
ar
X

iv
:2

20
7.

08
44

0v
1 

 [
m

at
h.

C
A

] 
 1

8 
Ju

l 2
02

2

Sharp convergence for sequences of Schrödinger

means and related generalizations

Wenjuan Li, Huiju Wang, Dunyan Yan

Abstract

For decreasing sequences {tn}∞n=1
converging to zero, we obtain the almost everywhere

convergence results for sequences of Schrödinger means eitn∆f , where f ∈ Hs(RN ), N ≥ 2.
The convergence results are sharp up to the endpoints, and the method can also be applied to
get the convergence results for the fractional Schrödinger means and nonelliptic Schrödinger
means.

1 Introduction

The solution of the Schrödinger equation
{
i∂tu(x, t)−∆u(x, t) = 0 x ∈ R

N , t ∈ R
+,

u(x, 0) = f
(1.1)

can be formally written as

eit∆f(x) :=

∫

RN

eix·ξ+it|ξ|2f̂(ξ)dξ. (1.2)

The convergence problem of determining the optimal s for which eit∆f (called Schrödinger
means) pointwisely converges to f whenever f ∈ Hs(RN ) as t continuously tends to zero has
been studied extensively. The convergence result holds for s ≥ 1/4 when N = 1 by Carleson
[3], and for s > N

2(N+1) when N ≥ 2 by Du-Guth-Li [7] and Du-Zhang [8]. These results are

sharp (except the endpoints when N ≥ 2) according to Dahlberg-Kenig [6] and Bourgain [1]. It
is worth to mention that a different counterexample was raised by Lucà-Rogers [11] for N ≥ 2.

In this paper, we consider a related problem: to investigate the convergence properties of
eitn∆f , where tn belongs to some decreasing sequence {tn}

∞
n=1 converging to zero. One may

expect that less regularity on f is enough to ensure convergence in this discrete case. However,
when N = 1 and tn = 1/n, n = 1, 2, · · · , Carleson [3] proved that the convergence result holds
for s > 1/4 but fails for s < 1

8 . Indeed, it actually fails for s < 1/4 by the counterexample
in Dahlberg-Kenig [6], a detailed explanation can be found in Section 3 of Lee-Rogers [10].
Recently, this kind of problem was further considered by [5, 13, 14]. In particular, under the
assumption that {tn}

∞
n=1 ∈ ℓr,∞(N), 0 < r < ∞, i.e.,

sup
b>0

br♯

{
n ∈ N : tn > b

}
< ∞, (1.3)
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it follows from [5] that eitn∆f pointwisely converges to f if and only if s ≥ min{ r
2r+1 ,

1
4} when

N = 1. But when N ≥ 2, the convergence results obtained by [13, 14] are far from sharp. This
open problem will be studied in this article.

We first state the main results on convergence for sequences of Schrödinger means, which are
sharp up to the endpoints. Then we obtain some generalizations to the fractional Schrödinger

means eit∆
a
2 f (1 < a < ∞) and nonelliptic Schrödinger means eitnLf , where

eitn∆
a
2 f(x) :=

∫

RN

eix·ξ+itn|ξ|af̂(ξ)dξ, (1.4)

and

eitnLf(x) :=

∫

RN

eix·ξ+itn(ξ21−ξ22±...±ξ2N)f̂(ξ)dξ. (1.5)

1.1 Convergence for sequences of Schrödinger means

Theorem 1.1. Let N ≥ 2 and r ∈ (0,∞). For any decreasing sequence {tn}
∞
n=1 ∈ ℓr,∞(N)

converging to zero and {tn}
∞
n=1 ⊂ (0, 1), we have

lim
n→∞

eitn∆f(x) = f(x) a.e. x ∈ R
N (1.6)

whenever f ∈ Hs(RN ) and s > s0 = min{ r
N+1
N

r+1
, N
2(N+1)}.

By standard arguments, it is sufficient to show the corresponding maximal estimate in R
N .

Theorem 1.2. Under the assumptions of Theorem 1.1, we have

∥∥∥∥sup
n∈N

|eitn∆f |

∥∥∥∥
L2(B(0,1))

≤ C‖f‖Hs(RN ), (1.7)

whenever f ∈ Hs(RN ) and s > s0 = min{ r
N+1
N

r+1
, N
2(N+1)}, where the constant C does not

depend on f .

By translation invariance in the x−direction, B(0, 1) in Theorem 1.2 can be replaced by any
ball of radius 1 in R

N , which implies Theorem 1.1. The convergence result is almost sharp by
the Nikĭsin-Stein maximal principle and the following fact that Theorem 1.2 is sharp up to the
endpoints.

Theorem 1.3. For each r ∈ (0,∞), there exists a sequence {tn}
∞
n=1 which belongs to ℓr,∞(N),

the corresponding maximal estimate (1.7) fails if s < s0 = min{ r
N+1
N

r+1
, N
2(N+1)}.

Remark 1.4. One expects that the sparser the time sequences become, the lower the regular-
ity of pointwise convergence requires. Theorem 1.2 and Theorem 1.3 reveal a perhaps surprising
phenomenon, namely if 0 < r < N

N+1 , there is a gain over the pointwise convergence result

from [7, 8, 1, 11] when time tends continuously to zero, but not when r ≥ N
N+1 . In fact, such

phenomenon has also appeared in one-dimensional case, see [5].
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The construction of our counterexample appeared in Section 3 is inspired by the work [11],
which is an alternative proof for Bourgain’s counterexample that showed the necessary condition
for limt→0 e

it∆f(x) = f(x), a.e. x ∈ R
N .

Next we briefly explain how to prove Theorem 1.2. Notice that when r
N+1
N

r+1
≥ N

2(N+1) ,

Theorem 1.2 follows from the celebrated results by [7] (N = 2), and [8] (N ≥ 3). Therefore, we
only need to consider the case when r

N+1
N

r+1
< N

2(N+1) , so we always assume that 0 < r < N
N+1

in what follows.

By Littlewood-Paley decomposition and standard argument, we just concentrate on the case
when suppf̂ ⊂ {ξ : |ξ| ∼ 2k}, k ≫ 1. We consider the maximal function

sup

n∈N:tn≥2
−

2k
(N+1)r/N+1

|eitn∆f |

and
sup

n∈N:tn<2
−

2k
(N+1)r/N+1

|eitn∆f |,

respectively. We deal with the first term by the assumption that the decreasing sequence
{tn}

∞
n=1 ∈ ℓr,∞(N) and Plancherel’s theorem. For the second term, since k < 2k

N+1
N

r+1
< 2k,

the proof can be completed by the following theorem.

Theorem 1.5. Let j ∈ R with k < j < 2k. For any ǫ > 0, there exists a constant Cǫ > 0
such that ∥∥∥∥ sup

t∈(0,2−j )

|eit∆f |

∥∥∥∥
L2(B(0,1))

≤ Cǫ2
(2k−j) N

2(N+1)
+ǫk

‖f‖L2(RN ), (1.8)

for all f with supp f̂ ⊂ {ξ : |ξ| ∼ 2k}. The constant Cǫ does not depend on f , j and k.

In the case N = 1, similar result was built in [5] by TT ∗ argument and stationary phase
method. But their method seems not to work well in the higher dimensional case. In order to
prove Theorem 1.5, we first observe that (1.8) holds true if spatial variable is restricted to a ball
of radius 2k−j . Due to references [7, 8], for any function g with supp ĝ ⊂ {ξ : |ξ| ∼ 22k−j}, it
holds ∥∥∥∥ sup

t∈(0,2−(2k−j))

|eit∆g(x)|

∥∥∥∥
L2(B(0,1))

≤ Cǫ2
(2k−j) N

2(N+1)
+ǫk

‖g‖L2(RN ).

By scaling, we have
∥∥∥∥ sup
t∈(0,2−j )

|eit∆g|

∥∥∥∥
L2(B(0,2k−j ))

≤ Cǫ2
(2k−j) N

2(N+1)
+ǫk

‖g‖L2(RN ) (1.9)

whenever supp ĝ ⊂ {ξ : |ξ| ∼ 2k}. Then we obtain the following lemma by translation invariance
in the x-direction.

Lemma 1.6. When k < j < 2k, for any ǫ > 0 and x0 ∈ R
N , there exists a constant Cǫ > 0

such that ∥∥∥∥ sup
t∈(0,2−j )

|eit∆f |

∥∥∥∥
L2(B(x0,2

k−j ))

≤ Cǫ2
(2k−j) N

2(N+1)
+ǫk

‖f‖L2(RN ), (1.10)

whenever supp f̂ ⊂ {ξ : |ξ| ∼ 2k}. The constant Cǫ does not depend on x0 and f .
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Then we can obtain Theorem 1.5 with the help of Lemma 1.6, wave packets decomposition
and an orthogonality argument. See Section 2 below for details. Moreover, we give the following
remark on Theorem 1.5.

Remark 1.7. We notice that Theorem 1.5 is almost sharp when j = k and j = 2k. Indeed,
when j = 2k, Sobolev’s embedding implies

∥∥∥∥ sup
t∈(0,2−2k)

|eit∆f(x)|

∥∥∥∥
L2(B(0,1))

≤ C‖f‖L2(RN ). (1.11)

By taking f̂ as the the characteristic function on the set {ξ : |ξ| ∼ 2k}, it can be observed that
the uniform estimate (1.11) is optimal. When j = k, it follows from [7, 8] then

∥∥∥∥ sup
t∈(0,2−k)

|eit∆f(x)|

∥∥∥∥
L2(B(0,1))

≤ C2
N

2(N+1)
k+ǫk

‖f‖L2(RN ). (1.12)

The above inequality (1.12) is sharp up to the endpoints according to the counterexample in [1]
or [11]. However, the presence of 2ǫk on the right hand side of inequality (1.8) leads us to lose
the endpoint results in Theorem 1.2.

1.2 Related generalizations

The method we adopted to prove Theorem 1.2 can be generalized to the fractional case and the
nonelliptic case. Then the corresponding convergence results follow. We omit most of details of
the proof because they are very similar with that of Theorem 1.2. Moreover, the sharpness of
the result for the nonelliptic case will be proved in Section 4 below.

Firstly, for the fractional case, we have the following maximal estimate. When a = 2, it
coincides with Theorem 1.2.

Theorem 1.8. Under the conditions of Theorem 1.2, for 1 < a < ∞, we have

∥∥∥∥sup
n∈N

|eitn∆
a
2 f |

∥∥∥∥
L2(B(0,1))

≤ C‖f‖Hs(RN ), (1.13)

whenever f ∈ Hs(RN ) and s > s0 = min{a
2 · r

N+1
N

r+1
, N
2(N+1)}, where the constant C does not

depend on f .

Secondly, we introduce the following maximal estimate for the nonelliptic Schrodinger means.
It is sharp up to the endpoints according to the counterexamples stated in Section 4 below.

Theorem 1.9. Under the conditions of Theorem 1.2, we have

∥∥∥∥sup
n∈N

|eitnLf |

∥∥∥∥
L2(B(0,1))

≤ C‖f‖Hs(RN ), (1.14)

whenever f ∈ Hs(RN ) and s > s0 = min{ r
r+1 ,

1
2}, where the constant C does not depend on f .

The proof of Theorem 1.9 depends heavily on the following theorem.
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Theorem 1.10. If supp f̂ ⊂ {ξ : |ξ| ∼ λ}, λ ≥ 1, then for any small interval I with
λ−2 ≤ |I| ≤ λ−1, we have

∥∥∥∥sup
t∈I

|eitLf(x)|

∥∥∥∥
L2(B(0,1))

≤ Cλ|I|
1
2 ‖f‖L2 , (1.15)

where the constant C does not depend on f .

Theorem 1.10 follows directly from Sobolev’s embedding. Specially, Theorem 1.10 is sharp
when |I| = λ−1 according to the counterexample in Rogers-Vargas-Vega [12]. When |I| =
λ−2, the sharpness can be proved by taking f̃ as the characteristic function over the annulus
{ξ : |ξ| ∼ λ}. We point out that the sharpness of Theorem 1.10 enables us to apply the similar
decomposition as Proposition 2.3 in [5] to get a stronger result than Theorem 1.9 when r ∈ (0, 1).

Theorem 1.11. If {tn}
∞
n=1 ∈ ℓr(s),∞(N), r(s) = s

1−s . Then for any 0 < s < 1
2 , we have

∥∥∥∥sup
n∈N

|eitnLf |

∥∥∥∥
L2(B(0,1))

≤ C‖f‖Hs(RN ), (1.16)

whenever f ∈ Hs(RN ), where the constant C does not depend on f .

Remark 1.12. Below, we synthesize our theorems and all results to our best knowledge,
and list all almost sharp requirements of regularity on pointwise convergence for different
Schrödinger-type operators.

Operators

type

Spatial

dimensions

Continuous case t → 0 Discrete case tn → 0

Schrödinger
operator

N = 1 s ≥ 1
4 s ≥ min{1

4 ,
r

2r+1}

N ≥ 2 s > N
2(N+1) s > min{ N

2(N+1) ,
r

N+1
N

r+1
}

Nonelliptic
Schrödinger

N = 2 s ≥ 1
2 s ≥ min{1

2 ,
r

r+1}

N ≥ 3 s > 1
2 s > min{1

2 ,
r

r+1}

Fractional
a > 1

N = 1 s ≥ 1
4 s ≥ min{1

4 ,
a
2

r
2r+1}

N ≥ 2 s > N
2(N+1) s > min{ N

2(N+1) ,
a
2

r
N+1
N

r+1
}

Fractional
0 < a < 1

N = 1 s > a
4 s > min{a

4 ,
a
2

r
2r+1}

N ≥ 2 sharp result is open sharp result is open

In the table above, the results marked in blue come from Theorem 1.1, Theorem 1.8, Theorem
1.9 and Theorem 1.11 in this paper. For the remaining results, readers can refer to the relevant
results of the nonelliptic Schrödinger operators in [12]; the conclusions about the fractional
Schrödinger operators when t continuously tends to 0 can be found in [4] (a > 1) and [15]
(0 < a < 1); other results were introduced at the beginning of the introduction and will not be
repeated here.

Conventions: Throughout this article, we shall use the notation A ≫ B, which means if
there is a sufficiently large constant G, which does not depend on the relevant parameters arising
in the context in which the quantities A and B appear, such that A ≥ GB. We write A ∼ B,
and mean that A and B are comparable. By A . B we mean that A ≤ CB for some constant
C independent of the parameters related to A and B.
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2 Proof of Theorem 1.2 and Theorem 1.5

Proof of Theorem 1.2. Let s1 = r
N+1
N

r+1
+ ǫ for some sufficiently small constant ǫ > 0. We

decompose f as f =
∑∞

k=0 fk, where suppf̂0 ⊂ B(0, 1), suppf̂k ⊂ {ξ : |ξ| ∼ 2k}, k ≥ 1. Then we
have ∥∥∥∥sup

n∈N
|eitn∆f |

∥∥∥∥
L2(B(0,1))

≤
∞∑

k=0

∥∥∥∥sup
n∈N

|eitn∆fk|

∥∥∥∥
L2(B(0,1))

. (2.1)

For k . 1 and arbitrary x ∈ B(0, 1), |eitn∆fk(x)| . ‖fk‖L2(RN ), it is obvious that

∥∥∥∥sup
n∈N

|eitn∆fk|

∥∥∥∥
L2(B(0,1))

. ‖f‖Hs1 (RN ). (2.2)

For each k ≫ 1, we decompose {tn}
∞
n=1 as

A1
k :=

{
tn : tn ≥ 2

− 2k
N+1
N

r+1

}

and

A2
k :=

{
tn : tn < 2

− 2k
N+1
N

r+1

}
.

Then we have
∥∥∥∥sup
n∈N

|eitn∆fk|

∥∥∥∥
L2(B(0,1))

≤

∥∥∥∥ sup
n∈N:tn∈A1

k

|eitn∆fk|

∥∥∥∥
L2(B(0,1))

+

∥∥∥∥ sup
n∈N:tn∈A2

k

|eitn∆fk|

∥∥∥∥
L2(B(0,1))

:= I + II. (2.3)

We first estimate I. Since {tn}
∞
n=1 ∈ ℓr,∞(N), we have

♯A1
k ≤ C2

2rk
N+1
N

r+1 , (2.4)

which implies that

I ≤

( ∑

n∈N:tn∈A1
k

∥∥∥∥eitn∆fk
∥∥∥∥
2

L2(B(0,1))

)1/2

≤ 2
rk

N+1
N

r+1‖fk‖L2(RN ) . 2−ǫk‖f‖Hs1 (RN ). (2.5)

For II, since

A2
k ⊂

(
0, 2

− 2k
N+1
N

r+1

)
.

By previous discussion, we have k < 2k
N+1
N

r+1
< 2k. Then it follows from Theorem 1.5 that,

II . 2
( r
N+1
N

r+1
+ ǫ

2
)k
‖fk‖L2(RN ) ≤ 2−

ǫ
2
k‖f‖Hs1 (RN ). (2.6)

Inequalities (2.3), (2.5) and (2.6) yield for k ≫ 1,
∥∥∥∥sup
n∈N

|eitn∆fk|

∥∥∥∥
L2(B(0,1))

. 2−
ǫk
2 ‖f‖Hs1 (RN ). (2.7)
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Combining inequalities (2.1), (2.2) and (2.7), inequality (1.7) holds true for s1. By the arbi-
trariness of ǫ, we have finished the proof of Theorem 1.2. It remains to prove Theorem 1.5.

Proof of Theorem 1.5: It includes the wave packets decomposition and an orthogonality
argument.

• Wave packets decomposition.

We first decompose eit∆f on B(0, 1)×(0, 2−j) in a standard way. For this goal, we decompose
the annulus {ξ : |ξ| ∼ 2k} into almost disjoint 2j−k-cubes θ with sides parallel to the coordinate
axes in R

N . Let 2k−j-cube ν be dual to θ and cover RN by almost disjoint cubes ν. Denote the
center of θ by c(θ) and the center of ν by c(ν). We notice that if ν 6= ν ′, then |c(ν)−c(ν ′)| ≥ 2k−j.

Let ϕ be a Schwartz function defined on R
N whose fourier transform is non-negative and

supported in a small neighborhood of the origin, and identically equal to 1 in another smaller

interval. Let ϕ̂θ(ξ) = 2−
(j−k)N

2 ϕ̂( ξ−c(θ)
2j−k ) and ϕ̂θ,ν(ξ) = e−ic(ν)·ξϕ̂θ(ξ). Then f can be decomposed

by

f =
∑

ν

∑

θ

fθ,ν =
∑

ν

∑

θ

〈f, ϕθ,ν〉ϕθ,ν ,

and

‖f‖2L2 ∼
∑

ν

∑

θ

|〈f, ϕθ,ν〉|
2.

When t ∈ (0, 2−j), integration by parts implies

|eit∆ϕθ,ν(x)| ≤
CM2

(j−k)N
2

(1 + 2j−k|x− c(ν) + 2tc(θ)|)M
.

Here M can be sufficiently large. Therefore, eit∆ϕθ,ν(x) is essentially supported in a tube

Tθ,ν := {(x, t), |x − c(ν) + 2tc(θ)| ≤ 2(j−k)(−1+δ), 0 ≤ t ≤ 2−j},

where δ = ǫ3. The direction of Tθ,ν is parallel to the vector (−2c(θ), 1), and the angle between
(−2c(θ), 1) and the x-plane is approximately 2−k.

• Orthogonality argument.

We just give an orthogonality argument under the assumption j ≥ k + ǫk
N . Otherwise, let

j = k + ǫ0k, 0 < ǫ0 <
ǫ
N , by Lemma 1.6,

∥∥∥∥ sup
t∈(0,2−j )

|eit∆f(x)|

∥∥∥∥
L2(B(0,1))

≤

( ∑

m:|xm|≤1

∥∥∥∥ sup
t∈(0,2−j )

|eit∆f(x)|

∥∥∥∥
2

L2(B(xm,2k−j))

)1/2

. 2
(2k−j) N

2(N+1)
+ǫk/2+ǫ0kN/2

‖f‖L2

. 2
(2k−j) N

2(N+1)
+ǫk

‖f‖L2 . (2.8)

Now we decompose B(0, 1) by B(0, 1) = ∪ν′B(c(ν ′), 2k−j) with |c(ν ′)| . 1. Then

∥∥∥∥ sup
t∈(0,2−j )

|eit∆f(x)|

∥∥∥∥
2

L2(B(0,1))

≤
∑

ν′

∥∥∥∥ sup
t∈(0,2−j )

|eit∆f(x)|

∥∥∥∥
2

L2(B(c(ν′),2k−j))

. (2.9)
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Fix c(ν ′), we divide f into two terms

f1 =
∑

θ

∑

ν:|c(ν)−c(ν′)|≤2(j−k)(−1+10δ)

fθ,ν,

and
f2 =

∑

θ

∑

ν:|c(ν)−c(ν′)|>2(j−k)(−1+10δ)

fθ,ν.

For f1, by Lemma 1.6 and the L2-orthogonality, we have

∑

ν′

∥∥∥∥ sup
t∈(0,2−j)

|eit∆f1(x)|

∥∥∥∥
2

L2(B(c(ν′),2k−j))

≤ Cǫ2
(2k−j) N

N+1
+ǫk

∑

ν′

‖f1‖
2
L2

∼ Cǫ2
(2k−j) N

N+1
+ǫk

∑

ν′

∑

θ

∑

ν:|c(ν)−c(ν′)|≤2(j−k)(−1+10δ)

‖fθ,ν‖
2
L2

. Cǫ2
(2k−j) N

N+1
+2ǫk‖f‖2L2 . (2.10)

We will complete the proof by showing that the contribution from |eit∆f2| is negligible when
(x, t) belongs to B(c(ν ′), 2k−j)× (0, 2−j).

Indeed, by Cauchy-Schwartz’s inequality and the L2-orthogonality, it holds

|eit∆f2| ≤ ‖f‖L2

(∑

θ

∑

ν:|c(ν)−c(ν′)|>2(j−k)(−1+10δ)

|eit∆ϕθ,ν |
2

)1/2

≤ ‖f‖L2CM2
(j−k)N

2

(∑

θ

∑

ν:|c(ν)−c(ν′)|>2(j−k)(−1+10δ)

1

(1 + 2j−k|x− c(ν) + 2tc(θ)|)2M

)1/2

.

For each θ, |x− c(ν) + 2tc(θ)| ≥ |c(ν)− c(ν ′)|/2, then we have

∑

ν:|c(ν)−c(ν′)|>2(j−k)(−1+10δ)

1

(1 + 2j−k|x− c(ν) + 2tc(θ)|)2M

≤ 22M
∑

l∈N+

l≥210δǫk/N

∑

ν:l2k−j≤|c(ν)−c(ν′)|<(l+1)2k−j

1

(1 + 2j−k|c(ν)− c(ν ′)|)2M

≤ 22M
∑

l∈N+

l≥210δǫk/N

CN lN

(1 + l)2M

≤ CM,N2−Mǫ4k.

Notice that the number of θ’s is dominated by 2Nk. So by choosing M sufficiently large, for
each (x, t) ∈ B(c(ν ′), 2k−j)× (0, 2−j), we have

|eit∆f2| ≤ CN2−1000k‖f‖L2 .
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Then the proof is finished since

∑

ν′

∥∥∥∥ sup
t∈(0,2−j )

|eit∆f2(x)|

∥∥∥∥
2

L2(B(c(ν′),2k−j))

≤ C2
N2−2000k‖f‖2L2 .

3 A counterexample: Theorem 1.3

We notice that the counterexample for r = N
N+1 can be also applied to the case when r > N

N+1 ,

since ℓN/(N+1),∞(N) ⊂ ℓr,∞(N) and min{ r
N+1
N

r+1
, N
2(N+1)} = N

2(N+1) when r > N
N+1 . Therefore,

next we always assume r ∈ (0, N
N+1 ].

Fix r ∈ (0, N
N+1 ], we first construct a sequence which belongs to ℓr,∞(N). Put β = 2

N+1
N

r+1
.

Let R1 = 2 and for each positive integer n, R−β
n+1 ≤ 1

2R
−β(r+1)
n . Denote the intervals In =

[R
−β(r+1)
n , R−β

n ), n ∈ N
+. On each In, we get an equidistributed subsequence tnj , j = 1, 2, ..., jn

such that
{tnj , 1 ≤ j ≤ jn} =: R−β(r+1)

n Z ∩ In,

and tnj − tnj+1 = R
−β(r+1)
n . We claim that the sequence tnj , j = 1, 2, ..., jn , n = 1, 2, ... belongs

to ℓr,∞(N).

Indeed, according to Lemma 3.2 from [5], it suffices to show that

sup
b>0

br♯

{
(n, j) : b < tnj ≤ 2b

}
. 1. (3.1)

Notice that we only need to consider 0 < b < 1 because tnj ∈ (0, 1) for each n and j. Assume

that (b, 2b] ∩ In 6= ∅ for some n, then we have b < R−β
n , 2b ≥ R

−β(r+1)
n . Therefore,

2b < 2R−β
n ≤ R

−β(r+1)
n−1 , b ≥

1

2
R−β(r+1)

n ≥ R−β
n+1.

This yields (b, 2b] ∩ In′ = ∅ for any n′ 6= n, hence

br♯

{
(n, j) : b < tnj ≤ 2b

}
≤ br+1Rβ(r+1)

n < 1.

Then (3.1) follows by the arbitrariness of b.

Our counterexample comes from the following lemma.

Lemma 3.1. Let R ≫ 1 and I = [R−β(r+1), R−β). Assume that the sequence {tj : 1 ≤ j ≤
j0} = R−β(r+1)

Z ∩ I and tj − tj+1 = R−β(r+1) for each 1 ≤ j ≤ j0 − 1. Then there exists a

function f with supp f̂ ⊂ B(0, 2R) such that
∥∥∥∥ sup
1≤j≤j0

|ei
tj
2π

∆f |

∥∥∥∥
L2(B(0,1))

& R
1−β
2 R

β
2R(N−1)(1− (r+1)β

2
)−ǫ, (3.2)

and
‖f‖Hs(RN ) . RsR

β
4 R

N−1
2

(1−
(r+1)β

2
). (3.3)

Here ǫ > 0 can be sufficiently small.
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Assume that the maximal estimate
∥∥∥∥sup

n
sup
j

|ei
tnj
2π

∆f |

∥∥∥∥
L2(B(0,1))

≤ C‖f‖Hs(RN ) (3.4)

holds for some s > 0 and each f ∈ Hs(RN ), then for each n ∈ N
+, we have

∥∥∥∥sup
j

|ei
tnj
2π

∆f |

∥∥∥∥
L2(B(0,1))

≤ C‖f‖Hs(RN ) (3.5)

whenever f ∈ Hs(RN ). Lemma 3.1 and (3.5) yield

R
2−β
4

n R
N−1

2
(1− (r+1)β

2
)−ǫ

n ≤ CRs
n. (3.6)

Then we have s ≥ r
N+1
N

r+1
, since Rn can be sufficiently large and ǫ is arbitrarily small. Finally

we obtain a sequence
tnj

2π , j = 1, 2, ..., jn, n = 1, 2, ... ∈ ℓr,∞(N) such that the maximal estimate
(3.4) holds only if s ≥ r

N+1
N

r+1
.

In the rest of this section, we prove Lemma 3.1. Setting

Ω1 =

(
−

1

100
R

β
2 ,

1

100
R

β
2

)
,

Ω2 =

{
ξ̄ ∈ R

N−1 : ξ̄ ∈ 2πR
(r+1)β

2 Z
N−1 ∩B(0, R1−ǫ)

}
+B(0,

1

1000
),

then we define f̂1(ξ1) = ĥ(ξ1 + πR), f̂2(ξ̄) = ĝ(ξ̄ + πRθ), where ĥ = χΩ1 , ĝ = χΩ2 , and some
θ ∈ S

N−2 (when N = 2, we denote S
0 := (0, 1)) which will be determined later. Define f by

f̂ = f̂1f̂2, it is easy to check that f satisfies (3.3). We are left to prove that inequality (3.2)
holds for such f . Notice that

|ei
tj
2π

∆f(x1, x̄)| = |ei
tj
2π

∆f1(x1)||e
i
tj
2π

∆f2(x̄)|. (3.7)

We first consider |ei
tj
2π

∆f1(x1)|. A change of variables implies

|ei
tj
2π

∆f1(x1)| = |ei
tj
2π

∆h(x1 −Rtj)|.

It is easy to check that |ei
tj
2π

∆h(x1)| & |Ω1| for each j whenever |x1| ≤ R−β
2 . Note that for

each x1 ∈ (0, R1−β), there exists at least one tj such that |x1 − Rtj| ≤ R1−β(r+1) ≤ R−β
2 since

{tj}
j0
j=1 ⊂ [R−β(r+1), R−β) and tj − tj+1 = R−β(r+1). Hence we have

|ei
tj
2π

∆f1(x1)| & |Ω1|, (3.8)

whenever x1 ∈ (0, 12R
1−β) and Rtj ∈ (x1, x1 +R−β

2 ).

For |ei
tj
2π

∆f2(x̄)|, we have

|ei
tj
2π

∆f2(x̄)| = |ei
tj
2π

∆g(x̄−Rtjθ)|.



Pointwise Convergence of Schrödinger Means 11

According to Barceló-Bennett-Carbery-Ruiz-Vilela [2], for each j and x̄ ∈ U0,

|ei
tj
2π

∆g(x̄)| & |Ω2|, (3.9)

here

U0 =

{
x̄ ∈ R

N−1 : x̄ ∈ R− (r+1)β
2 Z

N−1 ∩B(0, 2)

}
+B(0,

1

1000
R−1+ǫ).

We sketch main idea of the proof of inequality (3.9) for the reader’s convenience. Indeed, for

each ξ̄ ∈ Ω2, we write ξ̄ = 2πR
(r+1)β

2 l + η̄, l ∈ Z
N−1, 2π|l| ≤ R1−

(r+1)β
2

−ǫ, η̄ ∈ B(0, 1
1000 ). Then

for any x̄m = R−
(r+1)β

2 m, m ∈ Z
N−1, |m| ≤ 2R

(r+1)β
2 , tj = R−(r+1)β(j0 + 1− j), 1 ≤ j ≤ j0, we

have

ei
tj
2π

∆g(x̄m) = e2πim·l+2πi(j0+1−j)|l|2eix̄m·η̄+2i
tj
2π

2πR
(r+1)β

2 l·η̄+i
tj
2π

|η̄|2 = eix̄m·η̄+2i
tj
2π

2πR
(r+1)β

2 l·η̄+i
tj
2π

|η̄|2 .

Noting that |x̄m| ≤ 2, |tj| ≤ R−β and |η̄| ≤ 1
1000 imply

∣∣∣∣x̄m · η̄ + 2
tj
2π

2πR
(r+1)β

2 l · η̄ +
tj
2π

|η̄|2
∣∣∣∣≤

1

100
,

then we have

|ei
tj
2π

∆g(x̄m)| ≥
1

2
|Ω2|.

Moreover, for each x̄ ∈ U0, there exits an x̄m such that |x̄− x̄m| ≤ 1
1000R

−1+ǫ, by the mean value
theorem and the fact that |ξ̄| ≤ 2R1−ǫ,

|ei
tj
2π

∆g(x̄)− ei
tj
2π

∆g(x̄m)| ≤

∫

RN−1

|x̄− x̄m||ξ̄|ĝ(ξ̄)dξ̄ ≤
1

500
|Ω2|.

Finally we arrive at inequality (3.9) by the triangle inequality.

Therefore, we have

|ei
tj
2π

∆f2(x̄)| & |Ω2|, (3.10)

if x̄ ∈ Ux1 =
⋃

j:Rtj∈R1−(r+1)βZ∩(x1,x1+R−β/2) U0 + Rtjθ. Next we need to select a θ ∈ S
N−2,

such that |Ux1 | & 1 for each x1 ∈ (0, 12R
1−β), which follows if we can prove that there exists a

θ ∈ S
N−2 so that B(0, 1/2) ⊂ Ux1 for all x1 ∈ (0, 12R

1−β). So it remains to prove the claim that
there exists a θ ∈ S

N−2 such that

⋃

j:Rtj∈R1−β(r+1)Z∩(x1,x1+R−β/2)

{
x̄ ∈ R

N−1 : x̄ ∈ R−
(r+1)β

2 Z
N−1 ∩B(0, 2)

}
+Rtjθ

is 1
1000R

−1+ǫ dense in the ball B(0, 1/2). In order to apply Lemma 2.1 from Lucà-Rogers [11]

to get this claim, we first rescale by R
β(r+1)

2 , and replace R1+β(r+1)
2 tj by sj, replace R

βr
2 by R′,

recall that β = 2
N+1
N

r+1
, then we are reduced to show

⋃

j:sj∈(R′)1/NZ∩((R′)(r+1)/rx1,(R′)(r+1)/rx1+R′)

{
x̄ : x̄ ∈ Z

N−1 ∩B(0, 2(R′)(r+1)/r)

}
+sjθ
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is 1
1000 (R

′)−
1
N
+

(N+1
N

r+1)ǫ

r dense in the ball B(0, 12(R
′)(r+1)/r), which is equivalent to prove that

for any y ∈ B(0, 12 (R
′)(r+1)/r), there exist

x̄y ∈ Z
N−1 ∩B(0, 2(R′)(r+1)/r) and sy ∈ (R′)1/NZ ∩ ((R′)(r+1)/rx1, (R

′)(r+1)/rx1 +R′),

such that

|y − x̄y − syθ)| <
1

1000
(R′)−

1
N
+

(N+1
N

r+1)ǫ

r ,

for a fixed θ ∈ S
N−2, which is independent of y and x1. This can be implied by the following

lemma from Lucà-Rogers [11], here we restate it for reader’s convenience.

Lemma 3.2 (Lemma 2.1, [11]). Let d ≥ 2, 0 < ǫ, δ < 1 and κ > 1
d+1 . Then, if δ < κ and

R > 1 is sufficiently large, there is θ ∈ S
d−1 for which, given any [y] ∈ T

d and a ∈ R, there is a
ty ∈ Rδ

Z ∩ {a, a+R} such that

|[y]− [tyθ]| ≤ ǫR(κ−1)/d,

where ”[·]” means taking the quotient Rd/Zd = T
d. Moreover, this remains true with d = 1, for

some θ ∈ (0, 1).

We notice that a similar but more detailed proof can be found in Corollary 2.2 of [11].

Finally, it follows from inequalities (3.7), (3.8), (3.10) that

∫

B(0,1)
sup
j

|ei
tj
2π

∆f(x1, x̄)|
2dx̄dx1 ≥

∫ R1−β

2

0

∫

Ux1

sup
j

|ei
tj
2π

∆f(x1, x̄)|
2dx̄dx1 & R1−β|Ω1|

2|Ω2|
2,

which implies inequality (3.2).

4 A counterexample for Theorem 1.9

For convenience, we first set N = 2. By changing of variables, the nonelliptic Schrödinger
operator can be written as

eit�f(x) :=

∫

R2

eix·ξ+itξ1ξ2 f̂(ξ)dξ. (4.1)

For each r ∈ (0, 1], there exists {tn}
∞
n=1 ∈ ℓr,∞(N), such that the maximal estimate

∥∥∥∥sup
n∈N

|eitn�f |

∥∥∥∥
L2(B(0,1))

≤ C‖f‖Hs (4.2)

holds for all f ∈ Hs(R2) only if s ≥ r
r+1 .

Indeed, we choose {tn}
∞
n=1 ∈ ℓr,∞(N) but never belongs to ℓr−ǫ,∞(N) for any small ǫ > 0.

Moreover, tn − tn+1 is decreasing. According to Lemma 3.2 in [5], we can select {bj}
∞
j=1 and

{Mj}
∞
j=1 satisfying limj→∞ bj = 0, limj→∞Mj = ∞, and

Mjb
1−r+ǫ
j ≤ 1, (4.3)
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such that

♯

{
n : bj < tn ≤ 2bj

}
≥ Mjb

−r+ǫ
j . (4.4)

By the similar argument as Proposition 3.3 in [5], when tn ≤ bj , we have

tn − tn+1 ≤ 2M−1
j br−ǫ+1

j . (4.5)

For fixed j, choose λj = 1
1000M

1
2
j b

− r−ǫ+1
2

j and f̂j(ξ1, ξ2) =
1
λj
χ[0,λj ]×[−λj−1,−λj ](ξ1, ξ2). There-

fore,

‖fj‖
H

r−ǫ
r−ǫ+1

≤ λ
r−ǫ

r−ǫ+1
− 1

2

j . (4.6)

Let Uj = (0,
λjbj
2 ) × (− 1

1000 ,
1

1000 ). Notice that Uj ⊂ B(0, 1) due to inequality (4.3). Next, we
will show that for each x ∈ Uj,

sup
n∈N

|eitn�fj| >
1

2
. (4.7)

Changing of variables shows that for each n ∈ N,

|eitn�fj(x)| =

∣∣∣∣
∫ 0

−1

∫ 1

0
eiλj(x1−λjtn)η1+ix2η2+itnλjη1η2dη1dη2

∣∣∣∣. (4.8)

For each x ∈ Uj, there exists a unique n(x, j) such that

x1 ∈ (λjtn(x,j)+1, λjtn(x,j)].

It is obvious that tn(x,j)+1 ≤
bj
2 , then tn(x,j) ≤ bj due to inequality (4.4) and the assumption

that tn − tn+1 is decreasing. Then it follows from inequality (4.5) that

|λj(x1 − λjtn(x,j))η1| ≤ 2λ2
jM

−1
j br−ǫ+1

j ≤
1

1000
.

Also, |x2η2| ≤
1

1000 , and by inequality (4.3), we have |λjtn(x,j)η1η2| ≤ λjbj ≤ 1
1000 . Therefore,

if we take n = n(x, j) in (4.8), then the phase function will be sufficiently small such that
|eitn(x,j)�fj(x)| > 1

2 for each x ∈ Uj , which implies inequality (4.7). Then it follows from
inequality (4.6) and inequality (4.7) that

‖ supn∈N |eitn�fj|‖L2(B(0,1))

‖fj‖
H

r−ǫ
r−ǫ+1

≥ CM
1

2(r−ǫ+1)

j .

This implies that the maximal estimate (4.2) can not hold when s ≤ r−ǫ
r−ǫ+1 , hence when s < r

r+1
by the arbitrariness of ǫ.

Remark 4.1. The original idea we adopted to construct the above counterexample comes
from [12]. The same idea remains valid in general dimensions. For example, in R

3, by changing
variables, we can write

eitLf(x) :=

∫

R3

eix·ξ+it(ξ1ξ2±ξ23)f̂(ξ)dξ.

In order to prove the necessary condition, we only need to take

Uj = (0,
λjbj
2

)× (−
1

1000
,

1

1000
)× (−

1

1000
,

1

1000
)

and

f̂j(ξ1, ξ2, ξ3) =
1

λj
χ[0,λj ]×[−λj−1,−λj ]×(0,1)(ξ1, ξ2, ξ3).
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