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Abstract
We compute the Wiener chaos decomposition of the signature for a class of Gaussian processes, which

contains fractional Brownian motion (fBm) with Hurst parameter H ∈ (1/4, 1). At level 0, our result
yields an expression for the expected signature of such processes, which determines their law [1313]. In par-
ticular, this formula simultaneously extends both the one for 1/2 < H-fBm [33] and the one for Brownian
motion (H = 1/2) [1616], to the general case H > 1/4, thereby resolving an established open problem.
Other processes studied include continuous and centred Gaussian semimartingales.
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Introduction
The signature of a pathX : [0, T ] → Rd,

S(X)0T :=

∞∑
n=0

∫

0<u1<...<un<T
dXu1 ⊗ · · · ⊗ dXun ∈ T ((Rd)) , (1)

is a series of tensors which, up to “retracings”, determines the image ofX [2222, 66]. The probabilistic counterpart
to this result states that, in many cases of interest, the law of a stochastic process is determined by its expected
signature [1313], which is therefore seen to play a role for processes analogous to that of moments for random
variables.

The best-known example of an explicit formula for the expected signature of a stochastic process occurs in
the case of Brownian motion: calling {e1, . . . , ed} the canonical basis of Rd, we have

ES(X)st = exp

(
t− s

2

d∑
γ=1

e⊗2
γ

)
=

∞∑
n=0

(t− s)n

2nn!

d∑
γ1,...,γn=1

e⊗2
γ1 ⊗ · · · ⊗ e⊗2

γn . (2)

*Corresponding author: Emilio.RossiFerrucci@maths.ox.ac.ukEmilio.RossiFerrucci@maths.ox.ac.uk
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This identity was first shown by [1616, 3131], and later proved in a variety of different ways [22, 2020]. The expected
signature of Brownian motion has also been studied in the case in which the process is stopped upon hitting
the boundary of a domain [2929, 55, 2727].

In [33] the authors derive an integral expression for the expected signature of fractional Brownian motion
(fBm) with Hurst parameter H ∈ (1/2, 1). This result was extended in [77, 44] to a more general class of
Gaussian Volterra processes with sample paths that are more regular than Brownian motion, with the formula
for the expected signature written in terms of the Volterra kernel. The method used involves a piecewise-linear
interpolation of the paths of the processX , which reduces the calculation to that of a sum of mixed Gaussian
moments, to which Wick’s theorem applies, followed by a convergence argument. The expression in [33] does
not, however, yield the correct prediction for the case of Brownian motion H = 1/2. When H < 1/2 it
involves integrals that do not converge at all, and new ideas are needed to obtain a formula. On a technical
level, the reason for these differences can be seen by considering the expression for the expected signature of a
scalar 1/2 < H-fBm X at level 2: calling R(s, t) := E[XsXt] the covariance function of X , the formula
states that

ES(X)
(2)
st =

∫

s<u<v<t
R(du,dv) = H(2H − 1)

∫

s<u<v<t
(v − u)2H−2dudv . (3)

Integrating either of the two variables generates an evaluation (v − u)2H−1|u=v , which is only finite when
H > 1/2 and indeterminate when H = 1/2. In fact, approximating X with a sequence of piecewise linear
processes (Xℓ)ℓ∈N one obtains a sequence of integrals (actually finite sums)

∫

s<u<v<t E[Ẋ
ℓ
uẊ

ℓ
v]dudv which

converges to the above double integral whenH > 1/2, to (t− s)/2 whenH = 1/2 (as predicted by (22)), and
continues to converge to (t−s)2H/2 for1/4 < H ≤ 1/2. WhenH ≤ 1/4 the iterated integrals (in particular
the Lévy area) of smooth approximations of X do not converge in mean square, and other techniques (e.g.
[3636]) must be relied upon to define a rough path, and hence a signature. These rough paths present a number
of differences with the canonical one defined forH > 1/4, and are therefore not considered in this paper.

Figure 1: Here we compare the two behaviours, corresponding to H > 1/2 and H < 1/2, of
∫

0<u<v<1 E[Ẋ
ℓ
uẊ

ℓ
v]dudv with Xℓ the sequence piecewise linear interpolations of X on a partition. On the

left we have chosen H = 2/3, and the sequence of integrals converges to a finite improper integral, whereas
on the rightH = 1/3 and the on- and off-diagonal contributions diverge to opposite infinities. (The plots are
oriented in different ways and the z-axis is rescaled, both for improved visibility.) This graphic has been created
using Wolfram Mathematica.
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What is needed to obtain a formula for the expected signature that also works in the case of negatively-
correlated increments1/4 < H < 1/2 is a way of expressing the indeterminacy “∞−∞” explained in Figure 1Figure 1.
The trick for doing this is simple to describe: integrate out the first variable in (33) and, callingR(t) := R(t, t)
the variance function ofX , note that forH > 1/2 we have
∫

s<u<v<t
∂12R(u, v)dudv =

∫ t

s

[
∂2R(v, v)− ∂2R(s, v)

]
dv =

∫ t

s

[
1
2R

′(v)− ∂2R(s, v)
]
dv . (4)

We have replaced ∂2R(v, v) with 1
2R

′(v), which can be done by symmetry ofR:

R′(v) =
d

dv
R(v, v) = ∂1R(v, v) + ∂2R(v, v) = 2∂2R(v, v) . (5)

This is relevant to the case of (1/4, 1/2) ∋ H-fBm since, while ∂2R(v, v) or ∂1R(v, v) is the infinite evalua-
tion discussed earlier, the last integral in (44) is perfectly well defined. These integrands can be chained together
on simplices, e.g.

∫

s<u<v<t[
1
2R

′(u)− ∂2R(s, u)][
1
2R

′(v)− ∂2R(u, v)]dudv, and combined with the other
types of integrand ∂12R(w, z), to yield a formula that is very similar to that of [33], but continues to be conver-
gent for 1/4 < H < 1/2 and agrees with (22) forH = 1/2.

Showing that the formula obtained by such substitution actually coincides with the expected signature for
X in a broad class of Gaussian processes — essentially those Gaussian rough paths introduced in [1515, 3030, 1919]
with the imposition of a few additional smoothness and regularity requirements on the (co)variance function
— is the main focus of this paper. In fact, our main result will prove a formula for the full Wiener chaos expan-
sion of S(X), the 0th level of which is the expectation. As far as we know, the expression for the positive chaos
projections of the signature is not to be found in the literature even in the classical case of Brownian motion.
While the expression of the positive levels of Wiener chaos is very similar in spirit to that of the 0th, it requires us
to use some Malliavin calculus in the setting of 1-parameter Gaussian processes, and results in technical com-
plications in the proof of convergence. The main additional ingredients needed are Stroock’s formula for the
m-th Wiener chaos projection and a novel definition of multiple Wiener integral of a function. For the latter, it
should be noted that while multivariate, deterministic integrands for Gaussian noise naturally live in a certain
Hilbert space (which for fBm can be identified with a Sobolev space), we are interested in integrating func-
tions of multiple times, i.e.

∫

[0,T ]m f(t1, . . . , tm)dXγ1
t1

· · · dXγm
tm in a Skorokhod-type sense: this is achieved

by approximating f with elementary integrands, and showing independence of the approximation. Comput-
ing the Wiener chaos projections of the signature of a Gaussian processX has the benefit of expressing S(X)
as a sum of terms that are orthogonal in L2, something that has the potential to be used for various types of
numerical calculations, e.g. estimates of Euler expansions for Gaussian rough differential equations. It should
be mentioned that, while (in the cases considered) the expected signature already determines the law ofX and
therefore that of the Wiener chaos projections of S(X), it does not appear obvious how one may obtain the
latter from the former directly. While fBm is the main example of a process for which our calculation is novel,
we briefly also consider centred, continuous Gaussian semimartingales, such as the Brownian bridge returning
to the origin and centred Ornstein-Uhlenbeck processes with deterministic initial condition.

As in the main reference article [33], the technique that underlies our proof is piecewise-linear approximation
ofX . The arguments needed to prove the result are however much more involved, for three essential reasons.
First is the fact that we must perform and justify the substitution (44), which requires novel arguments for
convergence; even proving finiteness of the integrals in the main formula requires more sophisticated bounds
in the 1/4 < H < 1/2 case than it does in the H > 1/2 case (see Figure 2Figure 2 for the simplest example of
an observation that must be made when H < 1/2). Second is that Malliavin derivatives are involved for
positive levels of the Wiener chaos and third is that our arguments must accommodate a wider class of Gaussian
processes. While the substitution (44) may seem very natural, it does not emerge obviously from the proof that
we have given here, and must instead be guessed in advance. Indeed, it is worth mentioning that the way in
which we first derived the statement of the main result involved an entirely different approach, which made use
of the Skorokhod-rough integral conversion formula [1010, 1111], applied recursively to the RDE for the signature.
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Figure 2: A graphic representing the contour plot of (t − s)2H−2 on {0 < s < t < 1} (on the left) and
{0 < s < u < t < 1}with u ∈ [0, 1] fixed (on the right): the integral of the former is improper on the whole
diagonal, while that of the later only at a point: when 0 < H < 1/2, only the latter converges. This graphic
has been created using Wolfram Mathematica.

The outline of this proof can be found in the second named author’s PhD thesis [1717, Ch. 5]. While this approach
has the drawback of generating further technical problems, reason for which it is not the one presented here, it
has the advantage of leading up constructively to the main formula.

This paper is organised as follows: in Section 1Section 1 we briefly introduce the class of Gaussian processes consid-
ered and the Malliavin calculus framework for them; we then use this language to identify functions as multiple
Wiener integrands. In Section 2Section 2 we state the main result Theorem 2.3Theorem 2.3 and discuss a few consequences and ex-
amples that follow; in Section 3Section 3 we prove the main result; in Conclusions and further directionsConclusions and further directions we outline
some aspects that could be tackled in further research. Finally, it should be mentioned that in [33], in addition
to the expected signature of 1/2 < H-fBm, the authors also compute the expected signature at levels 2 and 4
for 1/4 < H-fBm in a manner that does not obviously generalise to different processes or higher levels; while
not necessary in our proofs, it is sensible to verify that our main result agrees with this calculation: this check
is performed in Appendix AAppendix A.

1 Background on Malliavin calculus for Gaussian processes
In this section we introduce the class of Gaussian processes to which this paper applies, establish some notation,
and give a brief overview of the tools of Malliavin calculus that are necessary in the proof of the main result.
We follow [3535, 3434] for the general Malliavin calculus framework, [2323] for its aspects that pertain to Gaussian
processes indexed by a time parameter, and [99, 1010, 1111] for aspects regarding the rough path lifts of such processes.

Throughout this paper we will be working with a Gaussian process with i.i.d. components
X : Ω × [0, T ] → Rd where Ω = C([0, T ],Rd), Xt(ω) := ω(t), Ft := σ(Xs : 0 ≤ s ≤ t). We
assumeX to be centred, i.e. EX ≡ 0, and for it to have deterministic initial conditionX0 = 0. We will write
Xst := Xt −Xs for the increments ofX . By Gaussianity, the probability measure P on Ω is characterised by
the covariance function ofX

R : [0, T ]2 → Rd ⊗ Rd, R(s, t) := E[Xs ⊗Xt] . (6)

We will denote R( · ) the variance function of X , i.e. R(t) := R(t, t). The independence hypothesis implies
thatR is a diagonal matrixRαβ = δαβRαα, and the fact that they are identically distributed,Rαβ = δαβR11
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will be determined by a single scalar function, which by abuse of notation we will also callR. Although our re-
sults can be conjectured to continue to hold in the case in which the components are not identically distributed,
our proof will make essential use of this assumption. We define

R(∆(s, t)) := R(t)−R(s)

R(∆(s, t), v) := R(t, v)−R(s, v) = E[Xst ⊗Xv]

R(∆(s, t),∆(u, v)) := R(t, v) +R(s, u)−R(t, u)−R(s, v) = E[Xst ⊗Xuv]

(7)

for u, v, s, t ∈ [0, T ]. Note thatR(∆(s, t)) ̸= R(∆(s, t),∆(s, t)).
We assume X and R satisfy the conditions that make it possible to consider the signature of X , S(X),

defined by the limit in L2 of Stieltjes iterated integrals of smooth or piecewise-linear approximations of X ,
and carry out Malliavin calculus: these are existence of rough path lift and complementary Cameron-Martin
regularity [99, Conditions 2] and non-degeneracy of R [99, Conditions 3]. More elementary conditions that
imply these may be found, for instance, in [1010, 1111]. The expected signatures of such processes characterise their
law, i.e. ifY is any other process with a well-defined signatureS(Y )0T (as aG(Rd)-valued random variable) and
ES(X)0T = ES(Y )0T , then X and Y are equal in law: see [1313, Example 6.7], a consequence, among other
things, of the greedy estimate [1212]. We refer the reader to [1414] for a treatment of the theory in the case of more
general processes, whose expected signatures may not directly characterise the law of the process.

We will denote SN (X) the signature of X truncated at level N (i.e. its projection onto
⊕N

n=0(Rd)⊗n)
and S(X)(n) the n-th level of the signature (i.e. its projection onto (Rd)⊗n). The signature of a process,
as that of a path, satisfies two important algebraic relations. The first is the Chen identity, namely that
S(X)su ⊗ S(X)ut = S(X)st. The second is the shuffle identity: letting {e1, . . . , ed} denote the canoni-
cal basis of Rd, and using coordinate notation, i.e. Sγ1...γn := ⟨eγ1 ⊗ · · · ⊗ eγn , S⟩ for S ∈ T ((Rd)) and
γ1, . . . , γn ∈ [d] := {1, . . . , d} (and extending linearly), for 0 ≤ s ≤ t ≤ T it holds that

S(X)α1...αm
st S(X)β1...βn

st = S(X)
(α1...αm)�(β1...βn)
st (8)

where� denotes “shuffling” the tuplesα1 . . . αm andβ1 . . . βn, i.e. summing over all ways of permuting their
concatenationα1 . . . αmβ1 . . . βn whilst preserving the order of each. For further details see, for example, [2828].

In addition to the standard conditions onR, we will have to assume a certain amount of smoothness ofR
together with bounds on its derivatives; the reasons for such hypotheses will be made clear in due course. We
assumeR( · , · ) isC2 on the open simplex ∆[s, t] := {0 < s < t < T} and continuous on [0, T ]2, and that
R( · ) isC1 on (0, T ). The lack of smoothness assumptions ofR( · , · ) on the diagonal {s = t} is crucial for
the inclusion of (1/4, 1/2] ∋ H-fBm, which does not even have first partial derivatives on it. Furthermore,
we assume there exists anH ∈ (0, 1) with the property that the sample paths ofX are eitherH-Hölder, or are
K-Hölder for allK < H ; for fBmH will coincide with the Hurst parameter, but the letterH will be used for
more general processes to denote the Hölder exponent/supremum of exponents. This the rough path above
X will be of finite 1/H-variation or of finite p-variation for all p > 1/H .

We also need some quantitative estimates on the derivatives of R. Here and throughout the paper, the
constant of proportionality implied by the use of≲may only depend onT,H and other general characteristics
of the processX . We require

|∂12R(s, t)| ≲ (t− s)2H−2 on ∆[0, T ] (9)∣∣1
2R

′(t)− ∂2R(s, t)
∣∣ ≲ (t− s)2H−1 on [0, T ]2 \ {s = t} (10)

|R′(t)| ≲ t2H−1 on (0, T ] (11)

where ∂2 denotes partial differentiation w.r.t. the second component and ∂12 denotes second-order mixed par-
tial differentiation. Since R is not smooth on the diagonal, the following estimate for on-diagonal square in-
crements of the covariance function, which already appeared in [1515], must be required separately:

R(∆(s, t),∆(s, t)) ≲ (t− s)2H (12)

5



We move onto the treatment of Malliavin calculus forX . We let H be the Hilbert space given by the com-
pletion of the followingR-linear span of elementary functions [0, T ] → Rd, or equivalently [0, T ]× [d] → R:

E := spanR{1γ
[0,t) | t ∈ [0, T ], γ = 1, . . . , d} (13)

w.r.t. the inner product
⟨1α

[0,s), 1
β
[0,t)⟩H := Rαβ(s, t) . (14)

Because of independence of components, H is equal to an orthogonal direct sum H1⊕ . . .⊕Hd, and because
of equal distribution the direct summands are all equal. Elements of H should be viewed as admissible deter-
ministic integrands for dX , which are represented as Cauchy sequences of elementary integrands in E . This
framework allows us to view the process as an isometry

X : H → L2Ω, 1γ
[0,t) 7→ Xγ

t (15)

often called an isonormal Gaussian process.
The multiple Wiener integral

δm : H⊙m → L2Ω (16)

is the operator defined by the adjoint property (which more generally characterises the divergence operator,
when required on random arguments f )

∀Z ∈ Dm,2 E[Zδm(f)] = E[⟨DmZ, f⟩H⊗m ] (17)

where
Dm : Dm,2 → L2(Ω,H⊙m) (18)

is themth Malliavin derivative, defined as

Dmf(Xγ1
t1
, . . . , Xγn

tn ) :=

n∑
k1,...,km=1

∂k1,...,kmf(X
γ1
t1
, . . . , Xγn

tn )1
γk1

[0,tk1
) ⊗ · · · ⊗ 1

γkn

[0,tkn
) (19)

for f ∈ C∞(Rn)with derivatives (including the 0th) of polynomial growth, and extended as a closed operator
to a certain domain Dm,2. H⊙m denotes the subspace of H⊗m (the tensor product taken in the category of
Hilbert spaces) of symmetric tensors. Dm takes a square-integrable random variable and returns a random
element of H⊙m, which in case of membership to E⊙m (or otherwise a function member of H⊙m in the sense
of Definition 1.1Definition 1.1 below) will be a function ofm (time,index) pairs. Note that, while δ is symmetric in the sense
that it is left invariant by permuting (time,index) jointly, it is not symmetric if only time variables or indices are
permuted (e.g. it is possible to use δ to define a Lévy area — see Example 2.6Example 2.6 below). WhenDmZ is a function,
as in the case (1919), we denote its evaluation onm (time,index) pairs D(u1,γ1),...,(um,γm)Z ; occasionally it may
make more sense to suppress the indices in the notation, in which case we can just write Du1,...,umZ . We may
extend δ to a map δm := H⊗m → L2Ωby pre-composing with symmetrisation, and we have for f, g ∈ H⊗m

E[δm(f)δn(g)] = δmn
∑

σ∈Sm

⟨f, σ∗g⟩H⊗m . (20)

This implies that multiple Wiener integration defines an isometry

δ• :

∞⊕
m=0

H⊙m ∼=−→ L2Ω (21)

where the source is given the degree-wise rescaled inner product (f, g) 7→ m!⟨f, g⟩H⊗m forf, g of the same de-
gree and zero otherwise, andΩ is endowed with the sigma algebra generated by the processXt∈[0,T ]. The image
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of them-th Wiener integral operator, the space of the random variables δm(f)withf ranging inH⊙m, is called
the m-th Wiener chaos of X . We denote it Wm and the m-th Wiener chaos projection wm : L2Ω ↠ Wm.
Note that w0 = E with values in W0 = R, while W1 is given by linear functionals of X . We thus have the
Wiener chaos decompositionL2Ω =

⊕∞
m=0 Wm which means it is possible to represent any random variable

inL2Ω (measurable w.r.t. to the sigma-algebra generated byX) as anL2-absolutely convergent series

L2Ω ∋ Z =

∞∑
m=0

wmZ, ∥Z∥2L2 =

∞∑
m=0

∥wmZ∥2L2 =

∞∑
m=0

m!∥fm∥2H⊗m (22)

where fm = (δm)−1 ◦ wm(Z). The map (δm)−1 ◦ wm admits an expression in terms of the Malliavin
derivative: this is Stroock’s formula, which states that forZ ∈ Dm,2

(δm)−1 ◦ wm(Z) =
1

m!
E[DmZ] . (23)

As a consequence, ifZ ∈ D∞,2 :=
⋂∞

m=0Dm,2 we can write its Wiener chaos decomposition as the series

Z =
∞∑

m=0

1

m!
δmE[DmZ] . (24)

We continue calling elements of E⊗m elementary functions, in light of the fact that they can be identified
with functions ([0, T ]× [d])m → R by the mapping

1γ1
[0,t1)

⊗ · · · ⊗ 1γm
[0,tm) 7→ 1γ1,...,γm

[0,t1)×···×[0,tm) . (25)

This is the map given by the product of the Kronecker deltas δγ1· · · · δγm· and the indicator function on the
m-cube [0, t1) × · · · × [0, tm), each δ paired with the respective time variable. Since E⊗m is dense in H⊗m,
elements of the latter may be identified as equivalence classes of Cauchy sequences in E⊗m. While H⊗m is
not, in general, a space of functions, it is possible to uniquely associate elements of H⊗m to certain measurable
functions ([0, T ]× [d])m → R as follows:

Definition 1.1 (Functions as elements of H⊗m). For a function f : ([0, T ] × [d])m → R we will write
f ∈ H⊗m if there exist a Cauchy sequence (fn)n ⊂ E⊗m, uniformly bounded as a sequence of functions
(according to the identification (2525)), with fn → f a.e. In this case we will say that f represents lim fn ∈ H⊗m.
If f represents ϕ, ψ ∈ H⊗m then ϕ = ψ: this is an immediate consequence of the following

Lemma 1.2. Let (fn)n be as in the above definition with f = 0. Then fn → 0 in H⊗m.

Proof. Let

fn =

d∑
γ1,...,γm=1

fn;γ1,...,γm1γ1,...,γm

with fn;γ1,...,γm : [0, T ]m → R. Then fn → 0 a.e. if and only if fn;γ1,...,γm → 0 a.e. for each
(γ1, . . . , γm) ∈ [d]m. Keeping in mind that H ∼= (H1)

⊕
d we may therefore assume d = 1

and suppress indices. Following [2323, p.588], we test the sequence with elementary functions: letting
fn =

∑
sn1 ,...,s

n
m
f
sn1 ,...,s

n
m

n 1[0,sn1 )×...×[0,snm) and E⊗m ∋ g =
∑

t1,...,tm
gt1,...,tm1[0,t1)×...×[0,tm) with

f
sn1 ,...,s

n
m

n , gt1,...,tm ∈ R uniformly bounded (and the sums finite) we have that

⟨fn, g⟩H⊗m

=
∑

sn1 ,...,s
n
m

t1,...,tm

f
sn1 ,...,s

n
m

n gt1,...,tmR(sn1 , t1) · · ·R(snm, tm)

=
∑

t1,...,tm

gt1,...,tm
∫

((0,T ]\{t1})×···×((0,T ]\{tm})
fn(s1, . . . , sm)∂1R(s1, t1) · · · ∂1R(sm, tm)ds1 · · · dsm .
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(1010) and (1111) imply that the integrands are absolutely and uniformly bounded by
[|t1 − s1|2H−1 ∨ s2H−1

1 ] · · · [|tm − sm|2H−1 ∨ s2H−1
m ] (up to a constant), which is integrable on

((0, T ] \ {t1}) × · · · × ((0, T ] \ {tm}). By dominated convergence ⟨ϕ, g⟩H⊗m = lim⟨fn, g⟩H⊗m = 0,
where ϕ := lim fn in H⊗m, and ϕ = 0 follows from the fact that g ranges in a dense set. ■

In light of the aforementioned non-degeneracy condition on X , we also expect the converse to hold: if
ϕ ∈ H⊗m is represented by the functions f, g in the above sense, then f = g a.e. An example of a degenerate
stochastic process, for which this property would not hold, is given by taking any process X and concatenat-
ing it with itself path by path; the resulting covariance function R would be invariant under transposing the
intervals [0, T ) and [T, 2T ). We also note that, in specific cases, it is possible to describe H explicitly: if X is
a fractional Brownian motion with Hurst parameter H ∈ (0, 1), the identity on E induces an isomorphism
between H and the Sobolev spaceW 1/2−H,2 [2424], which is a space of functions forH ∈ (0, 1/2] but not for
H ∈ (1/2, 1).

We will mostly be considering Wiener integrals on simplices, which has the effect of quotienting out
symmetry of the operator δm. We will often resort to integral notation, e.g. if 1αβ

∆[s,t] ∈ H⊗2 (the
function that maps ((u, γ), (v, δ)) 7→ δαγδβδ1s<u<v<t) in the sense of Definition 1.1Definition 1.1, we will write
δ2(1αβ

∆[s,t]) =:
∫

s<u<v<t δXα
u δXβ

v to be the limit inL2 of δ2(fn). Wiener integrals of elements of E⊗m, on
the other hand, can be computed explicitly by using the adjoint property (1717): for example, it can be checked
that

δ2(1α
[s,t) ⊗ 1β

[u,v)) = Xα
stX

β
uv −Rαβ(∆(s, t),∆(u, v)) .

The more general formula involves multivariate analogues of the Hermite polynomials (see [3434, §2.7.2] and [1717,
p.244]). WhenX is a Gaussian martingale (but not necessarily if it is only a semimartingale), multiple Wiener
integration on the simplex coincides with iterated Wiener-Itô integration.

2 The main result, some consequences
We begin this section with some more notation. We denote [n] := {1, . . . , n} the set withn elements. We will
be concerned with iterated integrals on then-simplex∆n[s, t] := {(u1, . . . , un) | s < u1 < . . . < un < t}.
Because such integrals will involve the covariance function, integration variables will sometimes come in pairs.
For m,n ∈ N we denote Pn

m the collection of partitions of subsets of [n] of cardinality n − m into sets of
cardinality 2. Note that this means Pn

m = ∅ whenever n ̸= m (mod 2) orm > n, but Pn
n has precisely one

element, ∅: the empty set admits the empty collection of subsets as a partition, which vacuously belongs to
Pn
n . For example,Q := {{1, 4}, {3, 8}, {5, 6}} ∈ P8

2 viewed as a partition of the set {1, 3, 4, 5, 6, 8} ⊆ [8].
For P ∈ Pn

m we will denote P := [n] \ ∪P (in the partition of the above example,Q = {2, 7}).
It will convenient to use graphical notation to denote such objects, and for reasons that will become ap-

parent shortly, for a pair {i, j} with i ≤ j we will distinguish between the consecutive case j = i+ 1 and the
non-consecutive one j > i+ 1. The partitionQ ∈ P8

2 above is represented by

Q = . (26)

We will refer to such graphics as diagrams. We have drawn one node for each i ∈ [n] that is not paired with a
consecutive integer, and one node for each consecutive pair (in this case only {5, 6}); when counting nodes, a
node corresponding to such a pair should be thought as having double weight. In our example, the 5th node
actually counts for positions 5 and 6. With this convention, for each non-consecutive pair {i, j}we have drawn
an arc connecting the two nodes of positions i and j, and for each node corresponding to a consecutive pair we
have drawn a line going upwards. Nodes that do not have a line or arc entering them correspond to elements
of P , and we will call them single. Note that, by construction, there is never an arc between two consecu-
tive nodes: this will be critical for convergence of the associated integrals described below. In the next sec-

8



tion, we will be particularly concerned with maximal sequences of consecutive pairings, i.e. collections of pairings
{k, k + 1}, . . . , {k + l, k + l + 1} ∈ P with l ≥ 0 and s.t. {k − 2, k − 1}, {k + l + 2, k + l + 3} ̸∈ P .

Now, given P ∈ Pn
m, 0 ≤ s ≤ t ≤ T and γ1, . . . , γn ∈ [d] we associate to it a continuous function

P γ1,...,γn
st : ∆m[s, t] × [d]m → R by integrating over as many variables as there are non-single nodes in the

diagram that represents P : call this number, which equals twice the number of non-consecutive pairs in P
plus the number of consecutive ones, #P . This explains our choice for the above notation: each node either
corresponds to an integration variable or to a free variable, i.e. a variable of which P γ1,...,γn

st is a function. We
use the shorthands

R(dui, duj) := ∂12R(ui, uj)duiduj
1
2R(duh+1)−R(uh−1, duh+1) :=

[
1
2R

′(uh+1)− ∂2R(uh−1, uh+1)
]
duh+1 ,

(27)

and the former will only be used when j > i + 1. Crucially, we are defining the second case as
1
2R(duh+1)−R(uh−1,duh+1), not asR(uh+1, duh+1)−R(uh−1, duh+1), since this would be ill-defined
in many cases (including 1/2 > H-fBm) because R( · , · ) may not admit partial derivatives on the diagonal.
On the other hand, we are assuming that the variance functionR( · ) is differentiable.

Definition 2.1 (P γ1,...,γn
st ). For γ1, . . . , γn ∈ [d], 0 ≤ s ≤ t ≤ T and P ∈ Pn

m define

P γ1,...,γn
st (uk | k ∈ P ) :=

∏
k∈P

1γk ·
∫

∆#P [s,t]

∏
{i,j}∈P
|j−i|>1

Rγiγj (dui,duj)

·
∏

{h,h+1}∈P

[
1
2R

γhγh+1(duh+1)−Rγhγh+1(uh−1, duh+1)
] (28)

as a function ([0, T ]× [d])m → R extended with the value 0 outside ∆m[s, t].

The variables uk with k ∈ P are supplied as arguments, so in fact this is an integral over a disjoint union
of up tom+1 simplices (fewer if some of the elements ofP are consecutive). The kth index in [d]n is given as
argument to 1γk as a Kronecker delta: this means that P γ1,...,γn

st vanishes on all but one element of [d]m. The
reason why we still consider P γ1,...,γn

st as a function on [d]m is that this is necessary to view it as an element of
H⊗m; nevertheless, when the indices are fixed it will sometimes be convenient to just think of it as a function
ofm times. Ifm = 0, P γ1,...,γn

st is just a real number.

Remark 2.2. The presence of the second type of integrand in Definition 2.1Definition 2.1 is the reason for the
smoothness assumptions on the variance and covariance functions, which are not to be found in most
of the literature on these topics: this is because it would be difficult to define integrals such as
∫

s<u<v<t

[
1
2R(du) − R(s,du)

][
1
2R(dv) − R(u,dv)

]
as iterated Young integrals, without taking deriva-

tives, since the variable u in its undifferentiated form appears after the integrator 1
2R(du)−R(s,du); this of

course is no longer an issue under our smoothness hypotheses, thanks to which the above integral is defined as
the Lebesgue integral on the simplex

∫

s<u<v<t

[
1
2R

′(u)− ∂2R(s, u)
][

1
2R

′(v)− ∂2R(u, v)
]
dudv.

When P is represented by a diagram, we will decorate the nodes with labels. For example, the integral
associated to (2626) with labelling α, . . . , ϑ is given by

(
α β γ δ εζ η ϑ

)st

= 1βη
∫

∆7[s,t]
Rαδ(du1, du4)R

γϑ(du3,du8)
[
1
2R

εζ(du6)−Rεζ(u4, du6)
]

= 1βη
∆2[s,t]

(u2, u6)

∫

s<u1<u2
u2<u3<u4<u6<u7

u7<u8<t

∂12R
αδ(u1, u4)∂12R

γϑ(u3, u8)
[
1
2R

εζ ′(u6)− ∂2R
εζ(u4, u6)

]
du1du3du4du6du8 .
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This is viewed as a function of the variables u2, u6 ranging on the simplex ∆2[s, t], each paired with an index
variable, which must respectively be equal to β, η for the expression not to vanish. The variable u5 has been
skipped, since it is the first term in the consecutive pair{5, 6}. We will show that integrals defined in this fashion
are a.e. limits of Cauchy sequences in E⊗m, which therefore uniquely represent elements of H⊗m according
to Definition 1.1Definition 1.1. When taking multiple Wiener integrals of them, the indices corresponding to the nodes that
represent free variables will become the coordinate processes that are being integrated against, e.g.

δ2(
α β γ δ εζ η ϑ

)st

=

∫

s<u2<u7<t

[
∫

s<u1<u2
u2<u3<u4<u6<u7

u7<u8<t

∂12R
αδ(u1, u4)∂12R

γϑ(u3, u8)
[
1
2R

′εζ(u6)− ∂2R
εζ(u4, u6)

]]
δXβ

u2
δXη

u7
.

du1du3du4du6

We are now ready to state the main theorem.

Theorem 2.3 (Wiener chaos expansion of the signature of a Gaussian process).
Givenm,n ∈ N, P ∈ Pn

m, γ1, . . . , γn ∈ [d], 0 ≤ s ≤ t ≤ T , it holds that P γ1,...,γn
st ∈ H⊗m in the sense of

Definition 1.1Definition 1.1, and themth Wiener chaos projection of the signature ofX is given by

wmS(X)γ1,...,γnst =
∑

P∈Pn
m

δmP γ1,...,γn
st . (29)

In particular, notice that wmS(X)γ1,...,γnst can only be non-zero whenm ≤ n andm ≡ n (mod 2). The
most important case of this result is whenm = 0:

Corollary 2.4 (Expected signature of a Gaussian process). With notation as above, we have

ES(X)γ1,...,γnst =
∑

P∈Pn
0

P γ1,...,γn
st . (30)

Remark 2.5 (Eliminating variables). While convergence rules out always considering integrands of the first type
in (2727) (which would mean allowing diagrams with arcs between consecutive nodes), one may wonder whether
it is possible to only consider integrands of the second type, i.e. by integrating out one variable per pair and thus
simplifying the presentation of the formula. This, however, is not possible in general, because of the additional
constraint that requires two consecutive variables not to be both integrated out (for the expression to make
sense as an integral). It is not difficult to see, for example, that in the following diagram

at most two variables can be integrated out (unless the remaining integral can be solved or simplified analyti-
cally). Luckily, the only case in which it is necessary for convergence to integrate out certain variables (as speci-
fied in the second case of (2727)), is when there are consecutive pairs: this is always possible, even when more than
one pair in a row is consecutive, since we may always pick the first variable to integrate out (as done here — one
could equivalently have chosen the second). Of course, there is always some number of additional variables
that can be eliminated, but we do not immediately see a way of doing this in a maximal way that is canonical.

Example 2.6 (The Wiener chaos decomposition of S3(X)st). We give the explicit expression for the Wiener
chaos expansion of the signature truncated at level 3. These terms are especially significant, considering that
they are the ones that define the rough path when 1/4 < H ≤ 1/3: higher signature terms can be derived in
a pathwise fashion by Lyons’s extension theorem without involving probability. We represent each signature
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term as a sum of their Wiener chaos projections in ascending order; in particular the sum of all non-random
terms constitutes the expectation of the left hand side.

S(X)∅st = ∅st = 1, S(X)γst = δ(
γ
)st = δ(1γ

[s,t)) = Xγ
st

S(X)αβst =
αβ

+ δ2(
α β

)

=
Rαβ(s) +Rαβ(t)

2
−Rαβ(s, t) +

∫

s<u<v<t
δXα

u δXβ
v

S(X)αβγst = δ(
αβ γ

)st + δ(
αβγ

)st + δ(
α β γ

)st + δ3(
α β γ

)st

=

∫ t

s

(
Rαβ(s) +Rαβ(u)

2
−Rαβ(s, u)

)
δXγ

u +

∫ t

s

(
Rβγ(u) +Rβγ(t)

2
−Rβγ(u, t)

)
δXα

u

+

∫ t

s
Rαγ(∆(s, u),∆(u, t))δXβ

u +

∫

s<u<v<w<t
δXα

u δXβ
v δXγ

w

In particular, notice how the expected signature of level 2 is given by the difference between the average of the
variances and the covariance:

ES(X)αβst =
Rαβ(s) +Rαβ(t)

2
−Rαβ(s, t) (31)

and that the statement that “the Itô and Stratonovich Lévy areas are equal” carries over to the Gaussian Wiener-
rough setting, in the sense that

1

2

(
S(X)αβst − S(X)βαst

)
=

1

2

∫

s<u<v<t
δXα

u δXβ
v − δXβ

uδXα
v (32)

by symmetry of the covariance function.

Example 2.7 (ES(X)(4)). Corollary 2.4Corollary 2.4 at level 4 is given by

ES(X)αβγδst = (
αβ γδ

)st + (
αβγ δ

)st + (
α β γ δ

)st

=

∫

s<u<v<t

[
1
2R

αβ(du)−Rαβ(s,du)
][

1
2R

γδ(dv)−Rγδ(u,dv)
]

+

∫

s<u<v<w<t
Rαδ(du,dw)

[
1
2R

βγ(dv)−Rβγ(u,dv)
]

+

∫

s<u<v<w<z<t
Rαγ(du,dw)Rβδ(dv,dz) .

(33)

Using a clever transformation, [33, Theorem 34] are able to compute ES(X)
(2)
01 and ES(X)

(4)
01 for 1/4 < H-

fBm. Their formulae are specific to the cases n = 2, 4 and X a fBm, and are quite different to those given by
Theorem 2.3Theorem 2.3. That the two coincide is immediate at level 2 by (3131), and in Appendix AAppendix A we perform this check
at level 4.

The following example shows how Theorem 2.3Theorem 2.3 has the potential to generate insight into numerics of nu-
merical schemes for rough differential equations driven by Gaussian signals.
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Example 2.8 (Itô-Taylor expansions for solutions to RDEs driven by Gaussian signals). Assume

dY = V (Y )dX, Y0 = y0

is an RDE (rough differential equation) driven by the Gaussian rough path X (defined by the first 1, 2 or 3
levels ofS(X), depending on how roughX is). Proceeding formally, and denoting byVγ1 · · ·Vγn composition
of vector fields (and using Einstein notation), we can then expand the solution Y as

Yt =
∞∑
n=0

Vγ1 · · ·Vγn(y0)S(X)γ1,...,γn0t

=

∞∑
n=0

Vγ1 · · ·Vγn(y0)
∑

0≤m≤n
m≡n mod 2

wmS(X)γ1,...,γn0t

=
∞∑
n=0

Vγ1 · · ·Vγn(y0)
∑

0≤m≤n
m≡n mod 2

∑
P∈Pn

m

δmP γ1,...,γn
0t

=
∞∑

m=0

∞∑
n≥m

n≡m mod 2

Vγ1 · · ·Vγn(y0)
∑

P∈Pn
m

δmP γ1,...,γn
0t .

The expansion on the first line can be viewed as the extension to the Gaussian case of Stratonovich-Taylor series,
the one on the last line can be viewed as that of Itô-Taylor series [2525]. The latter has the advantage that its terms
fit in well with the Wiener chaos decomposition ofYt, although it should be observed that wmYt is represented
as an infinite series, namely the second sum in the last line above. Also, this expansion cannot be expected to
coincide with the Wiener chaos decomposition of Yt if it is performed at times other than 0, with Y0 = y0
deterministic. This is because, unlessX is a martingale, the Wiener chaos isometries will not hold conditionally
on Fs.

Remark 2.9 (Stationarity and joint stationarity of increments). X is stationary if and only if we may write

R(s, t) = R(t− s) (34)

for some functionR : [0, T ] → Rd×d. In this case we have

∂12R(s, t) = −R′′(t− s), R′(t) = 0, ∂2R(s, t) = R′(t− s)

=⇒ 1
2R

′(t)− ∂2R(s, t) = −R′
(t− s) .

(35)

An example of a centred stationary Gaussian process is the stationary Ornstein-Uhlenbeck process e−t/2Wet

whereW is a Brownian motion and t ∈ [0, T ]: its covariance function isR(s, t) = e−(t−s)/2 for s ≤ t. This
process however, strictly speaking, is not among those considered here, as it has random initial condition.

There is a much weaker property that results in a similar simplification. We will say that a stochastic process
X has jointly stationary increments if for all s1 ≤ t1, . . . , sn ≤ tn the distribution of the random vector of in-
crements (Xs1t1 , . . . , Xsntn)only depends on the differences t1−s1, . . . , tn−sn and s2−s1, . . . , sn−sn−1

(if n = 1 the latter condition vanishes, and ordinary stationarity of increments is recovered). IfX is Gaussian
this need only be required for n = 2, and if it holds we may write

R(∆(s, u),∆(t, v)) = E[Xsu ⊗Xtv] = R̂(u− s, v − t, t− s) (36)

for some function R̂ : [0, T ]3 → Rd×d. This property is satisfied by fBm, since if H is the Hurst parameter
we have

R(∆(s, u),∆(t, v))
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=
1

2

[
(t− u)2H + (v − s)2H − (t− s)2H − (v − u)2H

]
=

1

2

[(
(t− s)− (u− s)

)2H
+
(
(v − t) + (t− s)

)2H −
(
t− s

)2H −
(
(v − t) + (t− s)− (u− s)

)2H]
.

IfX has jointly stationary increments

∂12R(s, t) = lim
u→s
v→t

R(∆(s, u),∆(t, v))

(v − t)(u− s)
= ∂12R̂(0, 0, t− s) . (37)

Although similar simplifications are not available for ∂2R(s, t) and R′(t) individually (as they are in the sta-
tionary case), they are for their difference: indeed, using thatR( · , 0) ≡ 0, we have

1
2R(t+ h)− 1

2R(t)−
(
R(s, t+ h)−R(s, t)

)
= 1

2

[
R(∆(s, t),∆(t, t+ h)) +R(∆(s, t+ h),∆(t, t+ h))

]
which implies

1
2R

′(t)− ∂2R(s, t) =
1
2∂h|h=0

[
R̂(t− s, h, t− s) + R̂(t+ h− s, h, t− s)

]
= 1

2∂1R̂(t− s, 0, t− s) + ∂2R̂(t− s, 0, t− s) .

We therefore conclude that joint stationarity of increments, though a much more general property than sta-
tionarity, results in the same simplifications that are of relevance to Theorem 2.3Theorem 2.3, namely that ∂12R(s, t) and
1
2R

′(t)− ∂2R(s, t) only depend on t− s. This can be of aid in simplifying the expression of the integrals in
the formula for wmS(X), since it is possible to perform substitutions of the form vij = uj − ui. It does not,
however, guarantee that these integrals become analytically solvable, as simple examples show (e.g. the integral
∫ 1
0 v

2H−1(1− v)2H−1dv appearing in Appendix AAppendix A).

We now consider a few examples of Gaussian processes to which our results apply; in all cases,X will have
i.i.d. components, and we will useR to denote the scalar covariance function of each component. Arguably the
most important example of a stochastic process for which the signature has not yet been computed is fractional
Brownian motion in the regime of negatively-correlated increments:

Example 2.10 ((1/4, 1/2) ∋ H-fBm). Fractional Brownian motion with Hurst parameter H ∈ (0, 1) (H -
fBm), introduced in [3232], is a scalar centred Gaussian process with covariance function

R(s, t) =
1

2
(t2H + s2H − (t− s)2H), s ≤ t . (38)

It is not a semimartingale unless H = 1/2, in which case it is Brownian motion. Here we consider the
case H ∈ (1/4, 1/2): this is well known to satisfy the preliminary hypotheses required in Section 1Section 1, and the
smoothness conditions and bounds are simple to verify. Indeed, the integrands of interest for the formula of
Theorem 2.3Theorem 2.3 are given by (s ≤ t)

∂12R(s, t) = H(2H − 1)(t− s)2H−2

1
2R

′(t)− ∂2R(s, t) = H(t− s)2H−1 .
(39)

As predicted by Remark 2.9Remark 2.9, these both are functions of t− s.

Remark 2.11 ((1/2, 1) ∋ H-fBm, [33]). IfR( · , · ) is once differentiable on the diagonal, then

R′(t) =
d

dt
R(t, t) = 2∂2R(t, t)
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and we have
∫ t

s

[
1
2R

′(v)− ∂2R(s, v)
]
dv =

∫ t

s

[
∂2R(v, v)− ∂2R(s, v)

]
dv =

∫

s<u<v<t
∂12R(u, v)dudv .

By performing this substitution in Corollary 2.4Corollary 2.4 for the case of 1/2 < H-fBm (this means always applying the
first case in (2727), i.e. allowing arcs between consecutive nodes, which replace lines), we recover the formula of [33,
Theorem 31] (note that the symmetry factor — meant to factor out permutations of pairings and transpositions
within each pair — is not present in our case, since we are summing over pairings and not permutations). Other
examples of processes in a similar regularity regime are those Gaussian Volterra processes with strictly regular
kernels considered in [77].

The following is another example of a fractional, non-semimartingale process.

Example 2.12 (The Riemann-Liouville process). Another centred continuous Gaussian process, originally
introduced in [2626] and subsequently in [3232], is the Riemann-Liouville process with Hurst parameterH ∈ (0, 1)
(sometimes called “type-II fBm”), is a centred Gaussian process with covariance function [3333, p.116-117]

R(s, t) =
s<t

1

2

[
t2H + s2H − 2H(t− s)2H

(
1

2H
+

∫ s/(t−s)

0

(
(1 + u)H−1/2 − uH−1/2

)2
du

)
︸ ︷︷ ︸

=R(∆(s,t),∆(s,t))

]
.

(40)

Like fBm, this process specifies to Brownian motion when H = 1/2 and is otherwise not a semimartingale.
Their main difference between the two is that fBm has jointly stationary increments while for the Riemann-
Liouville process not even single increments are stationary. We were not able to find a satisfactory expression
for the derivatives of the covariance function of this process, and thus were not able to determine whether (for
H > 1/4) it satisfies the conditions necessary for applying Theorem 2.3Theorem 2.3. However, we believe that examples
such as this provide strong motivation for not confining our study to fBm and to allow for more general pro-
cesses.

Another important restriction of the main result is the following case:
Remark 2.13 (Gaussian martingales, [1616]). WhenX is a continuous Gaussian martingale, its quadratic variation
coincides with its variance function (as can be seen by the fact that X2

t − R(t) is a martingale). The Dubins-
Schwarz theorem then implies that X can be represented as the deterministically-reparametrised Brownian
motionWR(t). Assuming equal distribution of components, we can use this and the formula for the expected
signature of Brownian motion (22) to compute

ES(X)γ1,...,γ2nst =
R(∆(s, t))n

2nn!
δγ1γ2 · · · δγ2n−1γ2n . (41)

Since by martingality∂12R(s, t) = 0 = ∂2R(s, t)ons < t, Theorem 2.3Theorem 2.3 reduces to a sum of iterated integrals
that only involve 1

2R
′, which coincides with the above formula.

We conclude with two examples of centred, continuous Gaussian semimartingales which are not martin-
gales and do not have stationary increments.

Example 2.14 (Brownian bridge returning to the origin). The Brownian Bridge returning to the origin at time
T is a process whose law is given by disintegrating the Wiener measure on the event WT = 0, where W is a
d-dimensional Brownian motion starting at the origin. It can be written either as

Xt =Wt −
t

T
WT , t ∈ [0, T ]

or adaptedly as

Xt = (T − t)

∫ t

0

dWs

T − s
, t ∈ [0, T )
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(andXT = 0). Its covariance function is given by

R(s, t) = s
(
1− t

T

)
, s ≤ t (42)

and the integrands of interest are thus

∂12R(s, t) = − 1

T

1
2R

′(t)− ∂2R(s, t) =
1

2
− t− s

T
.

(43)

It should be mentioned that X , as a process defined on [0, T ], fails the non-degeneracy condition [99, p.2125].
This is, however, not a problem, as we can view it as defined on the interval [0, T − ε] and obtain the signature
terms S(X)sT through a limiting argument. The bounds of (99), which in this example and the one below only
involve linear terms, are easily checked (and indeed the first is not even sharp). Note that the iterated integrals
of (4343) can all be solved explicitly as polynomials.

Example 2.15 (Centred Ornstein-Uhlenbeck processes started at 0). We consider an Ornstein-Uhlenbeck pro-
cess with zero mean and deterministic initial condition, given by the Wiener-Itô integral

Xt = σ

∫ t

0
e−θ(t−u)dWu

with σ, θ ∈ (0,+∞). Its covariance function is given by

R(s, t) =
σ2

2θ

(
e−θ(t−s) − e−θ(s+t)

)
, s ≤ t (44)

and ∂12R(ds,dt), 1
2R

′(t)− ∂2R(s, t) can be computed directly. Once again, all conditions are satisfied (see
[99, p2138]).

3 Proof of the main result
Recall that we are using ≲ to denote inequalities whose constant of proportionality may only depend on T,H
and other properties of a fixed processX . Since most of the arguments presented in this section only concern
bounds and convergence, we will suppress indices (i.e. treat the scalar case) most of the time, so as not to clutter
the notation. GivenP ∈ Pn

m, denote |P |st the function ∆m[s, t] → R defined analogously to Definition 2.1Definition 2.1,
but replacing each integrand ∂12R(u, v) with (v − u)2H−2 and each integrand 1

2R
′(v) − ∂2R(u, v) with

(v − u)2H−1. For example, ifQ is the diagram of (2626)

|Q|st = 1∆2[s,t](u2, u7)

∫

s<u1<u2
u2<u3<u4<u6<u7

u7<u8<t

(u4−u1)2H−2(u8−u3)2H−2(u6−u4)2H−1du1du3du4du6du8 .

The following proposition guarantees that all the integrals considered in the main theorem are convergent.

Proposition 3.1 (Finite improper integrals). Form ≤ n and P ∈ Pn
m

|P |st ≲ (t− s)(n−m)H (45)

uniformly over ∆m[s, t].

15



Proof. We proceed by induction on n −m. When P only has single nodes (m = n) the statement is trivial.
We will proceed by considering several cases for the last node inP ; the simplest of these occurs when it is single:
the statement follows immediately from the inductive hypothesis. For the next case, we will need the following
bound:

∫

∆n[s,t]
(u1 − s)2H−1 · · · (un − un−1)

2H−1du1 · · · dun

≲
∫

∆n−1[s,t]
(u1 − s)2H−1 · · · (un−1 − un−2)

2H−1(t− un−1)
2Hdu1 · · · dun−1

≤ (t− s)2H
∫

∆n−1[s,t]
(u1 − s)2H−1 · · · (un−1 − un−2)

2H−1du1 · · · dun−1

≲ . . . ≲ (t− s)2nH .

For a diagramC whose last node is the right endpoint of an arc, using the bound above we have

|C . . .
n

|st

=

∫

∆n+1[s,t]
|C|′su0

(u1 − u0)
2H−1 · · · (un − un−1)

2H−1du0 · · · dun

=

∫ t

s
|C|′su0

∫

∆n[u0,t]
(u1 − u0)

2H−1 · · · (un − un−1)
2H−1du1 · · · dun du0

≲
∫ t

s
|C|′su0

(t− u0)
2nHdu0

≤ (t− s)2nH
∫ t

s
|C|′su0

du0

≤ (t− s)2nH |C|st

where |C|′su0
equals the integral representing |C|su0 with the only difference that we are not integrating w.r.t.

the variable u0 in (u0 − r)2H−2, which represents the arc that terminates at the last node of C . Similarly, if
the last node inC is single, we have

|C . . .
n

|st

= |C|su0

∫

∆n[u0,t]
(u1 − u0)

2H−1 · · · (un − un−1)
2H−1du1 · · · dun

≲ |C|su0(t− s)2nH

≤ |C|st(t− s)2nH

whereC is not differentiated since it terminates in a node representing a free variable,u0. We now consider arcs:
assume there are i arcs/lines withinA, j withinB, and that there are k arcs between nodes inA and nodes in
B (collectively represented below by the dashed arc). LetA◦ andB◦ denote the diagrams given by eliminating
such arcs from A and B: the nodes that have become single as a result now represent free variables, which we
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callw1, . . . , wk, z1, . . . , zk. We first consider the case in which j > 0:

|A B |st

=

∫

s<u<v<t

∫

∆k[s,u]×∆k[u,v]
|A◦|su|B◦|uv(z1 − w1)

2H−2 · · · (zk − wk)
2H−2dw1dz1 · · · dwkdzk

(v − u)2H−2dudv

≲
∫

s<u<v<t

∫

∆k[s,u]×∆k[u,v]
(u− s)2iH(v − u)2jH(z1 − w1)

2H−2 · · · (zk − wk)
2H−2dw1dz1 · · · dwkdzk

(v − u)2H−2dudv

≤ (t− s)2iH
∫

s<u<v<t
(v − u)2jH+2H−2

∫

[s,u]k×[u,v]k
(z1 − w1)

2H−2 · · · (zk − wk)
2H−2dw1dz1 · · ·

· · · dwkdzk dudv

≲ (t− s)2iH
∫

s<u<v<t
(v − u)2(j+1)H−2|(v − u)2H + (u− s)2H − (v − s)2H |kdudv

≲ (t− s)2(i+k)H
∫

s<u<v<t
(v − u)2(j+1)H−2dudv

≤ (t− s)2(i+j+k)H

where we have used 2H(j + 1) − 1 ≥ 4H − 1 > 0 since H > 1/4. Note that the absolute values in the
third-last expression can be removed by separately considering the cases H > 1/2 and H < 1/2. Assume
instead j = 0: this means B must contain at least one node that is either single or paired with a node in A; it
cannot be that B = ∅ or the diagram would contain an arc between two consecutive nodes, which is ruled
out. The case in which there is a node inB which is single (see Figure 2Figure 2) does not requireH > 1/4: letting r
denote the free variable represented by such a node, and proceeding similarly to the above, we have

|A B |st

=

∫

s<u<r<v<t

∫

∆k[s,u]×∆k[u,v]
|A◦|su(z1 − w1)

2H−2 · · · (zk − wk)
2H−2dw1dz1 · · · dwkdzk

(v − u)2H−2dudv

≲ (t− s)2(i+k)H
∫

s<u<r<v<t
(v − u)2H−2dudv

≲ (t− s)2(i+k)H |(t− r)2H + (r − s)2H − (t− s)2H |
≲ (t− s)2(i+k+1)H .

Finally, consider the case in which j = 0 and k > 0 (andB may have no single nodes):

|A B |st

≲ (t− s)2iH
∫

s<u<v<t

∫

[s,u]k×∆k[u,v]
(z1 − w1)

2H−2 · · · (zk − wk)
2H−2dw1dz1 · · · dwkdzk

(v − u)2H−2dudv

≲ (t− s)2iH
∫

s<u<z1<...<zk<t
|(z1 − u)2H−1 − (z1 − s)2H−1| · · · |(zk − u)2H−1 − (zk − s)2H−1|

|(t− u)2H−1 − (zk − u)2H−1|dudz1 · · · dzk

≲ (t− s)2(i+k−1)H
∫

s<u<zk<t
|(zk − u)2H−1 − (zk − s)2H−1||(t− u)2H−1 − (zk − u)2H−1|dudzk .
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Once again, the absolute values distinguish between H ≶ 1/2. Expanding the product, we observe that
three of the integrals feature products of different terms, each to the power of 2H − 1: in these, at least
one of zk or u only appears once, which means this variable may be integrated out and the resulting term
bounded (up to a constant) by (t − s)2H , with the remaining integral solved similarly. The fourth integral
instead is
∫

s<u<z<t(z − u)4H−2dudz which is finite again thanks to H > 1/4. This shows that we have
≲ (t− s)2(i+k+1)H in the above expression and concludes the proof. ■

Remark 3.2 (Modified |P |). We have stated the previous proposition under in the most natural manner; in
particular note how, in the prototypical case of fBm, the integrals |P |st are multiples ofPst. We will, however,
additionally need a slightly modified version of this result, in which the definition of |P | is changed as follows:
maximal sequences

∫

∆k[u,v]
(w1 − u)2H−1 · · · (wk − wk−1)

2H−1dw1 · · · dwk

occurring in the middle of the expression for |P |, are replaced with their bound (v−u)2kH , and each integrand
(v−u)2H−2 is replaced with ((v−u)∧1/2)2H−2. That the statement continues despite these modifications
to hold is obvious for the first, and for the second it follows from the facts that all integrals are still convergent
(by the same proof) and the 1/2 can be replaced with 1/2∧T and absorbed in the constant of proportionality.

Just like in [33], we approximateX piecewise linearly. LetXℓ be a sequence of piecewise linear approxima-
tions ofX along partitions πℓ on [0, T ]with step size that vanishes as ℓ→ ∞. It will be helpful to assume that
the intervals in the mesh πℓ all have the same length ϱℓ; this simplifying assumption can be made because it is
only necessary to show convergence along a sequence of such approximations, since it is known that the limit
does not depend on the particular choice of πℓ (or indeed on the type of piecewise smooth approximation in a
broad class of these) [2121, Ch. 15]. For t ∈ [0, T ] we will write t−ℓ and t+ℓ to respectively denote the endpoints a
and b of the interval of πℓ s.t. t ∈ [a, b). Explicitly,Xℓ and its piecewise-defined derivative are given by

Xℓ
t = Xt−ℓ

+ ϱ−1
ℓ (t− t−ℓ )Xt−ℓ t+ℓ

Ẋℓ
t = ϱ−1

ℓ Xt−ℓ t+ℓ

(46)

where, as usual, Xab := Xb − Xa denotes the increment. In order to use Stroock’s formula (2323), we will be
considering Malliavin derivatives of the signature of the piecewise-linear interpolations ofX ,

S(Xℓ)γ1,...,γnst =

∫

∆n[s,t]
Ẋℓ;γ1

u1
· · · Ẋℓ;γn

un
du1 · · · dun ,

which in turn requires us to consider those of the single factors:

DvẊ
ℓ;γ
u = ϱ−1

ℓ 1γ

[u−
ℓ ,u+

ℓ )
(v) = ϱ−1

ℓ 1γ

[v−ℓ ,v+ℓ )
(u) . (47)

For P ∈ Pn
m, we provide a discretised analogue to Definition 2.1Definition 2.1:

Definition 3.3 (P ℓ;γ1,...,γn
st ). For γ1, . . . , γn ∈ [d], 0 ≤ s ≤ t ≤ T and P ∈ Pn

m define

P ℓ;γ1,...,γn
st (vk | k ∈ P ) :=

∫

∆n[s,t]

∏
{i,j}∈P

E[Ẋℓ;γi
ui

Ẋ
ℓ;γj
uj ]duiduj ·

∏
k∈P

ϱ−1
ℓ 1γk

[v−k;ℓv
+
k;ℓ)

(uk)duk . (48)

as an element of E⊗m, whose arguments are given to the functions 1γk
[u−

k;ℓu
+
k;ℓ)

with k ∈ P .
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Note how the above definition, unlike Definition 2.1Definition 2.1 does not distinguish between consecutive and non-
consecutive pairings: this will only become important in the limit. Moreover, we are integrating over all n
variables, including the uk with k ∈ P : this is because the time arguments of the function, vk, are supplied
separately, with the respective index variables supplied as arguments to δγk , k ∈ P . The functions P ℓ

st are
summands in the expression of which we want to compute the limit:

Lemma 3.4 (Expected Malliavin derivatives of signature approximations).

EDmS(Xℓ)γ1,...,γnst = m!
∑

P∈Pn
m

P ℓ;γ1,...,γn
st ∈ E⊙m (49)

Proof. This is a consequence of (4646), (4747), the (iterated) Leibniz rule for the Malliavin derivative and Wick’s
formula for the mixed moments of a Gaussian vector (as it was already used in [22, Theorem 31]). The details are a
matter of simple combinatorics; in particular note how, instead of summing overm! terms corresponding to the
ways of permuting them derivatives (for a fixedP ∈ Pn

m), we are only including the term corresponding to the
identity permutation and multiplying bym!, which identifies the same element of E⊗m up to symmetry. ■

In order to prove convergence, it is unfortunately not possible to argue by dominated convergence applied
to Definition 3.3Definition 3.3: this is because the factors in the integrand given by consecutive pairings E[Ẋℓ;γi

ui Ẋ
ℓ;γi+1
ui+1 ]

converge to non-integrable functions (e.g. (v − u)2H−2 on ∆2[s, t] for fBm) and the ones corresponding to
Malliavin derivatives ϱ−1

ℓ 1γk
[v−k;ℓv

+
k;ℓ)

(uk)duk do not converge at all (in fact they converge, as distributions, to

Dirac deltas δvk ). The reason that convergence holds is that all these quantities are integrated. To success-
fully exploit this, we will write each integral P ℓ

st as a nested integral, distinguishing between the three types of
integrands:
∫

(non-consecutive pairings)
∫

(Malliavin derivatives)
∏

maximal
sequences

∫

(consecutive pairings) . (50)

The outer integral contains the product of all terms E[Ẋℓ;γi
ui Ẋ

ℓ;γj
uj ] with |j − i| > 1. These are multiplied

with the second integral, which integrates all factors coming from Malliavin derivatives. Finally, we partition the
remaining integrandsE[Ẋℓ;γh

uh Ẋ
ℓ;γh+1
uh+1 ] into maximal sequences and integrate each individually: these integrals

are integrands in the second integral, alongside the Malliavin derivatives. The operations of exchanging the
order of integrals are all justified by Fubini’s theorem, considering that all integrals are actually finite sums. We
illustrate all of this with a simple example: consider the diagram (suppressing indices)

P := ∈ P6
2 .

According to Definition 3.3Definition 3.3, we have

P ℓ
st(v1, v2) =

∫

∆6[s,t]
ϱ−2
ℓ 1[v−2;ℓ,v

+
2;ℓ)

(u2)1[v−3;ℓ,v
+
3;ℓ)

(u3)E[Ẋℓ
u1
Ẋℓ

u6
]E[Ẋℓ

u4
Ẋℓ

u5
]du1du4du5du6 .

Re-organising this expression as described in (5050) we obtain
∫

s<u1<u6<t
E[Ẋℓ

u1
Ẋℓ

u6
][

∫

u1<u2<u3<u6

ϱ−2
ℓ 1[v−2;ℓ,v

+
2;ℓ)

(u2)1[v−3;ℓ,v
+
3;ℓ)

(u3)[
∫

u3<u4<u5<u6

E[Ẋℓ
u4
Ẋℓ

u5
]du4du5

]
du2du3

]
du1du6 .
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Note that the domain of integration of the innermost integral can be described in terms of variables of the two
outer integrals: this extends to the case in which there is more than one maximal sequence, by maximality, and
is crucial for the factorisation into integrals over maximal sequences to be possible.

The reason for the nested rewriting of (5050) is that it will be possible to show convergence of the integrals
over maximal sequences, then by a separate argument infer the convergence of the middle integral, and finally
by dominated convergence conclude that the outer integrals converge. We preface the proof of convergence
with a few lemmas; the first of these considers the case of a single consecutive pairing, and will form the base
case of an induction that handles maximal sequences of arbitrary length.

Lemma 3.5 (One consecutive pairing).

lim
ℓ→∞

∫

s<u<v<t
E[Ẋℓ

uẊ
ℓ
v]dudv =

1

2
E[X2

st] =

∫ t

s

[
1
2R

′(v)− ∂2R(s, v)
]
dv

and the convergents are uniformly bounded by ≲ (t− s)2H .

Proof. Considering that Ẋℓ is a piecewise-constant, and that the integral on the right is therefore a finite sum,
we can write

∫

s<u<v<t
E[Ẋℓ

uẊ
ℓ
v]dudv = E
∫

s<u<v<t
Ẋℓ

uẊ
ℓ
vdudv

=
1

2
E[(Xℓ

st)
2]

ℓ→∞−−−→ 1

2
E[X2

st]

=
1

2
R(∆(s, t),∆(s, t))

=
R(s) +R(t)

2
−R(s, t)

=

∫ t

s

[
1
2R

′(v)− ∂2R(s, v)
]
dv

where we have used that (Xℓ
st)

2 ℓ→∞−−−→ X2
st inL2. For the second statement, we rely on the first two identities

above and distinguish between the cases s−ℓ = t−ℓ and s−ℓ < t−ℓ : in the former we have, using (1212)

|E[(Xℓ
st)

2]| = |E[ϱ−2
ℓ (t− s)2X2

s−ℓ s+ℓ
]| ≲ ϱ2H−2

ℓ (t− s)2 ≤ (t− s)2H

since ( t− s

ϱℓ

)2−2H
≤ 1

byH < 1 and t− s ≤ ϱℓ. Let now s−ℓ < t−ℓ :

|E[(Xℓ
st)

2]| = |E[(Xℓ
ss+ℓ

+Xℓ
s+ℓ t−ℓ

+Xℓ
t−ℓ t

)2]|

=
∣∣∣E[(ϱ−1(s+ℓ − s)Xℓ

ss+ℓ
+Xs+ℓ t−ℓ

+ ϱ−1(t− t−ℓ )Xt−ℓ t

)2]∣∣∣
≲ ϱ−2(s+ℓ − s)2E[X2

ss+ℓ
] + E[X2

s+ℓ t−ℓ
] + ϱ−2(t− t−ℓ )

2E[X2
t−ℓ t

]

≲ (s+ℓ − s)2H + (t−ℓ − s+ℓ )
2H + (t− t−ℓ )

2H

≲ (t− s)2H

by l2-Jensen’s inequality, the previous case, and again (1212). ■
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The case of several consecutive pairings is more difficult to handle, and in Proposition 3.9Proposition 3.9 convergence of
these terms will be bootstrapped from terms that only contain shorter sequences of consecutive pairings, and
the above single case, by means of an inductive argument. It is worth remarking that the plausible strategy of
handling these integrands together with the others by integrating only one of the variables fails:

Remark 3.6 (Lack of convergence of E[Xℓ
uvẊ

ℓ
v]). One way of dealing with sequences of consecutive pairings

is by rewriting them as
∫

s<u1<v1<...<un<vn<t
E[Ẋℓ

u1
Ẋℓ

v1 ] · · ·E[Ẋ
ℓ
un
Ẋℓ

vn ]du1dv1 · · · dundvn

=

∫

∆n[s,t]
E[Xℓ

sv1Ẋ
ℓ
v1 ]E[X

ℓ
v1v2Ẋ

ℓ
v2 ] · · ·E[X

ℓ
vn−1vk

Ẋℓ
vn ]dv1 · · · dun .

(51)

This has the benefit of expressing the convergents as integrals over n, and not 2n, variables. The problem with
this strategy is that it does not hold that E[Xℓ

uvẊ
ℓ
v]

ℓ→∞−−−→ 1
2R

′(v)− ∂2R(u, v): a simple calculation reveals

E[Xℓ
uvẊ

ℓ
v]

= ϱ−1
ℓ

[(
1− ϱ−1

ℓ (v − v−ℓ )
)
R(v−ℓ ,∆(v−ℓ , v

+
ℓ )) + ϱ−1

ℓ (v − v−ℓ )R(v
+
ℓ ,∆(v−ℓ , v

+
ℓ ))

]
− ϱ−1

ℓ

[(
1− ϱ−1

ℓ (u− u−ℓ )
)
R(u−ℓ ,∆(v−ℓ , v

+
ℓ )) + ϱ−1

ℓ (u− u−ℓ )R(u
+
ℓ ,∆(v−ℓ , v

+
ℓ ))

]
.

While the second term converges to ∂2R(u, v) (e.g. by the intermediate value theorem applied on the interval
[v−ℓ , v

+
ℓ ]), the first does not converge in general. To see why, it suffices to takeX to be Brownian motion andπℓ

to by a diadic sequence: the first term on the right above is then equal to ϱ−1
ℓ (v − v−ℓ ) which is indeterminate

in view of the fact that for v in a set of full Lebesgue measure its decimal expansion contains infinitely many
00’s and 11’s. The fractional case with H < 1/2 appears even worse behaved, i.e. divergent in a possibly
indeterminate fashion.

We now move outward in (5050) and prove a lemma that will guarantee convergence of the middle integral,
conditional on the convergence of the inner ones.

Lemma 3.7. Let fℓ : [0, T ]m → R be a uniformly bounded sequence of functions that are continuous and
piecewise smooth on the mesh πℓ. Assume that fℓ converges to f : [0, T ]m → R uniformly. Then

∫

∆m[s,t]
fℓ(u1, . . . , um)ϱ−m

ℓ

m∏
k=1

1[v−k;ℓ,v
+
k;ℓ)

(uk)du1, . . . ,dum
ℓ→∞−−−→ 1∆m[s,t](v1, . . . , vm)f(v1, . . . , vm)

where the convergence is a.e. in the variables (v1, . . . , vm) ∈ [0, T ]m. Moreover, the convergents are uniformly
bounded by supℓ∥fℓ∥∞.

Proof. The second statement holds by uniform boundedness of fℓ and the fact that

∫

∆m[s,t]
ϱ−m
ℓ

m∏
k=1

1[v−k;ℓ,v
+
k;ℓ)

(uk)du1, . . . ,dun ≤ 1 .

We will prove pointwise convergence on the subset

[0, T ]m∗ := {(v1, . . . , vm) ∈ [0, T ]m | vi ̸= vj for i ̸= j}

of [0, T ]m of full Lebesgue measure. For (v1, . . . , vm) ∈ [0, T ]m∗ , we may, without loss of generality, start the
sequence when ℓ is already large enough so that [v−i;ℓ, v

+
i;ℓ)∩ [v−j;ℓ, v

+
j;ℓ) = ∅ for i ̸= j, where we are including
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v0 := s and vm+1 := t in this requirement. By the mean value theorem applied individually to each uk, there
existwk;ℓ ∈ (v−k;ℓ, v

+
k;ℓ) s.t.

∫

∆m[s,t]
fℓ(u1, . . . , um)ϱ−m

ℓ

m∏
k=1

1[v−k;ℓ,v
+
k;ℓ)

(uk)du1, . . . ,dum = 1∆m[s,t](v1, . . . , vm)fℓ(w1;ℓ, . . . , wm;ℓ)

and

|1∆m[s,t](v1, . . . , vm)fℓ(w1;ℓ, . . . , wm;ℓ)− 1∆m[s,t](v1, . . . , vm)f(v1, . . . , vm)|
≤ 1∆m[s,t](v1, . . . , vm)

[
|fℓ(w1;ℓ, . . . , wm;ℓ)− f(w1;ℓ, . . . , wm;ℓ)|

+ |f(w1;ℓ, . . . , wm;ℓ)− f(v1, . . . , vm)|
]

≤ 1∆m[s,t](v1, . . . , vm)
[
∥fℓ − f∥∞ + ωf

(v1,...,vm)(ϱℓ)
]

where ωf
(v1,...,vm) is the modulus of continuity of f at the point (v1, . . . , vm). Both summands on the right

hand side above vanish in the limit of ℓ → ∞, the first by uniform convergence and the second by continuity
of the uniform limit of continuous functions. ■

The next two results constitute the core of our argument. They both rely on the same induction used to
reduce the length of consecutive pairings, the base case of which is provided by Lemma 3.5Lemma 3.5. To illustrate it at
level 4, letting Y be a stochastic process (which below will be taken to beXℓ andX) we have for α ̸= β

2ES(Y )ααββst = ES(Y )ααst · ES(Y )ββst − 2ES(Y )αβαβst − 2ES(Y )αββαst

by the shuffle property (88), using identical distribution of components to group together
2ES(Y )ααββst = ES(Y )ααββst + ES(Y )ββααst (and similar on the right hand side), and using indepen-
dence of components to write E[S(Y )ααst S(Y )ββst ] = ES(Y )ααst ·ES(Y )ββst . While the left hand side contains
a sequence of two consecutive pairs, only sequences of consecutive pairs of length one appear on the right.

Lemma 3.8 (Dominating function). For P ∈ Pn
m it holds that the integrand of the outermost integral of P ℓ

st

expressed in the nested form (5050), is absolutely bounded by an integrable function, uniformly in ℓ and on∆m[s, t],
so that |P ℓ

st| ≲ (t− s)2(n−m)H′ for any 1/4 < H ′ < H .

Proof. We begin by bounding expectations corresponding to non-consecutive pairings. As done in the proof
of [33, Theorem 31], we now consider the terms

E[Ẋℓ
uẊ

ℓ
v] = ϱ−2

ℓ R(∆(u−ℓ , u
+
ℓ ),∆(v−ℓ , v

+
ℓ ))

in three different cases: for u−ℓ = v−ℓ

|E[Ẋℓ
uẊ

ℓ
v]| ≲ ϱ2H−2

ℓ ≤ (v − u)2H−2 .

By Cauchy-Schwarz the same estimate as above holds in the case u+ℓ = v−ℓ , with a constant in the second
inequality given by the fact that v−u ≤ 2ϱℓ. Let u+ℓ < v−ℓ : we have, by (99) and for anyH ′ as in the statement

|E[Ẋℓ
uẊ

ℓ
v]| = ϱ−2

ℓ

∣∣∣∣ ∫
[u−

ℓ ,u+
ℓ ]×[v−ℓ ,v+ℓ ]

∂12R(u, v)dudv

∣∣∣∣
≲ ϱ−2

ℓ

∫

[u−
ℓ ,u+

ℓ ]×[v−ℓ ,v+ℓ ]
(v − u)2H−2dudv

≤ (v−ℓ − u+ℓ )
2H−2

≲ ((v+ℓ − u−ℓ ) ∧ 1/2)2H
′−2

≤ ((v − u) ∧ 1/2)2H
′−2
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In the second-last inequality we have used that there exists someL s.t. for all ℓ ≥ L

ϑ2H−2 ≤ (ϑ+ 2ϱℓ)
2H′−2

for all ϑ ∈ [ϱℓ, 1/2].
We now consider terms corresponding to maximal sequences of consecutive pairings, i.e.

∫

s<u1<v1<...<uk<vk<t
E[Ẋℓ

u1
Ẋℓ

v1 ] · · ·E[Ẋ
ℓ
uk
Ẋℓ

vk
]du1dv1 · · · dukdvk . (52)

It is always possible (e.g. by Kolmogorov’s extension theorem) to add independent components to X . With
this in mind, by Wick’s theorem we may write the above integral as ES(Xℓ)α1α1...αkαk

st with αi ̸= αj for all
i ̸= j. By the shuffle identity (88) we have

n∑
h=0

S(Xℓ)
α1α1...αhαhββαh+1αh+1...αkαk

st

= S(Xℓ)α1α1...αkαk
st S(Xℓ)ββst −

∑
0≤i<j≤k

S(Xℓ)
α1α1...αiαiβαi+1αi+1...αjαjβαj+1αj+1...αkαk

st

−
∑

0≤i<j≤k

S(Xℓ)
α1α1...αiαiβαi+1αi+1...αj+1βαj+1...αkαk

st

−
∑

0≤i<j≤k

S(Xℓ)
α1α1...αiβαi...αjαjβαj+1αj+1...αkαk

st

−
∑

0≤i<j≤k

S(Xℓ)
α1α1...αiβαi...αjβαj ...αkαk

st

−
k∑

h=0

(
S(Xℓ)

α1α1...αhβαhβαh+1αh+1...αkαk

st + S(Xℓ)
α1α1...αh−1αh−1βαhβαh...αkαk

st

)
.

(53)

When shuffling we have separated the cases in which all αhαh and ββ occur as consecutive pairs, from those
in which at least one such pair is separated. We now take expectations: note that both independence and equal
distribution of components are used.

(k + 1)ES(Xℓ)α1α1...αkαkββ
st = ES(Xℓ)α1α1...αkαk

st · 1
2E[(X

ℓ)2st]−
∑
Q

Qℓ
st (54)

where we are summing over a finite number of diagrams Q whose longest sequence of consecutive pairings
contains k pairs or fewer.

We now prove the statement in the case in which P has no single nodes, by induction on n. For n = 0,
P ℓ
st = ∅ℓ

st ≡ 1 there is nothing to show. Let n ≥ 1, and assume we have rewritten the integral according to
(5050) (where the middle integral may be skipped, since there are no Malliavin derivatives). If P is not given by
a sequence of n/2 consecutive pairs, all maximal sequences of consecutive pairs in P consist of fewer than n
pairs, and that thus the inductive hypothesis applies to them: this means that for each such sequenceQwith k
pairs, |Qℓ

uv| ≲ (v − u)2kH
′ . Using the bounds for the first two types of integrand derived in the first part of

this proof, the statement for P then follows from Proposition 3.1Proposition 3.1 applied in the modified case of Remark 3.2Remark 3.2
and with exponent H ′. Assume now n = 2(k + 1) and let P be given by the diagram consisting of k + 1
consecutive pairs: the only thing needed to conclude the induction is the bound. This follows from (5454) thanks
to the inductive hypothesis and the boundedness statement of Lemma 3.5Lemma 3.5.

Finally, we consider the general case in which P may have single nodes. This follows again by writing P ℓ
st

in nested form, bounding terms corresponding to non-consecutive pairings as done above, and bounding the
middle integral in (5050) thanks to the boundedness statement of Lemma 3.7Lemma 3.7. When invoking this lemma, fℓ is

23



going to be a product of terms of the form (5252) (with the extrema s and t replaced with variables ui and uj
already integrated in the outer or middle integral), which as already proved is bounded by ≲ (t− s)2H

′k: this
yields the required bound overall. ■

Proposition 3.9 (Convergence). The functions [0, T ]m → R of Definition 3.3Definition 3.3 individually converge a.e. to
those of Definition 2.1Definition 2.1: for P ∈ Pn

m it holds that

P ℓ
st

ℓ→∞−−−→ Pst . (55)

Moreover |Pst| ≲ |P |st (the integrals of Proposition 3.1Proposition 3.1) uniformly on ∆m[s, t].

Proof. The inequality is an absolute estimate of Pst using (99) and (1010). The structure of the proof of the first
statement closely mirrors that of the previous lemma: we first consider the case in whichP does not have single
nodes. For u−ℓ < v−ℓ

E[Ẋℓ
uẊ

ℓ
v] = ϱ−2

ℓ R(∆(u−ℓ , u
+
ℓ ),∆(v−ℓ , v

+
ℓ )) = ∂12R(u, v)

for some u ∈ (u−ℓ , u
+
ℓ ), v ∈ (v−ℓ , v

+
ℓ ), by the intermediate value theorem applied twice. Pointwise conver-

gence E[Ẋℓ
uẊ

ℓ
v] → ∂12R(u, v) then holds by continuity of ∂12R and thanks to the fact that for any u < v

there exists L s.t. u−ℓ < v−ℓ for all ℓ ≥ L. This takes care of convergence of terms corresponding to non-
consecutive pairings (of course, the same holds for consecutive pairings, but is not useful since ∂12R(u, v)may
not be integrable in this case).

We now proceed by induction on n. For n = 0 there is nothing to prove, so let n ≥ 1 and first consider
the case in which P is not given by a sequence of n/2 consecutive pairs: the statement follows by dominated
convergence applied to the outer integral in (5050), by the above and the inductive hypothesis applied to sequences
of consecutive nodes of length less than n, in conjunction with Lemma 3.8Lemma 3.8. Let now n = 2(k + 1) and let P
be given by the diagram consisting of k + 1 consecutive pairs: recalling the argument (and indexing notation)
of the previous proof, we have P ℓ

st = ES(Xℓ)α1α1...αkαkββ
st , which is convergent since S(Xℓ)st → S(X)st

inL2. By the same calculation of (5353) applied toX instead of toXℓ, and taking expectations

(k + 1) lim
ℓ→∞

P ℓ
st

= (k + 1)ES(X)α1α1...αkαkββ
st

= ES(X)α1α1...αkαk
st · 1

2E[(X)2st]−
∑

0≤i<j≤k

ES(X)
α1α1...αiαiβαi+1αi+1...αjαjβαj+1αj+1...αkαk

st

−
∑

0≤i<j≤k

ES(X)
α1α1...αiαiβαi+1αi+1...αj+1βαj+1...αkαk

st

−
∑

0≤i<j≤k

ES(X)
α1α1...αiβαi...αjαjβαj+1αj+1...αkαk

st

−
∑

0≤i<j≤k

ES(X)
α1α1...αiβαi...αjβαj ...αkαk

st

−
k∑

h=0

(
ES(X)

α1α1...αhβαhβαh+1αh+1...αkαk

st + ES(X)
α1α1...αh−1αh−1βαhβαh...αkαk

st

)
.

(56)

We now expand the product: by the inductive hypothesis and Lemma 3.5Lemma 3.5, and using Fubini’s theorem we have
(setting u0 = s = w0)

ES(X)α1α1...αkαk
st · E[X2

st]

=

∫

s<u1<...<uk<t

[
1
2R

′(u1)− ∂2R(u0, u1)
]
· · ·

[
1
2R

′(uk)− ∂2R(uk−1, uk)
]
du1 · · · duk
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·
∫ t

s

[
1
2R

′(v)− ∂2R(s, v)
]
dv

=

∫

s<u1<...<uk<t
s<v<t

[
1
2R

′(u1)− ∂2R(u0, u1)
]
· · ·

[
1
2R

′(uk)− ∂2R(uk−1, uk)
]

·
[
1
2R

′(v)− ∂2R(s, v)
]
du1 · · · dukdv

=
k∑

j=0

∫

s<u1<...<uj<v<uj+1<...<uk<t

[
1
2R

′(u1)− ∂2R(u0, u1)
]
· · ·

[
1
2R

′(uk)− ∂2R(uk−1, uk)
]

·
[
1
2R

′(v)− ∂2R(s, v)
]
du1 · · · dukdv .

Note that the use of Fubini’s theorem is justified in view of (1010) applied to absolutely bound each integral
above, and Proposition 3.1Proposition 3.1. Writing

∂2R(∆(x, y), z) := ∂2R(y, z)− ∂2R(x, z) =

∫ y

x
∂12R(w, z)dw ,

we expand each summand:
∫

s<u1<...<uj<v<uj+1<...<uk<t

[
1
2R

′(u1)− ∂2R(u0, u1)
]
· · ·

[
1
2R

′(uk)− ∂2R(uk−1, uk)
]

·
[
1
2R

′(v)− ∂2R(s, v)
]
du1 · · · dukdv

=

∫

s<u1<...<uj<v<uj+1<...<uk<t

[
1
2R

′(u1)− ∂2R(u0, u1)
]
· · ·

[
1
2R

′(uj)− ∂2R(uj−1, uj)
]

·
[
1
2R

′(v)− ∂2R(uj , v) +
∑j−1

i=0 ∂2R(∆(ui, ui+1), v)
]

·
[
1
2R

′(uj+1)− ∂2R(v, uj+1) + ∂2R(∆(uj , v), uj+1)
]

·
[
1
2R

′(uj+2)− ∂2R(uj+1, uj+2)
]
· · ·

[
1
2R

′(uk)− ∂2R(uk−1, uk)
]
du1 · · · dukdv

=

∫

s<u1<...<uj<v<uj+1<...<uk<t

[
1
2R

′(u1)− ∂2R(u0, u1)
]
· · ·

[
1
2R

′(v)− ∂2R(uj , v)
]

·
[
1
2R

′(uj+1)− ∂2R(uj+1, v)
]
· · ·

[
1
2R

′(uk)− ∂2R(uk−1, uk)
]
du1 · · · dukdv

+

∫

s<u1<...<uj<r<v<uj+1<...<uk<t

[
1
2R

′(u1)− ∂2R(u0, u1)
]
· · ·

[
1
2R

′(uj)− ∂2R(uj−1, uj)
]

·
[
1
2R

′(v)− ∂2R(r, v) + ∂2R(∆(uj , r), v)
]
∂12R(r, uj+1)du1 · · · dukdrdv

+

j−1∑
i=0

∫

s<u1<...<ui<q<ui+1<...<uj<v<uj+1<...<uk<t

[
1
2R

′(u1)− ∂2R(u0, u1)
]

· · · ∂12R(q, v)
[
1
2R

′(ui+1)− ∂2R(q, ui+1) + ∂2R(∆(ui, q), ui+1)
]
· · ·

[
1
2R

′(uj+1)− ∂2R(v, uj+1)
]

· · ·
[
1
2R

′(uk)− ∂2R(uk−1, uk)
]
du1 · · · dukdqdv

+

j−1∑
i=0

∫

s<u1<...<ui<q<ui+1<...<uj<r<v<uj+1<...<uk<t

[
1
2R

′(u1)− ∂2R(u0, u1)
]

· · · ∂12R(q, v)
[
1
2R

′(ui+1)− ∂2R(q, ui+1) + ∂2R(∆(ui, q), ui+1)
]
· · · ∂12R(r, uj+1)

· · ·
[
1
2R

′(uk)− ∂2R(uk−1, uk)
]
du1 · · · dukdqdrdv

= ( . . .
k+1

)st + ( . . .
j

. . .
k−j−1

)st + ( . . .
j

. . .
k−j−1

)st

+

j−1∑
i=0

( . . .
i

. . .
j−i

. . .
k−j

)st +

j−1∑
i=0

( . . .
i

. . .
j−i−1

. . .
k−j

)st
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+

j−1∑
i=0

( . . .
i

. . .
j−i

. . .
k−j−1

)st +

j−1∑
i=0

( . . .
i

. . . . . .
j−i−1 k−j−2

)st

= (k + 1)Pst + ES(X)
α1α1...αjαjβαj+1αj+1βαj+2αj+2...αkαk

st + ES(X)
α1α1...αjαjβαj+1βαj+1...αkαk

st

+

j−1∑
i=0

S(X)
α1α1...αiαiβαi+1αi+1...αjαjβαj+1αj+1...αkαk

st +

j−1∑
i=0

S(X)
α1α1...αi+1βαi+1...αjαjβαj+1αj+1...αkαk

st

+

j−1∑
i=0

S(X)
α1α1...αiαiβαi+1αi+1...αj+1βαj+1...αkαk

st +

j−1∑
i=0

S(X)
α1α1...αi+1βαi+1...αj+1βαj+1...αkαk

st .

It now follows by substitution into the sum
∑k

j=0 and simplifying in (5656) that limℓ P
ℓ
st = Pst.

Finally, we consider diagrams that contain single nodes. In order to invoke Lemma 3.7Lemma 3.7 we must argue that
fℓ → f uniformly (uniform boundedness holds by the previous lemma). This again follows from the fact
that fℓ can be written as a product of expected signatures of Xℓ, each of which converges uniformly in ℓ as a
function of its extrema: recalling the notations for truncation and projection introduced in Section 1Section 1 and the
definition of inhomogeneous p-variation distance [2121, §8.1.2], we have

sup
u<v

|ES(X)(n)uv − ES(Xℓ)(n)uv | ≤ E sup
u<v

|S(X)(n)uv − S(Xℓ)(n)uv |

≤ ∥ρp-var(S⌊p⌋(Xℓ), S⌊p⌋(X))∥L1

ℓ→∞−−−→ 0

for p > (1/H)∨n, where we have used [1818, Theorem 1]. The statement now follows once again by dominated
convergence and Fubini’s theorem. ■

We are ready to put it all together:

Proof of Theorem 2.3Theorem 2.3.

wmS(X)γ1,...,γnst =
1

m!
δm

(
EDmS(X)γ1,...,γnst

)
(57)

=
1

m!
δm lim

ℓ→∞

(
EDmS(Xℓ)γ1,...,γnst

)
(58)

= δm
∑

P∈Pn
m

lim
ℓ→∞

P ℓ;γ1,...,γn
st (59)

=
∑

P∈Pn
m

δmP γ1,...,γn
st (60)

In (5757) we have used Stroock’s formula (2323), which is possible since S(X)γ1,...,γnst ∈ D∞,2: this is because
S(Xℓ)st → S(X)st in

⊕
k≤n Wk which is closed inL2Ω. In (5858) we have used that convergence of S(Xℓ)st

actually holds in D∞,2, since the norm of D∞,2 is dominated by the L2 norm in bounded Wiener chaos [3535,
Proposition 1.2.2]. (5959) uses Lemma 3.4Lemma 3.4 and (6060) is just the statement (required by our definition of member-
ship of a function to H⊗m Definition 1.1Definition 1.1) that P ℓ;γ1,...,γn

st converges a.e. boundedly to P ℓ
st, which holds by

Proposition 3.9Proposition 3.9 and Lemma 3.8Lemma 3.8. As argued in the previous two proofs,P γ1,...,γn
st can always be expressed as the

expected signature evaluated on a word, up to augmenting X with independent copies of itself: this can be
used to infer that each P γ1,...,γn

st — not just their sum — belongs to D∞,2(H⊗m). This concludes the proof
of the main result. ■
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Conclusions and further directions
By providing a single formula for the expected signature of fractional Brownian motion that holds for any
Hurst parameter H ∈ (1/4, 1), this article closes a gap in the literature left open by [33]. Along the way, we
have had opportunity to consider numerous other aspects of our computation, such as similar formulae for
higher levels of the Wiener chaos expansion of the signature, and other examples of Gaussian processes.

We believe this work recommends a variety of applications and further investigations. First and foremost,
it would be interesting to write stochastic Taylor expansions as suggested by Example 2.8Example 2.8, under precise condi-
tions on the vector fields, and by providing bounds on the mean square error. Making this calculation rigorous
and providing precise asymptotic estimates such as those in [3737] would be an interesting result, which could
be applied to approximation problems for Gaussian RDEs on manifolds such as those considered in [11] for
SDEs (although for this precise problem, the joint signature S(X, t) would have to be considered). A further
step would involve proving conditional versions of the results in this paper, which would make it possible to
estimate the error generated by multiple steps in an Euler scheme.

The fact that (e.g. for fBm) the integral ES(X)α1α1···αkαk
st with αi ̸= αj is actually convergent for any

H > 0 raises the question of whether something can be said about the sequence S(Xℓ)α1α1···αkαk
st , i.e. by

considering the particular word on which S(Xℓ), which is not convergent in probability for H ≤ 1/4, is
evaluated.

It would be interesting to express the expected signature of a Gaussian process as the exponential of a formal
series of tensors, thus computing its signature cumulants [88]: this is how the expected signature of Brownian
motion (22) is usually presented (with the series a finite sum), but the analogous formulation for Gaussian pro-
cesses that are not martingales appears more difficult to write down.

A more computational goal, though not one that appears trivial, is to explicitly compute Theorem 2.3Theorem 2.3 for
certain semimartingales, such as the Brownian bridge, for which the integrals are all analytically solvable. An
interesting question is how the relationship between Brownian motion and Brownian bridge is reflected by
their expected signatures. It would also be helpful to see whether similar formulae to ours can be made available
for non-centred Gaussian processes, e.g. general Ornstein-Uhlenbeck processes. Finally, it would be interesting
to try to apply the main theorem to the Riemann-Liouville process Example 2.12Example 2.12.

A Equivalence with [33] for the expected signature of fBm at level 4

In [33, Theorem 34] the authors check that the explicit integral expressions for ES(X)
(n)
01 with n = 2, 4, pre-

viously derived for X a fractional Brownian motion of Hurst parameter H ∈ (1/2, 1), continue to be valid
forH ∈ (1/4, 1). This is done by performing transformations on ES(Xℓ)01 before passing to the limit. This
calculation is specific to levels 2 and 4 and to fBm, and for this reason the expression for the expected signature
is not immediately comparable to that obtained as a special case of Theorem 2.3Theorem 2.3. We devote this appendix to
checking that the two agree.

Level 2 is easy to check, since (3131) reduces to δαβ/2. Referring to Example 2.7Example 2.7, we consider level 4 using
(3939): starting with the first integral above, we have

∫

0<u<v<1

[
1
2R(du)−R(s,du)

][
1
2R(dv)−R(u,dv)

]
dudv

= H2
∫

0<u<v<1
u2H−1(v − u)2H−1dudv

= H2
∫ 1

0
u2H−1

[
(v − u)2H−1

2H

]1
u=0

du

=
H2

2

∫ 1

0
u2H−1

[
(v − u)2H

2H

]1
v=u

du
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=
H

2

∫ 1

0
u2H−1(1− u)2Hdu

=
H

4

∫ 1

0
u2H−1(1− u)2H−1du

where the last identity can be verified by showing that the difference of the two integrands is odd about the
point u = 1/2, which in turn is seen by observing that

H

4
u2H−1(1− u)2H−1 − H

2
u2H−1(1− u)2H +

H

4
(1− u)2H−1u2H−1 − H

2
(1− u)2H−1u2H

has zero derivative and vanishes at u = 1/2. This shows equality with [33, coefficient of the first term of Γ2
H in

Corollary 33]. We proceed with the second integral in Example 2.7Example 2.7:
∫

s<u<v<w<t
R(du,dw)

[
1
2R(dv)−R(u,dv)

]
dudvdw

= H2(2H − 1)

∫

0<u<v<w<1
(w − u)2H−2(v − u)2H−1dudvdw

= H2
∫

0<u<v<1

[
(1− u)2H−1(v − u)2H−1 − (v − u)4H−2

]
dudv

=

(
H

2
− H2

4H − 1

)
∫ 1

0
(1− u)4H−1du

=
2H − 1

8(4H − 1)
.

For the third integral we have
∫

0<u<v<w<z<1
R(du,dw)R(dv,dz)

= H2(2H − 1)2
∫

0<u<v<w<z<1
(w − u)2H−2(z − v)2H−2dudvdwdz

= H2(2H − 1)

∫

0<u<v<z<1

[
(z − u)2H−1(z − v)2H−2 − (v − u)2H−1(z − v)2H−2

]
dudvdz

=
H(2H − 1)

2

∫

0<v<z<1

[
z2H(z − v)2H−2 − (z − v)4H−2 − v2H(z − v)2H−2

]
dvdz

=
H(2H − 1)

2

∫

0<v<z<1
(z2H − v2H)(z − v)2H−2dvdz − H(2H − 1)

4H − 1

∫ 1

0
(1− v)4H−1dv

=
H(2H − 1)

2

∫

0<v<z<1
(z2H − v2H)(z − v)2H−2dvdz − 2H − 1

4(4H − 1)

=
H

2

∫ 1

0
(1− v2H)(1− v)2H−1dv −H2

∫

0<v<z<1
z2H−1(z − v)2H−1 − 2H − 1

4(4H − 1)

=
H

4(4H − 1)
− H

4

∫ 1

0
v2H−1(1− v)2H−1dv .

In the integration by parts we have used that limz→v+(z
2H − v2H)(z− v)2H−1 = 0 which can be shown by

using that for 1/4 < H < 1/2

0 ≤ (z2H − v2H)(z − v)2H−1 ≤ (z − v)4H−1 z→v+−−−−→ 0

since z2H − v2H < (z − v)2H for 0 < v < z and H < 1/2. In the last identity we have used a similar
symmetry argument as the one used in the first calculation, solved trivial integrals and rearranged terms. Note
how this calculation would have been simpler ifH ≥ 1/2 since it would not have been necessary to integrate
by parts to avoid integrating (z − v)2H−2 (cf. [33, Lemma 32]).
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