
ar
X

iv
:2

20
7.

07
55

9v
1 

 [
m

at
h.

D
G

] 
 1

5 
Ju

l 2
02

2

Polyhedral approximations

of Riemannian manifolds

Anton Petrunin

Abstract

We give a condition on the curvature tensors of Riemannian manifolds

that admit Lipschitz approximation by polyhedral metrics with curvature

bounded below or above.

We show that this condition is also sufficient for the existence of local

approximations. We conjecture that it is also sufficient for the global

approximations and prove it in some special cases.

Introduction

Positive cosectional curvature. Let Em denotes m-dimensional Euclidean
space. Denote by A4(Em) the space of all curvature tensors of Riemannian
manifolds on the tangent space Em. The O(m)-rotations of Em induce isometric
rotations of space of tensors in A4(Em). The subset of A4(Em) will be called
$\O (m)$-invariant  if it is invariant with respect to these rotations.

Let QS2×Rm−2 be the curvature tensor of S2×Rm−2 with the standard metric.
Denote by S∗ the minimal convex O(n)-invariant cone in A4(Em) that contains
QS2×Rm−2 .

Let M be a Riemannian manifold and p ∈ M ; denote by Rmp the curvature
tensor of M at p. We say that cosectional curvature  of M at p is at least
(at most) κ if

Rmp − κ·QSm ∈ S∗ or, respectively, − Rmp − κ·QSm ∈ S∗,

where QSm denotes the curvature tensor of unit m sphere Sm. Briefly, these
conditions can be written as cosec(Rmp) > κ and cosecp > κ or respectively
cosec(Rmp) 6 κ and cosecp 6 κ. The reason for the name cosectional will
become clear in 1.E.

We will write cosecM > κ (or cosecM 6 κ) if cosecp > κ (respectively,
cosecp 6 κ) for any point p ∈ M .

The following theorem gives an if-and-only-if condition for the existence of
local approximations of a Riemannian manifold by polyhedral spaces with a
lower curvature bound.

Recall that a length-metric space is called $\kappa $-polyhedral  if it admits a
triangulation such that each simplex is isometric to a simplex in the model
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space of curvature κ. The 0-polyhedral spaces are called Euclidean polyhedral spaces
 , the 1-polyhedral spaces are called spherical polyhedral spaces
, and the (−1)-polyhedral spaces are called hyperbolic polyhedral spaces
.

0.1. Local Theorem. Let Pn be a sequence of m-dimensional κ-polyhedral
spaces with curvature > κ in the sense of Alexandrov. Assume Pn Lipschitz
converges to a Riemannian manifold M , then cosecM > κ.

Moreover, if M is a Riemannian manifold with cosecM > κ + ε for some
ε > 0, then each point of M has a neighborhood that is a Lipschitz limit of a
sequence of polyhedral spaces with curvature > κ.

0.2. Global theorem. Let M be Riemannian m-manifold with cosecM >

> κ+ ε for some ε > 0. Assume that M (or its finite cover) has a stably trivial
tangent bundle. Then M admits a Lipschitz approximation by a sequence of
m-dimensional κ-polyhedral metrics with curvature > κ.

We expect that the condition on the tangent bundle is not essential. The
simplest interesting example that is not covered by the theorem is CP2 — the
complex projective plane with the canonical metric. This problem is discussed
further in Section 4.

The global theorem can be reduced to the cases κ = {−1, 0, 1}. In the first
and last cases using rescaling one can get an approximation of (M, g) with poly-
hedral metrics with curvature > ∓1. In case κ = 1, the condition cosecM > 1
implies, in particular, that the curvature operator of M is strictly positive (see
1.E). In particular, the Micallef–Moore theorem [13] implies that universal cover

M̃ of M has to be homeomorphic (and by Böhm–Wilking theorem [3] diffeo-

morphic) to the standard sphere. In particular, M̃ has stably trivial tangent
bundle. Therefore we get the following:

0.3. Corollary. A complete Riemannian m-dimensional manifold M admits
a Lipschitz approximation by spherical polyhedral metrics with curvature > 1 if
and only if cosecM > 1.

About the proofs. The necessity of the curvature bound follows from the
fact that all curvature of a polyhedral metric stays on hyperedges; that is, the
simplexes of codimension 2 of the triangulation of the polyhedral space. Around
every hyperedge, the metric looks like C×Rm−2, where C is a two-dimensional
cone. Thus the curvature at the vertex of C looks like the curvature of S2

with zero radius, and this allows us to view the curvature at the edge as the
curvature of S2×Rm−2 (which is (x∧y)2) multiplied by a Hausdorff measure of
edge. If M is approximated by polyhedral metrics, then the curvature tensors
of different edges could mix with each other; that is, the limit manifold M must
have curvature tensor that is a convex combination of the curvatures of the
above form; in other words, cosecM > 0.

It gives only an idea; the real proof is very technical. This part of the proof
is not included in this paper. In smooth settings, this work was recently done
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by Nina Lebedeva and the author [10]. The proofs in polyhedral settings are
essentially the same. Both parts are based on Perelman’s unpublished result
that is discussed in Appendix B.

To prove the sufficient condition, we construct an isometric embedding of
(Mm, g) into R

q such that its image is an intersection of q −m locally convex
hypersurfaces with obtuse angles between their outer normals at any point ofM .
This condition on the angles alone implies cosecM > 0.

Next, we consider an approximation of convex hypersurfaces by convex poly-
hedral hypersurfaces with the same condition on the angles between the outer
normals. The needed polyhedral approximation is the intersection of these poly-
hedral hypersurfaces. That proves the local theorem.

Now let us describe the idea for the global theorem. For simplicity assume
that M is simply-connected. Using that TM is stably trivial we realize M
as an intersection of open convex hypersurfaces with the same conditions on
angles, and then do the same approximation as above. The proof of this last
representation is technical. Note that if such representation exists, then NM ,
the normal bundle of M , is trivial; in particular, the tangent bundle TM should
be stably trivial. The latter explains how the condition on the tangent bundle
in the global theorem comes into the game.

Acknowledgments. The main part of this work was done during my stay at
the IHES in 1999–2000. I would like to thank this institute for its support and
hospitality. I want to thank Grigory Perelman for sharing ideas and making
me interested in this problem long before this publication; Vladimir Voevodsky
for bringing the paper of David Hilbert to my attention. I want to express my
very special thanks to Jost Eschenburg and Sergei Kozlov who constructed for
me necessary examples of curvature tensors and pulled me out of a dead-end in
this research. I want to thank Rostislav Matveyev, Dmitri Panov, and Thomas
Sharpe for their helpful and interesting conversations and letters.

1 Notation, definitions, and preliminaries

1.A. Polyhedral spaces with curvature bounded below or above.
A connected simplicial complex P is called pseudomanifold if the link of

each simplex in P is connected or S0 = {−1, 1}.
Let us denote byMq [κ] the q-dimensional simply connected space of constant

curvature κ. A pseudomanifold P equipped with a metric such that each simplex
is isometric to a simplex in Mm[κ] is called $\kappa $-polyhedral space .

A κ-polyhedral space has curvature bounded below if the sum of angles
around any hyperedge (that is, simplex of codimension = 2) is 6 2π. In this
case, the polyhedral space has curvature > κ in the sense of Alexandrov; see [1].

In all that follows we will assume κ = 0, but if it is not specially mentioned
everything below is true for any κ; one only has to exchange Rq to Mq[κ].

1.B. Convex submanifolds of higher codimension.
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1.1. Definition. A submanifold M ⊂ Rq is called locally convex   if for each
point p ∈ M there is a collection of strictly convex hypersurfaces Fi, such that
U =

⋂
i Fi is a neighborhood of p in M and at each point of U the angle between

outward normals to any pair of Fi is obtuse.

Note that we do not assume that the hypersurfaces Fi are closed subsets
in Rq.

If M is C2-smooth, then the above property is equivalent to the following
condition: at each point x ∈ M there is an orthonormal basis {ei} ⊂ NxM ,
where NM is the normal bundle of M ⊂ Rq, such that the representation of the
second fundamental form s : S2(TxM) → NxM in this basis s =

∑
i ei ·si has

all positive-definite forms si ∈ S2(T).
The latter property can also be reformulated the following way: a smooth

submanifold is locally convex if it can be viewed locally as a convex hypersurface
in a convex hypersurface in . . . in Rq.

It is easy to see that locally convex submanifolds have positive curvature
(for the induced intrinsic metric in the sense of Alexandrov). If the submanifold
is smooth, then one can say more about its curvature tensor; the latter is done
in the following subsection.

1.C. Curvature tensors of submanifolds. Here we introduce an extrinsic
curvature for submanifolds. This subsection is based on [5, 3.1.5].

Let T be a vector space with a scalar product, Tn will denote its tensor power
of degree n, Sn(T) and Λn(T) will denote respectively subspace of symmetric
and antisymmetric elements of Tn. The scalar product on T induces a scalar
product on Tn and all its subspaces.

The following subspace of T4

A4(T) = Λ4(T)⊥ ∩ S2(Λ2(T))

is formed by all possible curvature tensors on the tangent space T. In an equiv-
alent way this subspace A4 ⊂ S2(Λ2(T)) can be described as the space of all
tensors in S2(Λ2(T)) satisfying the first Bianchi identity

Rm(X,Y, Z,W ) + Rm(Y, Z,X,W ) + Rm(Z,X, Y,W ) = 0.

In particular, the subspace A4(T) does not depend on the choice of scalar prod-
uct on T.

Let M ⊂ R
q be a smooth submanifold and sx : S

2(TxM) → NxM its second
fundamental form at x ∈ M ; here TM and NM are tangent and normal bundles
over M respectively. Consider the $\Phi $-curvature tensor

Φ(X,Y, Z,W ) = 〈s(X,Y ), s(Z,W )〉,

here Φ is a section of S2(S2(TM)).
Tensor Φ can be written as

Φ(X,Y, Z,W ) = E(X,Y, Z,W ) + 1
3 ·(Rm(X,Z, Y,W ) + Rm(X,W, Y, Z)) (∗)
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where E is the total symmetrization of Φ; that is,

E(X,Y, Z,W ) = 1
3 ·(Φ(X,Y, Z,W ) + Φ(Y, Z,X,W ) + Φ(Z,X, Y,W )) ∈ S4(T),

and
Rm(X,Y, Z,W ) = Φ(X,Z, Y,W )− Φ(X,W, Y, Z) ∈ A4(T)

is the Riemannian curvature tensor of M .
Tensor E represents the extrinsic curvature  of M . Note that E ∈

S4(T) ⊂ S2(S2(T)). Tensor E measures wrinkling of the embedding — the more
it is wrinkled the bigger E gets. Note that f(X) = E(X,X,X,X) = |s(X,X)|2
is homogeneous polynomial of degree 4 on T and it describes E completely.
Therefore in some sense, the E-tensor is a higher order analog of the metric
tensor.

There are two reasons to use tensors Φ and E:
⋄ The Φ-curvature depends only on elements of T; in particular, it does not
depend on the dimension of the ambient space. This way we can study
isometric embeddings without direct referring to the ambient space.

⋄ Direct construction shows that Φ describes the second fundamental form
s : S2(T) → N up to an isometric rotation of N; that is, two second fun-
damental forms s1, s2 : S

2(T) → N give the same tensor Φ ∈ S2(S2(T)) if
and only if there is an isometric rotation j : N → N, such that j ◦ s1 = s2.
In particular, since Φ is a sum of Riemannian curvature tensors and E,
we have that if (M, g) is a Riemannian manifold and (M, g) → R

q is an
isometric embedding, then E-tensor together with g describes the second
fundamental form at each point up to an isometric rotation.

1.D. Positiveness in S2(S2(T)) and convexity of submanifolds. Most of
this subsection is extracted from [5, 2.4.9B(4)].

Given an open convex cone C in a Euclidean space En, set

C∗ ={r ∈ E
n | 〈r, r′〉 > 0 for all r′ ∈ C } .

1.2. Definition. A tensor Φ ∈ S2(S2(T)) is positive (Φ > 0), if there is a
representation Φ =

∑
i s

2
i , where si are positive-definite forms on T. If i : M →

Rq is a smooth embedding we will write Φ(i) > 0 if the Φ-tensor of i(M) ⊂ Rq

is positive at i(x) for all x ∈ M .

The cone of positive tensors in S2(S2(T)) forms a convex GL(T)-invariant
cone of tensors; that is, this cone is invariant with respect to the action of GL(T)
induced on S2(S2(T)). If dimT > 2, then there are other GL(T) invariant cones
in S2(S2(T)), one of these cones will be of particular interest; it is the cone of
all elements Φ =

∑
i s

2
i for arbitrary elements si ∈ S2(T). This cone describes

all elements of S2(S2(T)) that can appear as Φ-curvature of a submanifold.
Note that existence of representation of the second fundamental form s =

=
∑

i si ·ei with positive-definite si ∈ S2(T) implies, in particular, that Φ =
=

∑
i s

2
i ; that is, Φ > 0. Since Φ-tensor describes the second fundamental form

completely the last property is equivalent to the fact that M ⊂ Rq is stably
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locally convex; that is, if Φ > 0, then M is locally convex in Rq×Rk ⊃ Rq×0 =
= Rq for some k. (Given k ∈ N there are examples of submanifolds M ⊂ Rq

that are not convex as a submanifold in Rq × Rk, but convex as a submanifold
in Rq × Rk+1.)

1.E. Positiveness of curvature tensor and symmetric 4-tensors. The
space S2(S2(T)) splits into two subspaces, the first is S4(T) ⊂ S2(S2(T)) and
the second is A4

+(T) = S4(T)⊥ ∩ S2(S2(T)) which is canonically isomorphic to

space of algebraic curvature tensors A4(T) = Λ4(T)⊥ ∩ S2(Λ2(T).

A4(T). Let S∗ be the cone in A4(T) that consists of all tensors

Rm(X,Y, Z, T ) =
∑

i

(si(X,Z)·si(Y, T )− si(X,T )·si(Y, Z)),

where si are positive elements of S2(T ). We say that such curvature tensors have
positive cosectional curvature  ; this can be written as cosec(Rm) > 0. For
a Riemannian manifold M we will write cosec(Rmp) > 0 or cosecp > 0 if the
curvature tensor at p ∈ M has positive cosectional curvature and cosecM > 0
if the cosectional curvature of M is positive at all p ∈ M .

The curvature tensors with positive cosectional curvature are exactly those
that can be curvature tensors of submanifolds with positive Φ-curvature (equiv-
alently, strictly convex submanifolds; see 1.D); that is,

cosec(Rm) > 0

m
Rm(X,Y, Z,W ) = Φ(X,Z, Y,W )− Φ(X,W, Y, Z) for some Φ > 0.

As you will see, any closed Riemannian manifold M with cosecM > 0 admits a
smooth isometric embedding i : M → Rq with Φ(i) > 0. In fact, we can assume

that q = 1
2 ·(n + 2)·(n + 5), see [5, 3.1.5(A) and 3.1.2(C)]. The closure S∗

of
S∗ can be described as a minimal convex O(T)-invariant cone that contains the
curvature tensor of product metric space S2 × Rn−2.

The dual cone S (see 1.D) consists of curvature tensors with positive sectional
curvature. For a point p in a Riemannian manifold, we will write secp > 0 or
sec(Rmp) > 0 meaning that Rmp ∈ S.

The cones S∗ and S are the smallest and largest GL(T)-invariant cones in
A4(T); other GL(T)-invariant cones lie between S∗ and S. The cone Q of all
curvature tensors with positive curvature operator is one of them; it can be
defined as

Q =

{
R ∈ A4(T) ⊂ S2(Λ2(T))

∣∣∣∣∣ R =
∑

i

ϕ2
i for ϕi ∈ Λ2(T)

}
.

If the dimension is large, then Q 6= S∗. Namely if dimension = 2 or 3, then
Q = S∗, and therefore S = Q = S∗. In dimension 4, we have Q = S∗ and
Q∗ = S. The latter follows from Thorpe's characterization  of curvature
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tensors with positive sectional curvature, namely, if M is positively curved 4-
manifold, then there is a function f onM such that Rmx+f(x)·ωx ∈ S2(Λ2(Tx))
is a section of positive quadratic forms on Λ2(T); here ω denotes the volume
form, a section of Λ4(T) ⊂ S2(Λ2(T)), see [17] for details.

In dimensions 5 and higher, all the inclusions

S ⊂ Q∗ ⊂ Q ⊂ S∗

are strict. Indeed: evidently, the inclusion Q∗ ⊂ Q is strict. The inclusion
S ⊂ Q∗ is strict if and only if so is Q ⊂ S∗. The latter is shown by example,
see [17].1

S4(T). Consider the cone of all forms E ∈ S4(T) such that E =
∑

s◦2i , where
all si are positive-definite and s◦2i denotes the symmetric square of si. It will be
called the cone of positive forms  and denoted by C+. We will write E > 0
if E ∈ C+ ⊂ S4(T). Again, tensor E is positive if it is a symmetric part of a
positive Φ-tensor in S2(S2(T)).2

2 Proofs

I will not give here a proof of the first part of the local theorem for two reasons:
first, it is real pain to write and read, and second, it is not mine. The proof
I have is a modification of Perelman’s unpublished result. Since this result
was never published and (as far as I know) was never written, I discuss it in
Appendix B. (It should be more fun to look at the original proof than at my
compilations.)

Proof of the second part of the local theorem. Let us prove first that if (M, g) is
a Riemannian manifold with cosecM > 0, then (M, g) is isometric to a convex
submanifold in Rq. This is equivalent to the fact that there is an isometric
embedding i : M → Rq, such that Φ(i) > 0 (see 1.D).

1In [6], Gromov states the opposite. He writes “The closer of this cone (given by Q > 0)
[this is, Q in our notations] can be defined as the minimal closed convex O(n)-invariant cone

which contains the curvature of the product metric on S2 × Rn−2 [it is our S
∗

].”. . .
2By the way C+ is also the smallest GL(T)-invariant cone in S4(T). The biggest such cone

C∗

+ consists of all symmetric 4-form E such that

E(X,X,X,X) > 0

for any nonzero X ∈ T. Gromov in [5, 3.1.4] states that a symmetric form in E ∈ S2k(T) is
positive if and only if correspondent quadratic form E(S2(Tk)) → R is positive-definite. In our
notations, it is equivalent to C+ = Q+, and this is equivalent to C∗

+
= Q∗

+
. The cone C∗

+
is the

set of all positive-definite forms in S2k(T); equivalently, it is the set of positive homogeneous
degree 2k polynomials on T. Analogously the cone Q∗

+ is the set of homogeneous degree
2k polynomials on T that can be expressed as a sum of squares. Therefore this statement
is equivalent to the following: each positive polynomial is a sum of squares of polynomials,
and this was shown to be wrong in general. Namely, David Hilbert [8] had shown that this
statement is true only in the following three cases: (i) dimT 6 2 and any k, (ii) k = 1 and
any dimT, (iii) k = 2 and dimT = 3. This does not affect the rest of Gromov’s book, except
that one should always use the C+-sense for positiveness.
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In general, a smooth isometric embedding of (M, g) with cosecM > 0 may
have an indefinite Φ-tensor, but there is a way to make it positive.

Consider any smooth free isometric embedding i : (M, g) → Rq. By Theorem
[5, 3.1.5(A)] for any tensor field E ⊂ S4(T) such that Ex > 0 (see 1.E) at all
x ∈ M one can find a C1-close isometric embedding i′ : (M, g) →֒ R

q, such that
E(i′) = E(i)+E. In particular, one may choose E = c·g◦2 for any c > 0. Since
cosecM > 0, for sufficiently large the c we have Φ(i′) > 0.

(Let us describe a more direct way to construct i′ with E(i′) = E(i)+ c·g◦2.
First construct an isometric embedding j : Rq → Rq′ , such that E(j) = c·h◦2,
where h =

∑q

i=1(dxi)
2 is the unit 2-form on Rq and then take i′ = j ◦ i. One

can construct j on the following way: first choose a collection of linear functions
li : R

q → R such that h◦2 =
∑

i(dli)
4, second consider the diagonal of the

product of the following mappings: a linear mapping L : Rq → R
q and twists

τi : R
q → R2,

τi(x) =
(
ai · sin

(
bi ·li(x)

)
, ai · cos

(
bi ·li(x)

))

with appropriately chosen ai and bi.)
Now, sinceM ⊂ Rq is a convex submanifold, there is an open set U ⊂ M that

is an intersection of locally convex hypersurfaces Fi with obtuse angles between
each pair of outward normals everywhere on U . Approximate each Fi as a convex
polyhedral hypersurface F ε

i keeping the angles obtuse. The intersection Uε of
all F ε

i is a polyhedral submanifold, and it has curvature > 0 (see 1.B). Cutting
subdomains from Uε if necessary one gets the needed approximation.

Proof of the global theorem. Let us first assume that TM is stably trivial. We will
represent our submanifold M as an intersection of locally convex hypersurfaces
with angles between any pair of outward normals > π/2 everywhere on M .
Once it is done, repeating the construction from the local theorem will finish
the proof.

The existence of such representation is equivalent to the existence of a
smooth section of orthonormal bases {ei} in NM such that s =

∑
i siei with all

positive-definite si ∈ S2(T).
Consider a cover Uk, k ∈ {1, 2, . . . , n} of M such that on each Uk there is

a smooth section of orthonormal bases {ei,k} ⊂ NM with the above properties.
Since TM is stably trivial we can assume that NM is a trivial bundle. Therefore
we can extend these bases to allM , and get n bases {ei,k} for all NM . Therefore
at each point we have an isometric rotation Ek,k′ ∈ O(q−m) that sends {ei,k} to
{ei,k′}. Without loss of generality, we can assume that correspondent mapping
Ek,k′ : M → O(q −m) is null-homotopic.

Let us choose a smooth partition of unity uk : M → [0, 1]; so, uk|M\Uk
≡ 0

for any k and
∑

k uk(x) ≡ 1 for all x ∈ M . At each point x ∈ Uk ⊂ M we
have Φx ≡ ∑

i s
2
i,k. Therefore for each x ∈ M we have Φx ≡ ∑

i,k uk(x)·s2i,k.
Consider n·NM = N1M ⊕N2M ⊕· · ·⊕NnM , the sum of n copies of the normal
bundle, take the basis {ei,k} for Nk, and consider the subbundle N∆(M), that is
spanned by (

√
u1 ·ei,1,

√
u2 ·E12ei,1, . . . ,

√
un ·E1nei,1). It is a trivial subbundle

with a trivial orthogonal subbundle. Therefore, there is a bundle isomorphism
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i : n·NM → R(n−1)·(q−m) × NM that is an isometry on each fiber and sends
N∆M to NM . Moreover, if p∆ : Nn → N∆ is the orthogonal projection, then
i ◦ p∆(ei,k) =

√
uk ·ei,k.

Therefore, we get a smooth section of orthonormal bases {ei,k} ⊂ N′M =
= R

(n−1)· dim(Nx) ×NM ; that is, if we had NM as a normal bundle of M ⊂ R
q,

then N′M is a normal bundle of M ⊂ Rq × 0 ⊂ Rq × R(n−1)·(q−m). Now for
each pair of indexes i, k we have a nonnegative quadratic form si,k = 〈s, ei,k〉,
Φx ≡ ∑

i,k uk(x)·s2i,k, and at each point we have at least one quadratic form
that is strictly positive. It is not hard to rotate basis ei,k a little to get a new
smooth section of bases in N′M with representation s =

∑
i,k ei,k ·s′i,k where

each s′i,k is strictly positive.
If TM is not stably trivial, then one still can find an embedding M →֒ Rq

that has positive Φ-curvature at each point. Take a small tubular neighborhood
U of M . Let M̃ be a finite cover of M such that TM̃ is stably trivial. We can
assume that NM̃ is trivial, therefore NM is equivalent to a flat bundle. From
the above, we get the existence of a flat bundle U ′ → U such that the new
induced normal bundle of M with respect to U ′ is trivial. The manifold U ′ is
flat, and repeating the same construction as above proves the theorem.

3 Remarks on curvature bounded above

One can also ask a similar question for approximations by polyhedral spaces
with upper curvature bound in the sense of Alexandrov; see [1].

3.1. Local theorem. Let Pn be a sequence of m-dimensional polyhedral spaces
with curvature 6 κ that Lipschitz converges to a Riemannian manifold (M, g)
of the same dimension, then cosecM 6 κ.

Unfortunately, I cannot find as nice characterization for the global theorem
as in the case of curvature bounded below. Here is what I can do:

3.2. Global theorem. Suppose (M, g) is an m-dimensional Riemannian with
cosecM 6 κ. Assume that M is diffeomorphic to a direct product of manifolds
that care constant negative curvature, then M can be realized as a Lipschitz limit
of a sequence of m-dimensional polyhedral metrics with curvature at most κ+ ε
for arbitrary ε > 0.

The proof of the local theorem is practically the same as for curvature
bounded below. Perelman’s lemma (which is the main technical tool in the
proof) is also true for negative curvature.

The proof of the global theorem is also very similar, but one should consider
embeddings into (noncomplete) flat pseudo-Riemannian manifold that is locally
isometric to Rm,q as a space-like submanifold of maximal dimension m with a
trivial normal bundle. I do not have a complete answer to the question which
manifolds admit such an embedding. If M admits such an embedding, then the
universal cover of M is diffeomorphic to Rm. In particular, M is K(π, 1) space,
but so far I cannot say much useful about π. On the other hand, if M cares a

9



metric of constant negative curvature, then it is a factor of pseudosphere in Rm,1

along some group, and the factor of a little neighborhood of the pseudosphere
by this group gives the needed ambient manifold. Taking the product of such
manifolds one has the needed embeddings for products of such manifolds.

4 Problem section

The opposite question which polyhedral metrics could be smoothed to a Rieman-
nian manifold with positive curvature, is wide open. All examples I know so far
satisfy the following conjecture:

4.1. Conjecture. Any polyhedral metric with curvature > κ can be smoothed
into a Riemannian orbifold with cosectional curvature > κ− ε.

The 2-dimensional case of the conjecture is a corollary of Alexandrov’s em-
bedding theorem [2]. The 3-dimensional case is proved in [9]. The conjecture
would imply, in particular, that any simply connected manifold with positive
cosectional curvature is diffeomorphic to a sphere. Indeed Corollary 0.3 implies
that if M is a Riemannian manifold with cosecM > 1, then it can be approx-
imated by polyhedral spaces Xn with curvature > 1. Therefore the spherical
suspension S(M) is approximated by Σ(Xn) (cf. [7]). From the conjecture, it
would follow that Σ(Xn) is smoothable into a Riemannian orbifold. Therefore
M is a quotient of a sphere.

Another question is whether the condition on stable triviality of the tangent
bundle can be removed from Theorem 0.2. So far, I cannot even construct an
approximation of (CP2, can) by polyhedral metrics with curvature > −ε.

One may also ask whether it is possible to construct an approximation of
(CP2, can) by polyhedral metrics with curvature > 0. This is already a rigid
question, in particular, from Cheeger’s results [4] it is easy to see that any
nonnegatively curved polyhedral metric on CP2 carries a complex structure. As
it was pointed out by Mikhail Gromov, CP2 carries polyhedral metrics with
curvature > 0. For example, if P is a nonnegatively curved polyhedral that is
homeomorphic to S2, then its space of pairs (P × P )/Z2 is homeomorphic to
CP2 and naturally comes with a nonnegatively curved polyhedral metric. This
and many other examples are discussed by Dmitri Panov [14], but they do not
solve our problem.

Can one generalize the Alexandrov embedding theorem? Namely, is it pos-
sible to characterize Riemannian manifolds that are isometric to a complete
convex hypersurface in a complete convex hypersurface in . . . in Rq? Is it true
that any simply connected Riemannian manifold M with cosecM > 0 is iso-
metric to one of those? If M is compact it would imply that any such manifold
is diffeomorphic to the standard sphere, the latter follows from the result of
Christoph Böhm and Burkhard Wilking [3].

Is it possible to characterize m-manifolds that admit embeddings into flat
open (m, q)-pseudo-Riemannian manifold as a space-like surface? (It is easy to
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see that if such an embedding exists, then the universal cover of M is diffeomor-
phic to Rm, plus the first homotopy group must be linear, but I do not think it
is a sufficient condition for the existence of such embedding.)

A Example of positive curvature tensor with

nonpositive cosectional curvature

Here I present calculations of Jost Eschenburg showing that curvature tensor R
of SU(3) with bi-invariant metric has nonnegative curvature operator but it is
not true that cosecM > 0. This gives an example in dimensions > 8, from the
work of Zoltek [17] it follows that such examples exist in dimensions > 5, but
the calculations below are much simpler, and it might be useful if the reader
wants quickly convince himself that such monsters do live.

Consider the adjoint representation ad: su(3) → Λ2(su(3)) for su(3). The
curvature operator of SU(3) with bi-invariant metric has curvature operator
R : Λ2(su(3)) → Λ2(su(3)) which coincides with projection on Im(ad).

Note that if Im(ad) has no simple bi-vectors, then the curvature operator of
SU(3) with bi-invariant metric does not have positive cosectional curvature.

Therefore we only have to show that if 0 6= x ∈ su(3), then adx ∈ Λ2(su(3))
is not a simple bi-vector; that is, x 6= v ∧ w.

It is sufficient to prove it for adx, where x is tangent to a maximal torus
of diagonal elements in a matrix representation. Therefore in the matrix rep-
resentation it looks like x = diag{ai, bi, ci} with a + b + c = 0. Take the
standard real basis in su(3) that comes from matrix form; that is, take A1 =
= diag{i, 0,−i}, A2 = diag{0, i,−i}, take F1 = e2∧e3, F2 = e3∧e1, F3 = e1∧e2
be real and E1 = i·e2 ◦e3, E2 = i·e3 ◦e1, E3 = i·e1 ◦e2 imaginary parts of basis,
here e1, e2, e3 is a basis of C3 where SU(3) acts. By the direct calculation we
have adx = (c − b)·F1 ∧ E1 + (a − c)·F2 ∧ E2 + (b − a)·F3 ∧ E3, now the fact
that bi-vector ϕ ∈ Λ2(T) is simple is equivalent to ϕ ∧ ϕ = 0, and

adx ∧ adx = (c− b)·(a− c)·F1 ∧ E1 ∧ F2 ∧ E2+

+ (a− c)·(b− a)·F2 ∧ E2 ∧ F3 ∧E3+

+ (b− a)·(c− b)·F3 ∧E3 ∧ F1 ∧ E1.

Therefore if adx is simple, then at least two of numbers (c− b), (a− c), (b − a)
are zeros and since a+ b+ c = 0 we have that a = b = c = 0; that is, x = 0.

B Perelman’s theorem and why I need it

In this appendix I will present the proof of one unpublished result of G. Perel-
man; it should be close to the original proof but some steps might differ. It
describes the main idea in the proof of the first part of the local theorem.

Let M be an Alexandrov m-space and U ⊂ M be an open subset. Let
F : U → Rm be a chart F (p) = (x1(p), x2(p), . . . , xm(p)). We say that F is
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convex if each of the coordinate functions xi is convex. The proof of the following
claim easily follows from [16, Proposition 3]

B.1. Claim. Let g be a convex function on U . Suppose that for some convex
chart F : U → Rm we have ∂g

∂xi
< 0 for each i. Then g◦F−1 is a convex function

on F (U). Moreover, for any p ∈ U and v ∈ Tp we have

∇2
vg 6 ∇2

dF (v)

(
g ◦ F−1

)
.

In particular, if S is a level surface of g, and F is distance-nonexpanding,
then

IIS(X,X) 6 IIF (S)(dF (X), dF (X))

for any p ∈ S.

B.2. Definition. Let Xn
GH→ X be a converging sequence of metric spaces and

fn : Xn → X be a correspondent sequence of Hausdorff approximations. We say
that a sequence of measures µn on Xn weakly converges to measure µ on X if
for any continuous function α with compact support on X we have

∫

Xn

α ◦ fn ·µn →
∫

X

α·µ.

B.3. Theorem. Let Mn be a sequence of Riemannian m-manifolds with cur-
vature > κ that Lipschitz converges to a closed Riemannian manifold M . Then
scalar curvature on Mn converges weakly to the scalar curvature on M ; that is,
Scgn ·volgn ⇀ Scg ·volg.

If one has no lower bound for curvature, then the limit of scalar curvatures
might be smaller than the scalar curvature of the limit [12]. It is unknown
whether it could also be bigger.

The following lemma is a partial case of the theorem:

B.4. Lemma. Let Fn be a sequence of smooth convex hypersurfaces in Rm+1

that Hausdorff converges to a smooth convex hypersurface F . Let Sc(F ) and
Sc(Fn) denote scalar curvatures of F and Fn and h(F ), h(Fn) denote the m-
Hausdorff measures of the correspondent hypersurface. Then Sc(Fn)·h(Fn) con-
verges weakly to Sc(F )·h(F )

Proof. Let α be a continuous function with compact support in Rm+1. Let us
denote by Cr(F ) the set of points in Rm+1 that lie on outgoing normal rays
to the hypersurface F on the distance < r to the hypersurface. Let us define
αF : C∞(F ) → R by αF (x) = α(y), where y ∈ F is a closest point on the
hypersurface.

It is well known and easy to see that
∫
Cr(F )

αF ·vol is a polynomial of degree

m on r. Moreover, its quadratic term is exactly r2 ·
∫
F
α·Sc(F )·h(F ).
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If Fn → F , then Cr(Fn) → Cr(F ) and αFn
converge to αF . Therefore,∫

Cr(Fn)
αFn

·vol →
∫
Cr(F ) αF ·vol and the coefficient with r2 of correspondent

polynomials also converge.

Proof of B.3. We first want to construct special distance-like charts in a neigh-
borhood of any point inM together with some nice approximating charts onMn.

B.5. Lemma. Given p ∈ M , v ∈ T∗
p(M), and ε > 0 there is δ > 0, a sequence

Mn ∋ pn → p ∈ M , and sequence of convex functions fn : Bδ(pn) ⊂ Mn → R

that converges to a convex function f : Bδ(p) ⊂ M → R such that dpf = v,
|f ′′| < ε everywhere on Bδ(p).

Proof of B.5. Consider an orthonormal basis {ei} in TpM such that
∑

i ei = c·v.
Take r > 0 an let ai = expp(r·ei). Let f =

∑
i ϕ ◦ distai

, where ϕ(x) =

α· log x−β ·x2 if dimM = 2 and ϕ(x) = α· 1
xn−2 −β ·x2 if dimM > 2. The same

arguments as in [15, 4.3] shows that for appropriately chosen constants α and
β, the function f satisfies the conditions of the lemma in a small ball Bδ(p) .

To construct an approximation of f , construct a sequence ai,n → ai for
each i, and take fn =

∑
i ϕ ◦ distai,n

. Again the same reasoning as in [15, 4.3]
proves that there is ε > 0 such that for large n the function fn is convex in a
δ-neighborhood of pn.

Choose any orthonormal basis v1, . . . , vm ∈ T∗
pM . For each vi, use the

lemma to construct function fi on Bδ(p) together with its approximations fi,n
on Bδ(pn). In addition to the above properties, these functions will be almost
orthogonal for a small δ > 0; that is, one can assume that angle between level
surfaces lies in the range π

2 ± ε.
Now we start induction by dimension, we can take dim = 2 as a base, in

which case convergence follows from the Gauss–Bonnet formula. Assume we
already proved it for all dimensions < m.

To save space and time, let us agree that extra index n will always denote
correspondent babe for Mn.

Let p ∈ M and S1, S2, . . . , Sm be one-parameter families of coordinate sur-
faces fi = c. Let us denote by Sci is the “scalar” curvature of directions tangent
to Si; in other words, Sci = Sc−Ricc(ui) where ui is the unit vector field normal
to Si. Note that from the lower curvature bound we have |Rm| < c1 + c2 ·Sc
and therefore (1 ± α)·(m − 2)·Sc ≷ Sc1 + Sc2 + · · ·+ Scm where α depends on
angles between these coordinate surfaces and α → 0 as all these angles converge
to π/2, in particular, as ε → 0.

Let Sc(Si) be the scalar curvature of the intrinsic metric of the correspondent
coordinate surface. Since the Jacobian of our charts converges to the Jacobian of
the limit chart, from the induction hypothesis we have Sc(Si,n)·volgn converges
weakly to Sc(Si)·volg.

Denote by G(Si) the Gauss curvature of Si; that is, G(Si) =
∑

j′ 6=j kj′ ·kj ,
where kj are the principal curvatures of Si. By the Gauss formula, we have
Sci +G(Si) = Sc(Si). Since each Si is convex

Sci 6 Sc(Si) > G(Si).
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Therefore, after passing to a subsequence, Sci,n should converge weakly to some
Sci 6 Sc(Si) 6 Sci + n·(n− 1)·ε2.

Let us prove the following lower bound: Sci > Sci−C ·ε2 for some C = C(m).
By the inequality above, after passing to a subsequence G(Si,n) converges to
some measure G(Si) and obviously,

Sci = Sc(Si)−G(Si) > Sci −G(Si).

Therefore it is sufficient to show that G(Si) 6 C ·ε2 for some fixed C.
To prove this last estimate, let us construct a new chart similar to one before,

H = (h1, h2, . . . , hm) with the approximations Hn = (h1,n, h2,n, . . . , hm,n) such

that ∂f
∂hi

< −1
10·m . From the claim above we have that G(Sn) 6 c·G(H(Sn)) as

well as G(S) 6 c·G(H(S)) 6 C ·ε2
Now H(Sn) converges to H(S) as convex hypersurfaces in Rm. Applying

the lemma, we get G(H(Sn)) converges weakly to G(H(S)).
The theorem follows since for any ε > 0 there is a finite covering of M by

charts as in B.5.

Along the same lines one can prove stronger statements; see [10] for details.

B.6. Smooth Proposition. Let (Mn, gn) be a sequence of Riemannian m-
manifolds with curvature > κ that GH-converges to a Riemannian manifold
(M, g) of the same dimension m. Then there is a sequence of reparameteriza-
tions (diffeomorphisms) fn : M → Mn, such that the curvature tensor of df∗

n(gn)
weakly converges to the curvature tensor of g on M .

B.7. Corollary. Let R be an SO(T) invariant convex set in A4(T). Assume
that there is a lower bound κ > −∞ for sectional curvature in R. Let Mn be a
sequence of Riemannian manifolds with curvature tensor from R at each point.
Suppose Mn converges to a Riemannian manifold M of the same dimension.
Then the curvature tensor at any point of M is from R.

For example, a smooth limit of manifolds with positive curvature operator
must have positive curvature operator.

Note that this corollary cannot hold for general SO(T) invariant convex set
in A4(T), for example as it shown in [11], [12] it is not true for sets R = {r ∈
∈ A4 : Ricc(r) 6 c} curvature and for R′ = {r ∈ A4 | c 6 Sc(r) 6 c+ ε}. But, I
believe that the condition on lower sectional curvature R can be relaxed.

Finally, one can give a singular version of this result that we need in our
paper:

First, let us describe the singular curvature tensor of a polyhedral space. As-
sume we have a (1± ε)-bi-Lipschitz parametrization of polyhedral P by smooth
Riemannian manifold f : M → P , such that f−1 is smooth on each simplex.
One can think about P as (M,d) where d is a singular metric. Now let us define
the curvature tensor of d as follows: its support is the image of the (n − 2)-
skeleton of P and on each (n − 2) simplex it is defined as hn−2 ·(2π − ω)·α2

where hn−2 is the Hausdorff measure of this image, ω is the total angle around
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this simplex ∆ and α = dx∧dy is a bi-vector field with the following properties:
|α| = 1 everywhere on the image of simplex and α|f−1(∆) = 0.

B.8. Singular Proposition. Let Pn be a polyhedral m-spaces with curvature
> κ that GH-converges to a Riemannian manifold (M, g) of the same dimension
= m. Then there is a sequence of smooth parameterizations fn : M → Pn, such
that the described singular curvature tensor weakly converges to the curvature
tensor of g on M .

As well as in the corollary above, since the cosectional curvature of (M,dn)
is positive, we get that the curvature tensor on the limit (M, g) has positive
cosectional curvature. The latter implies the first part of the local theorem
(0.1).
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