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Abstract. The analyses of interior penalty discontinuous Galerkin methods of any order k for solving

elliptic and parabolic problems with Dirac line sources are presented. For the steady state case, we prove

convergence of the method by deriving a priori error estimates in the L2 norm and in weighted energy norms.
In addition, we prove almost optimal local error estimates in the energy norm for any approximation order.

Further, almost optimal local error estimates in the L2 norm are obtained for the case of piecewise linear
approximations whereas suboptimal error bounds in the L2 norm are shown for any polynomial degree.

For the time-dependent case, convergence of semi-discrete and of backward Euler fully discrete scheme is

established by proving error estimates in L2 in time and in space. Numerical results for the elliptic problem
are added to support the theoretical results.

1. Introduction

In this paper, we analyze interior penalty discontinuous Galerkin (dG) approximations to elliptic and
parabolic problems with a Dirac measure concentrated on a line. Consider a convex domain Ω ⊂ R

3

containing a one-dimensional curve Λ ⊂ R which is strictly included in Ω. The elliptic model problem reads

−∆u = fδΛ, in Ω,(1.1)

u = 0, on ∂Ω.(1.2)

where f ∈ L2(Λ) and fδΛ is a Dirac measure concentrated on Λ defined as follows.

(1.3) 〈fδΛ, v〉 =

∫
Λ

fvds, ∀v ∈ L∞(Ω).

For the parabolic problem, let T be the final time, let u0 be in L2(Ω) and assume that f belongs to
L2(0, T ;L2(Λ)). We consider the following problem.

∂tu−∆u = fδΛ, in Ω× (0, T ],(1.4)

u = 0, on ∂Ω× (0, T ],(1.5)

u = u0, in {0} × Ω.(1.6)

The main contributions of this work are as follows. For the elliptic problem, we show global convergence
in the L2 norm and in weighted energy norms. Further, in regions excluding the line Λ, we derive almost
optimal L2 error estimates for linear polynomials and suboptimal error bounds of order almost k for dG
approximations of degree k ≥ 2. In addition, almost optimal error rates are established in local energy norms
for approximations of any polynomial degree. For the parabolic problem, we show global convergence in the
L2(0, T ;L2(Ω)) norm for both the semi-discrete approximation and for the backward Euler fully discrete
scheme.

Partial differential equations with Dirac right-hand sides can model organ perfusion where blood vessels
are considered as one dimensional fractures embedded in the tissue [13]. In this case, f can be a function of
the blood pressure in the vessel leading to a coupled 1D-3D problem for the pressures in the tissue and in the
vessels [12, 13]. Medical applications of such formulations include modeling drug delivery to tissues with the
help of implantable devices [11] and drug delivery to tumors where different treatment options are compared
[6]. In addition, Dirac measures concentrated on lines arise in optimal control problems [23]. Thanks to
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favorable properties of dG methods, including local mass conservation and adaptability to complex domains
[32], these methods are well suited to model physical phenomena such as organ perfusion. In this paper we
study dG methods applied to (1.1)-(1.2) and to (1.4)-(1.6).

The analysis of finite element approximations to model problems (1.1)-(1.2) and (1.4)-(1.6) is non–standard
since the true solution is not smooth enough in space, namely it does not belong to H1(Ω) and it exhibits
a logarithmic singularity near the line Λ [12, 26, 2]. Nevertheless, continuous Galerkin (cG) approximations
have been extensively studied; we refer to the work by Scott [33] and Casas [5] where global error bounds
are established. More recently and in the context of optimal control problems, Gong et al. derived improved
global L2 error bounds [23]. Such bounds are polluted by the singularity of the true solution where the rate
of convergence in the L2 norm for any polynomial degree is at most O(h) where h is the mesh-size. For
continuous Galerkin approximations to (1.4)-(1.6), global error estimates for semi-discrete and fully-discrete
formulations are derived in [24, 22].

In addition, convergence of the cG approximations to the elliptic model problem (1.1)-(1.2) has been
investigated in different non–classical norms. For example, local L2 optimal error estimates (up to a log
factor for linear polynomials) are derived by Köppl et al. [27, 26], and local energy error estimates are
obtained by Bertoluzza et al. [3]. Such improved estimates are possible since the solution is smooth in
regions excluding the line Λ [2]. In addition, D’Angelo obtained error estimates in weighted norms and
showed that with graded meshes the finite element solution converges optimally in these norms [12]. We also
mention the recent splitting technique to numerically approximate the model problem (1.1)-(1.2) introduced
by Gjerde et al. where the solution is split into an explicit singular part and an implicit smooth part [20].
A finite element discretization is then formulated for the smooth part and optimal error rates are recovered
[20].

To the best of our knowledge, discontinuous Galerkin approximations to (1.1)-(1.2) and to (1.4)-(1.6) are
missing from the literature. However, there are papers which formulate and study dG methods for elliptic
problems with Dirac sources concentrated at a point. To this end, we mention the work by Houston and
Wihler where global a priori and a posteriori error bounds are derived [25]. Recently, Choi and Lee derived
local L2 error estimates [8]. The analysis of dG methods for elliptic problems is particularly challenging since
consistency of the numerical method cannot be assumed since the traces of the solution and its gradient are
not well defined.

The rest of this paper is organized as follows. Weak formulations in usual and in weighted Sobolev spaces
are presented and shown to be equivalent in Section 2. Then, Section 3 defines the cG and dG discrete
solutions to model problem (1.1)-(1.2). We show global convergence in the L2 norm in Section 4 and in
weighted dG norms in Section 5. The local convergence of the solution is analyzed in Section 6. We devote
Section 7 to the analysis of dG formulations for (1.4)-(1.6). Numerical results for the elliptic problem are
presented in Section 8.

2. Weak formulation

Fix p0 ∈ [1, 3/2) and q0 be such that 1/q0 + 1/p0 = 1. Let W 1,p0(Ω) denote the usual Sobolev space and
recall that

W 1,p0

0 (Ω) = {v ∈W 1,p0(Ω), v = 0 on ∂Ω}.

The weak formulation for problem (1.1)-(1.2) is [5]: Find u ∈W 1,p0

0 (Ω) such that:

(2.1)

∫
Ω

∇u · ∇v =

∫
Λ

fv, ∀v ∈W 1,q0
0 (Ω).

This weak formulation is well posed and a unique solution u ∈ W 1,p0

0 (Ω) for p0 ∈ [1, 3/2) exists [5]. Next,
in a similar way to [12], we present another weak formulation of problem (1.1)-(1.2) in weighted Sobolev
spaces. Define the distance function to Λ:

(2.2) d(x,Λ) = dist(x,Λ) = min
y∈Λ
‖x− y‖, ∀x ∈ Ω.
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We first remark that dα is an A2 weight for |α| < 2 (see Lemma 3.3 in [17]) where A2 is the Muckenhoupt
class of weights satisfying:

A2 =
{
w ∈ L1

loc(R3), sup
B(x,r)

(
1

|B(x, r)|

∫
B(x,r)

w

)(
1

|B(x, r)|

∫
B(x,r)

w−1

)
<∞

}
,

where the supremum is taken over all balls B(x, r) centered at x and of radius r. This implies that dα belongs
to L2(Ω) if |α| < 1. We assume that the distance function satisfies the following bounds (see Theorem 3.4
in [14]).

‖∇d‖L∞(Ω) ≤ 1, ‖∇2d2‖L∞(Ω) ≤ C.(2.3)

Using the fact the ∇dα = αdα−1∇d, we then have that dα ∈ H1(Ω) if 0 < α < 1. For α ∈ (−1, 1), define
the weighted L2 norm as follows.

(2.4) ‖u‖L2
α(Ω) =

(∫
Ω

|u|2d2α

) 1
2

.

The L2
α(Ω) space and the weighted inner product are defined as:

L2
α(Ω) = {v : ‖v‖L2

α(Ω) <∞}, (u, v)α =

∫
Ω

uvd2α, ∀u, v ∈ L2
α(Ω).

Similarly, we introduce the weighted Sobolev spaces as:

Hm
α (Ω) = {u : Dβu ∈ L2

α(Ω), |β| ≤ m}, H̊m
α (Ω) = {u ∈ Hm

α (Ω), u|∂Ω = 0}.

where β is a multi-index and Dβ is the corresponding weak derivative. The weighted Sobolev semi-norms
and norms are denoted by:

|u|2Hmα (Ω) =
∑
|β|=m

‖Dβu‖2L2
α(Ω), ‖u‖2Hmα (Ω) =

m∑
k=0

|u|2Hmα (Ω).

Lemma 1. Let α be such that −2/p0 + 1 < α < 2/p0 − 1. Then, the weak formulation (2.1) is equivalent

to the following weak formulation: find uα ∈ H̊1
α(Ω) such that

(2.5)

∫
Ω

∇uα · ∇v =

∫
Λ

fv, ∀v ∈ H̊1
−α(Ω).

Proof. Let uα be a solution of (2.5). The existence and uniqueness of uα is established in [12], see also [16].
Observe that the condition on α implies that (αp0)/(2− p0) = (αq0)/(q0− 2) ∈ (−1, 1). Since dγ ∈ L1

loc(R3)
for |γ| ≤ 2, we use Hölder’s inequality and obtain∫

Ω

d−2αv2 ≤
(∫

Ω

d−2α
q0
q0−2

)(q0−2)/q0

‖v‖2/q0Lq0 (Ω) <∞, ∀v ∈ Lq0(Ω).(2.6)

This implies that W 1,q0
0 (Ω) ⊂ H̊1

−α(Ω). Hence uα satisfies (2.1) for all v ∈W 1,q0
0 (Ω). Similarly, for v ∈ L2

α(Ω),
we have ∫

Ω

vp0 =

∫
Ω

vp0dp0αd−p0α ≤
(∫

Ω

v2d2α

)p0/2(∫
Ω

d−2α
p0

2−p0

)(2−p0)/2

<∞, ∀v ∈ L2
α(Ω).

This implies that H̊1
α(Ω) ⊂ W 1,p0

0 (Ω). Thus, uα solves (2.1). Since the solution to (2.1) is unique (see
Theorem 2.1 case (ii) in [23]), we conclude that uα = u. �

3. Numerical approximations

Let Eh denote a partition of Ω, made of simplices:

(3.1)
⋃
E∈Eh

Ē = Ω̄.
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The diameter of a given element E is denoted by hE and the mesh size is denoted by h = maxE∈Eh hE . We
assume that Eh is regular in the sense that there exists a constant ρ > 0 such that

(3.2)
hE
ρE
≤ ρ, ∀E ∈ Eh,

where ρE is the maximum diameter of a ball inscribed in E. In addition, we assume that Eh is quasi-uniform:
there is a constant γ > 0 independent of h such that

(3.3) h ≤ γhE , ∀E ∈ Eh.

The broken Sobolev space is denoted by Hm(Eh) for m ≥ 1, and the broken gradient is denoted by ∇h. In
the remaining of the paper, k ≥ 1 is a fixed positive integer and C is a generic constant independent of h.

3.1. Finite element approximation. Let W k
h (Eh) be the finite element space defined as follows.

(3.4) W k
h (Eh) = {wh ∈ H1

0 (Ω) : wh|E ∈ Pk(E), ∀E ∈ Eh}.

Here, Pk(E) denotes the space of polynomials of degree at most k. Let uCG
h ∈W k

h (Eh) be the finite element
approximation to u satisfying

(3.5)

∫
Ω

∇uCG
h · ∇vh =

∫
Λ

fvh, ∀vh ∈W k
h (Eh).

3.2. Discontinuous Galerkin approximation. We now introduce the interior penalty discontinuous
Galerkin discrete solution [32]. We define the broken polynomial space as follows.

V kh (Eh) = {vh ∈ L2(Ω) : vh|E ∈ Pk(E),∀E ∈ Eh}.(3.6)

We also denote by Γh the set of all interior faces in Eh. For each interior face e, we associate a unit normal
vector ne and we denote by E1

e and E2
e the two elements that share e such that the vector ne points from

E1
e to E2

e . We denote the average and the jump of a function vh ∈ V kh (Eh) by {vh} and [vh] respectively.

{vh} =
1

2

(
vh|E1

e
+ vh|E2

e

)
, [vh] = vh|E1

e
− vh|E2

e
, ∀e ∈ Γh.(3.7)

If e belongs to the boundary of the domain, e = ∂Ω ∩ ∂E1
e , then we define the average and the jump as

follows.

(3.8) [v] = {v} = v|E1
e
.

Let uDG
h ∈ V kh (Eh) be the discontinuous Galerkin solution satisfying:

aε(u
DG
h , vh) =

∫
Λ

fvh, ∀vh ∈ V kh (Eh),(3.9)

where aε(·, ·) : V kh (Eh)× V kh (Eh)→ R is given by:

aε(u, v) =
∑
E∈Eh

∫
E

∇u · ∇v −
∑

e∈Γh∪∂Ω

∫
e

{∇u} · ne[v]

+ε
∑

e∈Γh∪∂Ω

∫
e

{∇v} · ne[u] +
∑

e∈Γh∪∂Ω

∫
e

σ

hβ
[u][v].(3.10)

In the above, ε ∈ {−1, 0, 1}, σ is a user specified parameter and β ≥ 1 is a parameter to be specified in the
subsequent sections. We define the following energy semi-norm. For B ⊆ Ω or B = Ω and vh ∈ V kh (Eh),

(3.11) ‖vh‖2DG(B) =
∑
E∈Eh

‖∇vh‖2L2(E∩B) +
∑

e∈Γh∪∂Ω

σh−1‖[vh]‖2L2(e∩B).

For simplicity, we write ‖ · ‖2DG = ‖ · ‖2
DG(Ω)

. We also note that ‖ · ‖DG defines a norm and the following

Poincare inequality holds [15].

(3.12) ‖vh‖Lp(Ω) ≤ C‖vh‖DG, ∀1 ≤ p ≤ 6, ∀vh ∈ V kh (Eh).
4



In the analysis, we will also use the following semi-norm. For v ∈ H2(Eh) and B ⊆ Ω or B = Ω,

(3.13) |||v|||2DG(B) = ‖v‖2DG(B) +
∑

e∈Γh∪∂Ω

h‖{∇v}‖2L2(e∩B).

Similarly, denote |||·|||2DG = |||·|||2DG(Ω). We then have the following continuity properties of the form aε [7, 32].

(3.14) aε(v, w) ≤ C|||v|||DG|||w|||DG, aε(vh, wh) ≤ C‖vh‖DG‖wh‖DG, ∀v, w ∈ H2(Eh), ∀vh, wh ∈ V kh (Eh).

In addition, the following coercivity property

(3.15) aε(wh, wh) ≥ 1

2
‖wh‖2DG, ∀wh ∈ V kh (Eh),

is valid for any value σ ≥ 1 if ε = +1 and for σ large enough if ε = −1, 0. We recall the following important
inverse inequalities, see Section 4.5 in [4].

(3.16) ‖vh‖Lq(Ω) ≤ Ch
3
q−

3
p ‖vh‖Lp(Ω), ∀ 1 ≤ p ≤ q ≤ ∞, ∀ vh ∈ V kh (Eh).

For the trace estimates, we will make use of the following.

‖v‖L2(e) ≤ Ch−1/2(‖v‖L2(E) + h‖∇v‖L2(E)), ∀e ⊂ ∂E, ∀E ∈ Eh, ∀v ∈ H1(Eh).(3.17)

For discrete functions, the above estimate reads

‖vh‖L2(e) ≤ Ch−1/2‖vh‖L2(E), ∀e ⊂ ∂E, ∀E ∈ Eh, ∀vh ∈ V kh (Eh).(3.18)

Further, we recall that for any p ∈ [1,∞],

‖∇hvh‖Lp(Ω) ≤ Ch−1‖vh‖Lp(Ω), ∀vh ∈ V kh (Eh).(3.19)

4. Global error estimate in the L2 norm

The goal of this section is to show a global L2 estimate for the error u - uDG
h . We first recall important

global L2 estimates for the finite element discretization (3.5). For k = 1. Casas obtained the following
estimate [5],

(4.1) ‖u− uCG
h ‖L2(Ω) ≤ Ch1/2‖f‖L2(Λ).

If the line Λ is a C2 curve that does not intersect the boundary ∂Ω, the improved estimate

(4.2) ‖u− uCG
h ‖L2(Ω) ≤ C(θ)h1−θ‖f‖L2(Λ), 0 < θ <

1

2
,

was proved by Gong et al. for k = 1 in [23]. Similar arguments yield the same error bounds for k ≥ 2. The

parameter θ arises from the fact that u ∈ W 1, 6
2θ+3

0 (Ω) when 0 < θ < 1/2. We follow the ideas of Scott [33]
and Houston and Wihler [25] presented for a problem with a Dirac source concentrated at a point, and we
construct an intermediate problem with an L2 source term. Let TΛ ⊂ Eh be the set of elements that intersect
the line Λ,

TΛ = {E ∈ Eh, E ∩ Λ 6= ∅}.
Define fh ∈ V kh (Eh) as

(4.3) ∀E ∈ Eh, fh|E =

{
fh,E , if E ∈ TΛ,

0, otherwise,

where fh,E ∈ Pk(E) is defined as follows. For E ∈ TΛ,

(4.4)

∫
E

fh,Evh =

∫
E∩Λ

fvh, ∀vh ∈ Pk(E).

Clearly, the function fh,E is well defined. Further, consider the following intermediate problem: find U ∈
H1

0 (Ω) such that

−∆U = fh, in Ω,(4.5)

U = 0, on ∂Ω.(4.6)

5



Since fh belongs to L2(Ω), Lax-Milgram’s theorem yields existence and uniqueness of U . In addition, since
Ω is convex, the function U belongs to H2(Ω). We proceed by obtaining a bound on fh in the following
lemma.

Lemma 2. The following estimate holds

(4.7) ‖fh‖L2(Ω) ≤ Ch−3/2‖f‖L2(Λ).

In addition, if Λ is a C2 curve and the mesh satisfies |Λ ∩ E| ≤ Ch for all E ∈ Eh, we have

(4.8) ‖fh‖L2(Ω) ≤ Ch−1‖f‖L2(Λ).

Proof. With the definition of fh given in (4.4), we have

‖fh‖2L2(Ω) =

∫
Ω

f2
h =

∑
E∈Eh

∫
E

(fh|E)2 =
∑
E∈TΛ

∫
E∩Λ

fh,Ef.

Using Hölder’s inequality, we obtain∫
E∩Λ

fh,Ef ≤ ‖fh,E‖L∞(E)‖f‖L1(E∩Λ).

Hence, with (3.16) (q =∞, p = 2), and (3.3), we obtain

‖fh‖2L2(Ω) ≤
∑
E∈TΛ

‖fh,E‖L∞(E)‖f‖L1(E∩Λ) ≤ Ch−3/2
∑
E∈TΛ

‖fh,E‖L2(E)‖f‖L1(E∩Λ)

≤ Ch−3/2
∑
E∈TΛ

‖fh,E‖L2(E)|Λ ∩ E|1/2‖f‖L2(E∩Λ).

If |Λ ∩ E| ≤ Ch, we apply Hölder’s inequality for sums and obtain (4.8). Otherwise, we have (4.7). �

The following a priori error bounds hold.

Lemma 3. There exists a constant C independent of h such that

‖U − uCG
h ‖L2(Ω) + h‖∇(U − uCG

h )‖L2(Ω) ≤ Ch2‖U‖H2(Ω),(4.9) ∣∣∣∣∣∣U − uDG
h

∣∣∣∣∣∣
DG
≤ Ch‖U‖H2(Ω).(4.10)

If in addition, β = 1 and σ is large enough if ε = −1 or β > 3/2 and σ is large enough for ε = 0 or ε = 1,
there exists a constant C independent of h such that

(4.11) ‖U − uDG
h ‖L2(Ω) ≤ Ch2‖U‖H2(Ω).

Proof. We have for any vh ∈ V kh (Eh),∫
Ω

fhvh =
∑
E∈Eh

∫
E

fh|E vh =
∑
E∈TΛ

∫
E∩Λ

fvh =

∫
Λ

fvh.

Thus, since W k
h (Eh) is a subset of V kh (Eh), the discrete functions uCG

h and uDG
h can be viewed as finite element

and discontinuous Galerkin approximations to the intermediate problem (4.5). Since fh ∈ L2(Ω), standard
approximation and error bounds hold. In particular, (4.9) and (4.10) hold. For a proof of (4.11), we refer
to Theorem 2.13 in [32]. �

We are now ready to present and prove the main result of this section.

Theorem 1. Assume the penalty parameter σ is chosen so that (3.15) holds. In addition, if ε = {0, 1},
select β > 3/2 and if ε = −1, choose β = 1. Then, there exists a constant C independent of h such that

(4.12) ‖u− uDG
h ‖L2(Ω) ≤ Ch1/2‖f‖L2(Λ).

In addition, if Λ is a C2 curve and |Λ ∩ E| ≤ Ch for all E ∈ Eh, we have the following improved estimate.

(4.13) ‖u− uDG
h ‖L2(Ω) ≤ C(θ)h1−θ‖f‖L2(Λ), 0 < θ < 1/2.

6



Proof. We use triangle inequality to obtain:

(4.14) ‖u− uDG
h ‖L2(Ω) ≤ ‖u− uCG

h ‖L2(Ω) + ‖uCG
h − U‖L2(Ω) + ‖U − uDG

h ‖L2(Ω).

We have for any vh ∈ V kh (Eh),∫
Ω

fhvh =
∑
E∈Eh

∫
E

fh|E vh =
∑
E∈TΛ

∫
E∩Λ

fvh =

∫
Λ

fvh.

Since the domain Ω is convex, we have the following elliptic regularity result:

(4.15) ‖U‖H2(Ω) ≤ C‖fh‖L2(Ω).

Using the bounds (4.9) and (4.11) in (4.14) yields:

(4.16) ‖u− uDG
h ‖L2(Ω) ≤ ‖u− uCG

h ‖L2(Ω) + Ch2‖fh‖L2(Ω).

Bounds (4.1) and (4.7) give (4.12). Under the additional assumptions, bounds (4.2) and (4.8) yield (4.13). �

Hereinafter, we only consider the symmetric dG discretization (ε = −1) and we set β = 1. Hence, for
simplicity, we denote by a = a−1. We also assume that Λ is a C2 curve, f ∈ L2(Λ), and that |E ∩ Λ| ≤
Ch, ∀E ∈ Eh. Therefore, with (4.15) and (4.8), there is a constant C independent of h such that:

(4.17) h‖U‖H2(Ω) ≤ C‖f‖L2(Λ).

We recall Lemma 4.1 proved by Chen and Chen in [7]. Consider any two sets D, D̃ ⊂ Ω such that the

distance between D and (∂D̃\∂D) is strictly positive. Then, for h small enough, we have

(4.18)
∣∣∣∣∣∣U − uDG

h

∣∣∣∣∣∣
DG(D)

≤ C(hk‖U‖Hk+1(D̃) + ‖U − uDG
h ‖L2(D̃)).

5. Weighted Energy Estimate

We first show that the dG solution is stable in the weighted energy norm defined by:

‖v‖2DG,α =
∑
E∈Eh

‖∇v‖2L2
α(E) +

∑
e∈Γh∪∂Ω

σ

h
‖dα[v]‖2L2(e), v ∈ H1(Eh), α ∈ (0, 1).(5.1)

Lemma 4 (Stability). For α ∈ (0, 1), there exists a constant Cα independent of h but dependent on
maxx∈Ω d

2α(x) such that the dG solution, uDG
h , satisfies:

(5.2) ‖uDG
h ‖DG,α ≤ Cα(‖f‖L2(Λ) + |u|H1

α(Ω)).

Proof. Recall the intermediate problem (4.5). Since U ∈ H2(Ω) ∩H1
0 (Ω), we immediately have with (4.10)

and (4.17)

(5.3)
∑

e∈Γh∪∂Ω

σ

h
‖d2α[uDG

h ]‖2L2(e) ≤ ‖d
2α‖2L∞(Ω)

∑
e∈Γh∪∂Ω

σ

h
‖[uDG

h − U ]‖2L2(e) ≤ C‖d
2α‖2L∞(Ω)‖f‖

2
L2(Λ).

We use the triangle inequality, (4.9) and (4.17):

‖∇U‖L2
α(Ω) ≤ ‖d2α‖L∞(Ω)‖∇(U − uCG

h )‖L2(Ω) + ‖∇uCG
h ‖L2

α(Ω) ≤ Cα‖f‖L2(Λ) + ‖∇uCG
h ‖L2

α(Ω).(5.4)

From Theorem 3.5 in [16] and Lemma 1, we have

(5.5) ‖∇uCG
h ‖L2

α(Ω) ≤ C‖∇u‖L2
α(Ω), α ∈ (0, 1).

This implies
‖∇U‖L2

α(Ω) ≤ Cα‖f‖L2(Λ) + C|u|H1
α(Ω).

By the triangle inequality, (4.10), (4.17) and the above bound, we obtain∑
E∈Eh

‖∇uDG
h ‖2L2

α(E) ≤ 2
∑
E∈Eh

‖∇(uDG
h − U)‖2L2

α(E) + 2
∑
E∈Eh

‖∇U‖2L2
α(E)

≤ Cα‖uDG
h − U‖2DG + 2‖∇U‖2L2

α(Ω) ≤ Cα(‖f‖L2(Λ) + |u|H1
α(Ω))

2.(5.6)

We conclude the result by combining (5.3) and (5.6). �

We have an a priori bound for U in the H2
α norm, which can be seen as a generalization of (4.17). We

denote by d̄E = maxx∈E d(x,Λ) for E ∈ Eh.
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Lemma 5. For α ∈ (−1, 1), there exists a constant C independent of h such that

‖U‖H2
α(Ω) ≤ Chα−1‖f‖L2(Λ), α ∈ (−1, 1).(5.7)

Proof. Since d2α ∈ A2, it follows from Theorem 3.1 in [31] that

‖U‖H2
α(Ω) ≤ C‖fh‖L2

α(Ω).(5.8)

Thus, to show (5.7), we find a bound on ‖fh‖L2
α(Ω). Thanks to the shape-regularity of the mesh, for E ∈ TΛ,

chE ≤ d̄E ≤ ChE (see Lemma 3.1 in [12]). Hence, using (5.10),(4.8) and (3.3), yield

‖fh‖2L2
α(Ω) =

∑
E∈TΛ

‖dαfh‖2L2(E) ≤
∑
E∈TΛ

d̄2α
E ‖fh,E‖2L2(E)

≤ Ch2α
∑
E∈TΛ

‖fh,E‖2L2(E) ≤ Ch
2α−2‖f‖2L2(Λ).(5.9)

Substituting (5.9) in (5.8) yields (5.7). �

The following equivalence of norms holds (see proof of Lemma 3.2 in [12]). There exist positive constants
γ1, γ2 independent of h such that for −1 < α < 1, E ∈ Eh, and vh ∈ Pk(E),

(5.10) γ1‖dαvh‖L2(E) ≤ d̄αE‖vh‖L2(E) ≤ γ2‖dαvh‖L2(E).

Note that with (2.3) and the chain rule, we have for E ∈ Eh, and v ∈ L∞(E),

2‖v∇(dα)‖L2(E) ≤ α‖dα−1v‖L2(E), α > 1/2(5.11)

‖v∇2(d2α)‖L2(E) ≤ C‖d2α−2v‖L2(E), 3/2 > α > 1/2.(5.12)

In addition, since d2α ∈ A2 for α ∈ (−1, 1), we use the interpolant Πh : H̊2
α(Ω)→W 1

h (Eh) introduced in [30].
This interpolant is independ ent of α and satisfies the following approximation properties (see Theorem 5.2

in [30]). For any α ∈ (−1, 1) and for any w in H̊2
α(Ω), there is a constant C independent of h such that

‖w −Πhw‖Hmα (E) ≤ Ch2−m|w|H2
α(∆E), 0 ≤ m ≤ 2, ∀E ∈ Eh,(5.13)

where ∆E is a macro element containing E. We also recall the definition of Kondratiev-type weighted
Sobolev spaces, V mα (Ω), for any α > 0 and m ∈ N:

V mα (Ω) = {u ∈ L2
α−m(Ω) : ∀0 ≤ |β| ≤ m, d|β|+α−mDβu ∈ L2(Ω)},

equipped with the norm

(5.14) ‖u‖2Vmα (Ω) =

m∑
s=0

|u|2Hsα−m+s(Ω), m ≥ 1.

Ariche et al. proved that the solution u to (1.1)-(1.2) belongs to V 2
1+α(Ω) for α ∈ (0, 1) under certain

conditions on Ω and Λ, see Theorem 1.1 in [2]. The main result of this section reads as follows.

Theorem 2. Fix α ∈ (1/2, 1) and let δ ∈ (0, α). Assume that u ∈ V 2
1+δ(Ω). For all 1 < s < 1

1−α , there
exist constants C and C∗ independent of h such that if σ > C∗,

(5.15) ‖∇h(u− uDG
h )‖L2

α(Ω) +

( ∑
e∈Γh∪∂Ω

σ

h
‖dα[uDG

h ]‖2L2(e)

)1/2

≤ C
(
hα−δ + h1− 3

2 s(1−α)
)
.

Proof. Let uCG
h ∈W 1

h (Eh) solve (3.5) for k = 1. We apply the triangle inequality.

‖∇h(u− uDG
h )‖L2

α(Ω) +

( ∑
e∈Γh∪∂Ω

σ

h
‖dα[uDG

h ]‖2L2(e)

)1/2

≤ ‖∇(u− uCG
h )‖L2

α(Ω) + ‖U − uDG
h ‖DG,α + ‖∇(uCG

h − U)‖L2
α(Ω).(5.16)

Considering Lemma 1, the first term is bounded in Corollary 3.8 in [12]

(5.17) ‖∇(u− uCG
h )‖L2

α(Ω) ≤ Chα−δ|u|V 2
1+δ(Ω).
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Bound (5.17) can also be derived from Theorem 3.5 in [16] and Theorem 3.6 in [12]. It remains to bound
‖U − uDG

h ‖DG,α and ‖∇(uCG
h − U)‖L2

α(Ω), which is the object of Lemma 6 and Lemma 7 respectively. �

Lemma 6. For α ∈ ( 1
2 , 1), there exists a constant C∗ independent of h such that if σ > C∗,

(5.18) ‖U − uDG
h ‖DG,α ≤ C(hα + h1− 3

2 s(1−α)), ∀1 < s <
1

1− α
.

Proof. Let χh = ΠhU −uDG
h . With triangle inequality and the bounds (5.13), (4.10), (4.11), (4.17), we have

(5.19) ‖χh‖L2(Ω) + h‖χh‖DG ≤ Ch2‖U‖H2(Ω) ≤ Ch‖f‖L2(Λ).

With several manipulations, as is done in [36], we have formally

‖χh‖2DG,α = a(χh, d
2αχh)− 2

∑
E∈Eh

∫
E

(dα∇χh · (χh∇(dα))

+ 2
∑

e∈Γh∪∂Ω

∫
e

{∇(dαχh)} · ne[dαχh] =

3∑
i=1

Ti.(5.20)

We now explain why each term Ti above is well defined. From (5.11)-(5.12), the term T1 is well defined since
d2αχh ∈ H2(Eh). Property (5.11) and Cauchy-Schwarz’s inequality guarantee that T2 is well defined. For
T3, we write

{∇(dαχh)} · ne[dαχh] = {dα∇(dαχh)} · ne[χh].

Observe that since χh is a polynomial, the function dα∇(dαχh) belongs to H1(Eh)3. Indeed we have

dα∇(dαχh) = αd2α−1χh∇d+ d2α∇χh,
and with (5.12), each term belongs to H1(E) for each mesh element E. This implies that ‖{dα(∇dαχh)}‖L2(e)

is bounded and the term T3 is well defined. To handle the first term, we use the following Galerkin orthog-
onality

(5.21) a(U − uDG
h , vh) = 0, ∀vh ∈ V kh (Eh).

Let η = ΠhU − U and ξ = U − uDG
h so that χh = η + ξ. Since [dαη] = 0 a.e. on e ∈ Γh ∪ ∂Ω, we have

T1 = a(η, d2αχh) + a(ξ, d2αχh − wh)

=
∑
E∈Eh

∫
E

∇η · ∇(d2αχh)−
∑

e∈Γh∪∂Ω

∫
e

{dα∇η} · ne[dαχh] + a(ξ, d2αχh − wh)

=

3∑
i=1

T1,i,

where wh ∈ V 1
h (Eh) is a piecewise Lagrange interpolant of d2αχh such that

(5.22)
∣∣∣∣∣∣d2αχh − wh

∣∣∣∣∣∣
DG
≤ Ch|d2αχh|H2(Eh).

We begin by bounding T1,3. With (3.14), (4.10), (5.22), we have

(5.23) T1,3 = a(ξ, d2αχh − wh) ≤ C|||ξ|||DG

∣∣∣∣∣∣d2αχh − wh
∣∣∣∣∣∣

DG
≤ Ch2‖U‖H2(Ω)|d2αχh|H2(Eh).

Using (2.3) and (5.12), we obtain

|d2αχh|H2(Eh) ≤ C‖d2α−2χh‖L2(Ω) + C‖d2α−1∇hχh‖L2(Ω).

Since dγ ∈ L2(Ω) for |γ| < 1, we have d2(α−1) ∈ L
1

s(1−α) (Ω) for 1 < s < 1
2(1−α) . Note that 1

s(1−α) > 2.

Further, since χh ∈ V 1
h (Eh) and by using and Hölder’s inequality, we have

|d2αχh|H2(Eh) ≤C‖d2α−2‖
L

1
s(1−α) (Ω)

‖χh‖
L

2
1−2s(1−α) (Ω)

+ ‖dα−1‖
L

2
s(1−α) (Ω)

‖dα∇hχh‖
L

2
1−s(1−α) (Ω)

≤C‖χh‖
L

2
1−2s(1−α) (Ω)

+ ‖dα∇hχh‖
L

2
1−s(1−α) (Ω)

.(5.24)

By inverse estimate (3.16)(q = 2/(1− 2s(1− α)), p = 2) and (5.19), we have

(5.25) ‖χh‖
L

2
1−2s(1−α) (Ω)

≤ Ch−3s(1−α)‖χh‖L2(Ω) ≤ Ch−3s(1−α)+1‖f‖L2(Λ).
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For the second term, we first derive an inverse inequality for any vh ∈ V kh (Eh) and q ≥ 2. With the local
version of the inverse inequality (3.16), (5.10) and Jensen’s inequality, we have

(5.26) ‖dαvh‖Lq(Ω) ≤

(∑
E∈Eh

d̄αqE ‖vh‖
q
Lq(E)

)1/q

≤ Ch
3
q−

3
2

(∑
E∈Eh

d̄αqE ‖vh‖
q
L2(E)

)1/q

≤ Ch
3
q−

3
2

(∑
E∈Eh

‖vh‖qL2
α(E)

)1/q

≤ Ch
3
q−

3
2 ‖vh‖L2

α(Ω).

Hence, with (5.26), the second term in (5.24) is bounded as

(5.27) ‖dα∇hχh‖
L

2
1−s(1−α) (Ω)

≤ Ch− 3
2 s(1−α)‖∇hχh‖L2

α(Ω).

Thus, with (5.25) and (5.27), (5.24) reads

(5.28) |d2αχh|H2(Eh) ≤ C(h−3s(1−α)+1 + h−
3
2 s(1−α)‖∇hχh‖L2

α(Ω).)

Thus, with (4.17) and (5.28), (5.23) reads

(5.29) T1,3 ≤ C(h2−3s(1−α) + h1− 3
2 s(1−α)‖∇hχh‖L2

α(Ω)).

We now turn to T1,1 and T1,2. We write

T1,1 =
∑
E∈Eh

∫
E

∇η · d2α∇χh +

∫
E

∇η · 2αd2α−1∇dχh

≤ ‖∇η‖L2
α(Ω)‖∇hχh‖L2

α(Ω) + C‖∇η‖L2
2α−1(Ω)‖χh‖L2(Ω).

With (5.13), (5.7), (4.11) and (4.17), we obtain

|T1,1| ≤ Ch|U |H2
α(Ω)‖∇hχh‖L2

α(Ω) + Ch2|U |H2
2α−1(Ω)

≤ Chα‖∇hχh‖L2
α(Ω) + Ch2α.(5.30)

To handle T1,2, consider a mesh element E and let e ∈ ∂E. Since dαη belongs to H1
α(Ω), trace estimate

(3.17) yields

‖dα∇η‖L2(e) ≤ Ch−1/2‖dα∇η‖L2(E) + Ch1/2(‖dα∇2η‖L2(E) + ‖dα−1∇η‖L2(E)).

Thus, with Cauchy-Schwarz’s inequality, (5.13) and (5.7), we obtain

|T1,2| ≤ C
(
‖∇η‖L2

α(Ω) + h(‖U‖H2
α(Ω) + h‖U‖H2

α−1(Ω))
)
‖χh‖DG,α ≤ Chα‖χh‖DG,α.(5.31)

For T2, we apply Cauchy-Schwarz’s inequality and (2.3),

|T2| ≤ ‖∇hχh‖L2
α(Ω)‖dα−1χh‖L2(Ω).(5.32)

With (5.13), Holder’s inequality, the observation that dα−1 ∈ L
2

s(1−α) (Ω) , (5.19), and (3.16), we obtain

(5.33) |T2| ≤ ‖∇hχh‖L2
α(Ω)‖dα−1‖

L
2

s(1−α) (Ω)
‖χh‖

L
2

1−s(1−α) (Ω)

≤ C‖∇hχh‖L2
α(Ω)h

− 3
2 s(1−α)‖χh‖L2(Ω) ≤ Ch−

3
2 s(1−α)+1‖∇hχh‖L2

α(Ω).

Hence, with (5.29), (5.30), (5.31), (5.33), and Young’s inequality, we obtain

|T1|+ |T2| ≤
1

8
‖χh‖2DG,α + C(h2−3s(1−α) + h2α).(5.34)

It remains to handle T3. Fix a face e ∈ Γh, shared by two elements, e = ∂E1
e ∩ ∂E2

e . We write∫
e

(∇(dαχh))|E1
e
· ne[dαχh] =

∫
e

dα∇χh|E1
e
· ne[dαχh] +

∫
e

(αdα−1∇d · ne)χh|E1
e
[dαχh]

=Ae,1 +Ae,2.
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For Ae,1, recall the definition of d̄E1
e
. With (3.18) and (5.10), we have

Ae,1 ≤ Cd̄αE1
e
‖∇χh‖L2(E1

e)h
−1/2‖[dαχh]‖L2(e) ≤ Cγ2‖∇χh‖L2

α(E1
e)h
−1/2‖[dαχh]‖L2(e).(5.35)

Hence, with Young’s inequality, we obtain for a positive constant C0

(5.36)
∑

e∈Γh∪∂Ω

Ae,1 ≤
1

16
‖∇hχh‖2L2

α(Ω) + C0

∑
e∈Γh∪∂Ω

h−1‖[dαχh]‖2L2(e).

For the term Ae,2, we have with (2.3)

Ae,2 ≤ α‖d2α−1∇d · ne χh|E1
e
‖L2(e)‖[χh]‖L2(e) ≤ C‖d2α−1χh|E1

e
‖L2(e)‖[χh]‖L2(e).

With the trace inequality (3.17), Hölder’s inequality and (2.3), we have

‖d2α−1χh|E1
e
‖L2(e) ≤ Ch−1/2‖d2α−1χh‖L2(E1

e) + Ch1/2‖∇(d2α−1)χh‖L2(E1
e) + Ch1/2‖d2α−1∇χh‖L2(E1

e)

≤ Ch−1/2‖d2α−1‖L∞(Ω)‖χh‖L2(E1
e) + Ch1/2‖d2α−2‖

L
1

s(1−α) (E1
e)
‖χh‖

L
2

1−2s(1−α) (E1
e)

+ Ch1/2‖dα−1‖
L

2
s(1−α) (E1

e)
‖dα∇hχh‖

L
2

1−s(1−α) (E1
e)
.

With similar arguments as the derivation of bound (5.28), with (5.19), (5.25), (5.27), and Hölder’s inequality,
we obtain ∑

e∈Γh∪∂Ω

Ae,2 ≤ C(h−3s(1−α)+2 + h−
3
2 s(1−α)+1‖∇hχh‖L2

α(Ω))

( ∑
e∈Γh∪∂Ω

h−1‖[χh]‖2L2(e)

)1/2

.

With Young’s inequality and the bound (5.19), this leads to

(5.37)
∑

e∈Γh∪∂Ω

Ae,2 ≤
1

16
‖∇hχh‖2L2

α(Ω) + Ch−3s(1−α)+2.

Therefore we can bound T3 with (5.36) and (5.37).

(5.38) |T3| ≤
1

4
‖∇hχh‖2L2

α(Ω) + C0

∑
e∈Γh∪∂Ω

h−1‖[dαχh]‖2L2(e) + Ch−3s(1−α)+2.

We substitute (5.34), (5.38) in (5.20). With the assumption that σ > 4C0, we obtain the result with an
application of triangle’s inequality and the bound ‖U −ΠhU‖DG,α ≤ Chα. �

Lemma 7. For α ∈ (1/2, 1), there exists a constant C independent of h such that

(5.39) ‖∇(U − uCG
h )‖L2

α(Ω) ≤ C(hα + h1− 3
2 s(1−α)), ∀1 < s <

1

1− α
.

Proof. Let ζh = ΠhU − uCG
h . We have∑

E∈Eh

∫
E

d2α∇ζh · ∇ζh =
∑
E∈Eh

∫
E

∇ζh · ∇(d2αζh)− 2
∑
E∈Eh

∫
E

dαζh∇ζh · ∇(dα) = X1 +X2.

Let wh be the continuous Lagrange interpolant of d2αζh.

(5.40) ‖∇(d2αζh − wh)‖L2(Ω) ≤ Ch|d2αζh|H2(Eh).

Using the Galerkin orthogonality of the finite element method, we write

X1 =
∑
E∈Eh

∫
E

∇(U − uCG
h ) · ∇(d2αζh − wh)−

∑
E∈Eh

∫
E

∇(U −ΠhU) · ∇(d2αζh).

The terms in the right-hand side are bounded using similar arguments as in (5.24) - (5.30).

X1 ≤
1

4
‖∇hζh‖2L2

α(Ω) + C(h2−3s(1−α) + h2α).

For X2, similar arguments to the bound (5.33) for the term T2 hold:

X2 ≤ Ch1− 3
2 s(1−α)‖∇hζh‖L2

α(Ω).

We skip some details for brevity. The result is concluded by using triangle inequality. �
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6. Local L2 and energy error estimates

We show that the dG solution converges with an almost optimal rate in regions excluding the line Λ for
k = 1 in subsection 6.1. For k ≥ 2, we show that the dG solution converges with a rate of k in subsection
6.2 In this section, we make the following assumption on the weak solution u to (2.1).

A 1. For any neighborhood N of Λ, namely Λ ⊂ N ⊂ N ⊂ Ω, the weak solution u belongs to H2(Ω \N).
This assumption is justified in the following two cases. If f ∈ H2(Λ), then u ∈ H2(Ω\N). This result was

established using a splitting technique by Gjerde et al. [21]. Further, Ariche et al. show that if f ∈ L2(Λ)
and Λ is of class C4, then u belongs to a Kondratiev’s type space [2]. This implies that u ∈ H2(Ω\N), see
also [12].

We first establish a local a priori bound on the solution of the intermediate problem (4.5).

Lemma 8. Let N0 and N1 be nested neighborhoods of Λ satisfying

Λ ( N0 ⊂ N0 ⊂ N1 ⊂ Ω.

There exist h0 > 0 and a constant C independent of h such that for all h ≤ h0

(6.1) ‖U‖H2(Ω\N1) ≤ C
(
‖f‖L2(Λ) + ‖u‖H2(Ω\N0)

)
.

Proof. There exists a neighborhood N1/2 of Λ such that

N0 ⊂ N1/2 ⊂ N1/2 ⊂ N1 ⊂ N1 ⊂ Ω.

Define a mollifier function φ ∈ C∞(Ω) which is equal to 1 in Ω\N1 and to 0 in N1/2. Recall that by definition
of U (4.5) and fh (4.4), there exists h0 > 0 such that for h ≤ h0, we have

−∆U = 0, in Ω\N0.

In addition, set g as follows.

(6.2) g = ∆(Uφ), in Ω.

Clearly, g ∈ L2(Ω) and

g = φ∆U + 2∇U · ∇φ+ U∆φ =


0, in N1/2,

2∇U · ∇φ+ U∆φ, in N1 \N1/2,

0, in Ω \N1.

(6.3)

Hence, with Cauchy-Schwarz’s inequality, we obtain

‖g‖L2(Ω) ≤ C‖U‖H1(N1\N1/2)

(
‖∇φ‖L2(N1\N1/2) + ‖∆φ‖L2(N1\N1/2)

)
≤ C‖U‖H1(N1\N1/2).(6.4)

In the above, the constant C depends on the choice of the cut-off function φ but it is independent of h for
all h ≤ h0. We remark that Uφ vanishes on the boundary ∂Ω. By convexity of the domain and the above
bound, we have

(6.5) ‖Uφ‖H2(Ω) ≤ C‖g‖L2(Ω) ≤ C‖U‖H1(N1\N1/2).

By the definition of φ, the above bound, and the triangle inequality (with uCG
h ∈W 1

h (Eh) satisfying (3.5) for
k = 1), we obtain

‖U‖H2(Ω\N1) = ‖Uφ‖H2(Ω\N1) ≤ ‖Uφ‖H2(Ω) ≤ C‖U‖H1(N1\N1/2)

≤ C(‖U − uCG
h ‖H1(N1\N1/2) + ‖u− uCG

h ‖H1(N1\N1/2) + ‖u‖H1(N1\N1/2)).(6.6)

A standard finite element bound (4.9), the convexity of the domain and (4.8) yield

‖U − uCG
h ‖H1(Ω) ≤ Ch‖U‖H2(Ω) ≤ Ch‖fh‖L2(Ω) ≤ C‖f‖L2(Λ).(6.7)

To bound the second term in (6.6), we use Theorem 9.1 in [35].

(6.8) ‖u− uCG
h ‖H1(N1\N1/2) ≤ ‖u− uCG

h ‖H1(Ω\N1/2) ≤ C(h‖u‖H2(Ω\N0) + ‖u− uCG
h ‖L2(Ω)).

Using the global bound (4.2), we obtain for 0 < θ < 1
2 ,

(6.9) ‖u− uCG
h ‖H1(N1\N1/2) ≤ C(h‖u‖H2(Ω\N0) + h1−θ‖f‖L2(Λ)).
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Substituting (6.7) and (6.9) in (6.6) yields the result. �

6.1. Local L2 bound for k = 1. Let N be a neighborhood of Λ such that N ⊂ Ω Further, we will make
use of the following assumption.
A.2. There exist sets N0, N1, N2, N3 such that

Λ ( N0 ( N1 ⊂ N1 ( N2 ⊂ N2 ( N3 ( N ( Ω.

It is important to note that the choice of the above sets is fixed and does not depend on the mesh.
The main result of this section is the following local L2 estimate.

Theorem 3. Let k = 1 and let Assumption A.2. holds. There exist h0 ≥ 0 and a constant C independent
of h such that for 0 < θ < 1

2 and all h ≤ h0

(6.10) ‖u− uDG
h ‖L2(Ω\N) ≤ Ch2−θ + Ch2| ln(h)|.

The proof of this estimate also relies on establishing local bounds for the continuous and discontinuous
discretizations of the intermediate problem (4.5). As before, this will be established in several Lemmas.

Lemma 9. Assume A.2 holds. There exist h0 > 0 and a constant C independent of h such that for all
h ≤ h0

(6.11) ‖U − uDG
h ‖L2(Ω\N) ≤ Ch2−θ, ∀0 < θ <

1

2
.

Proof. Define the characteristic function associated to Ω \N :

χΩ\N (x) =

{
1, x ∈ Ω\N,
0, x ∈ N.

For readibility, set ξ = U − uDG
h and consider the auxiliary problem:

−∆w = ξχΩ\N , in Ω,(6.12)

w = 0, on ∂Ω.(6.13)

Clearly, since ξχΩ\N belongs to L2(Ω), the function w belongs to H2(Ω) ∩H1
0 (Ω). Multiplying (6.12) by ξ

and integrating over Ω, we obtain

‖ξ‖2L2(Ω\N) =
∑
E∈Eh

∫
E

∇ξ · ∇w −
∑

e∈Γh∪∂Ω

∫
e

{∇w} · ne[ξ] = a(ξ, w).(6.14)

Let Shw ∈W 1
h (Eh) be the Scott-Zhang interpolant of w. With the consistency property (5.21), we have

‖ξ‖2L2(Ω\N) =a(ξ, w − Shw)

=
∑
E∈Eh

∫
E

∇ξ · ∇(w − Shw)−
∑

e∈Γh∪∂Ω

∫
e

{∇(w − Shw)} · ne[ξ]

=Θ1 + Θ2.(6.15)

We proceed by providing bounds for Θ1 and Θ2. We follow [27, 8], split Θ1 into two terms, and use Holder’s
inequality,

Θ1 =
∑
E∈Eh

∫
E∩N2

∇ξ · ∇(w − Shw) +
∑
E∈Eh

∫
E∩(Ω\N2)

∇ξ · ∇(w − Shw)

≤ ‖∇(w − Shw)‖L∞(N2)

∑
E∈Eh

‖∇ξ‖L1(E∩N2) + ‖∇hξ‖L2(Ω\N2)‖∇(w − Shw)‖L2(Ω\N2)

= Θ1
1 + Θ2

1.(6.16)

Fix θ ∈ (0, 1/2), define α = 1− θ2, which implies that 3/4 < α < 1. Take s = 2/(3θ) in Lemma 6. We have

(6.17) ‖ξ‖DG,α ≤ Ch1−θ.
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Hence, with Cauchy-Schwarz’s inequality and the fact that d−α ∈ L2(Ω), (recall d is the distance function
defined in (2.2)), we obtain

(6.18)
∑
E∈Eh

‖∇ξ‖L1(E∩N2) ≤
∑
E∈Eh

‖d−α‖L2(E∩N2)‖∇ξ‖L2
α(E∩N2) ≤ C‖∇hξ‖L2

α(Ω) ≤ Ch1−θ.

In addition, observe that since −∆w = 0 in N3, Theorem 8.10 in [19] and elliptic regularity due to the
convexity of the domain yield

(6.19) ‖w‖W 4,2(N3) ≤ C‖w‖H2(Ω) ≤ C‖ξ‖L2(Ω\N).

Hence, by a Sobolev embedding result and approximation properties there is h1 > 0 such that for all h ≤ h1

(6.20) ‖∇(w − Shw)‖L∞(N2) ≤ Ch|w|W 2,∞(N3) ≤ Ch‖w‖W 4,2(N3) ≤ Ch‖ξ‖L2(Ω\N).

With (6.18) and (6.20), we obtain

(6.21) |Θ1
1| ≤ Ch2−θ‖ξ‖L2(Ω\N).

For Θ2
1, we apply Lemma 4.1 by Chen and Chen [7] (see (4.18) with D = Ω\N1 and D̃ = Ω\N2). There

exists h2 ≥ 0 such that for all h ≤ h2

‖∇hξ‖L2(Ω\N2) ≤ Ch‖U‖H2(Ω\N1) + C‖ξ‖L2(Ω\N1).

With Lemma 8, (4.11), and (4.17), we have

‖∇hξ‖L2(Ω\N2) ≤ Ch(‖f‖L2(Λ) + ‖u‖H2(Ω\N0)) + Ch2‖U‖H2(Ω) ≤ Ch(‖f‖L2(Λ) + ‖u‖H2(Ω\N0)).

With approximation properties and an elliptic bound, we have

‖∇(w − Shw)‖L2(Ω\N) ≤ Ch‖w‖H2(Ω) ≤ Ch‖ξ‖L2(Ω\N).

So we combine the bounds above:

(6.22) |Θ2
1| ≤ Ch2‖ξ‖L2(Ω\N).

Similarly, we split and bound Θ2. For any domain O, let Γh(O) denote the set of all faces e such that
e ∩ O 6= ∅ and let Γch(O) be the complementary set of faces, namely Γch(O) = (Γh ∪ {e : e ⊂ ∂Ω}) \ Γh(O).
There exists h3 > 0 such that for all h ≤ h3:

|Θ2| ≤‖∇(w − Shw)‖L∞(N2)

∑
e∈Γh(N1)

‖[ξ]‖L1(e)

+
∑

e∈Γch(N1)

‖{∇(w − Shw)} · ne‖L2(e)‖[ξ]‖L2(e) = Θ1
2 + Θ2

2.

Using (6.20), we have

Θ1
2 ≤ Ch‖ξ‖L2(Ω\N)

∑
e∈Γh(N1)

‖[ξ]‖L1(e).

To handle the second factor in the left-hand side of the inequality above, we introduce a tubular domain Bh
containing Λ. That is, Bh is the set of elements E such that for any x ∈ E, the distance d(x,Λ) ≤ 2h. This
implies that the number of elements in Bh is bounded above by Ch−1 for some constant C independent of
h.

∑
e∈Γh(N1∩Bh)

‖[ξ]‖L1(e) ≤ C

 ∑
e∈Γh(Bh)

h‖1‖2L2(e)

1/2

‖ξ‖DG ≤ Ch‖ξ‖DG.
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Any face e ∈ Γh(N1 \ Bh) belongs to two elements, say E1
e and E2

e . Since d−α−1|Eie ≤ h−α−1, the function

d−α belongs to H1(Eie), for i = 1, 2. With the trace inequality (3.17) and with (2.3)

∑
e∈Γh(N1\Bh)

‖[ξ]‖L1(e) ≤C

 ∑
e∈Γh(N1\Bh)

h‖d−α‖2L2(e)

1/2

‖ξ‖DG,α

≤C

 ∑
e∈Γh(N1\Bh)

(‖d−α‖2L2(E1
e∪E2

e) + h2‖d−α−1‖2L2(E1
e∪E2

e))

1/2

‖ξ‖DG,α

≤C

 ∑
e∈Γh(N1\Bh)

‖d−α‖2L2(E1
e∪E2

e)

1/2

‖ξ‖DG,α

≤C‖d−α‖L2(Ω)‖ξ‖DG,α.

Hence, we use (6.17), (6.20) and the fact ‖ξ‖DG ≤ Ch‖U‖H2(Ω) ≤ C. We have

(6.23) |Θ1
2| ≤ Ch2−θ‖ξ‖L2(Ω\N).

To handle Θ2
2, we use (3.17), approximation properties, Lemma 4.1 in [7] (see (4.18) with D = Ω \N2 and

D̃ = Ω \N), and (6.1).

|Θ2
2| ≤ C

 ∑
e∈Γch(N1)

‖∇(w − Shw)‖2L2(E1
e∪E2

e) + h2‖∇2w‖2L2(E1
e∪E2

e)

1/2

‖ξ‖DG(Ω\N2)

≤ Ch|w|H2(Ω)(h|U |H2(Ω\N) + ‖ξ‖L2(Ω\N))(6.24)

With (4.11)and (4.17), we have
‖ξ‖L2(Ω\N) ≤ Ch‖f‖L2(Λ).

Thus, with (6.19), we obtain

(6.25) |Θ2
2| ≤ Ch2‖ξ‖L2(Ω\N).

Combining bounds (6.21), (6.22), (6.23), (6.25) with (6.15) yields the result. �

The next step is to bound the local L2 norm of the error U − uCG
h .

Lemma 10. Let Assumption A.2. hold. There exist h0 > 0 and a constant C independent of h such that
for all h ≤ h0

(6.26) ‖U − uCG
h ‖L2(Ω\N) ≤ Ch2−θ, ∀0 < θ <

1

2
.

Proof. Because the proof follows that of Lemma 9, it is sketched only and details are omitted. The starting
point is the following dual problem

−∆z = (U − uCG
h )χΩ\N , in Ω,(6.27)

z = 0, on ∂Ω,(6.28)

where χΩ\N is the characteristic function associated to Ω \N . Let Shz denote the Scott-Zhang interpolant

of z. We multiply (6.27) by (U − uCG
h ) and integrate by parts.

‖U−uCG
h ‖2L2(Ω\N) =

∫
∇z · ∇(U − uCG

h ) =

∫
∇(z − Shz) · ∇(U − uCG

h )

≤ C‖∇(z − Shz)‖L∞(N1)‖∇(U − uCG
h )‖L1(N1) + ‖∇(z − Shz)‖L2(Ω\N1)‖∇(U − uCG

h )‖L2(Ω\N1).(6.29)

The first term is handled like Θ1
1. Let α = 1 − θ2 and use Lemma 7 with s = 2/(3θ) to obtain for h small

enough:

‖∇(z − Shz)‖L∞(N1)‖∇(U − uCG
h )‖L1(N1) ≤Ch|z|W 2,∞(N2)‖∇(U − uCG

h )‖L2
α(Ω)

≤Ch2−θ‖U − uCG
h ‖L2(Ω\N).(6.30)
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For the second term, we use Theorem 9.1 in [35], (6.1), (4.9), (4.15) and (4.8).

‖∇(U − uCG
h )‖L2(Ω\N1) ≤ C(h‖U‖H2(Ω\N0) + ‖U − uCG

h ‖L2(Ω)) ≤ Ch.

Therefore, with approximation properties and convexity of the domain, we have

(6.31) ‖z − Shz‖L2(Ω\N1)‖∇(U − uCG
h )‖L2(Ω\N1) ≤ Ch2‖z‖H2(Ω) ≤ Ch2‖U − uCG

h ‖L2(Ω\N).

Bound (6.26) immediately follows from (6.29), (6.30) and (6.31). �

Proof of Theorem 3: The result follows by the triangle inequality:

(6.32) ‖u− uDG
h ‖L2(Ω\N) ≤ ‖u− uCG

h ‖L2(Ω\N) + ‖uCG
h − U‖L2(Ω\N) + ‖U − uDG

h ‖L2(Ω\N).

The first term is bounded in [26]:

‖u− uCG
h ‖L2(Ω\N) ≤ Ch2| lnh|.

The result then follows by using Lemma 9 and Lemma 10.

6.2. Local L2 bounds for k ≥ 2. In this section, we use duality arguments to obtain a local L2 estimate
for k ≥ 2. We use negative norms, recalled here. For any integer m ≥ 0 and for v ∈ L2(Ω),

(6.33) ‖v‖H−m(B) = sup
φ∈Hm0 (B)

|
∫
B
vφ|

‖φ‖Hm(B)
, B ⊆ Ω.

The main result of this section is given in Theorem 4. To begin this analysis, we first establish general local
results for the dG approximation. Such results are shown with techniques adapted from Nitsche and Schatz
[29]. In addition, for any convex domain B ⊆ Ω, we introduce the operator QB : L2(B) → H2(Ω) ∩H1

0 (Ω)
with QB(φ) = v such that v solves

−∆v = φ in B(6.34)

v = 0, on ∂B.(6.35)

The following elliptic regularity result holds [18]. For any integer m ≥ 0,

(6.36) ‖QB(φ)‖Hm+2(B) ≤ C‖φ‖Hm(B).

Lemma 11. Let B ⊂ B ⊂ B1 ⊂ B1 ⊂ Ω be open convex sets. There exists h0 > 0 such that for any integer
m ≥ 0 and all 0 < h ≤ h0

‖U − uDG
h ‖H−m(B) ≤ C(hmin(k,m+1)

∣∣∣∣∣∣U − uDG
h

∣∣∣∣∣∣
DG(B1)

+ ‖U − uDG
h ‖H−m−1(B1)).(6.37)

In addition, we have

‖U − uDG
h ‖L2(B) ≤ C(h

∣∣∣∣∣∣U − uDG
h

∣∣∣∣∣∣
DG(B1)

+ ‖U − uDG
h ‖H−m(B1)).(6.38)

The constant C is independent of h.

Proof. Fix an integer m ≥ 0 and denote ξ = U − uDG
h . Let ω ∈ C∞0 (Ω) with ω = 1 in B and ω = 0 in Ω\B0

where B̄ ⊂ B0 ⊂ B̄0 ⊂ B1. Note that supp(ω) ⊂ B0. We have

‖ξ‖H−m(B) = ‖ωξ‖H−m(B) ≤ ‖ωξ‖H−m(Ω) = sup
φ∈Hm0 (Ω)

|
∫

Ω
ωξφ|

‖φ‖Hm(Ω)
.(6.39)

Fix φ ∈ Hm
0 (Ω) and define v = QΩ(φ). We multiply (6.34) with ωξ and integrate by parts. Since v ∈ H2(Ω),

we have ∫
Ω

ωξφ =
∑
E∈Eh

∫
E

∇v · ∇(ωξ)−
∑

e∈Γh∪∂Ω

∫
e

{∇v} · neω[ξ] = a(ωξ, v).(6.40)

In view of (6.40) and (6.36), (6.39) yields

‖ξ‖H−m(B) ≤ C sup
v∈Hm+2(Ω)

|a(ωξ, v)|
‖v‖Hm+2(Ω)

.(6.41)
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Observe that

a(ωξ, v) =
∑
E∈Eh

∫
E

ξ∇ω · ∇v +
∑
E∈Eh

∫
E

∇ξ · (∇(ωv)− v∇ω)−
∑

e∈Γh∪∂Ω

∫
e

({∇(ωv)− v∇ω} · ne[ξ].

In addition, with integration by parts and the fact that v∇ω is continuous, we have

−
∑
E∈Eh

∫
E

∇ξ · (v∇ω) =
∑
E∈Eh

∫
E

ξ∇ · (v∇ω)−
∑

e∈Γh∪∂Ω

∫
e

{v∇ω} · ne[ξ].(6.42)

Hence, we obtain

(6.43) a(ωξ, v) = a(ξ, ωv) + I(ξ, ωv),

with

I(ξ, ωv) =
∑
E∈Eh

∫
E

ξ (∇ω · ∇v +∇ · (v∇ω)) .

For E ∈ Eh with E ∩B1 6= ∅, let yh,E ∈ Pk(E) be the Lagrange interpolant of ωv satisfying

(6.44) ‖ωv − yh,E‖Hd(E) ≤ Chmin(k+1,m+2)−d‖ωv‖Hm+2(E), 0 ≤ d ≤ 2.

Then, define χh ∈ V kh (Eh) as χh|E = yh,E if ωv|E 6= 0 a.e in E. Otherwise, χh|E = 0. By construction, for h
small enough, all the terms involving elements and edges that do not intersect B1 vanish. Using (5.21) and
continuity properties, we have

(6.45) a(ξ, ωv) = a(ξ, ωv − χh) ≤ C|||ξ|||DG(B1)|||ωv − χh|||DG(B1)

From trace estimates and (6.44), we have

(6.46) |||ωv − χh|||DG(B1) ≤ Ch
min(k,m+1)‖ωv‖Hm+2(B1) ≤ Chmin(k,m+1)‖v‖Hm+2(B1).

Therefore, (6.45) becomes

(6.47) a(ξ, ωv) ≤ Chmin(k,m+1)|||ξ|||DG(B1)‖v‖Hm+2(B1).

For the second term in (6.43), since ω ∈ C∞(Ω) with supp(ω) ⊂ B0,

(6.48) I(ξ, ωv) ≤ C‖ξ‖H−m−1(B1)‖v‖Hm+2(B1).

With (6.47) and (6.48), (6.41) yields (6.37). To show (6.38), define a finite sequence of nested convex sets
D0 = B ⊂ D1 ⊂ · · · ⊂ Dm−1 = B1 such that D̄i ⊂ Di+1. Applying (6.37) with s = 0 for the sets D0 ⊂ D1

yields:

(6.49) ‖ξ‖L2(B) ≤ Ch|||ξ|||DG(D1) + ‖ξ‖H−1(D1).

Iteratively applying bound (6.37) to the last term in the above inequality yields (6.38). �

Theorem 4. Fix a convex set B ⊂ B ⊂ Ω with Λ ⊂ Ω \ B. Fix 0 < θ < 1
2 and k ≥ 2. There exist h0 > 0

and a constant C independent of h,

(6.50) ‖u− uDG
h ‖L2(B) ≤ Chk−θ.

Remark 1. We remark that this result is not optimal. However, it is an improvement to the order of
convergence provided in Theorem 1. In addition, it allows us to show almost optimal estimates for the local
energy norm, see Section 6.3,

Proof. First, we apply the triangle inequality to obtain

(6.51) ‖u− uDG
h ‖L2(B) ≤ ‖u− uCG

h ‖L2(B) + ‖uCG
h − U‖L2(B) + ‖U − uDG

h ‖L2(B).

The remainder of the proof will consist of bounding each of the above terms. We divide this task into several
steps. We select convex sets B0, B1, . . . , Bk with B̄ ⊂ B0, B̄i ⊂ Bi+1 for i = 0, . . . , k − 1, Bk ⊂ Ω and
Λ ⊂ Ω \Bk.

Step 1: Bounding ‖u−uCG
h ‖L2(B): Since W k

h (Eh) ⊂W 1,q
0 (Ω), we have the following Galerkin orthogonality

property.

(6.52)

∫
Ω

∇(u− uCG
h ) · ∇vh = 0, ∀vh ∈W k

h (Eh).
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Thus, we apply Theorem 5.1 in [29]. There exists h1 ≥ 0 such that for all h ≤ h1, we have

(6.53) ‖u− uCG
h ‖L2(B) ≤ C

(
hk‖u‖Hk(B0) + ‖u− uCG

h ‖H−k(Ω)

)
.

To estimate the second term, fix φ ∈ Hk
0 (Ω). Observe that with a Sobolev embedding result and (6.36), we

have

‖QΩ(φ)‖Wk+1,4(Ω) ≤ C‖QΩ(φ)‖Hk+2(Ω) ≤ C‖φ‖Hk(Ω).

We denote by vh the Scott-Zhang interpolant of QΩ(φ); we have

‖∇(QΩ(φ)− vh)‖L4(Ω) ≤ Chk‖QΩ(φ)‖Wk+1,4(Ω) ≤ Chk‖φ‖Hk(Ω).

We multiply (6.34) by u− uCG
h and integrate by parts. By (6.52), we have

(6.54)

∫
Ω

(u− uCG
h )φ =

∫
Ω

∇(QΩ(φ)− vh) · ∇(u− uCG
h ) ≤ ‖∇(QΩ(φ)− vh)‖L4(Ω)‖∇(u− uCG

h )‖L4/3(Ω)

≤ Chk‖φ‖Hk(Ω)‖∇(u− uCG
h )‖L4/3(Ω).

Let Shu be the Scott–Zhang interpolant of u. With the stability of the interpolant,(3.19), and (4.2), we have

‖∇(u− uCG
h )‖L4/3(Ω) ≤ ‖∇(u− Shu)‖L4/3(Ω) + ‖∇(Shu− uCG

h )‖L4/3(Ω)

≤ C|u|W 1,4/3(Ω) + h−1‖Shu− uCG
h ‖L4/3(Ω) ≤ C|u|W 1,4/3(Ω) + C(θ)h−θ‖f‖L2(Λ).(6.55)

With (6.55) and (6.54), we have

(6.56) ‖u− uCG
h ‖H−k(Ω) ≤ Chk−θ.

From (6.56) and (6.53), we have

(6.57) ‖u− uCG
h ‖L2(B) ≤ Chk−θ.

Step 2: Bounding ‖U−uCG
h ‖L2(B): Let N be a neighborhood of Λ such that Bk ⊂ Ω\N . There exists h2 > 0

such that for all h ≤ h2 , −∆U = 0 in Ω\N . Theorem 8.10 in [19] and Lemma 8 yield:

(6.58) ‖U‖Hk+1(Bk) ≤ C‖U‖H1(Ω\N) ≤ C.
An application of Theorem 5.1 in [29] yields, for h small enough, say h ≤ h2, for some h2 ≥ 0:

(6.59) ‖U − uCG
h ‖L2(B) ≤ Chk‖U‖Hk(B0) + C‖U − uCG

h ‖H−k(Ω).

We perform a similar duality argument as above. For any φ ∈ Hk
0 (Ω), we denote z = QΩφ and Shz the

Scott-Zhang interpolant of z,

(6.60)

∫
Ω

(U − uCG
h )φ =

∫
Ω

∇(z − Shz) · ∇(U − uCG
h ) ≤ Chk‖z‖Hk+1(Ω)‖∇(U − uCG

h )‖

≤ Chk‖φ‖Hk(Ω)‖∇(U − uCG
h )‖.

The last inequality holds by (6.36). Noting that (6.7) holds for the finite element solution uCG
h of any degree

k, we have from (6.60)

‖U − uCG
h ‖H−k(Ω) ≤ Chk.

The above bound with (6.59) implies that

(6.61) ‖U − uCG
h ‖L2(B) ≤ Chk.

Step 3 : Bounding ‖U − uDG
h ‖L2(B): We denote ξ = U − uDG

h and we iteratively use (4.18) and (6.38) for the
nested sets B ⊂ B0 ⊂ . . . ⊂ Bk. We obtain

(6.62) ‖ξ‖L2(B) ≤ C(hk+1‖U‖Hk+1(Bk) + hk‖ξ‖L2(Ω)) + C‖ξ‖H−k(Ω).

To estimate ‖ξ‖H−k(Ω), we also use a duality argument. Let φ ∈ Hk
0 (Ω) be given and let v = QΩφ. We

multiply (6.34) by v, integrate by parts, use (5.21), the symmetry of a(·, ·), and (4.10).

(6.63)

∫
Ω

φξ = a(v, ξ) = a(v − Shv, ξ) ≤ C|||v − Shv|||DG|||ξ|||DG ≤ Chk‖v‖Hk+1(Ω) ≤ Chk‖φ‖Hk(Ω).
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This implies that

‖ξ‖H−k(Ω) ≤ Chk.
With the global estimate (4.11), the bound (6.58), and the above bound, we finally have that

(6.64) ‖ξ‖L2(B) ≤ Chk.
This concludes the proof. �

6.3. Local energy estimate. With the local L2 results of the previous sections, we show a local energy
estimate. The second bound (6.66) is a stronger result in the sense that it is valid up to the boundary of Ω
whereas (6.65) is valid for a domain that does not intersect with the boundary.

Theorem 5. Let Assumptions A.1. and A.2. hold. Fix a convex set B ⊂ B ⊂ Ω with Λ ⊂ Ω\B. Fix
θ ∈ (0, 1

2 ) and k ≥ 1. There exist h0 > 0 and a constant C independent of h such that for all h ≤ h0

(6.65) ‖u− uDG
h ‖DG(B) ≤ Chk−θ.

In addition, for k = 1 and for any neighborhood N ⊂ Ω such that Λ ⊂ N ,

(6.66) ‖u− uDG
h ‖DG(Ω\N) ≤ Ch1−θ.

Proof. By the triangle inequality, we have

(6.67) ‖u− uDG
h ‖DG(B) ≤ ‖u− uCG

h ‖DG(B) + ‖uCG
h − U‖DG(B) + ‖U − uDG

h ‖DG(B).

We proceed by providing bounds on each of the terms above. Let B0 be a convex set such that B ⊂ B ⊂ B0

and Λ ⊂ Ω\B0. Theorem 9.1 in [35] applied to problems (1.1) and (4.5) results in the following two bounds.
There exists h0 > 0 such that for all h ≤ h0,

‖u− uCG
h ‖DG(B) = ‖∇(u− uCG

h )‖L2(B) ≤ C(hk‖u‖Hk+1(B0) + ‖u− uCG
h ‖L2(B0)),(6.68)

‖U − uCG
h ‖DG(B) = ‖∇(U − uCG

h )‖L2(B) ≤ C(hk‖U‖Hk+1(B0) + ‖U − uCG
h ‖L2(B0)).(6.69)

We apply Lemma 4.1 by Chen and Chen [7]: (4.18) with D = B and D̃ = B0. We obtain:

(6.70) ‖U − uDG
h ‖DG(B) ≤ C(hk‖U‖Hk+1(B0) + ‖U − uDG

h ‖L2(B0)).

Employing bounds (6.68), (6.69) and (6.70) in (6.67), we obtain

(6.71) ‖u− uDG
h ‖DG(B) ≤ Chk(‖u‖Hk+1(B0) + ‖U‖Hk+1(B0))

+ C(‖u− uCG
h ‖L2(B0) + ‖U − uCG

h ‖L2(B0) + ‖U − uDG
h ‖L2(B0)).

Using (6.57), (6.61) and (6.64) in (6.71) yields,

(6.72) ‖u− uDG
h ‖DG(B) ≤ Chk(‖u‖Hk+1(B0) + ‖U‖Hk+1(B0)) + Chk−θ.

We conclude that (6.65) holds by using bound (6.58) in the above estimate. The proof of bound (6.66)

follows the same lines: we apply (6.70) with B = Ω \N and B0 = Ω \ Ñ where N ⊂ Ñ . �

7. The parabolic problem

In this section, we consider the time dependent problem (1.4)-(1.6) with a Dirac line source. The domain
Ω is assumed to be convex, the curve Λ is a C2 curve such that |E ∩ Λ| ≤ Ch for any E ∈ Eh. A very weak
solution u to (1.4)-(1.6) can be defined via the method of transposition, see [22, 24]. To this end, for a given
function g ∈ L2(0, T ;L2(Ω)), define the backward in time parabolic problem:

−∂tψ −∆ψ = g, in Ω× (0, T ],(7.1)

ψ = 0, on ∂Ω× (0, T ],(7.2)

ψ(T ) = 0, in {T} × Ω.(7.3)

The solution ψ belongs to L2(0, T ;H2(Ω)) and the following bounds hold (see Theorem 5 in Section 7.1.3
and Theorem 4 in Section 5.9.2 in [18])

(7.4) ‖ψ‖L∞(0,T ;H1(Ω)) ≤ C
(
‖ψ‖L2(0,T ;H2(Ω)) + ‖∂tψ‖L2(0,T ;L2(Ω))

)
≤ C‖g‖L2(0,T ;L2(Ω)).

19



If for all g ∈ L2(0, T ;L2(Ω)), u satisfies∫ T

0

∫
Ω

ug =

∫ T

0

∫
Λ

fψ +

∫
Ω

u0ψ(0),(7.5)

where ψ ∈ L2(0, T ;H2(Ω)) solves (7.1)-(7.3), then u is referred to as a very weak solution to (1.4)-(1.6).
From a Sobolev inequality and (7.4), we have∣∣∣∣∣

∫ T

0

∫
Ω

ug

∣∣∣∣∣ ≤ ‖f‖L2(0,T ;L2(Λ))‖ψ‖L2(0,T ;L∞(Ω)) + ‖u0‖L2(Ω)‖ψ‖L∞(0,T ;L2(Ω))

≤ C
(
‖f‖L2(0,T ;L2(Λ))‖ψ‖L2(0,T ;H2(Ω)) + ‖u0‖L2(Ω)‖ψ‖L∞(0,T ;L2(Ω))

)
≤ C(‖f‖L2(0,T ;L2(Λ)) + ‖u0‖L2(Ω))‖g‖L2(0,T ;L2(Ω)).

Hence, the right hand side of (7.5) defines a bounded linear functional on L2(0, T ;L2(Ω)). Thus, with the
Lax-Milgram Theorem, a unique solution u exists in the sense of (7.5). In addition, if u0 ∈ H1(Ω), then the
very weak solution u belongs to L2(0, T ;W 1,σ(Ω)) ∩H1(0, T ;W−1,σ(Ω)) for σ ∈ (1, 2) and satisfies [24]

(7.6)

∫ T

0

〈∂tu, v〉+

∫ T

0

(∇u,∇v)Ω =

∫ T

0

∫
Λ

fv, ∀v ∈ L2(0, T ;W 1,σ′

0 (Ω)).

We denote by (·, ·)Ω the L2 inner product over Ω. In the above, σ′ is the conjugate pair of σ, W−1,σ(Ω) is the

dual space ofW 1,σ′

0 (Ω), and 〈·, ·〉 denotes the duality pairing between L2(0, T ;W 1,σ
0 (Ω)) and L2(0, T ;W−1,σ(Ω)).

7.1. Semi-discrete formulation. We introduce the continuous in time dG approximation uDG
h (t) which

belongs to V kh (Eh) for all t > 0 and satisfies:∫
Ω

∂

∂t
uDG
h (t)v + a(uDG

h (t), v) =

∫
Λ

f(t)v, ∀t > 0, ∀v ∈ V kh (Eh),(7.7) ∫
Ω

uDG
h (0)v =

∫
Ω

u0v, ∀v ∈ V kh (Eh).(7.8)

We recall that a is the symmetric bilinear form (ε = −1 in (3.10) and β = 1). We also introduce the dG
approximation ψh(t) ∈ V kh (Eh) to ψ(t) the solution of (7.1)-(7.3).

−
∫

Ω

∂

∂t
ψh(t) v + a(ψh(t), v) =

∫
Ω

g(t)v, ∀0 ≤ t < T, ∀v ∈ V kh (Eh),(7.9)

ψh(T ) = 0.(7.10)

The main goal of this section is to establish a global estimate in L2(0, T ;L2(Ω)) for the error uDG
h − u, see

Theorem 6. We first establish estimates for the error ψh(t)− ψ(t). Such estimates that depend on the time
derivative of ψ are standard [32]. Here, we follow the arguments in [9] and derive error bounds with constants
that depend only on ψ and not on ∂tψ.

Lemma 12. There exists a constant C independent of h such that

(7.11) ‖ψ(0)− ψh(0)‖L2(Ω) + ‖ψ − ψh‖L2(0,T ;DG) ≤ Ch
(
‖ψ‖L∞(0,T ;H1(Ω)) + ‖ψ‖L2(0,T ;H2(Ω))

)
.

Proof. The proof applies the arguments in [9] to a dG discretization of the backward problem. Define
Rhψ(t) ∈ V kh (Eh) as the elliptic projection of ψ(t)

(7.12) a(Rhψ(t)− ψ(t), v) = 0, ∀v ∈ V kh (Eh), ∀t ∈ (0, T ].

From the consistency property of the dG discretization, (7.12) and (7.9), we have the following relation.

(7.13) − (∂tψ(t)− ∂tψh(t), v)Ω + a(Rhψ(t)− ψh(t), v) = 0, ∀v ∈ V kh (Eh).

Let Phψ(t) be the L2 projection of ψ(t). Thus, with the above, we can write

(7.14) − 1

2

d

dt
‖ψ − ψh‖2L2(Ω) + a(Rhψh(t)− ψh(t), Rhψ(t)− ψh(t))

= −(∂tψ(t)− ∂tψh(t), ψ(t)− Phψ(t))Ω + a(Rhψ(t)− ψh(t), Rhψ(t)− Phψ(t)).
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Using the definition of the L2 projection repeatedly yields:

(∂tψ(t)− ∂tψh(t), ψ(t)− Phψ(t))Ω = (∂tψ(t), ψ(t)− Phψ(t))Ω

= (∂tψ(t)− ∂tPhψ(t), ψ(t)− Phψ(t))Ω =
1

2

d

dt
‖ψ(t)− Phψ(t)‖2L2(Ω).

With the coercivity and continuity properties (3.15), (3.14), and the above relation, equation (7.14) becomes:

− 1

2

d

dt
‖ψ − ψh‖2L2(Ω) +

1

2
‖Rhψ(t)− ψh(t)‖2DG

≤ −1

2

d

dt
‖ψ(t)− Phψ(t)‖2L2(Ω) + C‖Rhψ(t)− ψh(t)‖DG‖Rhψ(t)− Phψ(t)‖DG.

An application of Young’s inequality, integration from 0 to T and approximation properties yield:

‖ψ(0)− ψh(0)‖2L2(Ω) +
1

2

∫ T

0

‖Rhψ(t)− ψh(t)‖2DG ≤ Ch2‖ψ(0)‖2H1(Ω) + Ch2‖ψ‖2L2(0,T ;H2(Ω)).

The final result follows with a triangle inequality. �

Lemma 13. Assume that ψ belongs to L2(0, T ;Hs(Ω)) for s > 3/2. Then, there exists a constant C > 0
independent of h such that

‖ψ − ψh‖L2(0,T ;L2(Ω)) ≤ Chmin(k+1,s)‖ψ‖L2(0,T ;Hs(Ω)).

Proof. The proof extends the arguments of Theorem 2.5 in [34] given for the continuous Galerkin dis-
cretization and adapts it to the backward parabolic problem. We define two linear operators Q : L2(Ω) →
H1

0 (Ω) ∩H2(Ω) and Qh : L2(Ω)→ V kh (Eh) as follows. For φ ∈ L2(Ω),

Qφ = z, with−∆z = φ in Ω and z|∂Ω = 0,

Qhφ = zh, with a(zh, v) = (φ, v)Ω, ∀v ∈ V kh (Eh).

It is clear that

(7.15) Q(∆w) = −w, ∀w ∈ H2(Ω).

The operator Qh is selfadjoint since a is symmetric. Indeed, for any z, w ∈ L2(Ω),

(7.16) (Qhz, w)Ω = a(Qhw,Qhz) = a(Qhz,Qhw) = (z,Qhw)Ω.

We also define the discrete Laplacian operator ∆h : V kh (Eh)→ V kh (Eh) satisfying

(∆hwh, v)Ω = −a(wh, v), ∀v ∈ V kh (Eh).

Since a is coercive, we also have that Qh(∆hwh) = −wh. With the discrete Laplacian, we can write (7.9) as

−∂tψh(t)−∆hψh(t) = Phg(t).

Applying the operator Qh to the above equality, we obtain

−Qh∂tψh(t) + ψh(t) = QhPhg(t) = Qhg(t).

On the continuous level, we also have

−Q ∂

∂t
ψ(t) + ψ(t) = Qg(t).

Define eh = ψh − ψ and ρh = −ψ −Qh(∆ψ), then

(7.17) − Qh∂teh + eh = Qhg + (Qh − Q)∂tψ − Qg = (Q − Qh) (−∂tψ − g) = (Q − Qh)(∆ψ) = ρh.

The last equality is obtained with (7.15). This implies

(−Qh∂teh, eh)Ω +
1

2
‖eh‖2L2(Ω) ≤

1

2
‖ρh‖2L2(Ω).

Since Qh is self-adjoint and Qh commutes with the derivative in time operator, we obtain

(7.18) − ∂

∂t
(eh, Qheh)Ω + ‖eh‖2L2(Ω) ≤ ‖ρh‖

2
L2(Ω).
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We integrate from t = 0 to t = T and observe that by coercivity we have

(eh, Qheh)Ω = a(Qheh, Qheh) ≥ 1

2
‖Qheh‖2DG.

Hence, since eh(T ) = 0,

(7.19)
1

2
‖Qheh(0)‖2DG +

∫ T

0

‖eh‖2L2(Ω) ≤
∫ T

0

‖ρh‖2L2(Ω).

In addition, note that by consistency of the dG discretization

a(Qh(−∆ψ), v) = (−∆ψ, v) = a(ψ, v), ∀v ∈ V kh (Eh).

Thus, we have, if ψ belongs to L2(0, T ;Hs(Ω))

‖ρh‖L2(Ω) = ‖ψ +Qh(∆ψ)‖L2(Ω) ≤ Chmin(k+1,s)‖ψ‖L2(0,T ;Hs(Ω)).

We can then conclude with (7.19). �

With Lemma 12 and Lemma 13, we show the main result of this section.

Theorem 6. Let u be the very weak solution to (1.4)-(1.6) and let uDG
h satisfies (7.7)-(7.8). There exists a

constant C independent of h such that for any θ ∈ (0, 1
2 ),

‖uDG
h − u‖L2(0,T ;L2(Ω)) ≤ C(θ)h1−θ(‖f‖L2(0,T ;L2(Λ)) + ‖u0‖L2(Ω)).(7.20)

Proof. The proof is based on a duality argument and follows similar techniques as the proof of Theorem
3.4 in [22]. Define χ(t) = uDG

h (t) − u(t). Fix g ∈ L2(0, T ;L2(Ω)) and let ψ solve (7.1)-(7.3). With (7.5),
consistency of the dG discretization for (7.1)-(7.3), and the definition of uDG

h (0) (see (7.8)), we have∫ T

0

(χ, g)Ω =

∫ T

0

(uDG
h ,−∂tψ −∆ψ)Ω −

∫ T

0

∫
Λ

fψ − (u0, ψ(0))Ω

=

∫ T

0

−(∂tψ, u
DG
h )Ω +

∫ T

0

a(ψ, uDG
h )−

∫ T

0

∫
Λ

fψ − (u0, ψ(0))Ω

=

∫ T

0

(−∂tψh, uDG
h )Ω +

∫ T

0

a(ψh, u
DG
h )−

∫ T

0

∫
Λ

fψ − (u0, ψ(0))Ω

= (ψh(0), uDG
h (0))Ω +

∫ T

0

(∂tu
DG
h , ψh)Ω +

∫ T

0

a(ψh, u
DG
h )−

∫ T

0

∫
Λ

fψ − (u0, ψ(0))Ω

= (u0, ψh(0)− ψ(0))Ω +

∫ T

0

∫
Λ

f(ψh − ψ) = R1 +R2.

For R1, we use Cauchy-Schwarz’s inequality, Lemma 12 and (7.4):

(7.21) |R1| ≤ ‖u0‖L2(Ω)‖ψh(0)− ψ(0)‖L2(Ω) ≤ Ch‖u0‖L2(Ω)‖g‖L2(0,T ;L2(Ω)).

For the term R2, we use the following trace inequality valid for any 2 < q < 3 and q ≤ r < q/(3 − q) (see
Theorem 4.12 in [1] and Proposition 2.3 in [28]).

(7.22) ‖v‖Lr(Λ) ≤ C(q)‖v‖W 1,q(Ω), ∀v ∈W 1,q(Ω).

We denote by Lhψ the Lagrange interpolant of ψ in W k
h (Eh). From Theorem 3.1.6 in [10], we have

(7.23) ‖ψ − Lhψ‖W 1,q(E) ≤ C(q)h
3
q−

1
2 |ψ|H2(E), ∀E ∈ Eh.

From the above bound and Jensen’s inequality, we obtain

(7.24) ‖ψ − Lhψ‖W 1,q(Ω) =

(∑
E∈Eh

‖ψ − Lhψ‖qW 1,q(E)

)1/q

≤ h
3
q−

1
2

(∑
E∈Eh

|ψ|qH2(E)

)1/q

≤ h
3
q−

1
2 |ψ|H2(Ω).

Let r and q satisfy the conditions in (7.22) and let r′ be the conjugate exponent of r (1/r+ 1/r′ = 1). Note
that Lhψ ∈W 1,q(Ω). Hence, with (7.22) and (7.24), we obtain

(7.25) ‖ψ − Lhψ‖Lr(Λ) ≤ C(q)‖ψ − Lhψ‖W 1,q(Ω) ≤ C(q)h
3
q−

1
2 |ψ|H2(Ω).
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With Cauchy-Schwarz’s inequality, (3.16), and (7.25), we have∫
Λ

f(ψh − ψ) =
∑
E∈TΛ

∫
E∩Λ

f(ψh − Lhψh) +

∫
Λ

f(Lhψh − ψ)

≤
∑
E∈TΛ

‖f‖L1(E∩Λ)‖ψh − Lhψh‖L∞(E) + ‖f‖Lr′ (Λ)‖Lhψh − ψ‖Lr(Λ)

≤ C
∑
E∈TΛ

|E ∩ Λ|1/2‖f‖L2(E∩Λ)h
−3/2‖ψh − Lhψh‖L2(E) + C(q)h

3
q−

1
2 ‖f‖Lr′ (Λ)|ψ|H2(Ω)

≤ Ch−1‖f‖L2(Λ)‖ψh − Lhψ‖L2(Ω) + C(q)h
3
q−

1
2 ‖f‖L2(Λ)|ψ|H2(Ω).(7.26)

The last inequality holds since r′ < 2. From Lemma 13, approximation properties, and (7.4), it then follows
that

|R2| ≤ Ch−1‖f‖L2(0,T ;L2(Λ))‖ψh − Lhψ‖L2(0,T ;L2(Ω)) + C(q)h
3
q−

1
2 ‖f‖L2(0,T ;L2(Λ))|ψ|L2(0,T ;H2(Ω))

≤ Ch‖f‖L2(0,T ;L2(Λ))‖ψ‖L2(0,T ;H2(Ω)) + C(q)h
3
q−

1
2 ‖f‖L2(0,T ;L2(Λ))|ψ|L2(0,T ;H2(Ω))

≤ Ch‖f‖L2(0,T ;L2(Λ))‖g‖L2(0,T ;L2(Ω)) + C(q)h
3
q−

1
2 ‖f‖L2(0,T ;L2(Λ))‖g‖L2(0,T ;L2(Ω)).

For any θ ∈ (0, 1/2), choose q = 6/(3− 2θ). The bound for R2 becomes

(7.27) |R2| ≤ C(θ)h1−θ‖f‖L2(0,T ;L2(Λ))‖g‖L2(0,T ;L2(Ω)).

We remark that

‖χ‖L2(0,T ;L2(Ω)) = sup
g ∈ L2(0, T ;L2(Ω))

g 6= 0

|
∫ T

0
(χ, g)Ω|

‖g‖L2(0,T ;L2(Ω))
.

Therefore, with (7.21) and (7.27), we can conclude. �

7.2. Fully discrete formulation. In this section, we consider a backward Euler discretization of problem

(1.4)-(1.6). To simplify notation, we drop the subscript DG on the discrete solution, namely unh = uDG,n
h .

Let τ > 0 denote the time step size and consider a uniform partition of the time interval (0, T ] into NT
subintervals. We define a sequence of dG approximations (unh)0≤n≤NT ∈ V kh (Eh) such that for all n =
1, . . . , NT

(unh − un−1
h , v)Ω + τa(unh, v) = τ

∫
Λ

f(tn)v, ∀v ∈ V kh (Eh),(7.28)

with u0
h = uDG

h (0) defined by (7.8). The existence and uniqueness of (unh)0≤n≤NT follows from a standard
proof by contradiction where the coercivity of a (3.15) is used. From the fully discrete solutions, we construct
a piecewise constant in time solution, denoted by uh,τ , as follows:

uh,τ (t,x) = unh(x), tn−1 < t ≤ tn, n ≥ 1, uh,τ (0,x) = u0
h(x), ∀x ∈ Ω.

The main result of this section is the following convergence theorem. For convenience, we define

‖f‖`2(0,T ;L2(Λ)) =

(
τ

NT∑
n=1

‖f(tn)‖2L2(Λ)

)1/2

.

Theorem 7. Assume that ∂tf ∈ L2(0, T ;L1(Λ)) and let θ be in (0, 1
2 ). There exists a constant C independent

of h and τ , but depending of θ, such that

(7.29) ‖u− uh,τ‖L2(0,T ;L2(Ω)) ≤ C(τh−1 + h)
(
‖f‖`2(0,T ;L2(Λ)) + ‖∂tf‖L2(0,T ;L1(Λ)) + ‖u0‖L2(Ω)

)
+ Ch1−θ‖f‖L2(0,T ;L2(Λ)).

As a consequence, if τ ≤ h2−θ, we have

(7.30) ‖u−uh,τ‖L2(0,T ;L2(Ω)) ≤ Ch1−θ(‖f‖L2(0,T ;L2(Λ)) + ‖∂tf‖L2(0,T ;L1(Λ)) + ‖f‖`2(0,T ;L2(Λ)) + ‖u0‖L2(Ω)).
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The proof of the theorem requires an intermediate bound on the discrete solutions, that is stated in the
following lemma.

Lemma 14. There exists a constant C independent of τ and h such that the following estimate holds. For
1 ≤ m ≤ NT ,

(7.31)

m∑
n=1

‖unh − un−1
h ‖2L2(Ω) + τ

m∑
n=1

‖unh − un−1
h ‖2DG + τ‖umh ‖2DG ≤ Cτh−2

(
‖u0‖2L2(Ω) + ‖f‖2`2(0,T ;L2(Λ))

)
.

Proof. Let v = unh − u
n−1
h in (7.28). Using the symmetry of a, we obtain

‖unh − un−1
h ‖2L2(Ω) +

τ

2

(
a(unh, u

n
h)− a(un−1

h , un−1
h ) + a(unh − un−1

h , unh − un−1
h )

)
= τ

∫
Λ

f(tn)(unh − un−1
h ).

We observe that by Hölder’s inequality and (3.16),∫
Λ

f(tn)(unh − un−1
h ) ≤

∑
E∈TΛ

|E ∩ Λ|1/2‖f(tn)‖L2(E)‖unh − un−1
h ‖L∞(E)

≤ C
∑
E∈TΛ

h−1‖f(tn)‖L2(E∩Λ)‖unh − un−1
h ‖L2(E).

With the coercivity (3.15) and the above bound, we obtain

‖unh − un−1
h ‖2L2(Ω) +

τ

2
a(unh, u

n
h)− τ

2
a(un−1

h , un−1
h ) +

τ

4
‖unh − un−1

h ‖2DG

≤ Cτ2h−2‖f(tn)‖2L2(Λ) +
1

2
‖unh − un−1

h ‖2L2(Ω).

We sum the resulting inequality from n = 1 to n = m and use the coercivity (3.15)

1

2

m∑
n=1

‖unh − un−1
h ‖2L2(Ω) +

τ

4
‖umh ‖2DG +

τ

4

m∑
n=1

‖unh − un−1
h ‖2DG ≤

τ

2
a(u0

h, u
0
h) + Cτ2h−2

m∑
n=1

‖f(tn)‖2L2(Λ).

With the continuity of a (3.14), an inverse inequality and the stability of the L2 projection, we have

(7.32) a(u0
h, u

0
h) ≤ C‖u0

h‖2DG ≤ Ch−2‖u0
h‖2L2(Ω) ≤ Ch

−2‖u0‖2L2(Ω).

With the above bound, we conclude the proof. �

Proof of Theorem 7. . The proof uses some techniques from the proof of Theorem 3.4 in [24]. We first fix
g ∈ L2(0, T ;L2(Ω)) and consider ψ the solution of (7.1)-(7.3). From (7.5), we have∫ T

0

(uh,τ − u, g)Ω =

NT∑
n=1

∫ tn

tn−1

(unh, g)Ω − (u0, ψ(0))Ω −
∫ T

0

∫
Λ

fψ.(7.33)

We rewrite the first term in the right-hand side as∫ tn

tn−1

(unh, g)Ω =

∫ tn

tn−1

(unh,−∂tψ −∆ψ)Ω = −(unh, ψ(tn)− ψ(tn−1))Ω +

∫ tn

tn−1

a(unh, ψ)

= (unh − un−1
h , ψ(tn−1))Ω −

(
(unh, ψ(tn))Ω − (un−1

h , ψ(tn−1))Ω

)
+

∫ tn

tn−1

a(unh, ψ).

Since ψ(T ) = 0, (7.33) reads

(7.34)

∫ T

0

(uh,τ − u, g)Ω =

NT∑
n=1

(unh − un−1
h , ψ(tn−1))Ω +

NT∑
n=1

∫ tn

tn−1

a(unh, ψ)

− (u0 − u0
h, ψ(0))Ω −

∫ T

0

∫
Λ

fψ.
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For each t ∈ (tn−1, tn], choose v = Rhψ(t) in (7.28) (recall that Rhψ is defined by (7.12)). Integrate the
resulting equation from tn−1 to tn, sum from n = 1 to n = NT , and divide by τ . We obtain

(7.35)

NT∑
n=1

∫ tn

tn−1

a(unh, Rhψ(t)) = −1

τ

NT∑
n=1

∫ tn

tn−1

(unh − un−1
h , Rhψ(t))Ω +

NT∑
n=1

∫ tn

tn−1

∫
Λ

f(tn)Rhψ(t).

With the definition of (7.12), (7.34) becomes∫ T

0

(uh,τ − u, g)Ω =
1

τ

NT∑
n=1

∫ tn

tn−1

(unh − un−1
h , ψ(tn−1)−Rhψ(t))Ω

− (u0 − u0
h, ψ(0))Ω +

NT∑
n=1

∫ tn

tn−1

∫
Λ

(f(tn)Rhψ(t)− f(t)ψ(t)) = E1 + E2 + E3.(7.36)

For E1, we introduce ψ(t) and write

(unh − un−1
h , ψ(tn−1)−Rhψ(t))Ω = −(unh − un−1

h , ψ(t)−Rhψ(t) +

∫ t

tn−1

∂tψ)Ω.

Therefore, using error bounds of the elliptic projection, we obtain

|E1| ≤ Cτ−1h2
NT∑
n=1

∫ tn

tn−1

‖unh − un−1
h ‖L2(Ω)‖ψ(t)‖H2(Ω)

+ τ−1
NT∑
n=1

∫ tn

tn−1

‖unh − un−1
h ‖L2(Ω) (t− tn−1)1/2‖∂tψ‖L2(tn−1,t;L2(Ω))

≤ Cτ− 1
2h2

NT∑
n=1

‖unh − un−1
h ‖L2(Ω)‖ψ‖L2(tn−1,tn;H2(Ω)) + Cτ

1
2

NT∑
n=1

‖unh − un−1
h ‖L2(Ω)‖∂tψ‖L2(tn−1,tn;L2(Ω))

≤ C

(
NT∑
n=1

‖unh − un−1
h ‖2L2(Ω)

)1/2

(τ−1/2h2‖ψ‖L2(0,T ;H2(Ω)) + τ1/2‖∂tψ‖L2(0,T ;L2(Ω))).

(7.37)

With Lemma 14 and (7.4), (7.37) reads

(7.38) |E1| ≤ C(τh−1 + h)‖g‖L2(0,T ;L2(Ω))

(
‖f‖`2(0,T ;L2(Λ)) + ‖u0‖L2(Ω)

)
.

The term E2 is easily handled since u0
h is the L2 projection of u0. We use approximation properties of the

Lagrange operator Lh and (7.4)

(7.39) E2 = (u0
h − u0, ψ(0)− Lhψ(0))Ω ≤ Ch‖u0‖L2(Ω)‖ψ(0)‖H1(Ω) ≤ Ch‖u0‖L2(Ω)‖g‖L2(0,T ;L2(Ω)).

For the term E3, we write∫
Λ

(f(tn)Rhψ(t)−f(t)ψ(t)) =
∑
E∈TΛ

∫
E∩Λ

(f(tn)−f(t))Rhψ(t)+
∑
E∈TΛ

∫
E∩Λ

f(t)(Rhψ(t)−ψ(t)) =W1+W2.

For W1, we Hölder’s inequality, (3.16) (q =∞, p = 6) and (3.12). We obtain

|W1| ≤ ‖f(tn)− f(t)‖L1(Λ)‖Rhψ(t)‖L∞(Ω)

≤ Ch− 1
2 ‖f(tn)− f(t)‖L1(Λ)‖Rhψ(t)‖L6(Ω) ≤ Ch−

1
2 ‖f(tn)− f(t)‖L1(Λ)‖Rhψ(t)‖DG.

Since Rhψ is the elliptic projection of ψ, we note that ‖Rhψ‖DG ≤ C‖ψ‖H2(Ω) and we obtain

(7.40) |W1| ≤ C(tn − t)1/2h−
1
2 ‖∂tf‖L2(t,tn;L1(Λ))‖ψ(t)‖H2(Ω).

ForW2, we apply a similar argument as for the derivation of (7.26) (by introducing the Lagrange interpolant
Lhψ) and obtain for any 2 < q < 3

(7.41) W2 ≤ Ch−1‖f(t)‖L2(Λ)‖Rhψ(t)− Lhψ(t)‖L2(Ω) + C(q)h
3
q−

1
2 ‖f(t)‖L2(Λ)|ψ(t)|H2(Ω).
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Hence, with approximation properties, choosing q = 6/(3− 2θ) for 0 < θ < 1/2, and (7.4), the bound on E3

reads

|E3| ≤ Cτh−
1
2 ‖∂tf‖L2(0,T ;L1(Λ))‖ψ‖L2(0,T ;H2(Ω)) + Ch−1‖f‖L2(0,T ;L2(Λ))‖Rhψ − Lhψ‖L2(0,T ;L2(Ω))

+ C(θ)h1−θ‖f‖L2(0,T ;L2(Λ))‖ψ‖L2(0,T ;H2(Ω))

≤ (Cτh−
1
2 ‖∂tf‖L2(0,T ;L1(Λ)) + C(θ)h1−θ‖f‖L2(0,T ;L2(Λ)))‖g‖L2(0,T ;L2(Ω)).(7.42)

Therefore, with (7.36) and the bounds (7.38), (7.39) and (7.42), we conclude that for any non-zero g ∈
L2(0, T ;L2(Ω))

(7.43)

∫ T
0

(uh,τ − u, g)Ω

‖g‖L2(0,T ;L2(Ω))
≤ C(τh−1 + h)

(
‖f‖`2(0,T ;L2(Λ)) + ‖u0‖L2(Ω)

)
+ Cτh−1‖∂tf‖L2(0,T ;L1(Λ)) + C(θ)h1−θ‖f‖L2(0,T ;L2(Λ)).

We conclude by taking supremum over all g. �

8. Numerical Results for Elliptic Problem

We employ the method of manufactured solutions to test the convergence rates of the scheme 3.9. The
domain is (0, 1)× (0, 1)× (0, 0.25) and the line Λ is the vertical line passing through the point (2/3, 1/3, 0).
The function f is chosen to be the constant function equal to 1. The exact solution is defined by

(8.1) u(x, y, z) = − 1

2π
ln

(
((x− 2

3
)2 + (y − 1

3
)2)1/2

)
.

We compute the numerical errors on a series of uniformly refined meshes made of tetrahedra. We vary the
mesh size and the polynomial degree. The parameters in the definition of the bilinear form are chosen:
ε = −1, β = 1. For k = 1, we choose σ = 5 and for k = 2, the penalty value is σ = 12. Figure 1 shows the dG
solution for k = 1; the size of the mesh is h = 1/16 and the domain has been sliced for visualization. Table 1
displays the L2 errors and convergence rates for the numerical solution with k = 1 and k = 2. When errors
are computed over the whole domain Ω, they converge with a rate equal to one, which is consistent with our
bound (4.13). Next, we verify the accuracy of the solution away from the line singularity by computing the L2

error in two subdomains C1 = (0.25, 0.5)× (0.5, 0.75)× (0, 0.25) and C2 = (0.0, 0.25)× (0.75, 0.1)× (0, 0.25).
Table 1 shows the errors in the L2 norm over C1 and over C2 as the mesh is uniformly refined. Errors
converge with a rate equal to 2, which is optimal for piecewise linear approximations and suboptimal for
piecewise quadratic approximation. The numerical rates are consistent with (6.10) for k = 1 and (6.50) for
k = 2. We also remark that the errors in C1 and in C2 are several order of magnitude smaller than the errors
in Ω.

Figure 1. View on sliced domain of the dG approximation obtained on mesh of size h =
1/16.
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To show the robustness of the scheme 3.9, we now consider a sinusoidal-like curve Λ made of segments.
The numerical parameters are the same as for the manufactured solution but here, we do not know the exact
solution. Figure 2 displays the DG solution on a mesh of size h = 1/10.

Figure 2. Sliced view of the numerical solution for a piecewise linear curve Λ.

‖u− uDG
h ‖L2(Ω) ‖u− uDG

h ‖L2(C1)
‖u− uDG

h ‖L2(C2)

k h Error Rate Error Rate Error Rate

1 1/4 6.99e-03 1.28e-04 2.54e-05

1/8 2.28e-03 1.31 3.00e-05 2.09 6.70e-06 1.92

1/16 1.33e-03 1.08 6.60e-06 2.18 1.84e-06 1.86

1/32 7.12e-04 0.90 1.63e-06 2.02 5.05e-07 1.87

2 1/4 1.14e-02 1.09e-04 4.37e-06

1/8 4.27e-03 1.42 1.98e-05 2.46 7.48e-07 2.55

1/16 1.56e-03 1.45 6.22e-06 1.67 1.11e-07 2.75

1/32 6.14e-04 1.35 1.50e-06 2.05 1.77e-08 2.65

Table 1. Numerical errors and convergence rates for the numerical solution over the whole
domain and the two subdomains.

9. Conclusions

Convergence of the class of interior penalty discontinuous Galerkin methods applied to elliptic and par-
abolic equations with Dirac line-source is proved by deriving error estimates in different norms. Almost
optimal error bounds are shown in regions away from the line singularity. The proofs of the error estimates
are technical and utilize dual problems and weighted Sobolev spaces. Stronger results are obtained for the
case of piecewise linear approximation since local error bounds are valid in regions that may reach the bound-
ary of the domain. In the general case of approximation of degree k ≥ 2, local error bounds are subpoptimal
and valid in regions strictly included in the domain. Most of the paper is dedicated to the analysis of the
elliptic problem and convexity of the domain is assumed. For the parabolic problem, global error bounds
in L2 in time and in space are shown. Future work would address relaxing the convexity assumption and
obtaining local error bounds for the time-dependent problem.
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Hölder-α domains. Mathematical Models and Methods in Applied Sciences, 20(01):95–120, 2010.
[18] Lawrence C. Evans. Partial Differential Equations. American Mathematical Society, 2010.

[19] David Gilbarg and Neil S. Trudinger. Elliptic Partial Differential Equations of Second Order. springer, 2015.

[20] Ingeborg G. Gjerde, Kundan Kumar, and Jan M. Nordbotten. A singularity removal method for coupled 1D–3D flow
models. Computational Geosciences, 24(2):443–457, 2020.

[21] Ingeborg G. Gjerde, Kundan Kumar, Jan M. Nordbotten, and Barbara Wohlmuth. Splitting method for elliptic equations

with line sources. ESAIM: Mathematical Modelling and Numerical Analysis, 53(5):1715–1739, 2019.
[22] Wei Gong. Error estimates for finite element approximations of parabolic equations with measure data. Mathematics of

Computation, 82(281):69–98, 2013.
[23] Wei Gong, Gengsheng Wang, and Ningning Yan. Approximations of elliptic optimal control problems with controls acting

on a lower dimensional manifold. SIAM Journal on Control and Optimization, 52(3):2008–2035, 2014.

[24] Wei Gong and Ningning Yan. Finite element approximations of parabolic optimal control problems with controls acting
on a lower dimensional manifold. SIAM Journal on Numerical Analysis, 54(2):1229–1262, 2016.

[25] Paul Houston and Thomas P. Wihler. Discontinuous Galerkin methods for problems with Dirac delta source. ESAIM:

Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique, 46(6):1467–1483,
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