lθ in (4.1) is regarded as the composite
∫
Sn ◦(s× 1)∗ ◦ L(ad(θ))∗, where

s : Sn → LSn is the section of the evaluation map ev0 defined by s(x)(t) = x for
x ∈ Sn and t ∈ S1. Since ad(uθ) = L(ad(θ)) ◦ (s × 1), it follows that L′

θ coincides
with Lθ in (4.1). In what follows, we may write Lθ for L′

θ.
Observe that the adjoint map ad(uθ) : Sn × LX → LX is an S1-equivariant

map, where the S1-action on Sn is defined to be trivial. Thus, we have a map
ad(uθ)×S1 1 : (Sn×LX)×S1ES1 → LX×S1ES1 between the Borel constructions.
Therefore, the same construction as that of Lθ with the integration enables us to
obtain a derivation

Lθ : H
∗
S1(LX) // H∗−n

S1 (LX)

of degree −n.
The assertion below describes geometric counterparts of the morphisms of Lie

algebras described in Proposition B.1.

Theorem B.2. The map L( ) : π∗(aut1(X)) → Der∗(H
∗
S1(LX)) is a morphism of

Lie algebras.

Proofs of Theorems 4.1 and B.2. As mentioned above, the map ad(uθ) is an S1-
equivariant map. Then, the operation L′

θ commutes with the BV operator. We
have Theorem 4.1 (2).

In order to prove Theorem 4.1 (1) and B.2, we first recall that

Lθ =

∫

Sn

◦H∗(ad(L∗(θ))) and Lθ =

∫

Sn

◦H∗(ad(L∗(θ))×S1 1ES1)

for θ ∈ πn(aut1(X)). We may write ad(L∗(θ))
σ for ad(L∗(θ))×S1 1ES1 . The map L

mentioned above induces a homomorphism L∗ : π∗(aut1(X)) → π∗(aut1(LX)). Let
θ1 and θ2 be homotopic maps which represent an element in πn(aut1(X)). Then, we
see that the maps ad(L∗(θ1)) and ad(L∗(θ2)) from Sn ×LX to LX are homotopic
with an S1-equivariant homotopy. This implies that Lθ and Lθ are well defined. In
what follows, we prove that L( ) is a morphism of Lie algebras. The same argument

as that for L( ) is applicable to showing the result on L( ). As a consequence, we
have Theorem 4.1 (1).

We apply the same strategy as that for [FLS10, Lemma 4.1 and Theorems 3.6,
4.2 and 4.3]. In order to prove that L( ) is a homomorphism, we consider a diagram

(Sn ∨ Sn)× LX ×S1 ES1
(ad(L∗(θ))

σ|ad(L∗(θ
′))σ) // LX ×S1 ES1

Sn × LX ×S1 ES1

τ×1

OO

ad(L∗(θ+θ
′))σ=ad(L∗(θ)+L∗(θ

′))σ

22❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞
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in which (ad(L∗(θ))
σ | ad(L∗(θ

′))σ)◦i1 = ad(L∗(θ))
σ and (ad(L∗(θ))

σ | ad(L∗(θ
′))σ)◦

i2 = ad(L∗(θ
′))σ, where τ is the pinch map and ij is the map induced by the in-

clusion Sn → Sn ∨ Sn in the j factor. Then, it follows that the horizontal arrow
assigns χ + uLθ(χ) + vLθ′(χ) to an element χ ∈ H∗(LX ×S1 ES1), where (u, 0)
and (0, v) denotes the generators of Hn(Sn∨Sn). The definition of the summation
in π∗(aut1(LX)) implies that the diagram above is commutative. Moreover, by
definition, the slant arrow induces Lθ+θ′ . This yields that Lθ + Lθ′ = Lθ+θ′.

Let θ be the inverse of θ in π∗(aut1(X)) with respect to the multiplication of the
monoid aut1(X). Since L( ) is a homomorphism, it follows that Lθ = −Lθ.

We recall the Samelson product 〈 , 〉 on the homotopy group π∗(aut1(X)). For
elements θ : πp(aut1(X)) and θ′ ∈ πq(aut1(X)), the product is induced by the map

γ : Sp × Sq → aut1(X) defined by γ(x, y) = θ(x) ◦ θ′(y) ◦ θ(x) ◦ θ′(y). Then, we
have

(L ◦ γ)(x, y) = L∗(θ)(x) ◦ L∗(θ
′)(y) ◦ L∗(θ)(x) ◦ L∗(θ′)(y).

Observe that L is a morphism of monoids. Therefore, the adjoint Γ to L ◦ γ fits in
the commutative diagram

Sp × Sq × LX ×S1 ES1

Γ×S11

**❱❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

Diag×Diag×S11// Sp × Sp × Sq × Sq × LX ×S1 ES1

1Sp×T×1Sq×1LX×S11ES1��
Sp × Sq × Sp × Sq × LX ×S1 ES1

[F,G]×S11ES1��
LX ×S1 ES1

where Diag is the diagonal map, T denotes the transposition and [F,G] is defined
by the composite

ad(L∗(θ)) ◦ (1Sp × ad(L∗(θ
′))) ◦ (1Sp×Sq × ad(L∗(θ))) ◦ (1Sp×Sq×Sp × ad(L∗(θ′))).

The commutativity follows from the same consideration as in the proof of [FLS10,
Theorem 4.3]. Moreover, the same computation as in [FLS10, page 394] works well
on homology. It turns out that L〈θ,θ′〉 = LθLθ′ − (−1)pqLθ′Lθ. This completes the
proof of Theorem B.2. �

B.2. An algebraic construction of L. In what follows, we assume that the un-
derling field is rational. The assertion below shows that the geometric derivations
L( ) and L( ) are related to the Loday’s derivations aL( ) and aL( ) in Proposi-
tion B.1, respectively. Observe that aLθ is the derivation Lθ in Definition 3.5.

Proof of Proposition 4.3. The standard algebraic model for the evaluation map ev :
LX × S1 → X plays an important role in our proof; see [VPS76] for the model for
ev. We consider the following commutative diagram consisting of continuous maps

(B.1) Map(Sn,Map(X,X))
L∗ //

ad ∼=
��

Map(Sn,Map(LX,LX))

ad1∼=
��

Map(Sn ×X,X)
ad(L∗) //

ψ:=ad2◦ad(L∗) ++❱❱❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

Map(Sn × LX,LX)

ad2∼=
��

Map(Sn × LX × S1, X).
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It follows that ad1(uθ) = ad(L∗)(ad(θ)) for θ ∈ Map(Sn,Map(X,X)) and ψ(φ) =
φ ◦ (1× ev) for φ ∈ Map(Sn ×X,X). In what follows, we may assume that X is a
rational space. Then, we have the following diagram for the homotopy sets

πn(aut1(X))
k // [Sn ×X,X ]

ad(L∗) //

µ ∼=��

[Sn × LX,LX ]
ad2

∼=
//

µ ∼=��

[Sn × LX × S1, X ]

µ ∼=��
[MX ,MSn×X ] [MLX ,MSn×LX ] [MX ,MSn×LX×S1 ]

which are given by the sets of continuous maps mentioned above. Here k is induced
by the adjoint ad mentioned above and MY denotes a minimal Sullivan model for
a space Y and µ is the Sullivan–de Rham correspondence between rational spaces
and CDGAs; see, for example, [BG76]. We use the same notation for a map as that
for its homotopy class.

We may replace MSn×X with the CDGA H∗(Sn;Q)⊗MX ; see [FHT01, Propo-
sition 12.9]. Then we write (µ◦k)(θ′) = 1⊗1MX

+ ι⊗θ, where ι is the generator of
Hn(Sn;Q). Observe that, by definition, Φ(θ′) = θ for the map Φ in Proposition 4.3.
In order to prove Proposition 4.3, it suffices to show

Lemma B.3. For θ′ ∈ πn(aut1(X)), one has (µ◦ad(L∗)◦k)(θ
′) = 1⊗1MLX

+ιaLθ.

In fact, applying the integration
∫
Sn to the equality in Lemma B.3 on the cohomol-

ogy yields the commutativity of the diagram in Proposition 4.3. �

Proof of Lemma B.3. We consider the adjoint map ad2. The uniqueness of the
adjoint correspondence shows that if we have a morphism L(θ′) of CDGAs which
makes the following triangle

H∗(Sn;Q)⊗MLX ⊗ ∧(t) MLX ⊗ ∧(t)
L(θ′)⊗1oo

MX = (∧V, d)
µ(ev)

44✐✐✐✐✐✐✐µ(1×ev)◦µ(k(θ′))=µ(k(θ′)◦(1×ev))

kk❲❲❲❲❲❲❲❲❲

commutative up to homotopy, the map L(θ′) is nothing but the map (µ ◦ ad(L∗) ◦
k)(θ′). In fact, the map ad2 assigns the realization |L(θ′)| of L(θ′) to the realization
|µ(k(θ′)◦(1×ev))|, which is homotopic to ad2◦ad(L∗)(θ

′) = k(θ′)◦(1×ev)). Observe
that the equality follows from the commutativity of the diagram (B.1). Then we
have ad2(|L(θ

′)|) ≃ |µ(k(θ′) ◦ (1 × ev))| ≃ ad2(ad(L∗)(k(θ
′))). The injectivity of

the map ad2 yields that |L(θ′)| ≃ ad(L∗)(k(θ
′)). This implies that the map L(θ′)

is a model for ad(L∗)(k(θ
′)); that is, L(θ′) = (µ ◦ ad(L∗) ◦ k)(θ

′).
We recall the Sullivan model MLX = L described in Section 2. Moreover, we

may choose a model µ(ev) for the evaluation map so that µ(ev)(ω) = ω ⊗ 1 +
(−1)|ω|−1sω ⊗ t for ω ∈ V ; see [VPS76]. Since (µ ◦ k)(θ′) = 1 ⊗ 1MX

+ ι ⊗ θ, it
follows from the commutativity for the triangle that

L(θ′)ω ⊗ 1 + (−1)|ω|−1L(θ′)(sω)⊗ t

= 1⊗ (ω ⊗ 1 + (−1)|ω|−1sω ⊗ t) + ι⊗ (θ(ω) ⊗ 1 + (−1)|θ(ω)|−1sθ(ω)⊗ t)

for ω ∈ V . Therefore, we see that L(θ′)ω = 1 ⊗ ω + ιθ(ω) and L(θ′)(sω) =
1⊗ sω + (−1)|θ|sθ(ω). The definition of aLθ shows that L(θ′) = 1⊗ 1MLX

+ ιaLθ.
This completes the proof. �
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Next we review the relationship with cyclic homology. Let C = (C, d, B) be a
non-negatively graded mixed complex. We introduce a variable u of degree 2 and
consider the graded module C[u] = C ⊗Q[u].

Definition B.4. The cyclic complex CC(C) of C is the complex (C[u], du), where
du is the Q[u]-linear map defined by du = d + uB. Its cohomology will be called
the cyclic cohomology of C and denoted by HC(C).

We recall the mixed DGA (L, d, s) mentioned in Section 2. With the model,
the minimal Sullivan model E of the orbit space ES1 ×S1 LX is defined by E :=
(L[u], d + us); see [VPB85, Theorem A]. Thus we have an isomorphism H(E) ∼=
H∗(ES1 ×S1 LX ;Q). Observe that CC(L) is nothing but the complex E defined
above and then H(CC(L)) is isomorphic to the cyclic homology [BV88] of (∧V, d).

Let (g, e, L, S, T ) be a homotopy Cartan calculus on C. For θ ∈ g, define aLθ ∈
End(CC(C)) by extending Lθ to a Q[u]-linear map. This gives a linear map aL : g →
End(CC(C)).

Lemma B.5 ([FK20, Lemmas 3.4 and 3.10]). The map aL : g → End(CC(C)) is a
morphism of dg Lie algebras.

For the homotopy Cartan calculus in Proposition 3.6, we obtain the morphism

aL( ) : Der(∧V ) → Der(E) defined by aLθ = aLθ ⊗ 1Q[u] on E for θ ∈ Der(∧V ).
We recall the cobar-type Eilenberg-Moore spectral sequence (EMSS) in [KNWY21,
Theorem 7.5] converging to the string cohomology H∗

S1(LX ;Q) with

E∗,∗
2

∼= Cotor∗,∗
H∗(S1;Q)(H

∗(LX ;Q),Q).

Let {F p}≥0 be the decreasing filtration of H∗
S1(LX ;Q) associated with the EMSS.

Theorem B.6. There exists a commutative diagram

π∗(aut1(X))⊗Q
L( ) //

∼= Φ
��

Der∗(H
∗
S1(LX ;Q))

∼=
��

H∗(Der(∧V ))
aL( )

// Der∗(H
∗(E))

modulo the filtration of the EMSS in the sense that (aLθ−Lθ)(F
p) ⊂ F p+1 for θ in

π∗(aut1(X))⊗Q and p ≥ 0, where {F p} is the filtration of H∗
S1(LX ;Q) associated

with the EMSS mentioned above.

Proof. The key to proving the result is that the projection of a model for the
derivation Lθ on H∗

S1(LX ;Q) is the model aLθ the derivation on L considered in
the proof of Proposition 4.3. Let uθ be the map stated in section B.1. Consider
the commutative diagram

(Sn × LX)×S1 ES1

ss❣❣❣❣❣
❣❣❣

ad1(uθ)×1ES1=vθ

��

Sn × LXoo

ad1(uθ)=vθ

��
BS1

LX ×S1 ES1

kk❲❲❲❲❲❲❲❲
LXoo

whose row sequences are the fibrations associated with the universal S1-bundle
S1 → ES1 → BS1. For simplicity, we put vθ := ad1(uθ) and vθ := ad1(uθ) ×
1ES1 . Observe that vθ is an S

1-equivariant map. We moreover consider the relative
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Sullivan models for the fibrations and the morphism between them described in
[FHT01, (15.9) pages 204–205]. Then we have a commutative diagram

H∗(Sn;Q)⊗ E // H∗(Sn;Q)⊗ L

Q[u]

44✐✐✐✐✐✐

**❱❱❱
❱❱

❱❱
❱❱

❱

E

M(vθ)

OO

// L

M(vθ)

OO

in which M(vθ) and M(vθ) are algebraic models for vθ and vθ, respectively. Then

Lemma B.3 implies that
∫
Sn ◦M(vθ) is chain homotopic to aLθ; that is, there exists

a homotopy h′θ of degree −1 with
∫
Sn ◦M(vθ)−aLθ = dh′θ+h

′
θd in L. Observe that

M(vθ) is a morphism of Q[u]-modules. Thus we see that for x ∈ F̃ p := E ·Q≥p[u],

(B.2)

(∫

Sn

◦M(vθ)− aLθ ⊗ 1Q[u]

)
x = (dhθ + hθd)x + αθ,x

with hθ = 1H∗(Sn) ⊗ h′θ and for some αθ,x in F̃ p+1. By construction, the filtration

{F̃ p}p≥0 gives rise to the EMSS that we deal with. Moreover, the filtration {Fp}p≥0

associated with the EMSS is induced by {F̃ p}p≥0.
Suppose that x is a cocycle with respect to the differential D := d + us of E .

We may write x = (x0, x1, ...). By applying D to the both sides of the equality
(B.2), we have 0 = D(dhθ + hθd)x

0 +Dα′
θ,x, where α

′
θ,x := (dhθ + hθd)x

≥1 + αθ,x.

Observe
∫
Sn ◦M(vθ) and aLθ ⊗ 1Q[u] are cochain maps. Since dx0 = 0, it follows

that 0 = us(dhθx
0) + Dα′

θ,x. Thus we see that the element −ushθx
0 + α′

θ,x is a

cocycle in F̃ p+1. It turns out that
(∫

Sn

◦M(vθ)− aLθ ⊗ 1Q[u]

)
x = Dh′θx

0 + (−ushθx
0 + α′

θ,x).

By definition, we have
∫
Sn ◦M(vθ) = Lθ and aLθ ⊗ 1Q[u] = aLθ on the homology.

This fact and the equality above yield the result. �

In a particular case, the square in Theorem B.6 is commutative. To see this,
we first recall the BV-exactness of a space, which is a new homotopy invariant
introduced in [KNWY21].

Definition B.7. ([KNWY21, Definition 2.9]) A simply-connected space X is BV

exact if Im ∆̃ = Ker ∆̃ for the reduced BV operator ∆̃ : H̃∗(LX) → H̃∗+1(LX).

We observe that a formal space and a space which admits positive weights are
BV exact; see [KNWY21, Assertion 1.2].

Corollary B.8. Let X be a BV exact space. Then the diagram in Theorem B.6 is
indeed commutative.

Proof. By assumption, the space X is BV exact. Then it follows from [KNWY21,
Corollary 7.4] that the EMSS collapses at the E2-term. Moreover, the result
[KNWY21, Lemma 7.5] implies that F p = 0 for p ≥ 1. This completes the
proof. �

Remark B.9. LetM be a BV-exact manifold. Then the results [KNWY21, Theorem

2.15 and Corollary 2.16] assert that the string bracket [ , ] on HS1

∗ (LM) is a
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restriction of the loop bracket { , } on the loop homology H∗(LM). More precisely,
we have a commutative diagram

HS1

∗ (LM ;K)⊗2

[ , ]

��

∼=

Φ⊗Φ // (Ker ∆̃⊕K[u])⊗2
(inc.⊕0)⊗2

//

±{ , }

��

H∗(LM ;K)⊗2

the loop product •

��
HS1

∗ (LM ;K) ∼=

Φ // (Ker ∆̃⊕K[u]) H∗(LM ;K),
∆

oo

where ±{a, b} := (−1)|a|{a, b} for a, b ∈ Ker ∆̃, |u| = 2, ∆ is the BV operator, inc.
denotes the inclusion and Φ is the isomorphism described in [KNWY21, Theorem
2.15].

It seems that the representation L has a different property from that for L.

Example B.10. (cf. Example 5.2) We determine explicitly the Lie representation
L : π∗(aut1(X))⊗Q ∼= H∗(Der(MX)) → Der∗(H

∗
S1(LX ;Q)) for a simply-connected

space X whose rational cohomology is isomorphic to Q[x]/(xn+1) as an algebra,
where n ≥ 1. Let MX be the minimal model for X . We see that MX

∼= (∧(x, y), d)
in which dx = 0 and dy = xn+1. Then the results [KY97, Theorem 2.2] and [KY00,
Theorem 0.2] yield that

H∗
S1(LX ;Q) ∼= ⊕k≥0,1≤j≤nQ{α(j, k)} ⊕Q[u]

as an algebra, where α(j, k) = [xj−1x̄ȳk]. Moreover, we see that

H∗(Der(MX)) = Q{(y, 1), (y, x), · · · , (y, xn−1)}.

Since aL(y,xi)(x
j−1x̄ȳk) = kixj−1x̄xi−1x̄ȳk−1 = 0 for 0 < i < n and aL(y,xi)(x

j−1x̄) =

0, it follows that aL : H∗(Der(MX)) → Der∗(H
∗
S1(LX ;Q)) is trivial. The space X

is formal and especially BV-exact. Thus Corollary B.8 yields that L = 0.

We conclude this appendix with a brief discussion on the Lie representation L
for a more general simply-connected space X , which is not necessarily BV exact.
We consider a behavior of the operator Lθ in the EMSS for each element θ ∈
π∗(aut1(X))⊗ Q. Let {E∗,∗

r , dr} be the EMSS mentioned above and {F p}p≥0 the
filtration of the target H∗

S1(LX ;Q) associated with the EMSS. Then, we have a
decomposition

H∗
S1(LX ;Q) = (H∗

S1(LX ;Q)/F 1)⊕ F 1.

Moreover, it follows that the map i∗ : H∗
S1(LX ;Q) → H∗(LX ;Q) defined by the

inclusion of the fibration LX
i
→ LX ×S1 ES1 → BS1 induces a monomorphism

i∗ : H∗
S1(LX ;Q)/F 1 → H∗(LX ;Q).

We also recall the decomposition of the EMSS

{E∗,∗
r , dr} =

⊕

N∈Z

{(N)E
∗,∗
r , dr} ⊕ {Q[u], 0}

introduced in [KNWY21, Section 7].
The derivation Lθ is well-behaved in the vertical edge of the EMSS while it acts

trivially apart from the edge. As seen in the proof of the proposition below, the
Cartan calculus, in particular, the contraction e plays a crucial role in describing
the property of L in the EMSS.
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Proposition B.11. For each θ in π∗(aut1(X))⊗Q and p ≥ 1, Lθ(F
p) ⊂ F p+1.

In order to prove Proposition B.11, we recall the Cartan calculus on a Sullivan
algebra in Section 3.2. The proof of Proposition 3.6 allows us to obtain

Lemma B.12. For each θ ∈ π∗(aut1(X))⊗Q, one has [eθ, d] = 0, [eθ, B] = aLθ.

Proof of Proposition B.11. By Lemma B.12, we see that [eθu
−1, d+ uB] = aLθ in

Q+[u] · E . This implies that (aLθ)(F
p) = 0 for θ in π∗(aut1(X))⊗Q and p > 0. By

virtue of Theorem B.6, we have the result. �

Proposition B.13. (1) For r ≥ 2 and n > 1, there exist morphisms of Lie
algebras

L( ) : πn(aut1(X))⊗Q → Dern,0(E
∗,∗
r ) and

L( ) : πn(aut1(X))⊗Q → Endn,0((N)E
∗,∗
r )

for which Lθ is compatible with the differential dr and respects to the derivation Lθ
on H∗

S1(LX ;Q) in the E∞-term for each θ ∈ πn(aut1(X)) ⊗ Q. Moreover, up to

isomorphism, the morphism L( ) of Lie algebras coincides with the map aL( ).

(2) The map L( ) acts trivially on E∗,q
r for q > 1. As a consequence, for θ ∈

πn(aut1(X))⊗Q, one has a commutative diagram

H∗
S1(LX ;Q)/F 1 i∗ //

Lθ

��

H∗(LX ;Q)

Lθ

��
H∗−n
S1 (LX ;Q)/F 1 i∗ // H∗−n(LX ;Q).

Proof. We first observe that the multiplication on E∗,∗
r induces the map (N)E

p,q
r ⊗

(N ′)E
p′,q′

r → (N+N ′)E
p+p′,q+q′

r . The definition of the decomposition gives the result;
see the discussion after [KNWY21, Remark 7.1].

We use a rational model E for the Borel construction LX ×S1 ES1 described
above. Then, for an element θ ∈ πn(aut1(X)), the morphism M(vθ) : E →
H∗(Sn;Q) ⊗ E of CDGAs in the proof of Theorem B.6 gives rise to a linear map
Lθ : Ep,qr → Ep−n,qr for p, q ≥ 0. In fact, the map M(vθ) preserves the filtra-
tion which constructs the EMSS. Therefore, we also see that Lθ is compatible
with the differential of each term of the EMSS. The equality (B.2) enables us to
deduce that the map Lθ on E∗,∗

1 coincides with the derivation aLθ. The map

aL( ) : π∗(aut1(X)) ⊗ Q → Der−∗,0(E∗′,∗′

r ) is a morphism of Lie algebras and the

so is L( ). This completes the proof of (1).
(2) Let θ be a representative of an element in πn(aut1(X))⊗Q. A mentioned in

the proof of Proposition B.11, it follows that aLθ(x) = 0 for x ∈ E∗,q
1 with q > 1.

In fact, such element x is represented by one in the ideal Q+[u] · E . Thus, the first
half of the assertion of (2) follows from the result (1).

As for the latter half of the assertion, we have a commutative diagram

H∗
S1(LX ;Q)/F 1

Lθ

��

∼=
//

i∗

,,
E∗,0

∞

aLθ

��

// // H∗(LX ;Q)

Lθ

��
H∗−n
S1 (LX ;Q)/F 1

∼= //

i∗

22
E∗−n,0

∞
// // H∗−n(LX ;Q).
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The commutativity of the diagrams containing i∗ follows from a property of the
EMSS. By the definition of aLθ and Proposition 4.3, we see that the right-hand
side diagram is commutative. It follows from (1) that the left-hand side diagram is
commutative. We have the result. �

Corollary B.14. Let x be an element in the image of the derivation Lθ : E
0,∗
r →

E0,∗
r for some θ. Then dr(x) = 0.

Proof. The operation Lθ is compatible with the differential dr. Proposition B.13
(2) implies the result. �
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