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Abstract

Labeled oriented trees, LOT’s, encode spines of ribbon discs in the

4-ball and ribbon 2-knots in the 4-sphere. The unresolved asphericity

question for these spines is a major test case for Whitehead’s aspheric-

ity conjecture. In this paper we give a complete description of the link

of a reduced injective LOT complex. An important case is the follow-

ing: If Γ is a reduced injective LOT that does not contain boundary

reducible sub-LOTs, then lk(K(Γ)) is a bi-forest. As a consequence

K(Γ) is aspherical, in fact DR, and its fundamental group is locally

indicable. We also show that a general injective LOT complex is as-

pherical. Some of our results have already appeared in print over the

last two decades and are collected here.

Keywords: Labeled oriented tree; non-positive immersion; coloring test;
weight test; locally indicable

MSC 2020: 57K20; 57M07; 20F06; 20F65; 20F67

1 Introduction

A labeled oriented graph (LOG) Γ = (E,V, s, t, λ) consists of two sets E,
V of edges and vertices, and three maps s, t, λ : E → V called, respectively
source, target and label. Γ is said to be a labeled oriented forest (LOF)
when the underlying graph is a forest, and it is called labeled oriented tree
(LOT) if the underlying graph is a tree. The associated LOG presentation
is defined as

P (Γ) = 〈V | s(e)λ(e) = λ(e)t(e), e ∈ E〉.

The LOG complex K(Γ) is the standard 2-complex defined by the presenta-
tion, and G(Γ) = π1(K(Γ)).

http://arxiv.org/abs/2207.07991v2
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It is known that LOT-complexes are spines of ribbon 2-knot complements
[8]. So the study of LOTs and LOFs is an extension of classical knot and
link theory. Asphericity, known for classical knots, is unresolved for LOTs.
The asphericity question for LOTs is of central importance to Whitehead’s
asphericity conjecture: The subcomplex of an aspherical 2-complex is as-
pherical. See Berrick/Hillman [2], Bogley [3], and Rosebrock [14].
A sub-LOG Γ0 = (E0, V0) ⊆ Γ is a subgraph so that E0 6= ∅ and λ : E0 → V0.
A LOG is called boundary reduced if whenever v is a vertex of valency 1 then
v = λ(e) for some edge e. It is called interior reduced if for every vertex
v no two edges starting or terminating at v carry the same label. It is
called compressed if for every edge e the label λ(e) is not equal to s(e) or
t(e). Finally, a LOG is reduced if it is boundary reduced, interior reduced,
and compressed. Given a LOG, reductions can be performed to produce a
reduced LOG, and, in case the LOG is a LOF, this process does not affect
the homotopy type of the LOF complex. A LOG is called injective if the
labeling map λ : E → V is injective.
The main goal of this paper is to give an explicit description of the link
lk(K(Γ)), the boundary of a regular neighborhood of the unique vertex,
in case Γ is a reduced injective LOF. This description is of fundamental
importance. A graph Λ is called a bi-forest if it consists of disjoint forests A
and B so that edges that are contained in neither of A,B connect a vertex
from A to a vertex from B. Assume Γ is a reduced injective LOF without
boundary reducible sub-LOTs. We will show:

• lk(K(Γ)) is a bi-forest (Theorem 3.3).

• K(Γ) admits a zero/one-angle structure that satisfies the coloring test.
Therefore K(Γ) is aspherical, has collapsible non-positive immersions,
and G(Γ) is locally indicable (Theorem 3.3 together with Theorem 3.2).

We will explain the vocabulary in detail in the next section. We also address
the situation for general reduced injective LOFs. Assume Γ is a reduced
injective LOF with disjoint sub-LOTs Γ1, . . . ,Γm, and assume that the quo-
tient LOF Γ̄ is without boundary reducible sub-LOTs. Then

• lk(K(Γ)) is a relative bi-forest (Theorem 8.3).

• K(Γ) admits a zero/one-angle structure that satisfies the relative col-
oring test (Theorem 8.4).

This can be used to show

• If Γ is an injective LOF then K(Γ) is aspherical (Theorem 8.5).
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We believe it is true that K(Γ) has collapsible non-positive immersions when
Γ is reduced and injective. But this is work in progress.

Some history. Reorientations of LOFs in the study of the asphericity ques-
tion goes back to Huck/Rosebrock [10]. The fact that reduced injective LOFs
without boundary reducible sub-LOTs satisfy the coloring test was shown in
[11] by the same authors. Relative versions of the Huck/Rosebrock tech-
niques were developed by the authors in [6] and [7]. As a consequence it was
shown that injective LOT complexes are VA and therefore aspherical. Many
of the results and techniques presented in this paper are indeed not new. The
explicit (relative) bi-forest description of the link of a LOT complex K(Γ),
where Γ is reduced and injective, is new. The results concerning non-positive
immersions are new and are a consequence of work of Wise. The purpose
of this paper is to: (1) collect fundamentally important techniques and re-
sults in a single place; (2) present new and known theorems in a unified and
transparent way which allows for streamlined and simplified proofs of known
results; (3) provide context that fits with the narrative of geometric group
theory as it emerged over the last 20 years.

2 Coloring tests

A map between 2-complexes is called combinatorial if it maps open cells
homeomorphically to open cells. A 2-complex is called combinatorial if the
attaching maps for the 2-cells are combinatorial. Throughout the paper all
2-complexes are combinatorial.
Let K be a 2-complex. If we assign numbers ω(c) to the corners c of the
2-cells of K we arrive at an angled 2-complex (see Gersten [5]). Curvature
in an angled 2-complex is defined in the following way. If v is a vertex of K
then κ(v), the curvature at v, is

κ(v) = 2− χ(lk(v)) −
∑

ω(ci),

where the sum is taken over all the corners at v. If d is a 2-cell of K then
κ(d), the curvature of d, is

κ(d) =
∑

ω(cj)− (|∂d| − 2),

where the sum is taken over all the corners in d and |∂d| is the number
of edges in the boundary of the 2-cell. The combinatorial Gauss-Bonnet
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Theorem states that

2χ(K) =
∑

v∈K

κ(v) +
∑

d∈K

κ(d).

This was first proven by Ballmann and Buyalo [1], and later observed by
McCammond and Wise [13]. Let X → K be a combinatorial map between
2-complexes. Note that if K is an angled 2-complex then the angles in the
2-cells of K can be pulled back to make X into an angled 2-complex. We
call this the angle structure on X induced by the combinatorial map.
A map X → K is an immersion if it is a local injection.

Definition 2.1 A 2-complex K has collapsing non-positive immersions if
for every combinatorial immersion X → K, where X is finite, connected,
either χ(X) ≤ 0 or X collapses to a point.

The concept of non-positive immersions is due to Wise. An unpublished
preprint was available on his website since 1996. See [17] for a recent pub-
lication on the topic. Among other things Wise showed that if K has non-
positive immersions then π1(K) is locally indicable.
An angled 2-complex where all angles are either 0 or 1 is called a zero/one-
angled 2-complex. The following coloring test is due to Sieradski [15]. See
also Gersten [5] for background and a more general weight test.

Definition 2.2 (Coloring test) Let K be a zero/one-angled 2-complex. Then
K satisfies the coloring test if

1. the curvature of every 2-cell is ≤ 0;

2. for every vertex v: If c1 · · · cn is a simple reduced cycle in lk(v), then
2−

∑n
i=1

ω(ci) ≤ 0.

Definition 2.3 Let Λ be a graph.

• A cycle of edges e1 · · · en in Λ is reduced if there does not exist an ei
so that ei+1 = ēi, where ēi is the edge ei with reversed orientation. A
cycle of edges e1 · · · en in Λ is homology reduced if there does not exist
a pair ei, ej so that ej = ēi.

Let K be a 2-complex.

• A spherical diagram is a combinatorial map f : S → K where S is
a cell structure on the 2-sphere S2. It is reduced if, for every vertex
v ∈ S, f maps lk(v) to a reduced cycle. It is vertex reduced if, for
every vertex v ∈ S, f maps lk(v) to a homology reduced cycle.
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• K is diagrammatically reducible (DR) if there do not exist reduced
spherical diagrams over K. K is vertex aspherical (VA) if there do not
exist vertex reduced spherical diagrams over K.

Let (L,K) be a 2-complex pair.

• The pair is relatively DR if every reduced spherical diagram over L is
a diagram over K. It is relatively VA if every vertex reduced spherical
diagram over L is a diagram over K.

Theorem 2.4 Let K be a 2-complex. If K satisfies Gersten’s weight test, it
is DR and therefore aspherical. In particular this holds when it is a zero/one
angled 2-complex which satisfies the coloring test. Moreover, in that case
it also has collapsing non-positive immersions, which implies that π1(K) is
locally indicable.

The DR part was shown by Sieradski [15] (for zero/one-angled complexes)
and generalized by Gersten [5] (for angled 2-complexes). The non-positive
immersions part was proved by Wise [16] (In fact, Wise proved that it has
nonpositive sectional curvature, which implies collapsing non-positive im-
mersions).

Definition 2.5 Let Λ be a graph and Λ′ be a subgraph, both are allowed to
be disconnected. We say Λ is a forest relative to Λ′ if every homology reduced
cycle in Λ is contained in Λ′.

Definition 2.6 (Relative coloring test) Let K be a subcomplex of a zero/one-
angled 2-complex L. Then (L,K) satisfies the relative coloring test if

1. the curvature of every 2-cell d ∈ L−K is ≤ 0;

2. for every vertex v: If c1 · · · cn is a homology reduced cycle in lk(v, L)
not entirely contained in lk(v,K), then

2−
n
∑

i=1

ω(ci) ≤ 0.

The relative coloring test has implications regarding asphericity, but they are
not as immediate as in the classical coloring test setting. Given a 2-complex
pair (L,K). A spherical diagram f : S → L is called thin relative to K if for
every vertex v ∈ S there exists a 2-cell d ∈ S with v in its boundary, so that
f(d) ∈ L−K.
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Theorem 2.7 Let (L,K) be a 2-complex pair with a zero/one angle struc-
ture that satisfies the relative coloring test and κ(d) ≤ 0 for all 2-cells d ∈ L.
If f : S → L is a thin spherical diagram, then it is not vertex reduced.

Proof: Assume f : S → L is a vertex reduced thin spherical diagram. Pull
the zero/one-angle structure back to S. Then we have κ(d) ≤ 0 for every
2-cell d of S. Let v be a vertex in S. Let c1 · · · cn be the corners that make up
the link of v. Then f(c1) · · · f(cn) is a homology reduced cycle in lk(f(v), L)
not entirely contained in lk(f(v),K). It follows that κ(v) ≤ 0. We obtain

4 = 2χ(S) =
∑

v∈S

κ(v) +
∑

d∈S

κ(d) ≤ 0

and have reached a contradiction. �

Under certain conditions this suffices to show that (L,K) is relatively VA.
See [7]. The relative coloring test also has implications as far as non-positive
immersions is concerned. This is work in progress.

3 The local bi-forest property

If Λ is a graph and x1, . . . , xn ∈ Λ are vertices then we denote by Λ(x1, . . . , xn)
the full subgraph on the vertices x1, . . . , xn. Let K be a standard 2-complex
(i.e. a combinatorial 2-complex with only one vertex), and let lk(K) be the
link at its vertex. The link is an undirected graph, we refer to its edges as
corners, because they arise from the corners in 2-cells. If x1, . . . , xn are the
edges of K, then the vertices of lk(K) are {x+

1
, . . . , x+n , x

−

1
, . . . , x−n }, where

x+i is located near the start and x−i is located near the end of the edge xi,
1 ≤ i ≤ n. We write xǫii x

ǫj
j , ǫi, ǫj ∈ {+,−}, for the corner that connects xǫii

and x
ǫj
j . This is somewhat sloppy because lk(K) is not a simplicial graph.

We will be careful and avoid confusion by providing context whenever nec-
essary. Let Λ = lk(K), Λ+ = Λ(x+

1
, . . . , x+n ), and Λ− = Λ(x−

1
, . . . , x−n ). If

ǫ ∈ {+,−}, then

−ǫ =

{

+ if ǫ = −

− if ǫ = +

Definition 3.1 Let K be a standard 2-complex with edges x1, . . . , xn, and
let Λ = lk(K).
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K has the lbf-property (local bi-forest-property) if there is a choice of ǫi ∈
{±} for all 1 ≤ i ≤ n such that Λ(xǫ1

1
, . . . , xǫnn ) and Λ(x−ǫ1

1
, . . . , x−ǫn

n ) are
forests.
K has the strong lbf-property if Λ+ and Λ− are forests.

Observe that for every choice of the ǫi the subgraphs Λ(xǫ1
1
, . . . , xǫnn ) and

Λ(x−ǫ1
1

, . . . , x−ǫn
n ) are disjoint and every vertex of Λ belongs to exactly one

of the two.

xi xj

xk
+ −

xi

xk

xk

xj

Figure 1: An edge e of Γ contributes four corners to lk(K(Γ)): A positive
corner c+e = x+i x

+

k , a negative corner c−e = x−k x
−

j , and two mixed corners,

x−i x
+

k and x−k x
+

j .

Let Γ be a LOG and e an edge of Γ. Let s(e) = xi, t(e) = xj, and λ(e) =
xk. Then the 2-cell de of K(Γ) is attached along the path xixkx

−1

j x−1

k and
contributes four corners to lk(K(Γ)). See Figure 1.

Theorem 3.2 A LOF-complex K(Γ) that has the lbf-property admits a zero/
one-angle structure so that the coloring test is satisfied. It follows that K(Γ)
is DR and therefore aspherical. Furthermore, K(Γ) has non-positive immer-
sions which implies that G(Γ) is locally indicable.

Proof: Let x1, . . . , xn be the edges of K = K(Γ) and let Λ = lk(K).
Assume that Λ1 = Λ(xǫ1

1
, . . . , xǫnn ) and Λ2 = Λ(x−ǫ1

1
, . . . , x−ǫn

n ) are forests.
Assign to every corner of Λ1 ∪Λ2 angle 0 and all other corners in Λ angle 1.
Every edge of weight 1 connects a vertex of Λ1 to a vertex of Λ2. Since Λ1

and Λ2 are disjoint this implies the cycle condition 2 of the coloring test.
It remains to show that the curvature condition 1 of the coloring test holds.
We need to show that every 2-cell of K has 2 corners with angle 0. Assume
a 2-cell d ∈ K is attached along the path xixkx

−1

j x−1

k . There are 4 cases to
consider:

1. ǫi = ǫk = ǫj: The corners x+i x
+

k and x−k x
−

j of d have angle 0.

2. ǫi = −ǫk = ǫj : The corners x−i x
+

k and x−k x
+

j of d have angle 0.



lbf-complexes Harlander/Rosebrock August 1, 2023 page 8

3. ǫi = ǫk = −ǫj: The corners x+i x
+

k and x−k x
+

j of d have angle 0.

4. ǫi = −ǫk = −ǫj: The corners x−i x
+

k and x−k x
−

j of d have angle 0.

This show that the coloring test holds. All other statements in the Theorem
follow from Theorem 2.4. �

Here is one of the main results of this paper.

Theorem 3.3 Let Γ be a reduced injective LOF such that all sub-LOTs are
boundary reduced. Then the LOF-complex K(Γ) has the lbf-property.

We give a proof in a later section.

4 Reorientations

Definition 4.1 Given a LOG Γ. A LOG Γρ is a reorientation of Γ if it is
obtained from Γ by reversing the direction of some of its edges.
A reorientation Γρ is a block reorientation if, whenever one edge with label
x is reversed, all edges with label x are reversed.

Lemma 4.2 Let Γ be a LOF with vertex set {x1, . . . , xn} and let Γρ be the
block reorientation obtained by reversing directions of all edges labeled xj.
Then the transposition x+j ↔ x−j defines a graph isomorphism

φj : Λ = lk(K(Γ)) → Λρ = lk(K(Γρ)).

In particular Λ(xǫ1
1
, . . . , x

ǫj
j , . . . , x

ǫn
n ) is isomorphic to Λρ(x

ǫ1
1
, . . . , x

−ǫj
j , . . . , xǫnn ).

Proof: The transposition of the vertices x+j and x−j is a bijection from the
vertex set of Λ to the vertex set of Λρ, which are the same sets. We have to
check that if x

αp
p x

αq
q , αp, αq ∈ {+,−}, is a corner of Λ, then φj(x

αp
p )φj(x

αq
q )

is a corner of Λρ. This is straightforward and one can do this case by case:

1. c is a corner in a 2-cell de, where none of s(e), t(e), λ(e) is equal to xj.

2. c is a corner in a 2-cell de, where s(e) or t(e) is xj , but not λ(e).

3. c is a corner in a 2-cell de, such that λ(e) = xj; note that e is an edge
that gets reversed.
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In case 1 the 2-cell de exists also in K(Γρ) and the corners are mapped
identically. In case 2 de exists also in K(Γρ) and the map φj interchanges
the two corners that involve x±j . We leave the details to the reader, but will
do case 3 carefully. Let e be an edge of Γ such that s(e) = xi, t(e) = xk, and
λ(e) = xj. Then de contributes the corners x−i x

+

j , x
−

j x
−

k , x
+

k x
−

j , x
+

j x
+

i , and dē
contributes the corners φj(x

−

i x
+

j ) = x−i x
−

j , φj(x
−

j x
−

k ) = x+j x
−

k , φj(x
+

k x
−

j ) =

x+k x
+

j , φj(x
+

j x
+

i ) = x−j x
+

i . The situation is depicted in Figure 2. �

x−i x−j x−k

x+i x+j x+k

Λ

K

Γ

xj

xk

xj

xi

x−i x−j x−k

x+i x+j x+k

xj

xk

xj

xi

xjxi xk xjxi xk

Figure 2: Reorienting an edge.

Lemma 4.3 Let Γ be a LOF with vertices {x1, . . . , xn} and assume that x1
does not occur as edge label. Let Λ = lk(K(Γ)). Then the transposition x+

1
↔

x−
1

defines a graph isomorphism φ : Λ → Λ. In particular Λ(x+
1
, xǫ2

2
, . . . , xǫnn )

is isomorphic to Λ(x−
1
, xǫ2

2
, . . . , xǫnn ).

Proof: The transposition of the vertices x+
1

and x−
1

is a permutation of
the vertex set of Λ. We have to check that if x

αp
p x

αq
q , αp, αq ∈ {+,−}, is

a corner of Λ, then φ(x
αp
p )φ(x

αq
q ) is a corner of Λρ. This is straightforward

and one can do this case by case:

1. c is a corner in a 2-cell de, where none of s(e), t(e), λ(e) is equal to x1.

2. c is a corner in a 2-cell de, where s(e) or t(e) is x1.

In case 1 the corners are mapped identically. Let us do case 2 in more detail.
Let e be an edge of Γ such that s(e) = x1, t(e) = xk, and λ(e) = xj 6=



lbf-complexes Harlander/Rosebrock August 1, 2023 page 10

x1. Then de contributes the corners x−
1
x+j , x

−

j x
−

k , x
+

k x
−

j , x
+

j x
+

1
. We have

φ(x−
1
x+j ) = x+

1
x+j , φ(x−j x

−

k ) = x−j x
−

k , φ(x+k x
−

j ) = x+k x
−

j , φ(x+j x
+

1
) = x+j x

−

1
.

Thus φ permutes two corners of de and fixes the other two. The case where
t(e) = x1 is treated similarly. �

Theorem 4.4 Let Γ be a LOF.

1. The lbf-property is invariant under block reorientation.

2. If Γ is injective, then the lbf-property is invariant under reorientation.

Proof: This is an immediate consequence of Lemma 4.2. �

Theorem 4.5 An injective LOF Γ has the lbf-property if and only if there
is a reorientation Γρ that has the strong lbf-property.

Proof: In the light of Lemma 4.2 all we have to show is that if Γ has the
lbf-property then there exists a reorientation that has the strong lbf-property.
Let {x1, . . . , xn} be the vertices of Γ and assume w.l.o.g. x1, . . . , xk do not
occur as edge labels, but xk+1, . . . , xn do. Let Λ = lk(K(Γ)) and assume that
Λ(xǫ1

1
, . . . xǫnn ) and Λ(x−ǫ1

1
, . . . x−ǫn

n ) are forests. We use Lemma 4.2 to reori-
ent the edges e of Γ for which λ(e) = xi and ǫi = − to produce a reorientation
Γρ so that Λρ(x

ǫ1
1
, . . . , xǫkk , x+k+1

, . . . x+n ) and Λρ(x
ǫ1
1
, . . . , xǫkk , x−k+1

, . . . x−n ) are

forests. By Lemma 4.3 Λρ(x
+

1
, . . . , x+n ) and Λρ(x

−

1
, . . . , x−n ) are forests. �

5 The Selection Graph

For a graph Λ we denote its vertex set by V (Λ) and its edge set by E(Λ).
Furthermore, if E0 is a subset of the edge set E(Λ), we denote by 〈E0〉 the
subgraph of Λ spanned by E. If Λ is a directed graph and e is an edge with
s(e) = x and t(e) = y, we sometimes write e = (x → y).
Let Γ be a LOF and K(Γ) be the corresponding 2-complex. We define
the selection-graph Σ(Γ), a directed graph, as follows: Its vertex set coin-
cides with the vertex set of Γ and each edge e of Γ gives rise to two edges
a(e) = (s(e) → λ(e)) and b(e) = (t(e) → λ(e)) in Σ(Γ). (see Figure 3). If Γ
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xi xk xi xj xk

Γ Σ(Γ)

e a(e) b(e)

xj

Figure 3: From Γ to Σ(Γ).

is compressed, then every edge in Σ(Γ) has two distinct vertices. Σ(Γ) may
contain multiple edges between two vertices.

We immediately make the observation that reorientation of Γ has no effect
on the selection graph: If Γρ is a reorientation of Γ then Σ(Γ) = Σ(Γρ);
however, if en edge e is reversed to ē, then a(ē) = b(e) and b(ē) = a(e).
The selection graph Σ(Γ) is related to both Γ and lk(K(Γ)). Its main point,
which we will explain in detail below, is the following: Given an admissible
partition into (black and white) subgraphs Σ(Γ) = Ub ∪ Uw it “selects” an
orientation Γρ of Γ so that lk+(K(Γρ)) = Ub and lk−(K(Γρ)) = Uw. Thus,
if Σ(Γ) can be admissibly partitioned into forests, lk(K(Γρ)) and therefore
lk(K(Γ)) is a bi-forest.
Let Γ′ be the barycentric subdivision of Γ. If e is an edge in Γ let me be its
midpoint. We orient the edges in Γ′ to always point towards the me’s. For e
an edge of Γ denote by e+ = (s(e) → me) and e− = (t(e) → me). Note that
we have a continuous map

γ : Γ′ → Σ(Γ)

defined by γ(x) = x, if x is a vertex of Γ, and γ(me) = λ(e), γ(e+) =
a(e), γ(e−) = b(e). γ is a bijection on edge sets. Let Γ′

+ be the subgraph of
Γ′ on the edge set e+, e ∈ E(Γ). Similarly define Γ′

−. We have maps

α+ : Γ′
+ → lk+(K(Γ)) and α− : Γ′

− → lk−(K(Γ))

defined by α+(e
+) = s(e)+λ(e)+ and α−(e

−) = t(e)−λ(e)−. Note that both
α+ and α− are bijections on the edge sets.
Finally, note that Σ(Γ) is obtained from lk+(K(Γ)) ∪ lk−(K(Γ)) by iden-
tifying x+ and x− to x, for every vertex x of Γ. Thus we have a quotient
map

β : lk+(K(Γ)) ∪ lk−(K(Γ)) → Σ(Γ).

In detail β is described in the following way: β(x+) = β(x−) = x; If e is
an edge in Γ then β(c+e ) = β(s(e)+λ(e)+) = (s(e) → λ(e)), and β(c−e ) =
β(t(e)−λ(e)−) = (t(e) → λ(e)). Let Σ+(Γ) = β(lk+(Γ)). β is a bijection
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on edges and defines graph isomorphisms lk+(Γ) → Σ+(Γ) and lk−(Γ) →
Σ−(Γ). We also note that γ factors in the following ways

γ = β ◦ α+ : Γ′
+ → lk+(K(Γ)) → Σ+(Γ)

and
γ = β ◦ α− : Γ′

− → lk−(K(Γ)) → Σ−(Γ).

A partition of E(Γ′) = Eb ∪ Ew, black and white edges, is admissible if
edges e+ and e− have different color for every edge e ∈ Γ. A partition
E(Σ) = Eb ∪Ew is admissible if edges a(e) and b(e) have different color for
each edge e. Note that the map γ provides a bijection between admissible
partitions of Γ′ and Σ.

Lemma 5.1 Let Γ be a LOF with selection graph Σ(Γ) and suppose E(Σ) =
Eb ∪ Ew is an admissible partition. Then there exists a reorientation Γρ of
Γ so that Eb = E(Σ+(Γρ)) and Ew = E(Σ−(Γρ)). In particular

β : lk+(K(Γρ)) → Σ+(Γρ) = 〈Eb〉, β : lk−(K(Γρ)) → Σ−(Γρ) = 〈Ew〉

are graph isomorphisms.

Proof: The admissible partition for Σ(Γ) gives an admissible partition for
E(Γ′) = γ−1(Eb)∪γ−1(Ew). Now reorient Γ to Γρ so that Γ′

ρ+
= 〈γ−1(Eb)〉.

Then Γ′
ρ−

= 〈γ−1(Ew)〉. Now

γ(Γ′
ρ+

) = 〈Eb〉 and γ(Γ′
ρ−

) = 〈Ew〉.

We have factorizations

γ = β ◦ α+ : Γ′
ρ+

→ lk+(K(Γρ)) → Σ+(Γρ) = 〈Eb〉

and
γ = β ◦ α− : Γ′

ρ−
→ lk−(K(Γρ)) → Σ−(Γρ) = 〈Ew〉.

Since the rightmost maps, the restrictions of β, are isomorphisms, we obtain
the desired result. �
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Let us give a pictorial proof of the Lemma 5.1 (see Figure 4).

1. Draw the LOF Γ.

2. Draw the barycentric subdivision Γ′, and draw Σ(Γ) by replacing the
midpoints me by λ(e). Σ(Γ) “looks” like Γ′, but vertices with the same
name have to be identified. Best to not actually do these identifications
in your drawing since it would only obscure things.

3. We have given an admissible partition E(Σ) = R ∪ B, red and blue
edges (black and white is hard to draw). Put the colors into your
drawing. You now see an admissible partition of E(Γ′) into red and
blue edges (half edges of Γ). Now reorient Γ to Γρ so that if ē is an
edge in Γρ then ē+ ∈ R.

4. Now
Γ′
ρ+

α+

→ lk+(K(Γρ))
β
→ 〈R〉

and the latter map is an isomorphism.

x

x

x

x

x

y

y

y

y

y

z

z

z

z

z Γ

Γ′

Σ

Σ

Γρ

1.

2.

3. z

z

m1

x

x

m2

x

z x

z

Figure 4: A pictorial proof of Lemma 5.1

6 More graph theory: Edmonds’ Theorem

Let G be a directed graph, and let y be a specified vertex in G. A branching
B in G rooted at y is a spanning tree of G such that for every vertex v 6= y,
there is exactly one edge in B with v in its boundary which is directed
towards v.
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For a proper subset X ⊆ V (G) we denote by δ(X) the number of edges that
start at a vertex not in X and terminate at a vertex in X.

Theorem 6.1 (Edmonds [4]) There exist n mutually disjoint branchings in
G rooted at y if and only if for every subset X ⊆ V (G), y /∈ X, δ(X) ≥ n.

A more general result was later shown by Mao-cheng [12]. We will apply
Edmonds’ theorem to the selection graph. For a LOF Γ the graph Σ(Γ)
might not be connected. That is why we state the following theorem for
LOTs only.

Theorem 6.2 Let Γ be a reduced injective LOT such that all sub-LOTs are
boundary reduced. Let y be the vertex in Γ that does not occur as an edge
label. Then there exist two mutually disjoint branchings in Σ(Γ) rooted at y.

Lemma 6.3 Let Γ be a reduced injective LOT such that all sub-LOTs are
boundary reduced. If U is a subgraph of Σ(Γ) then |E(U)| < 2|V (U)| − 1.

Proof: Let T ′ = γ−1(U), where γ : Γ′ → Σ(Γ). Then T ′ is a subgraph of Γ′

and hence is a forest. Suppose T ′ has l components. Then χ(T ′) = l. Let y
be the vertex in Γ that does not occur as an edge label. Then γ−1(y) = {y}.
Note that if x is a vertex in U different from y then γ−1(x) = {x,me}, where
me is the midpoint of the edge e with label λ(e) = x. Also |E(T ′)| = |E(U)|,
because γ is a bijection of edges. Thus we have

l = χ(T ′) ≤ 2|V (U)| − |E(U)|,

and equality holds if and only if γ−1(x) = {x,me} for all vertices x of U .
We have

|E(U)| ≤ 2|V (U)| − l.

If l > 1 we are done. So suppose l = 1, in which case T ′ is a tree. Assume
1 = χ(T ′) = 2|V (U)| − |E(U)|. Note that because γ−1(x) = {x,me}, for all
x ∈ U , T ′ contains with every vertex x a subdivided edge of Γ with label x,
or half an edge of Γ with label x. Thus, including missing halfedges (should
there be such) and rubbing out edge midpoints produces a sub-LOT T̂ of
Γ. Consider T̂ ′. T ′ = T̂ ′ is not possible: T̂ would be a sub-LOT where all
vertices occur as edge labels, which is impossible because a tree has more
vertices than edges. Therefore T ′ < T̂ ′. W.l.o.g. we assume that T ′ contains
the halfedge e+ but not e− of an edge e ∈ Γ. Then, since T ′ is connected,
me is a vertex of valency 1 in T ′. T ′ contains the halfedge e+ but not e−.
Then t(e) is a vertex of T̂ that does not occur as an edge label, so T̂ is not
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boundary reduced. This contradicts our assumption. �

Proof of Theorem 6.2: Note that since every vertex x 6= y does occur as edge
label in Γ, there are exactly two edges of Σ(Γ) terminating at x 6= y. Let
X ⊂ V (Σ(Γ)) which does not contain y. Let U be the subgraph spanned
by X. Let |X| = k. Since X does not contain y, there are exactly 2k edges
terminating in X. The graph U contains exactly the edges terminating and
starting in X. Thus U contains 2k − δ(X) edges, since we have to subtract
the edges terminating in X but not starting in X. Lemma 6.3 tells us that

2k − δ(X) < 2k − 1

and therefore δ(X) ≥ 2. The result follows from Theorem 6.1 since we have
shown that for every subset X ⊆ V (Σ(Γ)), y /∈ X, δ(X) ≥ 2. �

Let Γ be a reduced injective LOT that does contain a sub-LOT Γ0 that is
not boundary reduced. Let X be the vertex set of Γ and X0 ⊆ X be the
vertex set of Γ0. Let x0 be the boundary vertex of Γ0 that does not occur as
an edge label in Γ0. Then δ(X0 −{x0}) = 1. One can show using Edmonds’
Theorem 6.1 that Σ(Γ) does admit a single branching, but this is not good
enough for our purpose.

7 Proof of Theorem 3.3

We first show the theorem in case Γ is a LOT. Let Γ be a reduced injective
LOT such that all sub-LOTs are boundary reduced, and let x be the vertex
in Γ that does not occur as an edge label. By Theorem 6.2 there are two
mutually disjoint branchings B1 and B2 in Σ = Σ(Γ) rooted at x. Let Ei be
the edge set of Bi, i = 1, 2. Note that E(Σ) = E1 ∪E2 is an admissible par-
tition. By Lemma 5.1 there exists a reorientation Γρ so that lk+(Kρ) = B1

and lk−(Kρ) = B2, and hence both are trees. So K(Γρ) has the strong lbf-
property. It now follows from Theorem 4.5 that K has the lbf-property.

Assume next that Γ is an injective reduced LOF with more than one compo-
nent without boundary reducible sub-LOTs. Assume first that Γ = Γ1 ∪ Γ2,
where each Γi is a LOF itself. In that case K(Γ) = K(Γ1) ∨ K(Γ2). By
induction on the number of vertices we can assume that K(Γi) has the lbf-
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property, and hence K(Γ) has the lbf-property as well.

Next assume that Γ does not split as above. Then at least one component
of Γ contains a vertex that is an edge label in a different component. We
will see that in this case Γ embeds in a reduced injective LOT Γ̂ without
boundary reducible sub-LOT’s. Suppose first Γ = C1 ∪ C2, where the Ci

are the connected components. Let x1 be a vertex of C1 that occurs as an
edge label in C2. Let x2 be an arbitrary vertex in C2. Connect x1 to x2 by
an edge and label it with a vertex y 6= x2 that does not appear as an edge
label in Γ. This is possible since Γ contains exactly 2 vertices which do not
appear as edge labels. We obtain a LOT Γ̂ with the desired properties. If
Γ = C1 ∪ . . . ∪ Ck we argue by induction to produce Γ̂. We have already
shown that K(Γ̂) has the lbf-property. Since this property is hereditary and
K(Γ) is a subcomplex of K(Γ̂), it follows that K(Γ) has the lbf-property. �

8 The Relative Case

Let K be a standard 2-complex and K1, . . . ,Km be mutually edge disjoint
subcomplexes. Let X = {x1, . . . , xn} be the edge set of K and let Xi ⊆ X
be the edge set of Ki. Let X± = {x+

1
, . . . , x+n , x

−

1
, . . . , x−n }. Let ǫ : X → X±,

ǫ(xi) = xǫii , ǫi ∈ {+,−}. We have ǫ(X) = {xǫ1
1
, . . . , xǫnn }. Let Λ = lk(K).

Definition 8.1 (K,K1 ∨ . . . ∨Km) has the relative lbf-property if there is
a choice of ǫ such that Λ(ǫ(X)) is a forest relative to

⋃m
i=1

Λ(ǫ(Xi)) and
Λ(−ǫ(X)) is a forest relative to

⋃m
i=1

Λ(−ǫ(Xi)).

Definition 8.2 (Quotient LOF) Let Γ be a LOF and Γ1, . . . ,Γm be disjoint
sub-LOTs. A quotient LOF Γ̄ is obtained in the following way: For every
1 ≤ i ≤ m, choose a vertex yi from Γi; if e is an edge in Γ and λ(e) = zi is
a vertex in Γi, then relable e with yi and collapse Γi to the vertex yi.

Note that we have a map q : K(Γ) → K(Γ̄). Here is how Λ̄ = lk(K(Γ̄)) is
obtained from Λ = lk(K(Γ)). For every 1 ≤ i ≤ m, remove all corners of
Λi = lk(K(Γi)) that are not contained in Λ+

i ∪ Λ−

i . For every 1 ≤ i ≤ m,
identify all of Λ+

i to y+i , and all of Λ−

i to y−i .
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Theorem 8.3 Let Γ be a reduced LOF, Γ1, . . . ,Γm be disjoint sub-LOTs,
and Γ̄ be the quotient LOF. If K(Γ̄) has the lbf-property, then the pair
(K(Γ),K(Γ1) ∨ . . . ∨K(Γm)) has the relative lbf-property.

Proof: Let Λ = lk(K(Γ)), Λi = lk(K(Γi)), and Λ̄ = lk(K(Γ̄)). Let X̄,
X, Xi the vertex sets of Γ̄, Γ and Γi, respectively. There is an ǭ so that
both Λ̄(ǭ(X̄)) and Λ̄(−ǭ(X̄)) are forests. We construct an ǫ in the following
way: If x ∈ X and x is not contained in any Xi, then define ǫ(x) = ǭ(x).
If yi is the vertex of Γ̄i selected in the quotient process, and zi ∈ Xi, define
ǫ(zi) = ǭ(yi). Note that Λi(ǫ(Xi)) = Λ+

i if ǫ(yi) = y+i , and Λi(ǫ(Xi)) = Λ−

i

if ǫ(yi) = y−i . It follows that Λ̄(ǭ(X̄)) is obtained from Λ(ǫ(X)) by collapsing
Λi(ǫ(Xi)) to ǫ(yi), for each 1 ≤ i ≤ m. Thus we do have a quotient map

q : Λ(ǫ(X)) → Λ̄(ǭ(X̄)).

Since Λ̄(ǭ(X̄)) is a forest, Λ(ǫ(X)) is a forest relative to
⋃m

i=1
Λi(ǫ(Xi)).

Indeed, let c1 · · · ck be a cycle of corners in Λ(ǫ(X)) that is not entirely con-
tained in

⋃m
i=1

Λi(ǫ(Xi)), and let q(c1) · · · q(ck) be the corresponding cycle in
Λ̄(ǭ(X̄)). Note that q(cj) = ǫ(yi) if cj is a corner contained in Λ(ǫ(Xi)). Thus
q(cj) is not a corner and does not appear in the corner cycle q(c1) · · · q(ck).
Slightly abusing notation we write q(cj) = ∅. By our assumption not all
q(cj) = ∅. Since Λ̄(ǭ(X̄)) is a forest, there has to be a pair q(ci), q(cj) so
that q(cj) = q(ci)

opp, the corner q(ci) with opposite orientation, and q(cl) = ∅
for i < l < j. Thus cj = coppi , and our cycle is not homology reduced. The
fact that Λ(−ǫ(X)) is a forest relative to

⋃m
i=1

Λi(−ǫ(Xi)) is shown in the
same way. �

Theorem 8.4 Let Γ be a reduced LOF, Γ1, . . . ,Γm be disjoint sub-LOTs,
and Γ̄ be the quotient LOF. If K(Γ̄) has the lbf-property, then K(Γ) admits
a zero/one-angle structure so that the pair (K(Γ),K(Γ1) ∨ . . . ∨ K(Γm))
satisfies the relative coloring test and κ(d) ≤ 0 for all 2-cells d of K(Γ).

Proof: Let Λ = lk(K(Γ)), Λi = lk(K(Γi)), and Λ̄ = lk(K(Γ̄)). Let X̄
be the vertex set of Γ̄. There is an ǭ so that both Λ̄(ǭ(X̄)) and Λ̄(−ǭ(X̄))
are forests. We construct an ǫ as in the proof of the previous Theorem 8.3.
Then Λ(ǫ(X)) is a forest relative to

⋃m
i=1

Λi(ǫ(Xi)) and Λ(−ǫ(X)) is a forest
relative to

⋃m
i=1

Λi(−ǫ(Xi)). We now proceed in the same way as in the
proof of Theorem 3.2: Assign to a corner in Λ(ǫ(X)) ∪ Λ(−ǫ(X)) angle 0,
and to all other corners angle 1. Let c1 · · · ck be a homology reduced cycle
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of corners in Λ not entirely contained in
⋃m

i=1
Λi. Since both Λ(ǫ(X)) and

Λ(−ǫ(X)) are relative forests, our cycle can not be contained in Λ(ǫ(X))
or Λ(−ǫ(X)). Since these two are disjoint, it follows that our cycle must
contain two corners ci and cj not contained in Λ(ǫ(X)) ∪ Λ(−ǫ(X)). Since
their angles ω(ci) = ω(cj) = 1, the cycle condition 2 in the relative coloring
test is satisfied.
We next check the curvature of 2-cells. First consider a 2-cell de, where e is
an edge in Γ that is not an edge in any Γi. Let ē be the corresponding edge in
Γ̄. It was shown in Theorem 3.2 that dē contains two corners from Λ(ǭ(X̄))∪
Λ(−ǭ(X̄)). Therefore de contains two corners from Λ(ǫ(X))∪Λ(−ǫ(X)) and
hence two corners of angle 0. It follows that κ(de) ≤ 0. Next assume that
e is an edge of Γi, for some i. We assume w.l.o.g. that ǭ(yi) = +. Then
Λ(ǫ(Xi)) = Λ+

i ⊆ Λ(ǫ(X)) and Λ(−ǫ(Xi)) = Λ−

i ⊆ Λ(−ǫ(X)). It follows
that both corners c+e and c−e have angles 0 and therefore κ(de) ≤ 0. �

Theorem 8.5 If Γ is a reduced injective LOF then K(Γ) is VA. It follows
that every injective LOF is aspherical.

This result has appeared in our earlier work [6] and [7]. We give a proof
sketch. Assume that Γ is reduced and injective. Consider the maximal sub-
LOTs Γ1, . . . ,Γm. The generic situation is this: The maximal sub-LOTs are
disjoint and the quotient Γ̄ is reduced injective and without sub-LOTs. Other
situations can be dealt with in an ad hoc fashion. It follows from Theorem 3.3
that K(Γ̄) has the lbf-property and so the pair (K(Γ), K(Γ1)∨ . . .∨K(Γm))
satisfies the relative coloring test by Theorem 8.4 and κ(d) ≤ 0 for all 2-
cells of K(Γ). Let L = K(Γ) and J = K(Γ1) ∨ . . . ∨ K(Γm). It follows
from Theorem 2.7 that there are no vertex reduced thin spherical diagrams
over (L, J). It turns out, using the concept of thinning expansions (see
Definition 3.1 in [7]), that this is enough to show that (L, J) is relatively
VA. J = K(Γ1) ∨ . . . ∨K(Γm), and since each Γi has fewer vertices than Γ
we can inductively assume that each K(Γi) is VA. (A little care is called for
here, because the LOTs Γi might not be boundary reduced. But it is not
difficult to see that if a LOT-complex is VA after boundary reductions, it is
VA to begin with.) Therefore J is VA. Now (L, J) is relatively VA and J is
VA, and that implies that L is VA.
Assume that Γ is injective, but not reduced. Since reductions do not change
the homotopy type of the LOF complex, it follows that K(Γ) is aspherical.�
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