
Finding Matching Cuts in H-Free Graphs
Felicia Lucke !

Department of Informatics, University of Fribourg, Fribourg, Switzerland

Daniël Paulusma !

Department of Computer Science, Durham University, Durham, UK

Bernard Ries !

Department of Informatics, University of Fribourg, Fribourg, Switzerland

Abstract
The well-known NP-complete problem Matching Cut is to decide if a graph has a matching that is
also an edge cut of the graph. We prove new complexity results for Matching Cut restricted to
H-free graphs, that is, graphs that do not contain some fixed graph H as an induced subgraph. We
also prove new complexity results for two recently studied variants of Matching Cut, on H-free
graphs. The first variant requires that the matching cut must be extendable to a perfect matching of
the graph. The second variant requires the matching cut to be a perfect matching. In particular, we
prove that there exists a small constant r > 0 such that the first variant is NP-complete for Pr-free
graphs. This addresses a question of Bouquet and Picouleau (arXiv, 2020). For all three problems,
we give state-of-the-art summaries of their computational complexity for H-free graphs.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases matching cut; perfect matching; H-free graph; computational complexity

1 Introduction

Cut sets and connectivity are central topics in algorithmic graph theory. We consider edge
cuts in graphs that have some additional structure. The common property of these cuts is that
the edges in them must form a matching. Formally, consider a connected graph G = (V,E).
A set M ⊆ E is a matching if no two edges in M have a common end-vertex. A set M ⊆ E
is an edge cut, if V can be partitioned into sets B and R such that M consists of all the
edges with one end-vertex in B and the other one in R. Now, M is a matching cut if M is a
matching that is also an edge cut; see also Figure 1. Matching cuts are well studied due to
their applications in number theory [16], graph drawing [27], graph homomorphisms [15],
edge labelings [1] and ILFI networks [12]. The corresponding decision problem, which asks
whether a given connected graph has a matching cut, is known as Matching Cut.

We also consider two natural variants of Matching Cut. First, let G be a connected
graph that has a perfect matching M , that is, every vertex of G is incident to an edge of M .
If M contains a matching cut M ′ of G, then M is a disconnected perfect matching of G; see
again Figure 1 for an example. The problem Disconnected Perfect Matching is to
decide if a graph has a disconnected perfect matching. Every yes-instance of Disconnected
Perfect Matching is a yes-instance of Matching Cut, but the reverse might not be true;
for example, the 3-vertex path has a matching cut but no (disconnected) perfect matching.

Suppose now that we search for a matching cut with a maximum number of edges, or
for a disconnected perfect matching with a matching cut that is as large as possible. In
both settings, the extreme case is when the matching cut is a perfect matching itself. Such
a matching cut is called perfect; see Figure 1. By definition, a perfect matching cut is a
disconnected perfect matching, but the reverse might not hold: take the cycle on six vertices
which has several disconnected perfect matchings but no perfect matching cut. The problem
Perfect Matching Cut is to decide if a connected graph has a perfect matching cut.
All three problems are known to be NP-complete, as we will explain in more detail below.

ar
X

iv
:2

20
7.

07
09

5v
1

 [
m

at
h.

C
O

]
 1

4
Ju

l 2
02

2

mailto:felicia.lucke@unifr.ch
https://orcid.org/0000-0002-9860-2928
mailto:daniel.paulusma@durham.ac.uk
https://orcid.org/0000-0001-5945-9287
mailto:bernard.ries@unifr.ch
https://orcid.org/0000-0003-4395-5547

2 Finding Matching Cuts in H-Free Graphs

Figure 1 The graph P6 with a matching cut that is not contained in a disconnected perfect
matching (left), a matching cut that is properly contained in a disconnected perfect matching
(middle) and a perfect matching cut (right). In each figure, thick edges denote matching cut edges.

Hence, it is natural to restrict the input to some special graph class to obtain a better
understanding of the computational hardness of some problem, or some set of problems. In
particular, jumps in complexity can be large and unexpected. To give an extreme example [25],
there exist problems that are PSPACE-complete in general but constant-time solvable for
every other hereditary graph class, i.e., that is closed under vertex deletion.

It is readily seen that a graph class is hereditary if and only if it can be characterized by
a set of forbidden induced subgraphs. A well-known example of a family of hereditary graph
classes is obtained when we forbid a single subgraph H. That is, a graph G is H-free if G
does not contain H as induced subgraph, or equivalently, if G cannot be modified into H
by a sequence of vertex deletions. The class of H-free graphs has proven to be an ideal
testbed for a systematic study into the complexity of many classical graph problems and
graph parameters, as can not only be seen from surveys for e.g. Colouring [14, 28] or
clique-width [10], but also from extensive studies for specific H-free graphs, e.g. bull-free
graphs [7] or claw-free graphs [8, 18]. As such, we will also focus on H-free graphs in this
paper. Before presenting our results we first discuss relevant known results.

1.1 Known Results
Out of the three problems, Matching Cut has been studied most extensively. Already in
the eighties, Chvátal [9] proved that Matching Cut is NP-complete. Afterwards a large
number of complexity results were proven for special graph classes. Here, we only discuss
those results that are relevant for our context, whereas results for non-hereditary graph
classes can, for example, be found in [3, 21]. In particular, we refer to a recent paper of Chen
et al. [6] for a comprehensive overview.

On the positive side, Bonsma [2] proved that Matching Cut is polynomial-time solvable
for K1,3-free graphs and P4-free graphs. Recently, Feghali [13] proved the same for P5-free
graphs, which we extended to P6-free graphs in [24]. In the latter paper, we also showed that
if Matching Cut is polynomial-time solvable for H-free graphs, for some graph H, then it
is so for (H + P3)-free graphs (see Section 2 for any unexplained notation and terminology).

On the negative side, Matching Cut is NP-complete even for K1,4-free graphs. This
follows from the construction of Chvátal [9] (see also [2, 20]). Bonsma [2] proved that
Matching Cut is NP-complete for planar graphs of girth 5, and thus for Cr-free graphs
with r ∈ {3, 4}. Le and Randerath [22] proved that Matching Cut is NP-complete for
K1,5-free bipartite graphs. Hence, it is NP-complete for H-free graphs if H has an odd cycle.
Via a trick of Moshi [26], NP-completeness for H-free graphs also holds if H has an even cycle
(see [24]). Feghali [13] proved the existence of an unspecified constant r such that Matching
Cut is NP-complete for Pr-free graphs; we will show that r = 27 in his construction.

We now turn to Disconnected Perfect Matching. This problem was introduced by
Bouquet and Picouleau [4], under a different name, but to avoid confusion with Perfect
Matching Cut, Le and Telle [23] introduced the notion of disconnected perfect matchings,
which we adapted. As observed in [4], for cubic graphs, the problem is equivalent to finding
a disconnected 2-factor. Hence, it follows from a result of Diwan [11] that every planar

F. Lucke and D. Paulusma and B.Ries 3

cubic bridgeless graph, except the K4, has a disconnected perfect matching. Bouquet and
Picouleau [4] proved that Disconnected Perfect Matching is, among others, polynomial-
time solvable for claw-free graphs and P5-free graphs, but NP-complete for bipartite graphs
(of diameter 4), for K1,4-free planar graphs (each vertex of which has either degree 3 or 4)
and for planar graphs with girth 5.

Finally, we discuss Perfect Matching Cut. Heggernes and Telle [17] proved that this
problem is NP-complete. Le and Telle [23] proved that for every integer g ≥ 3, Perfect
Matching Cut is NP-complete even for K1,4-free bipartite graphs of girth g. The same
authors showed that the problem is polynomial-time solvable for the classes of S1,2,2-free
graphs (which contain the classes of K1,3-free graphs and P5-free graphs) and for chordal
graphs. As explained in [23], the latter result generalizes a known result for interval graphs, for
which a branch decomposition of constant mim-width can be computed in polynomial time.

1.2 New Results
For Matching Cut on H-free graphs, the remaining cases are when H is a P27-free forest,
each vertex of which has degree at most 3, such that H is not an induced subgraph of P6 +sP3
or K1,3 + sP3 for some constant s ≥ 0. By modifying the construction of Feghali [13], we
prove in Section 3 that Matching Cut is NP-complete for (4P5, P19)-free graphs. Using
the aforementioned trick of Moshi [26], we also observe that Matching Cut is NP-complete
for H∗-free graphs, where H∗ is the graph that looks like the letter H.

For Disconnected Perfect Matching on H-free graphs, the remaining cases are
when H contains an even cycle of length at least 6, such that every vertex of H has degree
at most 3 and H is not an induced subgraph of K1,3 or P5. Bouquet and Picouleau [4]
asked about the complexity of the problem for Pr-free graphs, with r ≥ 6. We partially
answer their question by proving NP-completeness for (4P7, P23)-free graphs in Section 3
(via modifying our construction for Matching Cut for (4P5, P19)-free graphs).

For Perfect Matching Cut on H-free graphs, the remaining cases are when H is a
forest of maximum degree 3, such that H is not an induced subgraph of S1,2,2. In Section 4,
we first prove that Perfect Matching Cut is polynomial-time solvable for graphs of
radius at most 2, and we use this result to obtain a polynomial-time algorithm for P6-free
graphs. We also prove that if Perfect Matching Cut is polynomial-time solvable for
H-free graphs, for some graph H, then it is so for (H + P4)-free graphs. All our results are
obtained by combining a number of known propagation rules [21, 23] with new rules that we
will introduce. After applying these rules exhaustively, we obtain a graph, parts of which
have been allocated to the sides B and R of the edge cut that we are looking for. We will
prove that the connected components of the remaining subgraph will be placed completely
in B or R, and that this property suffices. By doing so, we extend a known approach with
our new rules and show that in this way we widen its applicability.

The following three theorems present the state-of-art for H-free graphs; here we write
G′ ⊆i G to indicate that G′ is an induced subgraph of G; as mentioned, recall that all
undefined notation can be found in Section 2.

I Theorem 1. For a graph H, Matching Cut on H-free graphs is
polynomial-time solvable if H ⊆i sP3 +K1,3 or sP3 + P6 for some s ≥ 0, and
NP-complete if H ⊇i Cr for some r ≥ 3, K1,4, P19, 4P5 or H∗.

I Theorem 2. For a graph H, Disconnected Perfect Matching on H-free graphs is
polynomial-time solvable if H ⊆i K1,3 or P5, and
NP-complete if H ⊇i Cr for some odd r ≥ 3, C4, K1,4, P23 or 4P7.

4 Finding Matching Cuts in H-Free Graphs

I Theorem 3. For a graph H, Perfect Matching Cut on H-free graphs is
polynomial-time solvable if H ⊆i sP4 + S1,2,2 or sP4 + P6, for some s ≥ 0, and
NP-complete if H ⊇i Cr for some r ≥ 3 or K1,4.

We state a number of open problems that originate from our systematic study in Section 5.

2 Preliminaries

We only consider finite undirected graphs without multiple edges and self-loops. Throughout
this section, we let G = (V,E) be a connected graph. Let u ∈ V . The set N(u) = {v ∈
V | uv ∈ E} is the neighbourhood of u in G, where |N(u)| is the degree of u. Let S ⊆ V . The
neighbourhood of S is the set N(S) =

⋃
u∈S N(u) \ S. The graph G[S] is the subgraph of G

induced by S ⊆ V , that is, G[S] is the graph obtained from G after deleting the vertices not
in S. We write G′ ⊆i G, if G′ is an induced subgraph of G. We say that S is a dominating
set of G, and that G[S] dominates G, if every vertex of V \S has at least one neighbour in S.
The domination number of G is the size of a smallest dominating set of G.

Let u, v ∈ V . The distance between u and v in G is the length (number of edges) of a
shortest path between u and v in G. The eccentricity of u is the maximum distance between
u and any other vertex of G. The radius of G is the minimum eccentricity over all vertices
of G. If G is not a tree, then the girth of G is the length of a shortest cycle in G.

Let H be a graph. Recall that G is H-free if G does not contain H as an induced
subgraph. Let {H1, . . . ,Hn} be a set of graphs. Then G is (H1, . . . ,Hn)-free, if G is Hi-free
for every i ∈ {1, . . . , n}. The graph Pr is the path on r vertices. The graph Cr is the cycle
on r vertices. A bipartite graph with non-empty partition classes V1 and V2 is complete if
there is an edge between every vertex of V1 and every vertex of V2. If |V1| = k and |V2| = `,
we write Kk,`. The graph K1,` is the star on `+ 1 vertices. The graph K1,3 is also known
as the claw. For 1 ≤ h ≤ i ≤ j, the graph Sh,i,j is the tree with one vertex of degree 3,
whose (three) leaves are at distance h, i and j from the vertex of degree 3. Observe that
S1,1,1 = K1,3. We need the following known result (which has been strengthened in [5]).

I Theorem 4 ([30]). A graph G is P6-free if and only if each connected induced subgraph
of G contains a dominating induced C6 or a dominating (not necessarily induced) complete
bipartite graph. Moreover, such a dominating subgraph of G can be found in polynomial time.

Let G1 and G2 be two vertex disjoint graphs. The graph G1 +G2 = (V (G1)∪V (G2), E(G1)∪
E(G2)) is the disjoint union of G1 and G2. For a graph G, the graph sG is the disjoint union
of s copies of G. Let H∗ be the “H”-graph, which is the graph on six vertices obtained from
the 2P3 by adding an edge joining the middle vertices of the two P3s.

A red-blue colouring of G colours every vertex of G either red or blue. If every vertex of a
set S ⊆ V has the same colour (red or blue), then S (and also G[S]) are called monochromatic.
A red-blue colouring is valid, if every blue vertex has at most one red neighbour; every red
vertex has at most one blue neighbour; and both colours red and blue are used at least once.
If a red vertex u has a blue vertex neighbour v, then u and v are matched. See also Figure 1.

For a valid red-blue colouring of G, we let R be the red set consisting of all vertices
coloured red and B be the blue set consisting of all vertices coloured blue (so V = R ∪B).
Moreover, the red interface is the set R′ ⊆ R consisting of all vertices in R with a (unique)
blue neighbour, and the blue interface is the set B′ ⊆ B consisting of all vertices in B with a
(unique) red neighbour in R. A red-blue colouring of G is perfect, if it is valid and moreover
R′ = R and B′ = B. A red-blue colouring of a graph G is perfect-extendable, if it is valid and
G[R \R′] and G[B \B′] both contain a perfect matching. In other words, the matching given

F. Lucke and D. Paulusma and B.Ries 5

u v u v

w1

w2

Figure 2 The K2,2-replacement applied on edge uv.

by the valid red-blue colouring can be extended to a perfect matching in G or, equivalently,
is contained in a perfect matching in G. We can now make the following known observation.

I Observation 5. Let G be a connected graph. The following three statements hold:
(i) G has a matching cut if and only if G has a valid red-blue colouring;
(ii) G has a disconnected perfect matching if and only if G has a perfect-extendable red-blue

colouring;
(iii) G has a perfect matching cut if and only if G has a perfect red-blue colouring.

3 Our NP-Completeness Results

We prove three NP-completeness results in this section. Our first result is a straightforward
observation. Let uv be an edge in a graph G. Replacing uv by new vertices w1 and w2
and edges uw1, uw2, vw1, vw2 is a K2,2-replacement. Let Guv be the new graph; see also
Figure 2. Moshi [26] showed that G has a matching cut if and only if Guv has a matching
cut. Applying a K2,2-replacement on every edge to ensure that no two degree-3 vertices are
adjacent anymore leads to the following:

I Theorem 6. Matching Cut is NP-complete for H∗-free graphs.

For proving our next two NP-completeness results, we reduce from The Exact Positive
1-in-3 SAT. This problem takes as input a pair (X,C), where X is a set of variables and
C is a set of clauses, each containing exactly three literals, all three of which are positive.
Moreover, each variable of X appears in exactly three clauses of C. The question is whether
there exists a truth assignment, such that each clause contains exactly one true literal.

I Theorem 7 ([29]). Exact Positive 1-in-3 SAT is NP-complete.

Theorem 8 is our first new result. Its proof follows from Feghali’s construction [13] after
making some minor modifications to it. For completeness, and since we use the modified
construction as a basis for the proof of Theorem 11, we added a detailed proof. Recall
that Feghali [13] showed that Matching Cut is NP-complete for Pr-free graphs, for some
unspecified constant r. We will show that in [13] r = 27; see Remark 10 below.

I Theorem 8. Matching Cut is NP-complete for (4P5, P19)-free graphs.

Proof. Matching Cut is in NP, since it is possible to check in polynomial time if a given
red-blue-colouring is valid or not. To prove NP-hardness, we will use a reduction from Exact
Positive 1-in-3 SAT, which is NP-complete by Theorem 7. Let I be an instance of Exact
Positive 1-in-3 SAT with variable set X and clause set C. We will build a graph GI (see
also Figures 3 and 4):

6 Finding Matching Cuts in H-Free Graphs

v1
xi

v2
xi

v3
xi

vs
xi

u2
xi

u1
xi

us
xi

u3
xi

si
1 si

2

S1 S2

Figure 3 The cliques S1 and S2 together with the variable gadget of xi.

for every xi ∈ X, construct a variable gadget consisting of two disjoint cliques of size 4,
Uxi

and Vxi
, with vertex set

{
us

xi
, u1

xi
, u2

xi
, u3

xi

}
and

{
vs

xi
, v1

xi
, v2

xi
, v3

xi

}
, respectively;

add two cliques S1 and S2 with vertex set {s1
1, . . . , s

|X|
1 } and {s1

2, . . . , s
|X|
2 }, respectively;

for every i ∈ {1, . . . , |X|}, add the edges si
1u

s
xi
, si

1v
s
xi
, si

2u
s
xi
, si

2v
s
xi
;

for every cj ∈ C, construct a clause gadget on clause vertices vcj , u
1
cj
, u2

cj
, and auxiliary

vertices a1
cj
, . . . , a6

cj
.

Add edges between all clause vertices of all clause gadgets to obtain a clique S3.
for every j ∈ {1, . . . , |C|}, add the edges u1

cj
a`

cj
, for ` = 1, 2, 3 and u2

cj
a`

cj
, for ` = 4, 5, 6;

for every xi ∈ X occurring in clauses cj1 , cj2 and cj3 , add the edges vk
xi
vcjk

, for k = 1, 2, 3;
and
for every cj ∈ C such that cj = xi1 ∨ xi2 ∨ xi3 , add the edges uk

xik
ak

cj
and uk

xik
ak+3

cj
, for

k = 1, 2, 3.

vcj

Vxi1

Vxi2

Vxi3

u1
cj

u2
cj

a1
cj

a4
cj

a3
cj

a6
cj

a5
cj

a2
cj

Uxi1

Uxi2

Uxi3

Figure 4 The clause gadget for clause cj = xi1 ∨ xi2 ∨ xi3 .

We claim that I admits a truth assignment such that each clause contains exactly one
true literal if and only if GI admits a valid red-blue-colouring.

First suppose that GI admits a valid red-blue-colouring. We start with some useful claims.

I Claim 8.1. For any variable xi ∈ X, i = 1, . . . , |X|, both Vxi
and Uxi

are monochromatic.
Furthermore, S1, S2 and S3 are each monochromatic.

F. Lucke and D. Paulusma and B.Ries 7

Proof. This immediately follows from the fact these sets are cliques of size at least 3. C

We say that a monochromatic set has colour red or blue if all its vertices are coloured red or
blue, respectively.

I Claim 8.2. It holds that S1 and S2 have different colours.

Proof. Suppose for a contradiction that S1 and S2 have the same colour. We may assume,
without loss of generality, that S1 and S2 are both coloured blue. Since for every variable
xi ∈ X, i = 1, . . . , |X|, there exist vertices us

xi
and vs

xi
having each a neighbour in both S1

and S2, it follows that every variable gadget is coloured blue. This implies in particular
that every vertex vcj

, for j = 1, . . . , |C|, has three blue neighbours and hence, is coloured
blue itself. Further, since S3 is monochromatic by Claim 8.1, all the vertices u1

cj
, u2

cj
, for

j = 1, . . . , |C|, are coloured blue. Thus, both neighbours of each auxiliary vertex are blue,
which forces the auxiliary vertices to be blue themselves. It follows that all vertices in GI
are coloured blue. Hence, the colouring is not valid, a contradiction. C

I Claim 8.3. For every variable xi ∈ X, i ∈ {1, . . . , |X|}, Uxi
and Vxi

have different colours.

Proof. Suppose for a contradiction that for some variable xi ∈ X, i ∈ {1, . . . , |X|}, Uxi and
Vxi

have the same colour. We may assume without loss of generality that they are both
coloured blue. Since si

1 and si
2 are both adjacent to us

xi
and to vs

xi
, it follows that they are

both coloured blue. Now it follows from Claim 8.1, that S1 and S2 must both be coloured
blue, a contradiction to Claim 8.2. C

I Claim 8.4. For every clause cj ∈ C, exactly two neighbours of vcj
have the same colour

as vcj .

Proof. We may assume without loss of generality that vcj
is coloured blue. Let cj =

(xi1 ∨ xi2 ∨ xi3). Let v1
xi1
, v2

xi2
, v3

xi3
be the three neighbours of vcj outside of S3 and let

u1
xi1
, u2

xi2
and u3

xi3
be the neighbours of the auxiliary vertices ak

cj
, k = 1, . . . , 6. By definition

of a valid red-blue-colouring, vcj has at least two neighbours outside of S3 that are coloured
blue. Suppose for a contradiction that the vertices v1

xi1
, v2

xi2
, v3

xi3
are all coloured blue. Then,

it follows from Claim 8.1, that Vxi1
, Vxi2

, Vxi3
must be coloured blue. Notice that, since vcj

is coloured blue, Claim 8.1 also implies that all vertices in S3, and in particular u1
cj

and u2
cj
,

are coloured blue. Let A1 (resp. A2) be the set of auxiliary vertices which are adjacent to
u1

cj
(resp. u2

cj
). Then, at least two vertices in A1 and two vertices in A2 are coloured blue.

Since u1
xi1
, u2

xi2
and u3

xi3
have each one neighbour in A1 and one neighbour in A2, it follows

that one of them has two blue neighbours in A1 ∪ A2, and is therefore coloured blue. We
may assume, without loss of generality, that this vertex is u1

xi1
. Using Claim 8.1 again, we

get that Uxi1
is coloured blue, a contradiction to Claim 8.3. C

We continue as follows. By Claim 8.1, we may assume without loss of generality that S3 is
coloured blue. Then, we set every variable xi ∈ X, i ∈ {1, . . . , |X|}, to true for which Vxi

has been coloured red. We set all other variables to false. By Claim 8.4, we know that for
each clause cj ∈ C, j ∈ {1, . . . , |C|}, there exists exactly one red neighbour of vcj . Hence, in
every clause, exactly one literal is set to true. Since by Claim 8.1, every Vxi

, i ∈ {1, . . . , |X|},
is monochromatic, it follows that no variable gets both values true and false. Thus, I admits
a truth assignment such that each clause contains exactly one true literal.

Now suppose that I admits a truth assignment such that each clause contains exactly one
true literal. For every variable xi ∈ X, i ∈ {1, . . . , |X|}, that is set to true, we colour Vxi

red

8 Finding Matching Cuts in H-Free Graphs

vcj

u1
cj

u2
cj

Figure 5 The given valid red-blue-colouring of the clause gadget for cj .

and Uxi
blue; for every other variable xi ∈ X, we colour Vxi

blue and Uxi
red. It follows

that every vertex vcj , for cj ∈ C and j ∈ {1, . . . , |C|}, has exactly one red and two blue
neighbours outside of S3, since the truth assignment is such that each clause contains exactly
one true literal. Thus, we colour S3 blue. If we consider a clause cj = (xi1 ∨ xi2 ∨ xi3), we
know that exactly one of Uxi1

, Uxi2
, Uxi3

is blue and the other ones are red. Assume, without
loss of generality, that Uxi1

is blue and consider a1
cj
, a4

cj
, the neighbours of u1

xi1
∈ Uxi1

. We
then colour a1

cj
, a4

cj
blue, since they have two blue neighbours (u1

xi1
and u1

cj
resp. u2

cj
). To

obtain a valid red-blue colouring of GI , we have to colour one of the vertices a2
cj
, a5

cj
blue

and the other one red, and similarly, one of the vertices a3
cj
, a6

cj
blue and the other one red.

Since u1
cj
, u2

cj
are both coloured blue and each of them can have at most one red neighbour,

we colour a2
cj
, a6

cj
blue and a3

cj
, a5

cj
red (see Figure 5). Finally, the only vertices that remain

uncoloured are the vertices in S1 and S2. Here, the only restriction is that S1 and S2 are
coloured differently, hence we colour for instance S1 blue and S2 red. This clearly gives us a
valid red-blue-colouring of GI .

To complete the proof, it remains to show that GI is (4P5, P19)-free. Let P be a longest
induced path in GI . P can contain at most two vertices from a same clique, since otherwise it
would not be induced. Also, if P contains two vertices from a same clique, then these vertices
are necessarily consecutive in P . Let W1,W2 ∈ {Uxi

, Vxi
| xi ∈ X}. By construction, every

path from a vertex inW1 to a vertex inW2 contains at least one vertex from one of the cliques
S1, S2, S3. Hence, P can intersect at most 4 cliques belonging to some variable gadgets;
further, if it does intersect 4 cliques belonging to some variable gadgets, then it intersects
each of the cliques S1, S2, S3 as well. Notice that after respectively before intersecting S3,
P may contain at most one auxiliary vertex (see Figure 6 for an example). Finally, the
end-vertices of P may correspond each to an auxiliary vertex. So P contains at most 18
vertices, and thus, GI is indeed P19-free.

Let P now be a P5 in GI . Assume that P does not contain any vertex of the cliques
S1, S2, S3. Then, P can only contain vertices from variable gadgets and auxiliary vertices.
As mentioned above, P can contain at most two vertices from a same clique, and further
every path from a vertex in W1 to a vertex in W2, where W1,W2 ∈ {Uxi

, Vxi
| xi ∈ X},

contains at least one vertex from one of the cliques S1, S2, S3. Hence, P has length at most
3, a contradiction. We conclude that P must intersect at least one of the cliques S1, S2,
S3. It follows that there can exist at most 3 pairwise induced paths of length 4, so GI is
4P5-free. J

F. Lucke and D. Paulusma and B.Ries 9

u1
cj

u2
cj

Figure 6 A path intersecting a clause gadget and containing two auxiliary vertices.

I Remark 9. It can be verified that the graph GI in the proof Theorem 8 is not P18-free and
not sP4-free for any s ≥ 1.

I Remark 10. In the graph GI from the proof of Theorem 8, no vertex of Uxi
is adjacent to

a vertex of Vxi
, for any xi ∈ X. In Feghali’s construction [13], there is an edge between any

two such cliques. This implies that an induced path can use four consecutive vertices inside
the same variable gadget. Via similar arguments as in our proof, one can easily show that
Feghali’s construction has an induced P26, but no induced P27 (and thus it is P27-free).

We now modify the construction in the proof of Theorem 8 to obtain the following result
for Disconnected Perfect Matching, which addresses a question of Bouquet and
Picouleau [4].

I Theorem 11. Disconnected Perfect Matching is NP-complete for (4P7, P23)-free
graphs.

Proof. We first note that Disconnected Perfect Matching belong to NP, as we can
verify in polynomial time if a given perfect-extendable red-blue-colouring is valid or not.

In order to prove NP-hardness, we reduce from Exact Positive 1-in-3 SAT, which is
NP-complete by Theorem 7. Let I be an instance of Exact Positive 1-in-3 SAT with
variable set X and clause set C. We build a graph GI similarly to the graph in Theorem 11
(see also Figures 7 and 8):

for every xi ∈ X, construct a variable gadget consisting of two disjoint cliques of size 7,
Uxi and Vxi , with vertex set

{
us

xi
, u1

xi
, . . . , u6

xi

}
and

{
vs

xi
, v1

xi
, . . . , v6

xi

}
, respectively;

add two cliques S1 and S2 with vertex set {s1
1, . . . , s

|X|
1 } and {s1

2, . . . , s
|X|
2 }, respectively;

for every i ∈ {1, . . . , |X|}, add the edges si
1u

s
xi
, si

1v
s
xi
, si

2u
s
xi
, si

2v
s
xi
;

for every cj ∈ C, construct a clause gadget on clause vertices v1
cj
, v2

cj
, u1

cj
, u2

cj
, u3

cj
, u4

cj
,

and auxiliary vertices a1
cj
, . . . , a12

cj
.

Add edges between all clause vertices of all clause gadgets to obtain a clique S3.
for every j ∈ {1, . . . , |C|}, add the edges u1

cj
a`

cj
, for ` = 1, 2, 3, u2

cj
a`

cj
, for ` = 4, 5, 6,

u3
cj
a`

cj
, for ` = 7, 8, 9 and u4

cj
a`

cj
, for ` = 10, 11, 12. Add also the edges a`

cj
a`+6

cj
, for

` = 1, . . . , 6;
for every xi ∈ X occurring in clauses cj1 , cj2 and cj3 , add the edges vk

xi
v1

cjk
and vk+3

xi
v2

cjk
,

for k = 1, 2, 3; and
for every cj ∈ C such that cj = xi1 ∨xi2 ∨xi3 , add the edges uk

xik
ak

cj
, uk

xik
ak+3

cj
, uk+3

xik
ak+6

cj

and uk+3
xik

ak+9
cj

, for k = 1, 2, 3.

We claim that I has a truth assignment such that each clause contains exactly one true
literal if and only if GI has a perfect-extendable red-blue-colouring.

10 Finding Matching Cuts in H-Free Graphs

v1
xi

v2
xi

v3
xi

v4
xi

v5
xi

v6
xi

vs
xi

u2
xiu1

xi

us
xi

u6
xi

u5
xi

u4
xi

u3
xi

si
1 si

2

S1 S2

Figure 7 The cliques S1 and S2, together with the variable gadget of xi.

v1
cj

v2
cj

Vxi1
Vxi2

Vxi3

u1
cj

u2
cj

u3
cj

u4
cj

a1
cj

a4
cj

a3
cj

a6
cj

a2
cj a5

cj

a7
cj

a10
cj

a9
cj

a12
cja8

cj

a11
cj

Uxi1

Uxi1

Uxi2

Uxi2

Uxi3

Uxi3

Figure 8 The clause gadget for the clause cj = xi1 ∨ xi2 ∨ xi3 . The vertices v1
cj

, v2
cj

, u1
cj

, . . . , u4
cj

belong to clique S3; for readability, we omitted the edges between v1
cj

, v2
cj

and u1
cj

, . . . , u4
cj
. Moreover,

coloured edges of the same colour belong to the same clique Uxij
, for j = 1, 2, 3 (again, for readability).

First suppose that GI admits a valid perfect-extendable red-blue-colouring. We start
with some useful claims, the first three have the same proof as Claims 8.1, 8.2, 8.3 in the
proof of Theorem 8.

I Claim 11.1. For any variable xi ∈ X, i = 1, . . . , |X|, both Vxi and Uxi are monochromatic.
Furthermore, S1, S2 and S3 are also monochromatic.

I Claim 11.2. It holds that S1 and S2 have different colours.

I Claim 11.3. For every variable xi ∈ X, i ∈ {1, . . . , |X|}, the cliques Uxi
and Vxi

have
different colours.

I Claim 11.4. For every clause cj ∈ C, j ∈ {1, . . . , |C|}, exactly two neighbours of v1
cj

(resp. v2
cj
) have the same colour as v1

cj
(resp. v2

cj
).

Proof. We may assume, without loss of generality, that v1
cj

(resp. v2
cj
) is coloured blue.

By symmetry, it is enough to prove the claim for v1
cj
. Let cj = (xi1 ∨ xi2 ∨ xi3). Let

v1
xi1
, v2

xi2
, v3

xi3
be the three neighbours of v1

cj
outside of S3 and let u1

xi1
, u2

xi2
and u3

xi3
be the

neighbours of the auxiliary vertices ak
cj
, k = 1, . . . , 6. By definition of a perfect-extendable

red-blue-colouring, v1
cj

has at least two neighbours outside of S3 that are coloured blue.

F. Lucke and D. Paulusma and B.Ries 11

Suppose for a contradiction that the vertices v1
xi1
, v2

xi2
, v3

xi3
are all coloured blue. Then, it

follows from Claim 11.1 that Vxi1
, Vxi2

, Vxi3
must be coloured blue. Notice that since v1

cj
is

coloured blue, Claim 11.1 also implies that all vertices in S3, in particular u1
cj

and u2
cj

are
coloured blue. Let A1 (resp. A2) be the set of auxiliary vertices which are a neighbour of
u1

cj
(resp. u2

cj
). Then, at least two vertices in A1 and two vertices in A2 are coloured blue.

Since u1
xi1
, u2

xi2
and u3

xi3
have each one neighbour in A1 and one neighbour in A2, it follows

that one of them has two blue neighbours in A1 ∪ A2, and is thus coloured blue. We may
assume, without loss of generality, that this vertex is u1

xi1
. Using Claim 11.1 again, we get

that Uxi1
is coloured blue, a contradiction to Claim 11.3.

Since v1
cj

and v2
cj

are both in S3, using Claim 11.1 we get that they are both blue. For
each neighbour of v1

cj
there is a neighbour of v2

cj
in the same clique and vice versa. Hence,

they have the same number of blue neighbours. C

We continue as follows. By Claim 11.1, we may assume without loss of generality that
S3 is coloured blue. We set every variable xi ∈ X, for which Vxi has been coloured red,
to true. We set all other variables to false. By Claim 11.4, we know that for each clause
cj ∈ C, j ∈ {1, . . . , |C|}, there is exactly one red neighbour of v1

cj
(resp. v2

cj
). Hence, in every

clause, exactly one literal is set to true. Since by Claim 11.1, every Vxi
, i ∈ {1, . . . , |X|}, is

monochromatic, it follows that no variable is both true and false. Thus, I admits a truth
assignment such that each clause contains exactly one true literal.

Conversely, assume now that I admits a truth assignment such that each clause contains
exactly one true literal. For every variable xi ∈ X, i ∈ {1, . . . , |X|}, that is set to true, we
colour Vxi

red and Uxi
blue; for every other variable xi ∈ X, we colour Vxi

blue and Uxi

red. It follows that every vertex vk
cj
, cj ∈ C and j ∈ {1, . . . , |C|}, k = 1, 2, has exactly one

red and two blue neighbours outside of S3, since the truth assignment is such that each
clause contains exactly one true literal. Thus, we colour S3 blue. If we consider a clause
cj = (xi1 ∨ xi2 ∨ xi3), we know that exactly one of Uxi1

, Uxi2
, Uxi3

is blue and the other
ones are red. Assume, without loss of generality, that Uxi1

is blue and consider a1
cj
, a4

cj
,

the neighbours of u1
xi1
∈ Uxi1

and a7
cj
, a10

cj
, the neighbours of u4

xi1
∈ Uxi1

. We then colour
a1

cj
, a4

cj
, a7

cj
, a10

cj
blue, since they have two blue neighbours ({u1

xi1
, u1

cj
}, {u1

xi1
, u2

cj
}, {u4

xi1
, u3

cj
}

resp. {u4
xi1
, u4

cj
}). To obtain a perfect-extendable red-blue colouring of GI , we have to colour

one of the vertices a2
cj
, a5

cj
blue and the other one red, and similarly, one of the vertices

a3
cj
, a6

cj
blue and the other one red. Since u1

cj
, u2

cj
are both coloured blue and each of them

can have at most one red neighbour, we colour a2
cj
, a6

cj
blue and a3

cj
, a5

cj
red. With the same

arguments we colour a8
cj
, a12

cj
blue and a9

cj
, a11

cj
red. Finally, the only vertices that remain

uncoloured are the vertices in S1 and S2. Here, the only restriction is that S1 and S2 are
coloured differently, hence we colour for instance S1 blue and S2 red. This clearly gives us a
valid red-blue-colouring of GI .

It still remains to verify that this valid red-blue-colouring is perfect-extendable. First,
consider the cliques S1 and S2. We know that each vertex si

j , for j = 1, 2, i ∈ {1, . . . , |X|}
has two neighbours vs

xi
and us

xi
outside of S1 ∪ S2. Since the red-blue-colouring is valid, it

follows that exactly one of si
1, si

2 and exactly one of vs
xi

and us
xi

is blue. So every vertex in
S1 and S2 has a neighbour of the opposite colour and hence, can be matched with it. The
same holds for the vertices vs

xi
, us

xi
, for all xi ∈ X.

Next, consider a clause cj ∈ C, such that cj = xi1 ∨ xi2 ∨ xi3 . It follows from the
construction of our valid red-blue-colouring that we may assume, without loss of generality,
that Vxi1

, Uxi2
, Uxi3

are coloured red and Vxi2
, Vxi3

, Uxi1
are coloured blue. Since every

clause vertex is coloured blue and has exactly one red neighbour, it follows that all clause

12 Finding Matching Cuts in H-Free Graphs

v1
cj

v2
cj

u1
cj

u2
cj

u3
cj

u4
cj

Figure 9 A perfect-extendable red-blue-colouring of the clause gadget. Notice that vertices
v1

cj
, v2

cj
, u1

cj
, . . . , u4

cj
belong to the clique S3, but for the sake of readability, we omitted the edges

between vertices v1
cj

, v2
cj

and vertices u1
cj

, . . . , u4
cj

in this figure.

vertices in the clause gadget of cj can be matched and the same holds for the vertices in
Vxi1

. The auxiliary vertices which are adjacent to vertices in Uxi2
∪ Uxi3

have exactly one
neighbour of the opposite colour and thus, they can be matched with either clause vertices
or vertices in Uxi2

∪ Uxi3
(see Figure 9). The auxiliary vertices a1

cj
, a4

cj
, a7

cj
and a10

cj
, which

are neighbours of Uxi1
, are all coloured blue. In this case, we consider the edges a1

cj
a7

cj
and

a4
cj
a10

cj
as matching edges.

The only vertices that remain unmatched are vertices in variable gadgets of variables
xi ∈ X, i ∈ {1, . . . , |X|}, which are set to false. Since all vertices vs

xi
and vs

ui
are already

matched, for all xi ∈ X, i ∈ {1, . . . , |X|}, there remains an even number of unmatched vertices
in each clique of these variable gadgets, all coloured with the same colour. Hence, we can
easily find matching edges inside these cliques. We conclude that our valid red-blue-colouring
is indeed perfect-extendable.

To complete the proof, it remains to show that GI is indeed (4P7, P23)-free. To show that it
is P23-free, we follow the same arguments as in the proof of Theorem 11, when we showed
that the corresponding graph was P19-free. Let P be a longest induced path in GI . P can
contain at most two vertices from each clique, since otherwise it would not be induced. Also,
if P contains two vertices from a same clique, then these vertices are necessarily consecutive
in P . Let W1,W2 ∈ {Uxi

, Vxi
| xi ∈ X}. Every path from a vertex in W1 to a vertex in W2

contains at least one vertex from one of the cliques S1, S2, S3. Hence, P can intersect at
most 4 cliques belonging to some variable gadgets; further, if it does intersect four cliques
belonging to some variable gadgets, then it intersects each of the cliques S1, S2, S3 as well.
Notice that after respectively before intersecting S3, P may contain at most two auxiliary
vertices (see Figure 10). Also, the first two, respectively the last two, vertices in P may
correspond to auxiliary vertices. So P contains at most 22 vertices, and thus, GI is indeed
P23-free.

Consider now the graph G′ = G[V (GI) \ (V (S1) ∪ V (S2) ∪ V (S3))]. This graph consists
of two types of connected components: (i) every Vxi

, for xi ∈ X, corresponds to a clique
of size 7; (ii) every Uxi , for xi ∈ X, together with some auxiliary vertices corresponds to a
connected component as shown in Figure 11. Clearly, any induced path contains at most
two vertices of a same clique. Furthermore, it is easy to see that any induced path contains
at most six vertices from a connected component containing a clique Uxi

(see Figure 11).

F. Lucke and D. Paulusma and B.Ries 13

u1
cj

u2
cj

u3
cj

u4
cj

Figure 10 A path intersecting a clause gadget and containing four auxiliary vertices.

Hence, every induced path with length at least 6 has to contain a vertex in one of the cliques
S1, S2, S3. It immediately follows that GI is 4P7-free. J

Figure 11 A connected component of type (ii) obtained from the removal of S1, S2 and S3. A
longest path in this connected component is shown in red.

4 Our Polynomial Results

We start with two lemmas, whose proofs are similar to the proofs for valid but not necessarily
perfect red-blue colourings; see, for example, [13] or [24] for explicit proofs.

I Lemma 12. For every integer g, it is possible to find in O(2gng+2) time a perfect red-blue
colouring (if it exists) of a graph with n vertices and with domination number g.

Proof. Let g ≥ 1 be an integer, and let G be a graph with domination number at most g.
Hence, G has a dominating set D of size at most g. We consider all options of colouring the
vertices of D red or blue; note that this number is 2|D| ≤ 2g. For every red vertex of D with
no blue neighbour, we consider all O(n) options of colouring exactly one of its neighbours
blue (and thus, all of its other neighbours will be coloured red). Similarly, for every blue
vertex of D with no red neighbour, we consider all O(n) options of colouring exactly one of
its neighbours red (and thus, all of its other neighbours will be coloured blue). Finally, for
every red vertex in D with already one blue neighbour in D, we colour all its yet uncoloured

14 Finding Matching Cuts in H-Free Graphs

neighbours red. Similarly, for every blue vertex in D with already one red neighbour in D,
we colour all its yet uncoloured neighbours blue.

As D is a dominating set, the above means that we guessed a red-blue colouring of
the whole graph G. We can check in O(n2) time if a red-blue colouring of a graph with n
vertices is perfect. Moreover, the total number of red-blue colourings that we must consider
is O(2gng). J

I Lemma 13. Let D be a dominating set of a connected graph G. It is possible to check in
polynomial time if G has a perfect red-blue colouring in which D is monochromatic.

Proof. Consider a perfect red-blue colouring c of G, in which D is monochromatic, say
every vertex of D is coloured red. Let F1, . . . , Fr, for some integer r ≥ 1, be the connected
components of G−D.

We claim that every Fi is monochromatic. This follows from the same argument as the
one for valid red-blue colourings that are not necessarily perfect (see [24]) and we give it
for completeness. For a contradiction, assume that, say, F1 is not monochromatic. This
means that F1 contains an edge uv where u is coloured red and v is coloured blue. As D
is a dominating set of G, we have that v also has a neighbour in D, which is coloured red.
Hence, c is not valid and thus not perfect either, a contradiction.

Now suppose that some vertex u in Fi is coloured red. By the above claim, every vertex
of Fi is coloured red. The neighbours of u outside Fi are all in D and thus, are coloured red
as well. Hence, u has no blue neighbour, meaning that c is not perfect, a contradiction. We
conclude that every vertex in G−D must be coloured blue.

Hence, in order to check if G has a perfect red-blue colouring in which D is monochromatic,
we can do as follows. Colour every vertex in D red and colour every vertex in G−D blue.
Then, check in polynomial time if the resulting red-blue colouring is perfect. J

To handle “partial” perfect red-blue colourings, we introduce the following terminology. Let
G = (V,E) be a connected graph and S, T,X, Y ⊆ V be four non-empty sets with S ⊆ X,
T ⊆ Y and X ∩ Y = ∅. A red-blue (S, T,X, Y)-colouring of G is a red-blue colouring where

every vertex of X is coloured red and every vertex of Y is coloured blue;
the blue neighbour of every vertex in S belongs to T and vice versa; and
the blue neighbour of every vertex in X \ S and the red neighbour of every vertex of Y
belong to V \ (X ∪ Y).

For a connected graph G = (V,E), let S′ and T ′ be two disjoint subsets of V , such that
(i) every vertex of S′ is adjacent to at most one vertex of T ′, and vice versa, and (ii) at least
one vertex in S′ is adjacent to a vertex in T ′. Let S′′ consist of all vertices of S′ with a
(unique) neighbour in T ′, and let T ′′ consist of all vertices of T ′ with a (unique) neighbour
in S′ (so, every vertex in S′′ has a unique neighbour in T ′′, and vice versa). We call (S′′, T ′′)
the core of starting pair (S′, T ′); note that |S′′| = |T ′′| ≥ 1.

We colour every vertex in S′ red and every vertex in T ′ blue. Propagation rules will try to
extend S′ and T ′ by finding new vertices whose colour must always be either red or blue. We
place new red vertices in a set X and new blue vertices in a set Y . If a red and blue vertex
are matched to each other, then we add the red one to a set S ⊆ X and the blue one to a set
T ⊆ Y . Initially, S := S′′, T := T ′′, X := S′ and Y := T ′, and we let Z := V \ (X ∪ Y).

We now present seven propagation rules for finding perfect red-blue (S, T,X, Y)-colourings.
Rules R1 and R2 hold for finding red-blue colourings in general and correspond to the five
rules from [21]. Rules R3-R7 are for finding perfect red-blue colourings; some of them are in
a slightly different form in [23].

F. Lucke and D. Paulusma and B.Ries 15

R1. Return no (i.e., G has no red-blue (S, T,X, Y)-colouring) if a vertex v ∈ Z is
(i) adjacent to a vertex in S and to a vertex in T , or
(ii) adjacent to a vertex in S and to two vertices in Y \ T , or
(iii) adjacent to a vertex in T and to two vertices in X \ S, or
(iv) adjacent to two vertices in X \ S and to two vertices in Y \ T .

R2. Let v ∈ Z.
(i) If v is adjacent to a vertex in S or to two vertices of X \ S, then move v from Z to X.

If moreover v is also adjacent to a vertex w in Y , then add v to S and w to T .
(ii) If v is adjacent to a vertex in T or to two vertices of Y \ T , then move v from Z to Y .

If moreover v is also adjacent to a vertex w in X, then add v to T and w to S.
R3. Let v ∈ (X ∪ Y) \ (S ∪ T).

(i) If v ∈ X \ S and v is adjacent to a vertex w in Y , then add v to S and w to T .
(ii) If v ∈ Y \ T and v is adjacent to a vertex w in X, then add v to T and w to S.

R4. Return no if
(i) a vertex x ∈ X has no neighbours outside X or is adjacent to two vertices of Y , or
(ii) a vertex y ∈ Y has no neighbours outside Y , or is adjacent to two vertices of X.

R5. Let v ∈ Z. Let w ∈ Z be a vertex with NG(w) = {v}.
(i) If v is adjacent to a vertex in X and to a vertex in Y , then return no.
(ii) If v is adjacent to a vertex in X but not to a vertex in Y , then put v in X and w in Y ,

and also add v to S and w to T .
(iii) If v is adjacent to a vertex in Y but not to a vertex in X, then put v in Y and w in X,

and also add v to T and w to S.
R6. Let v ∈ Z be in a connected component F of G[Z] such that F is isomorphic to C4.

(i) If v is adjacent to a vertex in X but not to a vertex in Y , and F contains a vertex not
adjacent to a vertex in X, then move v from Z to X.

(ii) If v is adjacent to a vertex in Y but not to a vertex in X, and F contains a vertex not
adjacent to a vertex in Y , then move v from Z to Y .

R7. Let v ∈ Z be in a connected component F of G[Z] such that {v} dominates F . Let F − v
have a vertex w with only one neighbour w′ in X ∪ Y .

(i) If w′ ∈ X, then put v in Y .
(ii) If w′ ∈ Y , then put v in X.

A propagation rule is safe if the input graph has a perfect red-blue (S, T,X, Y)-colouring
before the application of the rule if and only if it has so after the application of the rule.

I Lemma 14. Rules R1–R7 are safe.

Proof. Let G be a connected graph with a perfect red-blue (S, T,X, Y)-colouring. First recall
that, by definition, vertices in X will be coloured red by every red-blue (S, T,X, Y)-colouring,
whilst vertices of Y will be coloured blue, and moreover that every (red) vertex in S has
exactly one (blue) neighbour in T , and vice versa. The colour of the vertices in Z still has to
be decided.

Rule R1-(i) is safe. A vertex adjacent to both a red vertex that already has a blue
neighbour and to a blue vertex that already has a red neighbour can be coloured neither red
nor blue. Rule R1-(ii) is safe, as a vertex that is adjacent to a red vertex that already has a
blue neighbour must be coloured red, so it cannot also be adjacent to two blue vertices. For
the same reason, R1-(iii) is safe. Finally, R1-(iv) is safe, as a vertex that is adjacent to two
red vertices must be coloured red, so it cannot also be adjacent to two blue vertices.

Rule R2-(i) is safe. Any vertex adjacent to a red vertex that already has a blue neighbour
or to two red vertices must be coloured red. If such a vertex is adjacent to a vertex coloured

16 Finding Matching Cuts in H-Free Graphs

blue already, it will have its blue neighbour and thus must be added to S, whilst its blue
neighbour must be added to T . For the same reason, R2-(ii) is safe as well.

Rule R3-(i) is safe. Every red vertex must have a (unique) blue neighbour, and vice versa.
For the same reason, R3-(ii) is safe.

Rule R4-(i) is safe. In the first case, x will only have red neighbours in G (as x is coloured
red, x needs a blue neighbour as well). In the second case, x will have two blue neighbours,
while x is coloured red. This is not possible. For the same reason R4-(ii) is safe as well.

Rule R5-(i) is safe. As v will be adjacent to a blue and red neighbour, w cannot be its
matching neighbour. As w has degree 1, we find that w cannot be matched. Rule R5-(ii)
is safe as well. For a contradiction, suppose that we would put v in Y . Then the matched
neighbour of v is the neighbour of v that belongs to x. Hence, again we find that w does not
have a matched neighbour. So we must put v in X, and then v and w will be matched to
each other. For the same reason, R5-(iii) is safe.

Rule R6-(i) is safe. Suppose that we put v in Y , that is, v will be coloured blue.
Consequently, v has its matching neighbour in X. This means that the two neighbours of v
in F will be coloured blue. As F is a cycle on four vertices, the fourth vertex will get colour
blue as well. By assumption, F contains a vertex that is not adjacent to a vertex in X. This
vertex is coloured blue, but will not have a red neighbour. We conclude that v must be put
in X. For the same reason, R6-(ii) is safe as well.

Rule R7-(i) is safe. Suppose that we put v in X, so v will be coloured red, just like w′.
Hence, w is adjacent to two red vertices, and must be coloured red as well. As w′ is the only
neighbour of w in X ∪ Y , we find that every other neighbour of w is in F . As {v} dominates
F , this means that such a neighbour of w is adjacent not only to w but also to v, and hence
must be coloured red. This means that w will not have any blue neighbour. We conclude
that v must be put in Y . For the same reason, R7-(ii) is safe as well. J

Assume that exhaustively applying rules R1–R7 on a starting pair (S′, T ′) did not lead to a
no-answer but to a 4-tuple (S, T,X, Y). Then we call (S, T,X, Y) an intermediate 4-tuple.
The first part of the next lemma follows from Lemma 14. The second part is straightforward.

I Lemma 15. Let G be a graph with a starting pair (S′, T ′) with core (S′′, T ′′) and a resulting
intermediate 4-tuple (S, T,X, Y). Then G has a perfect red-blue (S′′, T ′′, S′, T ′)-colouring
if and only if G has a perfect red-blue (S, T,X, Y)-colouring. Moreover, (S, T,X, Y) can be
obtained in polynomial time.

Proof. The first part of the lemma follows from Lemma 14 and our initialisation. To prove
the running time statement, we first note that each application of R1–R7 takes polynomial
time. For each rule we can also check in polynomial time if it can be applied. Moreover,
after each application of a rule we either find a no-answer or reduce the size of at least one
of the sets X, Y , Z. Hence, we obtained (S, T,X, Y) in polynomial time. J

We now describe the structure of a graph with a 4-tuple (S, T,X, Y).

I Lemma 16. Let G be a graph with an intermediate 4-tuple (S, T,X, Y). Then:
(i) every vertex in S has exactly one neighbour in Y , which belongs to T ;
(ii) every vertex in T has exactly one neighbour in X, which belongs to S;
(iii) every vertex in X \ S has no neighbour in Y ;
(iv) every vertex in Y \ T has no neighbour in X;
(v) every vertex in V \ (X ∪ Y) has no neighbour in S ∪ T , at most one neighbour in X \ S

and at most one neighbour in Y \ T .

F. Lucke and D. Paulusma and B.Ries 17

Proof. Let Z = V \ (X ∪ Y). We prove each of the statement below one by one.

Proof of (i). For a contradiction, first assume that some vertex u in S has no neighbour
in T . Then u has no neighbour in Y \ T either, else we would have applied R3. However,
now we would have applied R4 (and returned a no-answer). Hence, every vertex in S has
a neighbour in T ⊆ Y . If a vertex in S has more than one neighbour in Y , then we would
have applied R4 as well.

Proof of (ii). Statement (ii) follows by symmetry: we can use the same arguments as in the
proof of (i).

Proof of (iii). Let u ∈ X \ S. If u has a neighbour in Y , then we would have applied R3.
Hence, u has no neighbours in Y .

Proof of (iv). Statement (iv) follows by symmetry: we can use the same arguments as in the
proof of (iii).

Proof of (v). Let u ∈ Z. If u is adjacent to a vertex in S ∪ T , then we would have applied
R2. If u is adjacent to two vertices in X \ S or to two vertices in Y \ T , then we would also
have applied R2. J

Let (S, T,X, Y) be an intermediate 4-tuple of a graph G. Let Z = V \ (X ∪ Y). A red-
blue (S, T,X, Y)-colouring of G is monochromatic if all connected components of G[Z] are
monochromatic. Rules R8-R11 preserve this property; some of them were also used in [21, 23].

R8. Let v ∈ Z. If v is not adjacent to any vertex of X ∪ Y , then return no.

R9. Let v ∈ Z be a vertex in a connected component F of G[Z] such that v has only one
neighbour w in X ∪ Y .

(i) If w ∈ X, then put every vertex of F in Y and also add every vertex of F to T and
every neighbour of every vertex of F in X to S.

(ii) If w ∈ Y , then put every vertex of F in X and also add every vertex of F to S and
every neighbour of every vertex of F in Y to T .

R10. Let v ∈ (X ∪ Y) \ (S ∪ T) and F be a connected component of G[Z] such that v has two
neighbours in F .

(i) If v ∈ X \ S, then put every vertex of F in X, and also add every vertex of F to S
and every vertex of every neighbour of F in Y \ T to T .

(ii) If v ∈ Y \ T , then put every vertex of F in Y , and also add every vertex of F to T
and every vertex of every neighbour of F in X \ S to S.

R11. Let v ∈ (X ∪ Y) \ (S ∪ T) and F be a connected component of G[Z] such that v has one
neighbour in F that is the only neighbour of v in Z.

(i) If v ∈ X \ S and v is not adjacent to Y , then put every vertex of F in Y , and also add
every vertex of F to T and every vertex of every neighbour of F in X \ S to S.

(ii) If v ∈ Y \ T and v is not adjacent to X, then put every vertex of F in X, and also
add every vertex of F to S and every vertex of every neighbour of F in Y \ T to T .

A propagation rule is mono-safe if the input graph has a (monochromatic) perfect red-blue
(S, T,X, Y)-colouring before the application of the rule if and only if it has so after the
application of the rule. The following lemma is not difficult to prove.

I Lemma 17. Rules R8–R11 are mono-safe.

18 Finding Matching Cuts in H-Free Graphs

Proof. Let G be a connected graph with a monochromatic perfect red-blue (S, T,X, Y)-
colouring. First recall that, by definition, vertices in X will be coloured red by every red-blue
(S, T,X, Y)-colouring, whilst vertices of Y will be coloured blue, and moreover that every
(red) vertex in S has exactly one (blue) neighbour in T , and vice versa. The colour of the
vertices in Z still has to be decided.

Rule R8 is mono-safe. Let F be the connected component of G[Z] that contains v. Then
all neighbours of v belong to F , which must be monochromatic. Thus the neighbours of v
are coloured either all red or all blue. Hence, v will not have the required neighbour with a
different colour than itself.

Rule R9-(i) is mono-safe. As all vertices in F will be coloured with the same colour, this
means that w must receive a different colour than v. Hence, as w is coloured red, we find
that v, and thus all other vertices of F , must be coloured blue. As every vertex of F only has
neighbours in F and in X ∪ Y , we find that all neighbours of every vertex in F are coloured.
Hence, we can identify the unique red neighbours of the vertices of F , which in turn will be
the unique blue neighbours of these vertices. For the same reason Rule R9-(ii) is mono-safe
as well.

Rule R10-(i) is mono-safe. All vertices in F will be coloured with the same colour and at
least two of them are adjacent to v. Hence, the vertices in F must all get the same colour as
the colour of v, which is red. Just as in the previous rule, we can now identify the unique
blue neighbours of the vertices of F , which in turn will be the unique red neighbours of these
vertices. For the same reason Rule R10-(ii) is safe as well.

Rule R11-(i) is mono-safe. Let w be the neighbour of v in F . Then all other neighbours
of v belong to X; else v would have a neighbour in Y and we would have applied R3. As all
vertices in X are coloured red, this means that w must be coloured blue. Hence, as every
vertex of F will be coloured the same, every vertex of F will be coloured blue. Just as in
the previous two rules, we can now identify the unique red neighbours of the vertices of F ,
which in turn will be the unique blue neighbours of these vertices. For the same reason Rule
R11-(ii) is mono-safe. J

Suppose exhaustively applying rules R1–R11 on an intermediate 4-tuple (S, T,X, Y) did
not lead to a no-answer but to a 4-tuple (S∗, T ∗, X∗, Y ∗). We call (S∗, T ∗, X∗, Y ∗) the
final 4-tuple. The first part of Lemma 18 follows from Lemma 17. The second part is
straightforward.

I Lemma 18. Let G be a graph with an intermediate 4-tuple (S, T,X, Y) and a resulting final
4-tuple (S∗, T ∗, X∗, Y ∗). Then G has a monochromatic perfect red-blue (S, T,X, Y)-colouring
if and only if G has a monochromatic perfect red-blue (S∗, T ∗, X∗, Y ∗)-colouring. Moreover,
(S∗, T ∗, X∗, Y ∗) can be obtained in polynomial time.

Proof. The first part of the lemma follows from Lemma 17 and the fact that (S∗, T ∗, X∗, Y ∗)
results from (S, T,X, Y). To prove the running time statement, we first note that each
application of R1–R11 takes polynomial time. For each rule we can also check in polynomial
time if it can be applied. Moreover, after each application of a rule we either find a no-answer
or reduce the size of at least one of the sets X, Y , Z. Hence, we obtained (S, T,X, Y) in
polynomial time. J

We now describe the structure of a graph with a final 4-tuple (S, T,X, Y); see also Figure 12.

I Lemma 19. Let G be a graph with a final 4-tuple (S, T,X, Y). The following holds:
(i) every vertex in S has exactly one neighbour in Y , which belongs to T ;
(ii) every vertex in T has exactly one neighbour in X, which belong to S;

F. Lucke and D. Paulusma and B.Ries 19

T

S

Y

X

Figure 12 A red-blue (S, T, X, Y)-colouring of a graph with a final 4-tuple (S, T, X, Y).

(iii) every vertex in X \ S has no neighbour in Y , at least two neighbours in V \ (X ∪ Y) but
no two neighbours in the same connected component of G[V \ (X ∪ Y)];

(iv) every vertex in Y \ T has no neighbour in X, at least two neighbours in V \ (X ∪ Y) but
no two neighbours in the same connected component of G[V \ (X ∪ Y)];

(v) every vertex of V \ (X ∪ Y) has no neighbour in S ∪ T , exactly one neighbour in X \ S
and exactly one neighbour in Y \ T .

Proof. Let Z = V \ (X ∪ Y). We prove each of the statement below one by one.

Proof of (i). For a contradiction, first assume that some vertex u in S has no neighbour
in T . Then u has no neighbour in Y \ T either, else we would have applied R3. However,
now we would have applied R4 (and returned a no-answer). Hence, every vertex in S has
a neighbour in T ⊆ Y . If a vertex in S has more than one neighbour in Y , then we would
have applied R4 as well.

Proof of (ii). Statement (ii) follows by symmetry: we can use the same arguments as in the
proof of (i).

Proof of (iii). Let u ∈ X \ S. If u has a neighbour in Y , then we would have applied R3.
Hence, u has no neighbours in Y . If u has no neighbours in V \ (X ∪ Y), then u would only
have neighbours in X. In that case we would have applied R4 (and returned a no-answer).
If u only has one neighbour in Z, then we would have applied R11. Hence, u has at least
two neighbours in Z. If two neighbours of u in Z belong to the same connected component
of Z, then we would have applied R10.

Proof of (iv). Statement (iv) follows by symmetry: we can use the same arguments as in the
proof of (iii).

Proof of (v). Let u ∈ Z. If u is adjacent to a vertex in S ∪T , then we would have applied R2.
Hence, we find that u is not adjacent to a vertex in S ∪ T . If u is adjacent to two vertices
in X \ S or to two vertices in Y \ T , then we would also have applied R2. If u has exactly
one neighbour in X ∪ Y , then we would have applied R9. If u has no neighbour in X \ S
and no neighbour in Y \ T , then u has no neighbour in X ∪ Y , as we already deduced that
u has no neighbour in S ∪ T . However, then we would have applied R8 (and returned a
no-answer). J

We can now prove a lemma that is the cornerstone for our polynomial-time results.

I Lemma 20. Let G be a graph with a final 4-tuple (S, T,X, Y). Then it is possible to find
in polynomial time a monochromatic perfect red-blue (S, T,X, Y)-colouring of G or conclude
that such a colouring does not exist.

20 Finding Matching Cuts in H-Free Graphs

Proof. Let Z = V \ (X ∪ Y). Let E∗ ⊆ E be the set of edges consisting of all edges with
one end-vertex in (X ∪ Y) \ (S ∪ T) and the other end-vertex in Z. By Lemma 19-(v), we
find that |E∗| = 2|Z|. By Lemma 19-(iii) and (iv), we find that |E∗| ≥ 2|(X ∪ Y) \ (S ∪ T)|.
Hence, |Z| ≥ |(X ∪ Y) \ (S ∪ T)|, and |Z| = |(X ∪ Y) \ (S ∪ T)| if and only if each vertex in
(X ∪ Y) \ (S ∪ T) has exactly two neighbours in Z.

Every vertex u ∈ Z still needs their matching neighbour v. In order for G to have a
monochromatic perfect red-blue (S, T,X, Y)-colouring, v must be outside S ∪T , so v belongs
to X ∪ Y . By Lemma 19-(v), we find that v ∈ (X ∪ Y) \ (S ∪ T). As matching neighbours
are “private”, |Z| ≤ |(X ∪ Y) \ (S ∪ T)|. We conclude that |(X ∪ Y) \ (S ∪ T)| = |Z|. Our
algorithm checks this in polynomial time and returns a no-answer if |(X ∪Y) \ (S ∪T)| 6= |Z|.

From now on, assume |(X ∪ Y) \ (S ∪ T)| = |Z|. Hence, each vertex in (X ∪ Y) \ (S ∪ T)
has exactly two neighbours in Z. Just like [21], we now construct an instance φ of the
2-Satisfiability problem (2-SAT). Our 2-SAT formula differs from the one in [21] due to
the perfectness requirement. For each connected component C of G[Z], we do as follows.
We define two variables xC and yC , and we add the clause (xC ∨ yC) ∧ (¬xC ∨ ¬yC) to φ.
For each u ∈ (X ∪ Y) \ (S ∪ T), we do as follows. From the above we known that u has
exactly two neighbours v and w in Z. Let C be the connected component of G[Z] that
contains v and D be the connected component of G[Z] that contains w. We add the clause
(xC ∨ xD) ∧ (yC ∨ yD) to φ. This finishes the construction of φ.

We claim that G has a monochromatic perfect red-blue (S, T,X, Y)-colouring if and only
if φ has a satisfying truth assignment. It is readily seen and well known that 2-SAT is
polynomial-time solvable, meaning we are done once we have proven this claim.

First suppose that G has a monochromatic perfect red-blue (S, T,X, Y)-colouring c. By
definition, the vertices in each connected component C of G[Z] are coloured alike. We define
a truth assignment τ as follows. We let xC be true if and only if the vertices of C are coloured
red. We let yC be true if and only if the vertices of C are coloured blue. As exactly one of
these options holds, the clause (xC ∨ yC) ∧ (¬xC ∨ ¬yC) is satisfied.

Now consider a clause (xC∨xD)∧(yC∨yD) corresponding to a vertex u ∈ (X∪Y)\(S∪T)
that has a neighbour in each of the connected components C and D of G[Z]. Then, by
Lemma 19-(iii) and (iv), C and D are different connected components of G[Z]. First assume
that u ∈ X \ S. By Lemma 19-(iii), we find that u has no neighbour in Y and thus its blue
neighbour must either be in C or in D. If it is in C, then the neighbour of u in D is coloured
blue, and vice versa. As c is monochromatic, this means that either all vertices of C are
coloured red and all vertices of D are coloured blue, or the other way around. Hence, the
clause (xC ∨xD)∧ (yC ∨yD) is satisfied. If u ∈ Y \T , we can use exactly the same arguments.
We conclude that τ is a satisfying truth assignment.

Now suppose that φ has a satisfying truth assignment τ . For every connected component C
of G[Z], we colour the vertices of C red if xC is true and we colour the vertices of C blue if
yC is true. As τ satisfies (xC ∨ yC) ∧ (¬xC ∨ ¬yC), exactly one of xC or yC is true. Hence,
the colouring of the vertices of Z is well defined.

We also colour all vertices of X red and all vertices of Y blue. We let c be the resulting
colouring. By construction, it is monochromatic. Hence, it remains to show that c is a perfect
red-blue (S, T,X, Y)-colouring. We will do this below.

First, it follows from the definition of a core (S′′, T ′′) that S′′ and T ′′ are non-empty.
Moreover, before applying the reduction rules, we first do an initiation, from which it follows
that S′′ ⊆ S and T ′′ ⊆ T . Hence, at least one vertex of G is coloured red and at least one
vertex of G is coloured blue.

By Lemma 19-(i), every vertex in S has exactly one neighbour in Y . By Lemma 19-(ii),

F. Lucke and D. Paulusma and B.Ries 21

every vertex in T has exactly one neighbour in X. By Lemma 19-(v), no vertex of S ∪ T
is adjacent to a vertex of Z. Hence, the vertices in S ∪ T have exactly one neighbour of
opposite colour.

By Lemma 19-(v), every vertex z ∈ Z has exactly one neighbour in X \ S, which is
coloured red, and exactly one neighbour in Y \ T , which is coloured blue; moreover, z is not
adjacent to any vertex in S ∪ T . Let C be the connected component of G[Z] that contains z.
As c is monochromatic, all vertices of C receive the same colour. Hence, the vertices in Z
have each exactly one neighbour of opposite colour.

Finally, we must verify the vertices in (X ∪ Y) \ (S ∪ T). Let u ∈ (X ∪ Y) \ (S ∪ T).
First assume that u ∈ X \ S, so u is coloured red. We recall that u has exactly two
neighbours v and w in Z. Let C be the connected component of G[Z] that contains u, and
let D be the connected component of G[Z] that contains w. Hence, τ contains the clause
(xC ∨ xD) ∧ (yC ∨ yD). By Lemma 19-(iii), we find that C and D are two distinct connected
components of G[Z]. As τ satisfies (xC ∨ xD) ∧ (yC ∨ yD), the vertices of one of C, D are
coloured red, while the vertices of the other one are coloured blue. By Lemma 19-(iii), we find
that u has no (blue) neighbour in Y . Hence, u has exactly one blue neighbour. If u ∈ Y \ T ,
we can apply the same arguments. We conclude that also the vertices in (X ∪ Y) \ (S ∪ T)
have exactly one neighbour of the opposite colour.

From the above we conclude that c is monochromatic and perfect. J

We apply Lemma 20 in the next result. Its proof is similar but more involved than the one
for Matching Cut on graphs of radius 2 [24].

I Theorem 21. Perfect Matching Cut is polynomial-time solvable for graphs of radius
at most 2.

Proof. Let G be a graph of radius r at most 2. If r = 1, then G has a vertex that is adjacent
to all other vertices. In this case G has a perfect matching cut if and only if G consists
of two vertices with an edge between them. From now on, assume that r = 2. Then G

has a dominating star H, say H has centre u and leaves v1, . . . , vs for some s ≥ 1. By
Observation 5 it suffices to check if G has a perfect red-blue colouring.

We first check if G has a perfect red-blue colouring in which V (H) is monochromatic. By
Lemma 13 this can be done in polynomial time. Suppose we find no such red-blue colouring.
Then we may assume without loss of generality that a perfect red-blue colouring of G (if it
exists) colours u red and exactly one of v1, . . . , vs blue. That is, G has a perfect red-blue
colouring if and only if G has a perfect red-blue ({u}, {vi}, {u}, {vi})-colouring for some
i ∈ {1, . . . , s}. We consider all O(n) options of choosing which vi is coloured blue.

For each option we do as follows. Let vi be the vertex of v1, . . . , vs that we coloured blue.
We define the starting pair (S′, T ′) with core (S′, T ′), where S′ = {u} and T ′ = {vi}. We
now apply rules R1–R7 exhaustively. The latter takes polynomial time by Lemma 15. If this
exhaustive application leads to a no-answer, then by Lemma 15 we may discard the option.
Suppose we obtain an intermediate 4-tuple (S, T,X, Y). By again applying Lemma 15, we
find that G has a perfect red-blue ({u}, {vi}, {u}, {vi})-colouring if and only if G has a
perfect red-blue (S, T,X, Y)-colouring. By R2-(i) and the fact that u ∈ S′ ⊆ S we find that
{v1, . . . , vs} \ {vi} belongs to X.

Suppose that G has a perfect red-blue (S, T,X, Y)-colouring c such that G[V (G)\(X∪Y)]
has a connected component D that is not monochromatic. Then D must contain an edge uv,
where u is coloured red and v is coloured blue. Note that v cannot be adjacent to vi, as
otherwise v would have been in Y by R3 (since vi ∈ T ′ ⊆ T). As H is dominating, this
means that v must be adjacent to a vertex w ∈ V (H) \ {vi} = {u, v1, . . . , vs} \ {vi}. As

22 Finding Matching Cuts in H-Free Graphs

u ∈ S′ ⊆ S ⊆ X and {v1, . . . , vs} \ {vi} ⊆ X, we find that w ∈ X by R2-(i) and thus will be
coloured red. However, now v being coloured blue is adjacent to two red vertices (namely u
and w), contradicting the validity of c.

From the above we conclude that every perfect red-blue (S, T,X, Y)-colouring of G is
monochromatic. We now apply rules R1–R11 exhaustively. The latter takes polynomial time
by Lemma 18. If this exhaustive application leads to a no-answer, then by Lemma 18 we may
discard the option. Suppose we obtain a final 4-tuple (S∗, T ∗, X∗, Y ∗). By again applying
Lemma 18, we find that G has a monochromatic perfect red-blue (S, T,X, Y)-colouring if
and only if G has a monochromatic perfect red-blue (S∗, T ∗, X∗, Y ∗)-colouring. We can now
apply Lemma 20 to find in polynomial time whether or not G has a monochromatic perfect
red-blue (S∗, T ∗, X∗, Y ∗)-colouring. The correctness of our algorithm follows from the above
arguments. As we branch O(n) times and each branch takes polynomial time to process, the
total running time of our algorithm is polynomial. J

We now consider P6-free graphs. As a consequence of Theorem 4, a P6-free graph either has
a small domination number, in which case we use Lemma 12, a monochromatic dominating
set, in which case we use Lemma 13, or it has radius 2, in which case we use Theorem 21.

I Theorem 22. Perfect Matching Cut is polynomial-time solvable for P6-free graphs.

Proof. Let G be a connected P6-free graph. By Theorem 4, we find that G has a dominating
induced C6 or a dominating (not necessarily induced) complete bipartite graph Kr,s. By
Observation 5 it suffices to check if G has a perfect red-blue colouring.

If G has a dominating induced C6, then G has domination number at most 6. In that case
we apply Lemma 12 to find in polynomial time if G has a perfect red-blue colouring. Suppose
that G has a dominating complete bipartite graph H with partition classes {u1, . . . , ur} and
{v1, . . . , vs}. We may assume without loss of generality that r ≤ s.

If r ≥ 2 and s ≥ 3, then any starting pair ({ui}, {vj}) yields a no-answer. Hence, V (H)
is monochromatic for any perfect red-blue colouring of G. This means that we can check in
polynomial time by Lemma 13 if G has a perfect red-blue colouring.

Now assume that r = 1 or s ≤ 2. In the first case, G has a (not necessarily induced)
dominating star and thus G has radius 2, and we apply Theorem 21. In the second case,
r ≤ s ≤ 2, and thus G has domination number at most 4, and we apply Lemma 12. Hence, in
both cases, we find in polynomial time whether or not G has a perfect red-blue colouring. J

For our last result we again use Lemma 20.

I Theorem 23. Let H be a graph. If Perfect Matching Cut is polynomial-time solvable
for H-free graphs, then it is so for (H + P4)-free graphs.

Proof. Assume that Perfect Matching Cut can be solved in polynomial time for H-free
graphs. Let G be a connected (H + P4)-free graph. Say, G has an induced subgraph G′ that
is isomorphic to H; else we are done by our assumption. Let G∗ be the graph obtained from
G after removing every vertex that belongs to G′ or that has a neighbour in G′. As G′ is
isomorphic to H and G is (H + P4)-free, we find that G∗ is P4-free.

We use Observation 5-(iii) and search for a perfect red-blue colouring. We define
n = |V (G)|, m = |E(G)|. Following our approach, we need a starting pair (S′, T ′) with core
(S′′, T ′′). By definition, |S′′| = |T ′′| ≥ 1. Hence, we consider all O(m) options of choosing an
edge uv from E(G), one of whose end-vertices we colour red (say u, so u ∈ S′′) and the other
one blue (say v, so v ∈ T ′′). Afterwards, for each (uncoloured) vertex in G′ we consider all
options of colouring it either red or blue. As G′ is isomorphic to H, the number of distinct

F. Lucke and D. Paulusma and B.Ries 23

options is a constant, namely 2|V (H)|. Now, for every red (blue) vertex of G′ with no blue
(red) neighbour, we consider all O(n) options of colouring exactly one of its neighbours blue
(red). Hence, afterwards each vertex of V (G′) ∪ N(V (G′)) is either coloured red or blue.
This leads to O(m2|V (H)|n|V (H)|) options (branches), which we handle one by one.

Consider an option as described above. Let S′ consist of u and all red vertices of
V (G′)∪N(V (G′)), and let T ′ consist of v and all blue vertices of V (G′)∪N(V (G′)). In this
way we obtain a starting pair (S′, T ′) with core (S′′, T ′′). We apply rules R1-R7 exhaustively.
If we find a no-answer, then we can discard the option by Lemma 15. Else we found in
polynomial time an intermediate 4-tuple (S, T,X, Y), such that G has a perfect red-blue
(S′′, T ′′, S′, T ′)-colouring if and only if G has a perfect red-blue (S, T,X, Y)-colouring.

Consider a connected component F of G− (X ∪ Y), for which the following holds:

1. F contains two distinct vertices u and v, each with no neighbours in X ∪Y and moreover,
v is dominating F ; and

2. every vertex in F − {u, v} has a neighbour in both X and Y .

As G is connected, the fact that u and v have no neighbours in X ∪Y implies that F −{u, v}
is non-empty. Every vertex in F − {u, v} has a neighbour in both X and Y and thus their
matching neighbour is not in F . Hence, all vertices of F − {u} are coloured alike in every
perfect red-blue (S, T,X, Y)-colouring of G. Hence, we can safely remove u and v. Then,
after finding a monochromatic perfect red-blue (S, T,X, Y)-colouring of G− {u, v} we give v
the same colour as the vertices of F − {u, v} and u the opposite colour.

We also perform this operation for all other connected components of G− (X ∪ Y) that
have the above two properties. This yields, in polynomial time, a new but equivalent problem
instance, which we denote by G again.

B Claim. Every perfect red-blue (S, T,X, Y)-colouring of G is monochromatic.

Proof. In order to see this claim, let F be a connected component ofG−(X∪Y). If |V (F)| = 1,
then F will be monochromatic. Assume |V (F)| ≥ 2. As V (G′) ∪N(V (G′)) ⊆ S′ ∪ T ′ and
S′ ⊆ X and T ′ ⊆ Y , we find that V (F) belongs to G∗. Since G∗ is P4-free, F is P4-free. It
is well-known (see e.g. Lemma 2 in [19]) that every connected P4-free graph has a spanning
complete bipartite subgraph K. Say, K is isomorphic to Kk,` for some integers 1 ≤ k ≤ `.

If k ≥ 2 and ` ≥ 3, then F must be monochromatic. Now suppose that k = ` = 2, so F
contains a C4 as spanning subgraph. If K contains a vertex u that has a neighbour in both
X and Y , then the matching neighbour of u is in X ∪ Y , so not in F . Hence, the neighbours
of u in F must receive the same colour as u, which means that the fourth vertex of F must
also receive the same colour as u (if that vertex is not adjacent to u, then it will be adjacent
to the two neighbours of u in F , as F contains a spanning C4). So F is monochromatic.

We conclude that every vertex of F is adjacent to at most one vertex of X ∪ Y . As G is
connected, F has at least one vertex v with a neighbour w in X ∪ Y , say w ∈ X. Then the
other three vertices of F must also have a neighbour in X (and thus no neighbour in Y), else
we would have applied R6. The only way we can extend the red-blue (S, T,X, Y)-colouring to
a perfect red-blue colouring of G is by colouring each vertex of F blue, so F is monochromatic.

It remains to consider the case where k = 1 and ` ≥ 1. In this case F contains a vertex v
such that {v} dominates F . Then, every vertex in F − v has either no neighbours in X ∪ Y
or a neighbour in both X and Y ; else we would have applied R7. Let U be the set of vertices
in F − v with no neighbour in X ∪ Y . As {v} dominates F , every connected component of
F − v is monochromatic. So, v is the matching neighbour of every vertex of U . If |U | ≥ 2,
then G has no perfect red-blue (S, T,X, Y)-colouring so the claim is true. If |U | = 0, then the

24 Finding Matching Cuts in H-Free Graphs

vertices in F − v all have a neighbour both in X and Y . So, they do not have their matching
neighbour in F and thus will receive the same colour as v. Hence, F is monochromatic.
Assume U = {u}.

If v is adjacent to a vertex in X and to a vertex in Y , then its matching neighbour is
in X ∪ Y , so not in F . As {v} dominates F , this means that F must be monochromatic.
Hence, v is adjacent to at most one vertex of X ∪ Y .

Note that by construction, v is adjacent to exactly one vertex w of X ∪ Y . Then u has
at least one neighbour in F − v; else we would have applied R5. Let u′ be an arbitrary
neighbour of u in F − v. As both u and u′ are adjacent to v, it follows that u, u′, v are
coloured alike. Hence, u has no matching neighbour. This means that G has no perfect
red-blue (S, T,X, Y)-colouring and the claim is true. C

We now apply rules R1–R11 exhaustively. This takes polynomial time by Lemma 18. If this
leads to a no-answer, then by Lemma 18 we may discard the option. Suppose we obtain
a final 4-tuple (S∗, T ∗, X∗, Y ∗). By Lemma 18, G has a monochromatic perfect red-blue
(S, T,X, Y)-colouring if and only if G has a monochromatic perfect red-blue (S∗, T ∗, X∗, Y ∗)-
colouring. We apply Lemma 20 to find in polynomial time if the latter holds. If so, we are
done by the Claim, else we discard the option.

The correctness of our algorithm follows from its description. As the total number of
branches is O(m2|V (H)|n|V (H)|) and we can process each branch in polynomial time, the
total running time of our algorithm is polynomial. Hence, we have proven the theorem. J

5 Conclusions

We found new results on H-free graphs for three closely related edge cut problems: the
classical Matching Cut problem and its variants, Disconnected Perfect Matching
and Perfect Matching Cut. We summarized all known and new results for H-free graphs
in Theorems 1–3. Due to our systematic study we are now able to identify some interesting
open questions.

First, is there a graph H for which the problems behave differently on H-free graphs?
The graph H = 4P5 is a potential candidate if one can generalize Theorem 23. Also, does
there exist, just as for the other two problems, a constant r such that Perfect Matching
Cut is NP-complete for Pr-free graphs? Moreover, are Matching Cut and Disconnected
Perfect Matching, just like Perfect Matching Cut, NP-complete for graphs of girth g,
also if g ≥ 6 (cf. [21] and [4], respectively)? In particular, if this holds for Disconnected
Perfect Matching, then Disconnected Perfect Matching would be NP-complete
for H-free graphs whenever H has a cycle, just like the other two problems.

First, as can be noticed from Theorems 1–3, our knowledge on the complexity of the
three problems is different. In particular, does there exist a constant r such that Perfect
Matching Cut is NP-complete for Pr-free graphs? For the other two problems such a
constant exists. For Matching Cut we improved the previous value r = 27 [13] to r = 19
and for Disconnected Perfect Matching we showed that we can take r = 23, addressing
a question in [4]. We expect that these values of r might not be tight, but it does not seem
straightforward to improve our current hardness constructions.

Finally, let Maximum Matching Cut be the problem of finding a matching cut with a
maximum number of edges. Recall that Perfect Matching Cut is the “extreme” variant
of this problem, namely when we search for a matching cut with a maximum number of edges.
Does there exist a graph H such that Maximum Matching Cut and Perfect Matching

F. Lucke and D. Paulusma and B.Ries 25

Cut differ in complexity when restricted to H-free graphs? What is the complexity of
Maximum Matching Cut on Pr-free graphs?

References
1 Júlio Araújo, Nathann Cohen, Frédéric Giroire, and Frédéric Havet. Good edge-labelling of

graphs. Discrete Applied Mathematics, 160:2502–2513, 2012.
2 Paul S. Bonsma. The complexity of the matching-cut problem for planar graphs and other

graph classes. Journal of Graph Theory, 62:109–126, 2009.
3 Mieczyslaw Borowiecki and Katarzyna Jesse-Józefczyk. Matching cutsets in graphs of diameter

2. Theoretical Computer Science, 407:574–582, 2008.
4 Valentin Bouquet and Christophe Picouleau. The complexity of the Perfect Matching-Cut

problem. CoRR, abs/2011.03318, 2020.
5 Eglantine Camby and Oliver Schaudt. A new characterization of Pk-free graphs. Algorithmica,

75:205–217, 2016.
6 Chi-Yeh Chen, Sun-Yuan Hsieh, Hoàng-Oanh Le, Van Bang Le, and Sheng-Lung Peng.

Matching cut in graphs with large minimum degree. Algorithmica, 83:1238–1255, 2021.
7 Maria Chudnovsky. The structure of bull-free graphs II and III - A summary. Journal of

Combinatorial Theory, Series B, 102:252–282, 2012.
8 Maria Chudnovsky and Paul D. Seymour. The structure of claw-free graphs. Surveys in

Combinatorics, London Mathematical Society Lecture Note Series, 327:153–171, 2005.
9 Vasek Chvátal. Recognizing decomposable graphs. Journal of Graph Theory, 8:51–53, 1984.
10 Konrad K. Dabrowski, Matthew Johnson, and Daniël Paulusma. Clique-width for hereditary

graph classes. Proc. BCC 2019, London Mathematical Society Lecture Note Series, 456:1–56,
2019.

11 Ajit A. Diwan. Disconnected 2-factors in planar cubic bridgeless graphs. Journal of Combinator-
ial Theory, Series B, 84(2):249–259, 2002. URL: https://www.sciencedirect.com/science/
article/pii/S0095895601920799, doi:https://doi.org/10.1006/jctb.2001.2079.

12 Arthur M. Farley and Andrzej Proskurowski. Networks immune to isolated line failures.
Networks, 12:393–403, 1982.

13 Carl Feghali. A note on matching-cut in Pt-free graphs. Information Processing Letters,
179:106294, 2023.

14 Petr A. Golovach, Matthew Johnson, Daniël Paulusma, and Jian Song. A survey on the
computational complexity of colouring graphs with forbidden subgraphs. Journal of Graph
Theory, 84:331–363, 2017.

15 Petr A. Golovach, Daniël Paulusma, and Jian Song. Computing vertex-surjective homomorph-
isms to partially reflexive trees. Theoretical Computer Science, 457:86–100, 2012.

16 Ronald L. Graham. On primitive graphs and optimal vertex assignments. Annals of the New
York Academy of Sciences, 175:170–186, 1970.

17 Pinar Heggernes and Jan Arne Telle. Partitioning graphs into generalized dominating sets.
Nord. J. Comput., 5(2):128–142, 1998.

18 Danny Hermelin, Matthias Mnich, Erik Jan van Leeuwen, and Gerhard J. Woeginger. Domin-
ation when the stars are out. ACM Transactions on Algorithms, 15:25:1–25:90, 2019.

19 Walter Kern and Daniël Paulusma. Contracting to a longest path in H-free graphs. Proc.
ISAAC 2020, LIPIcs, 181:22:1–22:18, 2020.

20 Dieter Kratsch and Van Bang Le. Algorithms solving the matching cut problem. Theoretical
Computer Science, 609:328–335, 2016.

21 Hoàng-Oanh Le and Van Bang Le. A complexity dichotomy for matching cut in (bipartite)
graphs of fixed diameter. Theoretical Computer Science, 770:69–78, 2019.

22 Van Bang Le and Bert Randerath. On stable cutsets in line graphs. Theoretical Computer
Science, 301:463–475, 2003.

https://www.sciencedirect.com/science/article/pii/S0095895601920799
https://www.sciencedirect.com/science/article/pii/S0095895601920799
https://doi.org/https://doi.org/10.1006/jctb.2001.2079

26 Finding Matching Cuts in H-Free Graphs

23 Van Bang Le and Jan Arne Telle. The Perfect Matching Cut problem revisited. Proc. WG
2021, LNCS, 12911:182–194, 2021.

24 Felicia Lucke, Daniël Paulusma, and Bernard Ries. On the complexity of Matching Cut for
graphs of bounded radius and H-free graphs. CoRR, abs/2204.07129, 2022.

25 Barnaby Martin, Daniël Paulusma, and Siani Smith. Hard problems that quickly become very
easy. Information Processing Letters, 174:106213, 2022.

26 Augustine M. Moshi. Matching cutsets in graphs. Journal of Graph Theory, 13:527–536, 1989.
27 Maurizio Patrignani and Maurizio Pizzonia. The complexity of the matching-cut problem.

Proc. WG 2001, LNCS, 2204:284–295, 2001.
28 Bert Randerath and Ingo Schiermeyer. Vertex colouring and forbidden subgraphs - A survey.

Graphs and Combinatorics, 20:1–40, 2004.
29 Tatjana Schmidt. Computational complexity of SAT, XSAT and NAE-SAT for linear and

mixed Horn CNF formulas. PhD thesis, Universität zu Köln, 2010.
30 Pim van ’t Hof and Daniël Paulusma. A new characterization of P6-free graphs. Discrete

Applied Mathematics, 158:731–740, 2010.

	1 Introduction
	1.1 Known Results
	1.2 New Results

	2 Preliminaries
	3 Our NP-Completeness Results
	4 Our Polynomial Results
	5 Conclusions

