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On Gauss factorials and their connection to the cyclotomic

λ-invariants of imaginary quadratic fields.

Matt Stokes

December 5, 2022

Abstract

In this paper we establish a connection between the Gauss factorials and Iwasawa’s cyclotomic λ-

invariant for an imaginary quadratic field K. As a result, we will explain a correspondence between the

1-exceptional primes of Cosgrave and Dilcher [2], [3] for m = 3 and m = 4, and the primes for which the

λ-invariants for K = Q(
√

−3) and K = Q(i) are greater than one, respectively. We refer to the latter

primes as “non-trivial” for their respective fields. We will also see that similar correspondences are true

for K = Q(
√

−d) when d = 2, 5 and 6. As a corollary we find that primes p of the form p2 = 3x2+3x+1

are always non-trivial for K = Q(
√

−3). Last, we show that the non-trivial primes p for K = Q(i)

and K = Q(
√

−3) are characterized by modulo p2 congruences involving Euler and Glaisher numbers

respectively.

1 Introduction and statement of main results

Let p be an odd prime, and d > 0 a square-free integer. Denote K = Q(
√
−d) and λp(K) to be Iwasawa’s

λ-invariant for the cyclotomic Zp-extension of K. In [4], Dummit, Ford, Kisilevsky and Sands compute

λp(K) for various primes and imaginary quadratic fields. They define the non-trivial primes of K to be

those which satisfy λp(K) > 1 (non-trivial since λp(K) > 0 whenever p splits in K). For example, Table 1

gives the non-trivial primes for K = Q(
√
−3) and K = Q(i) for primes p < 107 (see Table 1 in [4] for all

other imaginary quadratic fields with discriminants up to 1,000).

Table 1: Non-trivial primes p < 107 of Q(
√
−3) and Q(i).

K = Q(
√
−3) 13 181 2521 76543 489061 6811741

K = Q(i) 29789

Authors such as Ellenberg, Jain, and Venkatesh [5], Horie [9], Ito [10], and Sands [17] have studied λp(K)

by fixing a prime p and varying the imaginary quadratic field K. Dummit, Ford, Kisilevsky, and Sands [4],

and Gold [6] have studied the case when K is fixed and p varies (which is the point of view we take in this
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paper), but less seems to be known in this situation. Another point of view might be to fix both p and

K and vary the Zp-extension of K. Interestingly, Sands [16] has shown that if p does not divide the class

number of K, and the cyclotomic λ-invariant λp(K) ≤ 2, then every other Zp-extension K∞/K has λp ≤ 2

and µp = 0. Therefore, knowing the non-trivial primes p of K is important for our overall understanding of

the other Zp-extensions of K.

On the other hand, for m ∈ Z+ we have the seemingly unrelated 1-exceptional primes p for m studied

by Cosgrave and Dilcher, that is, primes p ≡ 1 (mod m) such that
(

p2−1
m

)p−1

p
! =

(

∏

p2−1
m

a=1
gcd(a,p)=1

a

)p−1

≡
1 (mod p2). Surprisingly, the primes p in Table 1 are exactly the 1-exceptional primes for m = 3 and m = 4

respectively, with p < 107 (see the next section, or [2] and [3] to learn about 1-exceptional primes).

The main result of this paper is Theorem 3.3, which is a criterion in terms of Gauss factorials that give

λp(K) > 1 (this is a condition that works for every imaginary quadratic field K and any primes p that split

in K). From this, we obtain an explanation for the apparent connection between the 1-exceptional primes

for m = 3 and m = 4, and the non-trivial primes of K = Q(
√
−3) and K = Q(i), as well as some similar

results for K = Q(
√
−d) with d = 2, 5 and 6:

Theorem 1.1. Let K = Q(
√
−d) and D = 2d if d ≡ 3 (mod 4) and D = 4d otherwise. Let r ∈ Z+ such

that pr ≡ 1 (mod D), and suppose that p does not divide the class number of K. Then for d = 1, 2, 3, 5 and

6 we have

λp(K) > 1 ⇐⇒







(

p2r−1
D

)2

p
!

(

p2r−1
D/2

)

p
!







p−1

≡ 1 (mod p2).

In particular, p is 1-exceptional for m = 3 if and only if λp(Q(
√
−3) > 1 and p is 1-exceptional for m = 4

if and only if λp(Q(i)) > 1.

The proof of Theorem 1.1 relies on the fact the the fields K = Q(
√
−d), where d = 1, 2, 3, 5 and 6, have

so called “maximal class numbers” (see Definition 3.6). We will prove Theorem 3.9 which tells us that these

are the only imaginary quadratic fields with such class numbers, under the assumption that the generalized

Riemann hypothesis is true.

As a corollary of Theorem 1.1 we will see that primes p of the form p2 = 3x2 +3x+1 with x ∈ Z always

give λp(
√
−3) > 1. However, the converse does not hold (see Remark 2.8). Theorem 1.1 also leads to

Corollary 1.2. For K = Q(
√
−d) for d = 1, 2, 3, 5 and 6, we have

λp(K) > 1 ⇐⇒ Bp(2/D) ≡ 2pBp(1/D) (mod p3)

where Bn(x) is the n-th Bernoulli polynomial.

In particular, we obtain some interesting conditions for the non-trivial primes of K = Q(i) and K =

Q(
√
−3) in terms of Glaisher and Euler numbers respectively. Recall the Euler numbers {En} and Glaisher

numbers {Gn} are defined by

∞
∑

n=0

En
xn

n!
=

2

ex + e−x
and

∞
∑

n=0

Gn
xn

n!
=

3/2

ex + e−x + 1
.

We will prove:
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Corollary 1.3. Let p ≡ 1 (mod 4) be a prime and En denote the n-th Euler number. Then λp(Q(i)) > 1 if

and only if Ep−1 ≡ 0 (mod p2).

Corollary 1.4. Let p ≡ 1 (mod 3) be a prime and Gn denote the n-th Glaisher number. Then λp(Q(
√
−3)) >

1 if and only if Gp−1 ≡ 0 (mod p2).

Remark 1.5. The numbers {Gn} were studied by Glaisher in [7] and [8] in which they are referred to as

I-numbers.

An analogue of Theorem 3.3 for primes p giving λp(Q(
√
−d)) > 2 is proved in the author’s PhD thesis,

but uses a different technique involving p-adic L-functions.

2 Gauss factorials and exceptional primes

In this section we define Gauss factorials and exceptional primes, as well as state some results that will be

needed for the proof of Theorem 1.1 as well as Corollary 3.1. For N,n ∈ Z+ the Gauss factorial of N with

respect to n is defined as

Nn! =

N
∏

i=1
gcd(i,n)=1

i

In [3], Cosgrave and Dilcher investigate multiplicative orders modulo powers of p of the following Gauss

factorials
(

pα − 1

m

)

p

!

where m,α ∈ Z+, with m and α greater than 2, and p ≡ 1 (mod m). If γmα+1(p) is the multiplicative order of
(

pα+1−1
m

)

p
! modulo pα+1, then Cosgrave and Dilcher define p to be α-exceptional for m if γmα+1(p) and γ

m
α (p)

are the same modulo a factor of 2±1 (otherwise γmα+1(p) = pγmα (p) or γmα+1(p) = 2±1pγmα (p), see Theorem

1 and Definition 1 in [3]). Further, Theorem 3 in [3] shows that if p is α exceptional for m, then p is also

(α − 1)-exceptional for m. For our purposes, we will not need this much precision on the multiplicative

orders, and we will instead use the equivalent definition:

Definition 2.1. For α ∈ Z+, we say that p is α-exceptional form if and only if
(

pα+1−1
m

)p−1

p
! ≡ 1 (mod pα+1).

We contrast Definition 2.1 with the following definition of “non-trivial” primes. Theorem 1.1 will show

that the primes in each of the two definitions are the same when m = 3 and K = Q(
√
−3), and when m = 4

and K = Q(i):

Definition 2.2. Given an imaginary quadratic field K, we say that p is non-trivial for K if λp(K) > 1.

Example 2.3. Let p = 13 and m = 3. Then γ31(13) = 12, γ32(13) = 12, γ33(13) = 12 · 13, γ34(13) = 12 · 132,
γ35(13) = 12 ·133 and so on (“and so on” since Theorem 3 in [3] says that p is (α+1)-exceptional form implies

p is also α-exceptional for m). The next few values of p such that γ31(p) = γ32(p) are p = 181, 2521, 76543

and so on. On the other hand, if m = 4 and p = 29789, then γ42(p) =
1
2γ

4
1(p), and is the only known such

example for p < 1011 (see also Table 1 in [2] for γ4α(p) with 1 ≤ α ≤ 5, p ≤ 37 and p ≡ 1 (mod 4)).
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The following results of Cosgrave and Dilcher will be important later on:

Theorem 2.4 (Cosgrave-Dilcher [3]). Let p ≡ 1 (mod 6) be a prime. Then p is 1-exceptional for m = 3 if

and only if p is 1-exceptional for m = 6.

Theorem 2.5 (Cosgrave-Dilcher [3]). Let p ≡ 1 (mod 6) be a prime and n ∈ Z+. Then

(

(

pn − 1

3

)

p

!

)24

≡
(

(

pn − 1

6

)

p

!

)12

(mod pn).

Theorem 2.6 (Cosgrave-Dilcher [2]). Every prime p ≡ 1 (mod 6) that satisfies p2 = 3x2 + 3x+ 1 for some

x ∈ Z is 1-exceptional for m = 3. Equivalently, if γ = 2 +
√
3 and q ∈ Z+, then any prime of the form

p =
γq + γ−q

4

is 1-exceptional for m = 3.

Definition 2.7. We shall refer to the primes p ≡ 1 (mod 3) such that p2 = 3x2 + 3x+ 1 for some x ∈ Z as

Cosgrave-Dilcher primes.

Remark 2.8. In [2] and [3] Cosgrave and Dilcher rearranged the equation p2 = 3x2 + 3x+ 1 into (2p)2 −
3(2x + 1)2 = 1, which can be viewed as the Pell equation X2 − 3Y 2 = 1. It is from the theory of these

equations that we obtain the primes p = (γq + γ−q)/4. Also, q is necessarily prime (see lemma 7 in [2]). It

should be mentioned that the converse of Theorem 2.6 does not hold. For example, p = 76543 is 1-exceptional

for 3 but is not a Cosgrave-Dilcher prime (p = 76543 is the only such example for p < 1012). It is unknown

whether or not there are infinitely many Cosgrave-Dilcher primes, and the question seems to be analogous

to that of the infinitude of Fibonacci primes. In a moment we will list some new Cosgrave-Dilcher primes

(see Example 3.2).

3 Proof of main Theorems

In this section we will prove Theorem 1.1 from which we immediately obtain as a Corollary:

Corollary 3.1. Let p ≡ 1 (mod 6) be a Cosgrave-Dilcher prime. Then λp(Q(
√
−3)) > 1.

Example 3.2. Using Corollary 3.1 we may add to the non-trivial primes of Q(
√
−3) in Table 1 by searching

for Cosgrave-Dilcher primes. The following table contains p = (γq + γ−q)/4 with q ≤ 79:

q = 3 p = 13

q = 5 p = 181

q = 7 p = 2521

q = 11 p = 489061

q = 13 p = 6811741

q = 17 p = 1321442641

q = 19 p = 18405321661

q = 79 p = 381765135195632792959100810331957408101589361
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One may further verify using any standard CAS that the primes 79 < q ≤ 10, 000 giving 1-exceptional

primes p = (γq + γ−q)/4 for m = 3 (and therefore non-trivial primes of Q(
√
−3)) are q = 151, 199, 233,

251, 317, 863, 971, and q = 3049, 7451, and 7487 giving probable primes p (the non-trivial probable prime

corresponding to q = 7487 is 4282 digits long).

Let d be a square-free integer, K = Q(
√
−d), D = 2d if d ≡ 3 (mod 4) and D = 4d otherwise. Let p > 2

be a prime such that p ≡ 1 (mod D) with pOK = pp̄ and P be a prime in Q(ζD) above p, where ζD is a

primitive D-th root of unity. Let P̄ be the complex conjugate of P . Denote G = Gal(Q(ζD)/Q) and χK = χ

to be the imaginary quadratic character for K. We have for x ∈ Q(ζD)

NQ(ζD)/K(x) =

D
∏

i=1
χ(i)=1

gcd(i,D)=1

σi(x) ∈ K

where σi ∈ G acts by σi(ζD) = ζiD. We will also denote Pi = σi(P) so that NQ(ζD)/K(Pi) = p. We will now

work towards proving the following result from which Theorem 1.1 will follow.

Theorem 3.3. Let K = Q(
√
−d) be any imaginary quadratic field, and D be as above. Let p be a prime

and r ∈ Z+ such that pr ≡ 1 (mod D), p ∤ hK , and p 6= 3 whenever χK(2) = −1 and K 6= Q(
√
−3). Then,

λp(K) > 1 ⇐⇒











D
∏

i=D/2
χ(i)=1

gcd(i,D)=1

(

(D − i)p
2r−1
D

)2

p
!

(

(D − i)p
2r−1
D/2

)

p
!

D/2
∏

i=1
χ(i)=1

gcd(i,D)=1

(

i p
2r−1
D/2

)

p
!

(

i p
2r−1
D

)2

p
!











p−1

≡ 1 (mod p2).

The first step of the proof is to write p̄ in terms of Jacobi sums. Consider the multiplicative character

ψ : OQ(ζD)/P → C× of order D modulo P . We denote

J(ψ) =
∑

a∈Fp

ψ(a)ψ(1− a)

to be the Jacobi sum for ψ. Denote 0 ≤ L(j) < D to be reduction of j modulo D, and for 1 ≤ i < D/2 we

define

Si(D) = {j : 0 < j < D; gcd(j,D) = 1; L(ji) < D/2}.

Then from Theorem 2.1.14 in [1] we have

J(ψi)OQ(ζD) =
∏

j∈Si(D)

Pj−1 .

Proposition 3.4. Denote hK = h to be the class number for K = Q(
√
−d). With the notation fixed above,

we have

p̄
t =











D
∏

i=D/2
χ(i)=1

gcd(i,D)=1

J(ψi)

/

D/2
∏

i=1
χ(i)=1

gcd(i,D)=1

J(ψ−i)











OQ(ζD)

where t = ±h(2−χ(2)) if d 6= 1 or 3, else t = ±1. The sign of t depends on the number of quadratic residues

modulo D between 1 and D/2.
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Proof. Denote

a+ = #{0 < j < D/2 gcd(j,D) = 1, χ(j) = 1}

a− = #{0 < j < D/2 gcd(j,D) = 1, χ(j) = −1}.

It is well known that ±h = (a+ − a−)/(2 − χ(2)) when d is not 1 or 3 (it is easy to see what happens in

those cases, so we will assume d > 3). If N is the norm from Q(ζD) to K then

N(J(ψ−1))OQ(ζD) =

D/2
∏

j=1
gcd(j,D)=1

N(P̄j−1) = p
a−

p̄
a+

and also J(ψi)J(ψ−i) = p. Then the ideal











D
∏

i=D/2
χ(i)=1

gcd(i,D)=1

J(ψi)

/

D/2
∏

i=1
χ(i)=1

gcd(i,D)=1

J(ψ−i)











=











D
∏

i=D/2
χ(i)=1

gcd(i,D)=1

J(ψi)

D
∏

i=D/2
χ(i)=1

gcd(i,D)=1

J(ψ−i)

/

D/2
∏

i=1
χ(i)=1

gcd(i,D)=1

J(ψi)

D
∏

i=D/2
χ(i)=1

gcd(i,2m)=1

J(ψ−i)











=











D
∏

i=D/2
χ(i)=1

gcd(i,D)=1

p

/

N(J(ψ−1))











=
(pp̄)a

−

pa
−

p̄a
+ = p̄

±h(2−χ(2)).

Theorem 3.3 will now follow from Gold’s criterion:

Theorem 3.5 (Gold’s criterion (Theorem 4 in [6])). Let K be an imaginary quadratic field, and p > 2 be a

prime such that p does not divide the class number hK of K.

i. If p splits in K then λp(K) > 0.

ii. Suppose pOK = pp̄ and write phK = (α). Then λp(K) > 1 if and only if αp−1 ≡ 1 (mod p̄2).

Proof of Theorem 3.3. Let r ∈ Z+ such that pr ≡ 1 (mod D). Working inside the localization Kp
∼= Qp, we

have J(ψ−i) ≡
(

i p2r−1
D/2

)

p
!

(

i p2r−1
D

)2

p
!
(mod p2Zp) from (9.3.6) in [1] (which is essentially the Gross-Koblitz formula).

The result now follows from Proposition 3.4 and Gold’s criterion 3.5.

We will see that the condition in Theorem 3.3 becomes more compact for a certain family of imaginary

quadratic fields.

Definition 3.6. Let χK = χ be the imaginary quadratic character for K and D be as above. We say that

K has maximal class number if χK(i) = 1 for each i co-prime to D and 1 ≤ i ≤ D/2.

If hK is the class number for K 6= Q(i) or Q(
√
−3), we have that (2 − χ(2))hK =

∣

∣

∣

∑D/2
i=1 χ(i)

∣

∣

∣. Then

χ(i) = 1 for each i co-prime to D and 1 ≤ i ≤ D/2 if and only if hK = ϕ(D)/2(2− χ(2)).
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Theorem 3.7. Suppose r ∈ Z+ such that pr ≡ 1 (mod D) and all other notation is as above. If K has

maximal class number, and p ∤ hK, then

λp(K) > 1 ⇐⇒







(

p2r−1
D

)2

p
!

(

p2r−1
D/2

)

p
!







p−1

≡ 1 (mod p2).

Proof. Here we will view K ⊆ Kp
∼= Qp. If K has maximal class number, then S1(D) accounts for all

of the quadratic residues between 1 and D/2, and so J(ψ−1) ∈ N(P̄) = p̄. Therefore, if p̄hK = (α)

for some α ∈ K, we have J(ψ−1)hK ≡ αu (mod p2Zp) where u ∈ O×
K . Now, since p ∤ hK we have

J(ψ−1)hK(p−1) ≡ 1 (mod p2Zp) if and only if J(ψ−1)(p−1) ≡ 1 (mod p2Zp). The result now follows from

Gold’s criterion and the fact that up−1 = 1.

Remark 3.8. When D = 6, the combination of Theorems 2.4 and 2.5 imply that λp(Q(
√
−3)) > 1 if and

only if p is 1-exceptional for m = 3. When D = 4, we have that
(

p2−1
2

)p−1

p
! ≡ 1 (mod p2) (a corollary of

Wilson’s theorem), so λp(Q(i)) > 1 if and only if p is 1-exceptional for m = 4.

Theorem 1.1 now follows as a special case of Theorem 3.7. Computations show that K = Q(i), Q(
√
−2),

Q(
√
−3), Q(

√
−5) and Q(

√
−6) are the only imaginary quadratic fields K = Q(

√
−d) with d < 10, 000

having maximal class number. In fact,

Theorem 3.9. Assuming the generalized Riemann hypothesis (GRH) holds for every non-principle primitive

imaginary quadratic character, the only imaginary quadratic fields with maximal class number are K = Q(i),

Q(
√
−2), Q(

√
−3), Q(

√
−5) and Q(

√
−6).

Proof. Let d > 0 be a square free integer and let D and χD = χ be as above. Denote K = Q(
√
−d) and hK

to be the class number of K, and assume that hK = ϕ(D)/2(2−χ(2)) (i.e. hK is maximal). From Theorem

15 in [15], we have

ϕ(D) >
D

eγ log log(D) + 3
log log(D)

where e = exp(1) and γ = 0.577215665... is Euler’s constant. On the other hand, under the assumption of

the generalized Riemann hypothesis, Littlewood [14] gave the inequality hK < ceγ log log(D)
√
D, where c is

an absolute constant. Recently, this bound has been improved (see [11] and [12]) to

hK ≤ 2eγ

π

√
D

(

log log(D) − log(2) +
1

2
+

1

log log(D)

)

for D ≥ 5, and assuming GRH holds. Thus, when hK is maximal and D ≥ 5, the two inequalities above

imply
√
D <

12eγ

π

(

eγ(log log(D))2 +
3

(log log(D))2
+ eγ + 3

)

< 14(log log(D))2 + 140.

This inequality does not hold for long. Indeed, set f(x) =
√
x − 14(log log(x))2 + 140 and notice that

f ′(x) = 1
2
√
x
− 28 log log(x)

x log(x) > 0 precisely when x log(x) > 56
√
x log log(x), which will eventually hold for all x

sufficiently large (e.g. for all x > 300). Therefore, we have that f(x) is strictly increasing on [300,∞). We

also have that f(300) > 0, so the inequality
√
D > 14(log log(D))2 + 140 holds for all D > 300. Therefore,

there are no imaginary quadratic fields with D > 300 having maximal class number. It is easy to check that

the only imaginary quadratic fields with D ≤ 300 and maximal class number are the ones listed above.
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4 Proof of Corollaries

We now turn to the proofs of Corollaries 1.2, 1.3 and 1.4 for which we will need some preliminary results.

For a co-prime to p the Fermat quotient is defined as qp(a) = (ap−1 − 1)/p, which is an integer by Fermat’s

little Theorem. The Fermat quotient has logarithmic properties, that is, for a and b co-prime to p,

qp(a) + qp(b) ≡ qp(ab) (mod p) and qp(a)− qp(b) ≡ qp (a/b) (mod p)

as well as

qp(a+ p) ≡ qp(a)−
1

a
(mod p).

Denote Hn =
∑n

a=1 1/a to be the n-th harmonic number and wp = ((p−1)!+1)/p to be the Wilson quotient

(also an integer by Wilson’s Theorem). It is well known that wp ≡∑p−1
a=1 qp(a) (mod p).

Lemma 4.1. Let p > 2 be a prime. For any b ∈ (Z/p2Z)× such that b = b0 + b1p with 1 ≤ b0 ≤ p− 1 and

0 ≤ b1 ≤ p− 1, we can write b ≡ bp0

(

1 +
(

b1
b0

− qp(b0)
)

p
)

(mod p2).

Proof. Let b ∈ (Z/p2Z)× such that b = b0 + b1p with 1 ≤ b0 ≤ p − 1 and 0 ≤ b1 ≤ p − 1. Then setting

x = b1/b0, we see that 1+px ≡ (pqp(b0)+1)(1+px−pqp(b0)) (mod p2). Since bp−1
0 = 1+pqp(b0), we obtain

the result by multiplying through by b0.

Proposition 4.2. Suppose m ∈ Z with m ≥ 2 and p ≡ 1 (mod m) is a prime. Then

(

p2 − 1

m

)p−1

p

! ≡ 1 (mod p2) ⇐⇒ 1

m
(wp −H p−1

m
)−

p−1
m
∑

a=1

qp(a) ≡ 0 (mod p).

Proof. Using Lemma 4.1, we have

(

p2 − 1

m

)p−1

p

! =

p2−1
m
∏

a=1
gcd(a,p)=1

ap−1 =





p−1
∏

a=1

p−1
m −1
∏

b=0

(a+ bp)p−1









p−1
m
∏

a=1

(

a+
p− 1

m
p

)p−1




≡





p−1
∏

a=1

p−1
m −1
∏

b=0

(

1 +

(

b

a
− qp(a)

)

p

)









p−1
m
∏

a=1

(

1 +

(

p−1
m

a
− qp(a)

)

p

)



 (mod p2)

≡





p−1
∏

a=1

p−1
m

−1
∏

b=0

(1 + p)
b
a−qp(a)









p−1
m
∏

a=1

(1 + p)
p−1
m
a −qp(a)



 (mod p2).

Combining all the factors of (1+p) we get the desired sum in the exponent which is taken modulo p (since 1+p

is a p-th root of unity modulo p2). It is known that Hp−1 ≡ 0 (mod p). Hence,
∑p−1

a=1

∑

p−1
m −1

b=0
b
a ≡ 0 (mod p).

The result now follows.

Recall that the Bernoulli numbers {Bn} and the Bernoulli polynomials {Bn(t)} are defined by

∞
∑

n=0

Bn
xn

n!
=

x

ex − 1
and

∞
∑

n=0

Bn(t)
xn

n!
=

xext

ex − 1
.
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Lemma 4.3. Let p be a prime such that p ≡ 1 (mod 2m). Then







(

p2−1
m

)

p
!

(

p2−1
2m

)2

p
!







p−1

≡ 1 (mod p2) ⇐⇒ Bp(1/m)− 2pBp(1/2m)

p2
≡ 0 (mod p).

Proof. For any n ∈ Z+ with p ≡ 1 (mod n), we use the relation Bp(x + 1)− Bp(x) = pxp−1 along with the

properties of the Fermat quotient to obtain

p−1
n
∑

a=1

qp(a) ≡
(

np−1

p

(

p2

n
Bp−1 −Bp(1/n)

)

− p− 1

n

)

+
1

n
qp(n)−

1

n
H p−1

n
(mod p).

Then for p ≡ 1 (mod 2m), a straightforward computation gives

p−1
m
∑

a=1

qp(a)− 2

p−1
2m
∑

a=1

qp(a) ≡ −Bp(1/m)− 2pBp(1/2m)

p2
− 1

m
H p−1

m
+

1

m
H p−1

2m
(mod p).

From Proposition 4.2 we know that

(
(

p2−1
m

)

p
!

(

p2−1
2m

)2

p
!

)p−1

≡ (1 + p)ξ (mod p2), where

ξ =
1

m
(wp −H p−1

m
)−

p−1
m
∑

a=1

qp(a)− 2





1

2m
(wp −H p−1

2m
)−

p−1
2m
∑

a=1

qp(a)





≡ −Bp(1/m)− 2pBp(1/2m)

p2
(mod p).

The result now follows.

Corollary 1.2] is an immediate consequence of Lemma 4.3. We also have,

Proof of Corollary 1.3. Let p ≡ 1 (mod 4). We have seen from Lemma 4.3 that p is 1-exceptional for 4 if

and only if Bp(1/2) − 2pBp(1/4) ≡ 0 (mod p3). But from [13] we know that Bp(1/2) = 0 and Bp(1/4) =

−pEp−1/4
p. Corollary 1.3 now follows from Theorem 1.1.

Remark 4.4. The proof also shows that Ep−1 ≡ 0 (mod p) when p ≡ 1 (mod 4), although this was already

observed by Zhang in [19].

The proof of Corollary 1.4 will be similar to that of Corollary 1.3, but will instead involve the Glaisher

numbers {Gn}. Since these numbers are less well known we will take a moment to view some of their

properties. In particular, we will see that for odd n ≥ 1, Bn(1/3) = −(n+1)Gn−1/3
n−1. Recall the Glaisher

numbers {Gn} are defined by

3/2

ex + e−x + 1
=

∞
∑

n=0

Gn
xn

n!
.

Notice that 2
∑∞

n=0G2n+1
x2n+1

(2n+1)! =
∑∞

n=0Gn
xn

n! −
∑∞

n=0Gn
(−x)n

n! = 0 so that Gn = 0 whenever n is odd, and
∑∞

n=0Gn
xn

n! =
∑∞

n=0G2n
x2n

(2n)! . We also know from [8] that Gn can only have powers of 3 in the denominator.

Example 4.5. In the following table we list all primes p ≡ 1 (mod 3) and 7 ≤ p ≤ 193 in the first column,

along with the reduced values of Gp−1 (mod p) in the second column and Gp−1 (mod p2) in the third column:
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7 0 42

13 0 0

19 0 342

31 0 434

37 0 1332

43 0 559

61 0 3660

67 0 3685

73 0 803

79 0 2844

97 0 1940

103 0 1133

109 0 7521

127 0 16002

139 0 5282

151 0 15855

157 0 785

163 0 24939

181 0 0

193 0 26441

Notice that 13 and 181 are the first two 1-exceptional primes form = 3. It also appears thatGp−1 ≡ 0 (mod p)

for all p ≡ 1 (mod 3), which we will soon see is true.

We will now show that Bn(1/3) = −(n+1)Gn−1/3
n−1 for odd n ≥ 1. It should be noted that this result

is already known (see page 352 in [13]), but not commonly stated or proven in the literature. Observe that

−x
e

1
3x + e−

1
3x + 1

= −2

3
x

3/2

e
1
3x + e−

1
3x + 1

= −2

3
x

∞
∑

n=0

G2n

(

1
3x
)2n

(2n)!

= 2
∞
∑

n=0

− (2n+ 1)G2n

32n+1

x2n+1

(2n+ 1)!

and at the same time

2

∞
∑

n=0

B2n+1(1/3)
x2n+1

(2n+ 1)!
=
x(e

1
3x − e

2
3x)

ex − 1
=

xe
1
3x(1− e

1
3x)

(e
1
3x − 1)(e

2
3x + e

1
3x + 1)

=
−x

e
1
3x + e−

1
3x + 1

Therefore,
∞
∑

n=0

− (2n+ 1)G2n

32n+1

x2n+1

(2n+ 1)!
=

∞
∑

n=0

B2n+1(1/3)
x2n+1

(2n+ 1)!

which implies,

B2n+1(1/3) = − (2n+ 1)G2n

32n+1
.

For k, n ∈ Z+, we also have Raabe’s multiplication formula Bn(kx) = kn−1
∑n−1

j=0 Bn(x + j/k). So, with

x = 1/6 and k = 2 we have

B2n+1(1/6) =
22n + 1

22n
B2n+1(1/3)

Proof of Corollary 1.4. Let p ≡ 1 (mod 3). Then from Lemma 4.3 p is 1-exceptional for m = 3 if and only if

Bp(1/3)− 2pBp(1/6)

p2
= − (1 + 2p)Bp(1/3)

p2
=

(

1 + 2p

3p

)

Gp−1

p
≡ 0 (mod p).

The result now follows from Theorem 1.1.

Remark 4.6. From the proof of Corollary 1.4 we also have that Gp−1 ≡ 0 (mod p) for all primes p ≡
1 (mod 3).
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5 Some further questions

Dummit, Ford, Kisilevsky and Sands conjecture in [4] that given a fixed imaginary quadratic field K, there

are infinitely many primes such that λp(K) > 1. We can now restate this conjecture in the case of K = Q(i)

and K = Q(
√
−3) in a way that may be of interest to those who study Euler and Glaisher numbers, as well

as Gauss factorials:

Conjecture 5.1. There are infinitely many primes p ≡ 1 (mod 3) such that Gp−1 ≡ 0 (mod p2). Equiva-

lently, there are infinitely many primes p ≡ 1 (mod 3) such that p is 1-exceptional for m = 3.

Conjecture 5.2. There are infinitely many primes p ≡ 1 (mod 4) such that Ep−1 ≡ 0 (mod p2). Equiva-

lently, there are infinitely many primes p ≡ 1 (mod 4) such that p is 1-exceptional for m = 4.
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