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SYMPLECTIC CACTI, VIRTUALIZATION AND

BERENSTEIN–KIRILLOV GROUPS

OLGA AZENHAS, MOJDEH TARIGHAT FELLER, AND JACINTA TORRES

Abstract. We explicitly realize an internal action of the symplectic cactus group,
recently defined by Halacheva for any complex, reductive, finite-dimensional Lie al-
gebra, on crystals of Kashiwara–Nakashima tableaux. Our methods include a sym-
plectic version of jeu de taquin due to Sheats and Lecouvey, symplectic reversal, and
virtualization due to Baker. As an application, we define and study a symplectic
version of the Berenstein–Kirillov group and show that it is a quotient of the sym-
plectic cactus group. In addition two relations for symplectic Berenstein–Kirillov
group are given that do not follow from the defining relations of the symplectic
cactus group.
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1. Introduction

The cactus group was originally defined by Henriques–Kamnitzer [HeKa06-1] in
the context of coboundary categories defined by Drinfeld [Dr90]. Coboundary cat-
egories are monoidal categories equipped with a commutor, that is, a collection of
natural isomorphisms σA,B : A⊗ B → B ⊗ A satisfying certain properties. The idea
of studying the cactus group was originally due to A. Berenstein and was taken up by
Henriques–Kamnitzer in [HeKa06-1], who defined it and further showed that it can be
realized as the fundamental group of the moduli space of marked real genus zero stable
curves. The original idea of Berenstein was to construct a commutor in the category
of crystals of a complex, reductive, finite-dimensional Lie algebra, by first defining an
involution ξB : B→ B for each crystal B which flips the crystal by exchanging highest
weight elements with lowest weight elements. In the case of sl(n,C) with the tableau
model for the highest weight crystal B(λ) it was known that ξB(λ) coincides with the

Schützenberger involution on semi-standard Young tableaux of shape λ [BerZel96].
See [BuSc17, Sections 4.3, 14.3.3] and the references therein.

Let g be a complex, semisimple Lie algebra with Dynkin diagram X. There is a
Dynkin diagram automorphism θ : X → X defined by αθ(i) = −w0αi, where w0 is the
longest element of the Weyl group of g. The cactus group Jg, defined by Halacheva
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in [Ha20, Ha16], is the group generated by σI , where I runs over all connected sub-
Dynkin diagrams of X, subject to the following relations:

σ2I = 1, (1)

σIσJ = σJσI if J ⊆ X, J ∪ I is disconnected (2)

σIσJ = σθI (J)σI if J ⊂ I (3)

where θI is the automorphism on I defined by the longest element of the parabolic
group W I . Halacheva has defined an internal action of the cactus group Jg on a
normal g–crystal by partial Schützenberger–Lusztig involutions ξI . From this action
we know that partial Schützenberger–Lusztig involutions satisfy the cactus group
Jg relations [HaKaRyWe20]. Halacheva [Ha20] initiated a combinatorial study of
the cactus group for g = sl(n,C) by comparing the action of Jn = Jsl(n,C) on a
normal sl(n,C)-crystal with that of the Berenstein–Kirillov group on Gelfand-Tsetlin
patterns (or semi-standard Young tableaux) [BerKir95]. Using a different approach,
Chmutov, Glick and Pylyavskyy [CGP16] have also found relationships between those
two groups.

Our results compose a combinatorial study of the cactus group for the symplec-
tic Lie algebra g = sp(2n,C). There are many combinatorial models for sp(2n,C)-
crystals: De Concini tableaux [DeCo79], King tableaux [Ki75], Lakshmibai-Seshadri
[LakSes91] and Littelmann paths [Lit95, Lit97], the alcove path model of Gaussent–
Littelmann [GL05] and the one of Lenart–Postnikov [LenPos08], but we work with
Kashiwara–Nakashima tableaux, for which a rich combinatorial structure exists
[KasNak91, HonKan02, Lec02, Lec07]. We review the basics in Sections 3 and 4.
For each connected sub-Dynkin diagram I of X, we define the explicit action of ξI on
a given Kashiwara–Nakashima tableau. The algorithmic procedure for that action is
given by virtualization. In the case when I forms a Dynkin diagram of type Cn−k,
it is also given by the I-partial symplectic reversal, a symplectic analogue of partial
reversal on An−1 tableaux. Thereby we provide a combinatorial action of the cactus
generators σI on the set of Kashiwara–Nakashima tableaux on the alphabet Cn. This
is addressed in Sections 8 and 9. The case of I = X has already been developed
by Santos in [Sa21a], where he defines an operation on straight shaped Kashiwara–
Nakashima tableaux which is a symplectic analogue of the Schützenberger involution
operation, also known as evacuation, on straight shaped An−1 semi-standard Young
tableaux. This procedure includes the symplectic jeu-de-taquin defined by Sheats in
[Sh99], and further developed by Lecouvey [Lec02] using crystal isomorphisms. This
is the content of Section 7.

For I ⊆ X such that I forms a Dynkin diagram of type Cn−k, we define an al-
gorithm for I-partial symplectic reversal which generalizes Santos’ algorithm in the
sense that, when I = X, our algorithm is exactly the same. The symplectic Cn−k re-
versal extends symplectic Cn−k evacuation to arbitrary semi-standard skew tableaux
on the alphabet Cn−k whose shift of the entries by k are admissible on the alphabet
Cn. The Cn−k reversal of a such semi-standard skew tableau P on the alphabet Cn−k,
is characterized to be the unique skew tableau coplactic equivalent to P and plactic
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equivalent to the Cn−k evacuation of the symplectic rectification of P .

An important inspiration behind our generalization is the operation of tableau-
switching [BSS96] of Benkart, Sottile and Stroomer on An−1 semi-standard tableaux.
Given an admissible tableau on the alphabet Cn, we start off by freezing the entries
corresponding to nodes not appearing in I, creating at the same time a new Young
tableau U with Young shape defined by the positive frozen entries as well as a skew
tableau P consisting of the non-frozen entries. The tableau pair (U,P ), sharing a
common border, pass through each other via symplectic jeu de taquin (SJDT for
short). After performing this procedure, a new pair (R,V ) with R the symplectic
rectification of P and V consisting of the entries of U as well as some new, colored
letters. Each color records a precise instance of the symplectic rectification of P . Our
symplectic colourful tableau switching is reversible since SJDT is reversible. It reduces
to the An−1 tableau switching on tableaux in the alphabet [n]. This work is carried
out in detail in Subsection 9.2 of this paper, yielding the formula (52), and illustrated
in Subsection 9.3.

For the general case we use the virtualization map defined by Baker [Ba00a], that
is, an injective map

E : KN(λ, n) −→ SSYT(λA, n, n̄)

which assigns to the sp(2n,C)-crystal KN(λ, n), a subset of the sl(2n,C)-crystal
SSYT(λA, n, n̄) in a reversible way. This is discussed in Section 5. We show that
one may apply the map E, then perform a certain partial Schützenberger–Lusztig
involution in the type sl(2n,C)-crystal without leaving the image of E, reverse the
virtualization map E and obtain our desired result. Subsection 9.4.1 provides The-
orem 5 and Theorem 6 with such algorithmic procedures. Additionally, in Definition

3, Section 6, we define the virtual symplectic cactus group J̃2n and show that it is a
subgroup of J2n isomorphic to the symplectic cactus group Jsp(2n,C). In Theorem 3,

Section 8, an action of the virtual symplectic cactus group on the set SSYT(λA, n, n̄)
is defined. The subset E(KN(λ, n)) is preserved under this action as shown in Sub-
sections 9.4.1 and 9.5. In particular, in Subsection 9.5, we realize such action of
the virtual symplectic cactus group on the virtual images of Kashiwara–Nakashima
tableaux and show that it virtualizes the action of the symplectic cactus group on
Kashiwara–Nakashima tableaux. This work is illustrated in Section 9.6.

As an application, in Section 10, we define symplectic Bender–Knuth involutions
combinatorially (Definition 7). We start off by defining the type Cn Berenstein–
Kirillov group BKCn as the free group generated by the partial symplectic
Schützenberger–Lusztig involutions with respect to connected subdiagrams of the
type Cn Dynkin diagram of the form I = [n] modulo the relations they satisfy on
Kashiwara–Nakashima tableaux of any straight shape in the alphabet Cn. These gen-
erators of BKCn satisfy the relations of the symplectic cactus group (Theorem 8). We
show that symplectic Bender–Knuth involutions are also generators of BKCn .

We study relations for BKCn under the virtualization map E. More precisely, we
consider the relations satisfied by the embedding of generators of BKCn in E(KN(λ, n))
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⊆ SSYT(λA, n, n̄); we call this group (Definition 8) the virtual symplectic Berenstein–

Kirillov group B̃K2n, a subgroup of the type A2n−1 Berenstein–Kirillov group BK2n

satisfying, in particular, the relations of the virtual cactus group J̃2n (Theorem 9).
Proposition 12 gives the virtual symplectic Bender–Knuth involutions generators of

B̃K2n which are shown in Theorem 10 to be the virtualization of the symplectic
Bender–Knuth involutions. The virtual image of the group BKCn satisfies the relations

of B̃K2n. Some of the ones listed in Proposition 13 are obtained by applying the partial
inverse to the virtualization map. Relations (9) and (10) in Proposition 13 are the
only ones that do not follow from the the symplectic cactus group Jsp(2n,C). They
are instead equivalent to the braid relations of type Cn Weyl group. In particular,
relation (10) is not similar to any relation in previous Berenstein–Kirillov groups.
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J.T. was also supported by the grant SONATA NCN UMO-2021/43/D/ST1/02290
and partially supported by the grant MAESTRO NCN UMO-2019/34/A/ST1/00263.
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3. Basics

Let g be a finite dimensional, complex, semisimple Lie algebra. Let I be the Dynkin
diagram associated to the root system of g, ∆ = {αi : i ∈ I} the set of simple roots,
W its Weyl group, generated by the simple reflections {ri : i ∈ I}, and w0 ∈ W the
longest Weyl group element. We will use the numbering of the vertices of I given
by [Bo VI]. The Dynkin diagram has an automorphism, a permutation of its nodes
which leaves the diagram invariant, θ : I → I defined by αθ(i) = −w0αi, for any node
i ∈ I, where w0 is the longest element of W . We will also denote by Λ the integral
weight lattice associated to the root system of g. It is generated by the fundamental
weights ωi, i ∈ I. For a connected sub-diagram of I, J ⊆ I, denote by θJ : J → J the
Dynkin diagram automorphism that satisfies αθJ (j) = −wJ

0αj , for any node j ∈ J ,

where wJ
0 is the longest element of the parabolic subgroup W J ⊆W (the Weyl group

for g restricted to J) [BjBr05]. When J = I one has the original notation θI = θ. We
focus on the cases where g = sl(n,C), sp(2n,C). We will often abuse notation and
write a Dynkin diagram I with n nodes as the interval [n]. The corresponding Weyl
groups are the symmetric group Sn on n letters and the hyperoctahedral group Bn

respectively, where Bn is the free group generated by r1, . . . , rn−1, rn subject to the
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relations

r2i = 1, 1 ≤ i ≤ n, (4)

(rirj)
2 = 1, 1 ≤ i < j ≤ n, |i− j| > 1, (5)

(riri+1)
3 = 1, 1 ≤ i ≤ n− 2, (6)

(rn−1rn)
4 = 1. (7)

The free group generated by r1, . . . , rn−1, subject to the relations above, for 1 ≤ i, j <
n, is Sn realized by the simple transpositions ri = (i, i+1) on the set [n]. The group
Bn has 2nn! elements and is realized by the signed transpositions ri = (i, i+1)(i, i+ 1),
i = 1, . . . , n− 1, and rn = (n, n) on the set {1 < · · · < n < n̄ < · · · < 2̄ < 1̄}. That is,
we may see Bn embedded in S2n by folding {1 < · · · < n < n̄ < · · · < 2̄ < 1̄} through
a central symmetry. The long element of Bn has length n2, while the long element of
Sn has length n(n−1)/2. For instance, r1r2r1r2 = r2r1r2r1 is the long element of B2,
and, more generally, (rn · · · r2r1)

n = (r1r2 · · · rn)
n is the long element of Bn [BjBr05].

Occasionally, for the sake of clarity, we write wA
0 and wC

0 for the corresponding
longest elements of Sn and Bn respectively, or simply w0 when there is no room for
confusion. Given a vector v ∈ Z

n, we have that ri, with i ∈ [n − 1], acts on v, riv,
swapping the i-th and the (i+ 1)-th entries, and rn acts on v, rnv, changing the sign
of the last entry. Henceforth, wA

0 reverses v, wA
0 (v1, . . . , vn) = (vn, . . . , v1), and w

C
0

changes the sign of the entries of v, wC
0 v = −v.

Recall the sl(n,C) simple roots αi = ei−ei+1, i ∈ [n−1], and the sp(2n,C) simple
roots αi = ei − ei+1, i ∈ [n − 1] and αn = 2en, where ei, i ∈ [n], is the R

n standard
basis. The An−1 Dynkin diagram automorphisms above, since −w0αi = −(−αn−i) =
αn−i, is given by θ(i) = n− i, with i ∈ I = [n− 1]. For instance,

n = 5 A4

•
1

•
2

•
3

•
4

n = 6 A5

•
1

•
2

•
3

•
4

•
5

The Cn Dynkin diagram automorphisms above, since for w0 ∈ Bn, −w0αi =
−(−αi) = αi, is given by θ(i) = i, with i ∈ I = [n]. The weight lattices are Λ = Z

n for
sp(2n,C) and Λ = Z

n/(1, ..., 1) for sl(n,C). We will often work with representatives

in the case of sl(n,C). The fundamental weights are ωi =
∑i

j=1 ei, 1 ≤ i ≤ n and
respectively have representatives ωi, 1 ≤ i ≤ n− 1.

3.1. Levi sub-diagrams. Let I be a finite Dynkin diagram. A Levi sub-diagram J
of I obtained by deleting from I a subset of its nodes is the Dynkin diagram of a semi-
simple Lie algebra gJ ⊂ g known as a Levi sub-algebra which is the Levi component
of the parabolic Lie sub-algebra of g generated by the Chevalley generators associated
to the nodes of J .
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Example 1. If we remove the last node (the one labelled by n) from the Dynkin
diagram of type Cn, we obtain a Dynkin diagram of type An−1. which corresponds to
the Levi sub-algebra sl(n,C) of sp(2n,C).

Cn
1 2 3 n− 1 n

An−1
1 2 3 n− 1

Example 2. The semisimple Lie algebra sl(3,C) × sp(4,C) is a Levi sub-algebra of
sp(12,C). Note that the semisimple Lie algebra sl(n,C) × sl(2,C) is not a Levi sub-
algebra of sp(2n,C), as its Dynkin diagram of type An−1×A1 cannot be obtained from
the type Cn diagram by deleting some of its vertices.

4. Normal sl(n,C), sp(2n,C)-crystals and Levi restrictions

Crystals corresponding to finite-dimensional (quantum group) Uq(g)-representations
belong to a family of crystals called normal crystals [BuSc17, HaKaRyWe20]. In clas-
sical types, these crystals may be realized by a tableau model [KasNak91] and have
nice combinatorial properties. Normal crystals arise as the crystals associated to the
finite-dimensional representations of a quantum group Uq(g) for some Lie algebra g

[BuSc17]. These crystals decompose into connected components, one for each irre-
ducible component to the representation at hand. The Levi restriction of a normal
crystal is still a normal crystal, and the union of some connected components of a
normal crystal is also a normal crystal [BuSc17, HaKaRyWe20]. The crystals that
we deal with are tableau crystals for finite-dimensional representations of Uq(sl(n,C))
and Uq(sp(2n,C)).

A g-crystal is a finite set B along with maps

wt : B→ Λ, ei, fi : B→ B ∪ {0}, εi, ϕi : B→ Z,

obeying the following axioms for any b, b′ ∈ B and i ∈ I,

• b′ = ei(b) if and only if b = fi(b
′),

• if fi(b) 6= 0 then wt(fi(b)) = wt(b)− αi;
if ei(b) 6= 0, then wt(ei(b)) = wt(b) + αi, and
• εi(b) = max{a ∈ Z≥0 : e

a
i (b) 6= 0} and ϕi(b) = max{a ∈ Z≥0 : f

a
i (b) 6= 0}.

• ϕi(b)− εi(b) = 〈wt(b), α
∨
i 〉,

where α∨
i = 2αi

〈αi,αi〉
are the coroots.

Remark 1. Our abstract g-crystals are defined with the additional condition that they
are seminormal [BuSc17].

The crystal graph of B is the directed graph with vertices in B and edges labelled
by i ∈ I. If fi(b) = b′ for b, b′ ∈ B, then we draw an edge b → b′. See Example 4.
Given an arbitrary subset J ⊆ I, BJ is defined to be the crystal B restricted to the
sub-diagram J of I, the Levi branched crystal. The crystal graph of BJ has the same
vertices as B, but the arrows are only those labelled in J ; that is, we forget the maps

ei, fi, ϕi, and εi, for i 6∈ J [BuSc17]. The weight map is B
wt
→ Λ

can
→ ΛJ , where wt is
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the weight map of B, Λ is the weight lattice of g, ΛJ = Λ/ < ωi : i /∈ J > is the

weight lattice of gJ , and Λ
can
→ ΛJ is the canonical projection. If g = sp(2n,C) and we

restrict to J = [n − 1], then we obtain a sl(n,C)-crystal. For instance, if we restrict
an sp(2n,C)-crystal to J = [n − 1], then we obtain an sl(n,C)-crystal. Given b ∈ B,
B(b) denotes the connected component of B containing b.

A g-crystal is normal if it is isomorphic to a disjoint union of the crystals B(λ),
where B(λ) is the crystal associated to an irreducible, finite-dimensional
g-representation of highest weight λ, where λ ∈ Λ is a dominant weight. In this
work, where we focus on g = sp(2n,C), respectively g = sl(n,C), dominant weights
in Z

n, respectively in Z
n/ < (1, ..., 1) >, correspond precisely to partitions, that is,

weakly decreasing vectors in Z
n with non-negative entries, respectively to weakly de-

creasing vectors in Z
n, and each such representative is equivalent to a unique partition

in Z
n−1 →֒ Z

n, where the last entry is fixed as zero. An important property of normal
crystals B is the existence of a unique highest weight vertex for each connected com-
ponent of B, that is, an element which is a source in the corresponding crystal graph,
whose weight is dominant. In B(λ), the highest weight vertex x has weight wt(x) = λ.
Note that we work solely with highest weight crystals, namely, crystals B such that
for each b ∈ B, there exists a finite sequence a1, a2, . . . , al ∈ I and a highest weight
element ub ∈ B(b) such that b = fal · · · fa2fa1(ub). For b, b

′ ∈ B, we have B(b) = B(b′)
if and only if ub = ub′ . From now on, we will refer to sp(2n,C)-crystals by Cn-crystals,
and sl(n,C)-crystals by An−1-crystals.

4.1. Kashiwara–Nakashima tableaux. Let B(λ) be the irreducible Cn-crystal with
highest weight a partition λ of at most n parts. We realize B(λ) as the crystal KN(λ, n)
of Kashiwara–Nakashima tableaux [KasNak91] of shape λ on the alphabet

Cn = {1 < · · · < n < n̄ < · · · < 1̄}.

The irreducible An−1-crystal with highest weight a partition λ of at most n parts
is realized as the crystal SSYT(λ, n) of semi-standard tableaux of shape λ on the
alphabet [n]. We also will refer to these tableaux as the An−1 tableaux of shape
λ. The crystal SSYT(λ, n) is a connected sub-crystal of KN(λ, n). The weight of an
An−1 tableau T , respectively a Kashiwara–Nakashima tableau U , is represented by,
respectively is, the vector (µ1, ..., µn) ∈ Z

n, where µi denotes the number of i’s in T ,
respectively the number of i’s minus the number of ī’s in U .

Kashiwara–Nakashima tableaux (KN for short) are semi-standard Young tableaux
in the alphabet Cn which satisfy some extra conditions. They are a variation of De
Concini symplectic tableaux [DeCo79]. A semi-standard Young tableau of any shape
(skew or straight) with entries in Cn is KN if and only if the following two conditions
hold.

• Each one of its columns is admissible.
• Its splitting is a semi-standard Young tableau.

Definition 1. Let C be a semi-standard column in the alphabet Cn of length at most
n. Let Z = {z1 > ... > zm} be the set of non-barred letters z in Cn such that both
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z and z̄ appear in C. We say that the column C is admissible if there exists a set
T = {t1 > ... > tm} of unbarred letters t that satisfies:

• t, t̄ /∈ C;
• t1 < z1 and is maximal with this property;
• ti < min(ti−1, zi) and is maximal with this property.

The split of a column is the two-column tableau lCrC where lC is the column obtained
from C by replacing zi by ti and possibly re-ordering, and rC is obtained from C by
replacing z̄i by t̄i and possibly re-ordering. The splitting of a tableau consisting of
admissible columns is the concatenation of the splits of its columns.

Given µ ⊆ λ partitions with at most n parts, KN(λ/µ, n) denotes the normal Cn-
crystal of KN tableaux of skew shape λ/µ on the alphabet Cn [Lec02, Lemma 6.1.3,
Corollary 6.3.9].

Example 3. Let n = 2. The column
2

2̄

is admissible, however,
1

1̄

is not. Notice

that although each one of its columns is admissible, the tableau
2 2

2̄ 2̄

is not KN,

because its split,

1 2 1 2

2̄ 1̄ 2̄ 1̄

is not semi-standard.

We will mostly use the notation and definitions from [Lec02, Lec07]. We also refer
the reader to the references therein.

Remark 2. [Lec02, Remark 2.2.2] The maximal height of an admissible column is
n. Moreover, a column C is admissible if and only if, for any m ∈ [n], the number

N(m) of letters x in C such that either x ≤ m or x ≥ m̄ satisfies N(m) ≤ m.
Moreover, if there exists in C a letter m ≤ n such that N(m) > m, then C contains
a pair (z, z̄) satisfying N(z) > z.

Remark 3. In [Lec02], coadmissible columns are defined as well (see [Lec02, p.301]).
We will not delve into the details here, however, we remark that there exists a bijection
between admissible and coadmissible columns given by filling in the shape of the given
admissible column C with the unbarred letters of lC from top to bottom in increasing
order, followed by the barred letters of rC in the same fashion. We will denote this
bijection by Φ and use it in 7.3.

Example 4. The C2 crystal KN(λ, 2) of shape λ = (2, 1). Each node in the graph
represents an element of the crystal. There is a blue, respectively red, arrow connecting
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an element a to an element b whenever f1(a) = b, respectively f2(a) = b.

1 1

2

1 2

2

1 1

2̄

1 2̄

2

1 2

2̄

2 2

2̄

2 2

1̄

2 2̄

2̄

2 2̄

1̄

2̄ 2̄

1̄

2̄ 1̄

1̄

1 2̄

2̄

1 1̄

2̄

1 1̄

2

2 1̄

2̄

2 1̄

1̄

4.1.1. Levi branching of KN tableau crystals. For J ⊆ I, KNJ(λ, n) is the restriction
of KN(λ, n) to the sub-diagram J of I: as a crystal graph it has the same set of vertices
as KN(λ, n) but only contains the arrows labelled by J , and it is also a normal crystal.
The highest weight elements of KNJ(λ, n) are those Cn tableaux in KN(λ, n) where
the only incoming edges are colored in [n] \ J .

Example 5. We have the Levi-branched crystals KN{2}(λ, 2) and KN{1}(λ, 2) respec-
tively from left to right for λ = (2, 1). Both are A1-crystals. The highest weights, with
multiplicity, in the LHS have representatives (2, 1), (1, 2), (1, 0), (0, 1), (0, 1), (−1, 2),
(−1, 0), (−2, 1). In the quotient of Z2 by the fundamental weight ω1 = (1, 0), these
are equivalent to the vectors (0, 1), (0, 2), (0, 0), (0, 1), (0, 1), (0, 2), (0, 0), (0, 1), respec-
tively. In practice, this means that we have ignored the multiplicity of the letters
{1,−1} in the tableaux of the LHS to compute the highest weights. On the RHS, we
consider another embedding of Z →֒ Z

2 given by the quotient Z2/ < (1, 1) >, since
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ω2 = (1, 1). The computation of the highest weights on the RHS is similar to that of
the LHS, and we thus leave it as an exercise for the reader.

1 1

2

1 2

2

1 1

2̄

1 2̄

2

1 2

2̄

2 2

2̄

2 2

1̄

2 2̄

2̄

2 2̄

1̄

2̄ 2̄

1̄

2̄ 1̄

1̄

1 2̄

2̄

1 1̄

2̄

1 1̄

2

2 1̄

2̄

2 1̄

1̄

1 1

2

1 2

2

1 1

2̄

1 2̄

2

1 2

2̄

2 2

2̄

2 2

1̄

2 2̄

2̄

2 2̄

1̄

2̄ 2̄

1̄

2̄ 1̄

1̄

1 2̄

2̄

1 1̄

2̄

1 1̄

2

2 1̄

2̄

2 1̄

1̄

If J = [p, q], 1 ≤ p < q ≤ n, the crystal graph KNJ(λ, n) consists of the KN tableaux
of KN(λ, n) with arrows colored in J . Recall the Cn signature rule [KasNak91, Lec02,
BuSc17] to compute the action of the crystal operators on a word in the alphabet Cn.

If q < n, the Levi branched crystal KN[p,q](λ, n) is a type Aq−p+1 normal crystal.

The Weyl group is W J = S[p,q+1], the symmetric group on the letters {p, . . . , q + 1}

and generators rj = (j, j + 1)(j̄ , j + 1), j ∈ J. We say that the entries outside of
[±p, q + 1] = {p < · · · < q + 1} ∪ {q + 1 < · · · < p} are frozen, which amounts to
saying that the KN tableaux of the set KN(λ, n) in the same connected component
of KN[p,q](λ, n) are stable in the entries over Cn \ [±p, q + 1] under the action of
the Kashiwara operators fi, ei, i ∈ [p, q]. That is, if q < n, in the same connected
component of KN[p,q](λ, n), the subtableaux consisting of the letters {1 < · · · < p−1},

{p − 1 < · · · < 1} or {q + 2 < · · · < n < n̄ < · · · < q + 2} are the same.
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If q = n, the Levi branched crystal KN[p,n](λ, n) is isomorphic to a type Cn−p+1

normal crystal. The Weyl group is W J = B[p,n] generated by the signed permutations

on the subset {p < · · · < n < n̄ < · · · < ī}. The entries outside of [±p, n] = {p < · · · <
n < n < · · · < p} are frozen; within the same connected component of KNJ(λ, n), the
subtableaux either consisting of the letters {1 < · · · < p − 1} or {p− 1 < · · · < 1}
are the same. In Example 5, since sl(2,C) = sp(2,C), we get two crystals of types
A1 = C2.

5. Virtualization

In this section we closely follow Baker [Ba00a, Section 2] and adopt the notation
used there. In Example 9.6, we present a detailed example of the content in this sec-
tion. We include it later rather than earlier because it includes some more information
which is not yet presented up to the end of this section.

5.1. Baker embedding and Baker recording tableau. Let

λ = λ1ω1 + · · ·+ λnωn ∈ Z
n

with ωj =
∑j

i=1 ei ∈ Z
n, 1 ≤ j ≤ n the fundamental weights of type Cn. Let

ωA
j =

j∑

i=1

ei ∈ Z
2n for 1 ≤ j ≤ n (8)

ωA
j̄ = ωA

2n−j+1 =

2n−j+1∑

i=1

ei ∈ Z
2n for 1 < j ≤ n (9)

be the A2n−1 fundamental weights, and consider as well the Z
2n partition

λA = 2λnω
A
n +

n−1∑

i=1

λi(ω
A
i + ωA

i+1
).

Let SSYT(λA, n, n̄) be the type A2n−1 crystal of semi-standard Young tableaux in
the alphabet Cn of shape λA. We will denote the corresponding crystal operators by
fAi for i ∈ Cn and consider, for 1 ≤ i ≤ n, the operators fEi = fAi f

A
i+1

, i < n, and

fEn = (fAn )2. Let E denote the virtualization map defined on type Cn Kashiwara–
Nakashima tableaux defined by Baker [Ba00a, Proposition 2.2, Proposition 2.3]. More
precisely, E is an injective map

E : KN(λ, n) →֒ SSYT(λA, n, n̄) (10)

such that E(fi(T )) = fEi (E(T )) for T ∈ KN(λ, n), 1 ≤ i ≤ n. We will denote by E−1

the restriction of any left inverse of E to the image of KN(λ, n) under E.
Given an admissible column C in the alphabet Cn of shape ωi, 1 ≤ i ≤ n, denote
by ψ(C) its Baker virtual split [Ba00a, Proposition 2.2], a two column type A2n−1

tableau of shape ωA
i + ωA

2n−i. The map ψ is injective and embeds admissible columns

of length i, in the alphabet Cn, into SSYT(ωA
i + ωA

2n−i, n, n̄), 1 ≤ i ≤ n. We define
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ψ−1 analogously to E−1. From [Ba00a, Proposition 2.3] we know that, if we write T
as a concatenation of its columns, that is, T = Ck · · ·C1, then

E(T ) = [∅ ← w(ψ(C1))← · · · ← w(ψ(Ck))],

where the word w(ψ(C)) of the type A2n−1 two-column tableau ψ(C) is given by
the Japanese reading of its two columns (from top to bottom and right to left), and
P ← w is the Schensted column insertion of a word w into a type A2n−1 semi-standard
Young tableau P in the alphabet Cn [Fu97, St01].

Let Tλ ∈ KN(λ, n) be the highest weight element; that is, Tλ is the Yamanouchi
tableau of shape and weight λ on the alphabet [n] (each row i is solely filled with
the letter i). Then E(Tλ) = TλA is the highest weight element of SSYT(λA, n, n̄),
that is, the A2n−1 Yamanouchi tableau of shape and weight λA in the alphabet Cn.
The image of KN(λ, n) by E in SSYT(λA, n, n̄) is the crystal generated by acting with
the lowering operators fEi on the highest weight element TA

λ of SSYT(λA, n, n̄). For
T ∈ KN(λ, n), where T = Ck · · ·C1, we write

wT = w(ψ(C1)) · · ·w(ψ(Ck)).

Then wT is a word in C∗n, the monoid of words in the alphabet Cn, and E(T ) = [∅ ←
wT ]. We will call the recording tableau of the column insertion of wT , Q(wT ), the
Baker recording tableau associated to T .

Proposition 1. For T ∈ KN(λ, n), the Baker recording tableau Q(wT ) depends only
on λ. From now on, we will denote by Qλ the Baker recording tableau associated to
λ.

Proof. By abuse of notation, we will denote by the same symbols the type A2n−1

crystal operators on the A2n−1 crystal C∗n of words and those on semi-standard Young
tableaux in the same alphabet. Now, we know that there exists a sequence 1 ≤
i1, ..., ik ≤ n such that fik · · · fi1(Tλ) = T . Therefore fEik · · · f

E
i1
(E(Tλ)) = E(T ), where

E(Tλ) = TλA , the highest weight element of SSYT(λA, n, n̄), and so

fEik · · · f
E
i1
(wTλ

) = wT

(recall that fEn = (fAn )2) because the connected components of the crystal C∗n of words
of type A2n−1 with highest weight elements wTλ

and w(E(Tλ)) = w(TλA) have the
same highest weight λA and are hence isomorphic. In particular, both wT and wTλ

belong to the same connected component of the crystal C∗n of words of type A2n−1,
namely, the connected component containing the Yamanouchi word wTλ

of weight λA

(recall that all words wT have the same rectification shape λA and that all A2n−1

crystal operators commute with jeu de taquin). Now, we consider a version of the
RSK correspondence [Fu97, St01, Kwo09, BuSc17] which is a bijection

C∗n
1:1
←→

⋃

µ
ℓ(µ)≤2n

SSYT(µ, n, n̄)× SYT(µ) (11)

w
RSK
7→ (P (w), Q(w)) (12)
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where SYT(µ) is the set of standard Young tableaux of shape µ, P (w) = [∅ ← w] and
Q(w) is the corresponding recording tableau which encodes the sequence of shapes
produced by the column insertion of w. In particular for each standard Young tableau
Q of shape µ the pre-image RSK−1(SSYT(µ, n, n̄) × {Q}) is a crystal isomorphic to
SSYT(µ, n, n̄), and all of these pre-images are disjoint and cover C∗n. In particular this
means that all the words wT for T ∈ KN(λ, n) are contained in the same connected
component of C∗n defined by:

RSK−1(SSYT(λA, n, n̄)× {Q(wTλ
)}).

Thereby, Q(wT ) = Q(wTλ
) for all T ∈ KN(λ, n). �

Corollary 1. Let λ = ωm1 + · · ·+ ωmk
, 1 ≤ m1 ≤ · · · ≤ mk ≤ n, and let

λA = ωA
2n−m1

+ ωA
m1

+ · · ·+ ωA
2n−mk

+ ωA
mk
∈ Z

2n.

Then Qλ can be written out of the shape λA as a sequence of shapes by adding
successively the columns ωA

m1
, ωA

2n−m1
, . . . , ωA

mk
, ωA

2n−mk
, whose boxes are filled along

columns, top to bottom with consecutive numbers from 1 to |λA|:

∅ ⊂ ωA
m1
⊂ ωA

2n−m1
+ ωm1 ⊂ ω

A
m2

+ ωA
2n−m1

+ ωA
m1

⊂ ωA
2n−m2

+ ωA
m2

+ ωA
2n−m1

+ ωA
m1

⊂ · · · ⊂ ωA
mk

+ · · ·+ ωA
2n−m2

+ ωA
m2

+ ωA
2n−m1

+ ωA
m1

⊂ ωA
2n−mk

+ ωA
mk

+ · · ·+ ωA
2n−m1

+ ωA
m1

= λA.

Given a partition λ with at most n parts, and T = Ck · · ·C1 ∈ KN(λ, n), let
Ψ(T ) = (w(ψ(C1)), . . . , w(ψ(Ck))) ∈ C

∗
n (here the word is presented as a k-tuple) and

Ψ−1 = (ψ−1, . . . , ψ−1)︸ ︷︷ ︸
k

. Then (E(T ), Qλ) = RSKΨ(T ) = (P (wT ), Qλ) and

E−1 = Ψ−1RSK−1

|E(KN(λ, n))×{Qλ}

where RSK−1

|KN(λ, n)×{Qλ}
denotes the inverse of RSK restricted to E(KN(λ, n)) ×

{Qλ}.
The computation of RSK−1

|KN(λ, n)×{Qλ}
uses Qλ to perform the inverse of column

Schensted insertion. See Example 9.6.

Remark 4. Let T ∈ KN(λ, n) and E(T ) ∈ SSYT(λA, n, n̄). Then

wt(E(T )) = wt(wT ) = (α1, . . . , αn, αn̄, . . . , α1̄) ∈ Z
2n
≥0

is such that

2wt(T ) = (α1 − α1̄, . . . , αn − αn̄) ∈ Z
n. (13)
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5.2. The Levi branched crystal and virtualization. Recall that a Levi branched
crystal BJ , J ⊆ I, I a Dynkin diagram, is obtained by ignoring the maps fi, ei, ϕi, εi,
for i /∈ J . Let I be the A2n−1 Dynkin diagram with nodes {1, . . . , n, n̄, . . . , 2̄}.

1 2 3 n− 1

n

−n−4−3−2

For each connected sub-diagram J = [p, q] or [k, n] with 1 ≤ p ≤ q < n and k ≤ n, of
[n], let J̄ = [q + 1, p + 1] respectively [n̄, k + 1], if k < n, and J̄ = ∅ if k = n be the
corresponding connected sub-diagram of [n̄, 2̄].

Each connected component of the Levi branched crystal KNJ∪J̄(λ, n) with J =
[p, q], [k, n], 1 ≤ p ≤ q < n, k ≤ n, is embedded via E into a connected component of
the Levi branched crystal SSYTJ∪J̄(λ, n) such that J ∪ J̄ is a disconnected diagram

of [1, . . . , n, n̄, . . . 2̄] if q < n, and otherwise, J ∪ J̄ = [k, k + 1] or J = J if J = {n}.
Consider the Levi branching of the type Cn crystal KN(λ, n) to Aq−p+1, 1 ≤ p ≤ q < n,
and Cn−k+1, k ≤ n. The Levi type Aq−p+1 Dynkin diagram is obtained via folding
from the Levi subtype Aq−p+1 × Aq−p+1 of A2n−1 which is obtained by removing
the nodes 1, . . . , p − 1, q + 1, . . . , n, n̄, . . . , q + 2, p+ 2, . . . , 2̄ from the A2n−1 Dynkin
diagram. The Levi type Cn−k+1, k ≤ n, is obtained via folding from the Levi subtype
A2n−2k+1 of A2n−1 obtained by removing the nodes 1, . . . , k − 1, k, . . . , 2̄ from the
A2n−1 Dynkin diagram [BuSc17].

In [Ba00a, Proposition 2.3 (ii)], it is shown that given b ∈ KN(λ, n), the Cn crystal
length functions εCi , ϕ

C
i , 1 ≤ i ≤ n, on b, and the A2n−1 crystal length functions

εAi , ε
A
i+1

, 1 ≤ i < n, εAn , and ϕ
A
i , ϕ

A
i+1

,1 ≤ i < n, ϕA
n , on E(b) are nicely related:

εCi (b) = εAi (E(b)) = εA
i+1

(E(b)), 1 ≤ i < n, and εCn (b) = 1/2εAn (E(b)),

and similarly for ϕC
i (b), 1 ≤ i ≤ n, where εi(b) = max{k ∈ Z≥0 : eki (b) 6= 0} and

ϕi(b) = max{k ∈ Z≥0 : fki (b) 6= 0}. This means that b is the highest weight element
of a connected component U of KNJ(λ, n) if and only if, for all i ∈ J ,

εAi (E(b)) = εA
i+1

(E(b)) = εCi (b) = 0, for all i ∈ J \ {n}

and

εAn (E(b)) = εCn (b) = 0, if n ∈ J.

(Similarly, in the case b is the lowest weight element, by replacing appropriately,
εCi with ϕC

i and εAi , ε
A
i+1

with ϕA
i , respectively ϕ

A
i+1

, and εAn with ϕA
n .)

Henceforth,
εCi (b) = 0, i ∈ J ⇔ εAi (E(b)) = 0, i ∈ J ∪ J̄

and
ϕC
i (b) = 0, i ∈ J ⇔ ϕA

i (E(b)) = 0, i ∈ J ∪ J̄ .

In other words, because our crystals are seminormal, E(b) is the highest weight el-
ement of the connected component V of SSYTJ∪J̄(λ, n) containing E(b) and E(U).
It is therefore unique. A similar statement holds for the lowest weight element. The
next proposition now easily follows.
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Proposition 2. Let J ⊆ [n] be a connected sub-diagram of the type Cn Dynkin
diagram. Let U be a connected component of the Levi branched crystal KNJ(λ, n)
with highest and lowest weight elements uhigh and ulow respectively. Then E(U) is
contained in a connected component of the Levi branched crystal SSYTJ∪J̄(λ, n) with
highest and lowest weight elements E(uhigh) and E(ulow) respectively.

Remark 5. Given T ∈ SSYT(µ, n, n̄), with µ a partition with at most 2n parts, T may
be decomposed into two disjoint semi-standard tableaux T+ and T−, T = (T+, T−),
where T+ is the semi-standard tableau of shape µ+ on the alphabet [n] defined by the
entries of T in [n], that is, T+ ∈ SSYT(µ+, n), called the positive part of T , and T−

is the semi-standard tableau of skew shape µ/µ+ on the alphabet [n̄, 1̄] defined by the
entries of T in [n̄, 1̄], that is, T− ∈ SSYT(µ/µ+, n̄), called the negative part of T .
Provided that we only apply fAi , eAi with i ∈ J ∪ J ′ disconnected such that J ⊆ [n− 1]
and J ′ ⊆ [n̄, 2̄], respectively, this shape decomposition is preserved. Those crystal
operators preserve the shape decomposition above because, according to the type A2n−1

signature rule, they only change positive (resp. negative) letters into positive (resp.
negative) letters.

For J ∪ J ′ disconnected, fAj f
A
j′ = fAj′ f

A
j , with j ∈ J , j′ ∈ J ′. We then write, for

{j1, . . . , jr} ⊆ J and {j′1, . . . , j
′
m} ⊆ J

′,

fAjr · · · f
A
j1
fAj′m · · · f

A
j′1
(T ) = (fAjr · · · f

A
j1
(T+), fAj′m · · · f

A
j′1
(T−)). (14)

6. The cactus group and virtualization

Halacheva [Ha16, HaKaRyWe20] has defined a more general version of the cactus
group Jn originally defined by Henriques–Kamnitzer [HeKa06-1] in terms of generators
and relations.

Definition 2 ([Ha16, HaKaRyWe20] ). Let g be a finite-dimensional, semisimple Lie
algebra with Dynkin diagram I. The cactus group Jg has generators sJ where J runs
over the connected sub-diagrams of the Dynkin diagram I of g, and relations:

1g. s2J = 1 , for all J ⊆ I,

2g. sJsJ ′ = sJ ′sJ , for all J, J ′ ⊆ I such that J ∪ J ′ is disconnected,

3g. sJsJ ′ = sθJ(J ′)sJ , for all J ′ ⊆ J ⊆ I.

Remark 6. Note that when J ′ ⊆ J , 3g. says that sJ commutes with sJ ′ by reversing
J ′ with respect to J . We also have a group epimomorphism Jg →W taking sJ to wJ

0
([HaKaRyWe20], [Ha16, Remark 10.0.1]). Together with 3g, this implies the relations

w0w
J
0w0 = w

θ(J)
0 and wJ

0w
J ′

0 w
J
0 = w

θJ (J
′)

0 .

If I is the An−1 Dynkin diagram, θJ acts on J by reversing the connected interval
of nodes J , whereas in the Cn type it depends on whether J contains the node with
label n or not.

Lemma 1. The cactus group Jsl(n,C) = Jn is the group with generators sJ , where J
runs over all connected sub-diagrams of I = [n−1], the An−1 Dynkin diagram, subject
to the relations
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1A. s2J = 1, J ⊆ [n− 1],

2A. sJsJ ′ = sJ ′sJ , for all J, J ′ ⊆ [n− 1] such that J ∪ J ′ is disconnected.

3A. s[p,q]s[k,l] = s[p+q−l,p+q−k]s[p,q] for [k, l] ⊂ [p, q] ⊆ [n− 1].

Proof. Relations 1g and 2g translate directly to 1A. and 2A. Consider two nested
intervals [k, l] ⊂ [p, q] ⊆ [n− 1]. The Weyl group W [p,q] is the quotient

W [p,q] =W/StabW ([1, p − 1] ∪ [q + 1, n])

and wJ
0 (αj) = −αp+q−j, j ∈ J . Then θ[p,q](d) = p + q − d for d ∈ [p, q]. After this

observation one sees that Relation 3g translates directly into 3A above.
�

Remark 7. The first and third relations ensure that the n− 1 elements of the form

s[1,k], 1 ≤ k ≤ n− 1, (15)

generate Jn, since any s[i,j] may be written as

s[i,j] = s[1,j]s[1,j−i+1]s[1,j]. (16)

By conjugation with s[1,n−1], the elements s[i,n−1], 1 ≤ i ≤ n − 1, also form a set of
generators.

Lemma 2. The cactus group Jsp(2n,C) is the group with generators sJ , where J runs
over all connected sub-diagrams of the Cn Dynkin diagram I = [n], subject to the
relations

1C. s2J = 1, J ⊆ [n],

2C. sJsJ ′ = sJ ′sJ , for all J, J ′ ⊆ [n] such that J ∪ J ′ is disconnected,

3C. (i) s[p,n]s[k,l] = s[k,l]s[p,n], [k, l] ⊆ [p, n] ⊆ [n],

(ii) s[p,q]s[k,l] = s[p+q−l,p+q−k]s[p,q], [k, l] ⊆ [p, q] ⊆ [n− 1].

Proof. Relations 1g and 2g translate directly to 1A. and 2A. Consider two nested
intervals [k, l] ⊂ [p, q]. If [p, q] ⊂ [n − 1], we are in type Aq−p, hence 3C.(ii) holds,
which is just relation 3A. If q = n, then we are in type Cn−p+1. The Weyl group

W [p,n] is the restriction of the hyperoctahedral group Bn to the generators rp, . . . , rn,
(as a group of signed permutations, it is the restriction to the set

[±p, n] := {p < · · · < n < n̄ < · · · < p̄}),

and wJ
0 (αj) = −αj for j ∈ J . Therefore θ[p,n](d) = d for d ∈ [k, l] and Relation 3C.

(i) follows directly from 3g.
�

Remark 8. Note that the elements sJ , J ⊆ [n−1], subject to the relations above, gen-
erate the cactus group Jn. As in (16), the following are alternative 2n− 1 generators
of Jsp(2n,C):

s[1,j], 1 ≤ j ≤ n− 1, (17)

s[j,n], 1 ≤ j ≤ n. (18)
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Remark 9. We may observe that Jn is a subgroup of Jsp(2n,C) defined by the subset of
generators sJ , J ⊆ [n− 1], indexed by connected sub-diagrams of the An−1 connected
sub-diagram [n − 1] of the Cn Dynkin diagram I = [n], subject to the relations above
1.C, 2.C and 3.C, (ii).

Proposition 3. If g is a finite-dimensional semisimple Lie algebra, and l ⊂ g is a
Levi sub-algebra, then Jl is a subgroup of Jg.

Proof. Let I be the Dynkin diagram corresponding to g and J ⊂ I the sub-diagram
corresponding to the Levi sub-algebra l. Any connected sub-diagram K of J is also a
connected sub-diagram of I, hence one can define a map on generators by sJK 7→ sIK .

Here generators of Jg are denoted by sIK , and generators of Jl by sJK . Remark 6
implies that this map is a morphism of groups. The map is clearly injective because
the generators of Jg are all distinct.

�

6.1. Embedding of Jsp(2n,C) into J2n. We have observed that Jn is a subgroup of
Jsp(2n,C). We now show that there is a group embedding of Jsp(2n,C) into J2n by folding
the A2n−1 Dynkin diagram through the middle node n:

1 2 3 n− 1 n

1 2 3 n− 1

n

n+ 12n− 32n− 22n− 1

Why should such an embedding exist? Let us consider the following elements of
J2n:

s′[p,q] := s[p,q]s[2n−q,2n−p] = s[2n−q,2n−p]s[p,q], for all [p, q] ⊆ [n− 1].

In Lemma 4 we show that these elements together with the generators s[p,2n−p] for
p ≤ n generate a subgroup of J2n isomorphic to Jsp(2n,C). Notice the similarity between
this and the construction of sp(2n,C) as a sub-algebra of sl(2n,C) by folding [Kac83,
Chapter 8, pp. 89 – 102]. Moreover, the following lemma provides not only concrete
combinatorial motivation for Lemma 4, but will also be the main ingredient in its
proof.

Lemma 3. The following relations hold in J2n:

s′
2
[p,q] = 1, 1 ≤ p ≤ q < n, (19)

s2[p,2n−p] = 1, 1 ≤ p < n, (20)

s′[p,q]s
′
[k,l] = s′[k,l]s

′
[p,q], [p, q] ∪ [k, l] ⊆ [n− 1] disconnected, (21)

s[p,2n−p]s[k,2n−k] = s[k,2n−k]s[p,2n−p], 1 ≤ p < k < n, (22)

s[p,2n−p]s
′
[k,l] = s′[k,l]s[p,2n−p], 1 ≤ p ≤ k ≤ l < n, (23)

s′[p,q]s
′
[k,l] = s′[p+q−l,p+q−k]s

′
[p,q], 1 ≤ p ≤ k ≤ l ≤ q < n. (24)
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There are no more relations among the elements s′[p,q] and s[k,2n−k], for all [p, q] ⊆

[n− 1] and [k, n] ⊆ [n].

Proof. We have the relations (19), (20) and (23),

s′[p,q]
2
= (s[p,q]s[2n−q,2n−p])

2 = s2[p,q]s
2
[2n−q,2n−p]

1A.
= 1.

s2[p,2n−p]
1A.
= 1.

For 1 ≤ p ≤ q < n and 1 ≤ k ≤ l < n such that [p, q] ∪ [k, l] is disconnected, the sub-
diagrams [p, q]∪ [2n−q, 2n−p], and [k, l]∪ [2n− l, 2n−k] of [2n−1] are disconnected,
hence

s′[p,q]s
′
[k,l]

2A.
= s′[k,l]s

′
[p,q].

Additionally, if q = n, the sub-diagram [k, l] ∪ [p, 2n− p] ∪ [2n− l, 2n− k] in [2n− 1]
is disconnected, hence

s[p,2n−p]s
′
[k,l]

2A.
= s′[k,l]s[p,2n−p].

Moreover,

s[p,2n−p]s[k,2n−k]
3A.
= s[2n−(2n−k),2n−k]s[p,2n−p] = s[k,2n−k]s[p,2n−p]

for 1 ≤ p < k < n, hence relation (22) holds. Now, for 1 ≤ p < k < l < n we have:

s[p,2n−p]s[k,l]s[2n−l,2n−k]
3A.
= s[2n−l,2n−k]s[p,2n−p]s[2n−l,2n−k]

3A.
= s[2n−l,2n−k]s[2n−(2n−k),2n−(2n−l)]s[p,2n−p]

=s[2n−l,2n−k]s[k,l]s[p,2n−p]

which establishes relation (23). Finally, for 1 ≤ p < k < l < q < n the following
holds:

s′[p,q]s
′
[k,l] =s[p,q]s[2n−q,2n−p]s[k,l]s[2n−l,2n−k]

2A.
= s[p,q]s[k,l]s[2n−q,2n−p]s[2n−l,2n−k]

3A.
= s[p+q−l,p+q−k]s[p,q]s[2n−(p+q−k),2n−(p+q−l)]s[2n−q,2n−p]

2A.
= s[p+q−l,p+q−k]s[2n−(p+q−k),2n−(p+q−l)]s[p,q]s[2n−q,2n−p]

= s′[p+q−l,p+q−k]s
′
[p,q].

This establishes relation (24). Any relation R′ = 1 with the elements s′[p,q] =

s[p,q]s[2n−q,2n−p] and s[k,2n−k], for some [p, q] ⊆ [n − 1] and [k, n] ⊆ [n], translates
to a relation R = 1 involving generators of J2n, of the form s[p,q], s[2n−q,2n−p] in pairs,
and s[k,2n−k], for some [p, q] ⊆ [n − 1] and [k, n] ⊆ [n], which satisfy the same kind
of relations as s′[p,q] and s[k,2n−k]. Therefore from R = 1 we don’t get new relations

R′ = 1. �
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Definition 3. The virtual symplectic cactus group J̃2n is the group with generators
s̃J , where J runs over all sub-diagrams of I = [2n − 1], the A2n−1 Dynkin diagram,
of the form J = [p, 2n − p] for all [p, n] ⊆ [n], or J = [p, q] ∪ [2n − q, 2n − p] for all
[p, q] ⊆ [n− 1] subject to the relations

1Ã. s̃2J = 1, J ⊆ [2n − 1],

2Ã. s̃J s̃J ′ = s̃J ′ s̃J , such that J ∪ J ′ is disconnected with respect to all [p, q] ⊆ [n],

3Ã. (i) s̃[p,2n−p]s̃[q,l]∪[2n−l,2n−q] = s̃[q,l]∪[2n−l,2n−q]s̃[p,2n−p], [q, l] ⊆ [p, n] ⊆ [n],

(ii) for [k, l] ⊆ [p, q] ⊆ [n− 1],

s̃[p,q]∪[2n−q,2n−p]s̃[k,l]∪[2n−l,2n−k] =

s̃[q+p−l,q+p−k]∪[2n−p+2n−q−(2n−k),2n−p+2n−q−(2n−l)]s̃[p,q]∪[2n−q,2n−p] =

s̃[q+p−l,q+p−k]∪[2n−(p+q)+k,2n−(p+q)+l]s̃[p,q]∪[2n−q,2n−p].

The following are 2n − 1 alternative generators of J̃2n:

s̃[1,j]∪[2n−j,2n−1], 1 ≤ j ≤ n− 1, (25)

s̃[j,2n−j], 1 ≤ j ≤ n. (26)

Proposition 4. There is an isomorphism J̃2n ≃ Jsp(2n,C).

Proof. Clearly J̃2n and Jsp(2n,C) satisfy the same relations corresponding to all con-
nected sub-diagrams [p, q] ⊆ [n]. Furthermore, the maps

Jsp(2n,C) → J̃2n

s[p,q] 7→ s̃[p,q]∪[2n−q,2n−p],

s[p,n] 7→ s̃[p,2n−p],

J̃2n → Jsp(2n,C)

s̃[p,q]∪[2n−q,2n−p] 7→ s[p,q],

s̃[p,2n−p] 7→ s[p,n]

are epimorphisms inverse to each other. This follows directly from the definitions

of J̃2n and Jsp(2n,C) (Definition 3 and Lemma 2 respectively). Therefore, Jsp(2n,C) ≃

J̃2n. �

Lemma 4. The following assignment defines a group injection from Jsp(2n,C) to J2n:

Γ : Jsp(2n,C) →֒ J2n
s[p,q] 7→ s′[p,q], 1 ≤ p ≤ q < n,

s[p,n] 7→ s[p,2n−p], 1 ≤ p ≤ n.

Proof. We begin by showing that the map induced by Γ is indeed a group homomor-
phism. We check the relations 1C. − 3C. from Lemma 2.
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1C. We have that for 1 ≤ p ≤ q < n,

Γ(s[p,q]
2) = s′[p,q]

2 (19)
= 1,

while for 1 ≤ p < n, we have Γ(s[p,n]
2) = s2[p,2n−p]

(20)
= 1.

2C. For 1 ≤ p ≤ q < n and 1 ≤ k ≤ l < n such that [p, q] ∪ [k, l] is disconnected,
the sub-diagrams [p, q]∪ [2n− q, 2n− p], and [k, l]∪ [2n− l, 2n− k] of [2n− 1]
are disconnected, hence

Γ(s[p,q]s[k,l])=s
′
[p,q]s

′
[k,l]

(21)
= s′[k,l]s

′
[p,q] = Γ(s[k,l]s[p,q]).

Additionally, if q = n, the sub-diagram [k, l] ∪ [p, 2n − p] ∪ [2n − l, 2n − k]
in [2n − 1] is disconnected, hence

Γ(s[p,n]s[k,l])=s[p,2n−p]s
′
[k,l]

(23)
= s′[k,l]s[p,2n−p]=Γ(s[k,l]s[p,n]).

3C. (i) We have that for 1 ≤ p < k < n and 1 ≤ p < k < l < n respectively:

Γ(s[p,n]s[k,n]) = s[p,2n−p]s[k,2n−k]
(22)
= s[k,2n−k]s[p,2n−p] = Γ(s[k,n]s[p,n])

Γ(s[p,n]s[k,l]) = s[p,2n−p]s[k,l]s[2n−l,2n−k]
(23)
= s[2n−l,2n−k]s[k,l]s[p,2n−p] = Γ(s[k,l]s[p,n]).

(ii) Let 1 ≤ p < k < l < q < n. Then

Γ(s[p,q]s[k,l]) = s′[p,q]s
′
[k,l]

(24)
= s′[p+q−l,p+q−k]s

′
[p,q] = Γ(s[p+q−l,p+q−k]s[p,q]).

We have now finished proving that Γ is a group morphism. To show that it is injective,
one needs to show that its left inverse defined by the assignment

Γ−1
left : im(Γ) ⊂ J2n →֒ Jsp(2n,C)

s′[p,q] 7→ s[p,q], 1 ≤ p ≤ q < n,

s[p,2n−p] 7→ s[p,n], 1 ≤ p ≤ n.

is also a group morphism. This however follows from Lemma 3 the previous calcula-
tions: the generators of im(Γ) satisfy the relations from Lemma 2, and there are no
more relations between them (all possible cases have been already covered above). �

Proposition 5. The group J̃2n is isomorphic to a subgroup of J2n.

Proof. The map

J̃2n →֒ J2n

s̃[p,q]∪[2n−q,2n−p] 7→ s′[p,q], 1 ≤ p ≤ q < n,

s̃[p,2n−p] 7→ s[p,2n−p], 1 ≤ p ≤ n.

is a a group injection. This follows directly after composing the maps from Proposition
4 and Lemma 4.

�
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We may also think of J̃2n as the unfolding of Jsp(2n,C) in J2n.

7. Full Schützenberger–Lusztig involutions and algorithms

7.1. Full Schützenberger–Lusztig involution. Let B(λ) be the normal g-crystal
with highest weight λ. Let uλ and ulowλ be the highest, respectively lowest, weight
elements of B(λ). The Schützenberger–Lusztig involution ξ : B(λ) → B(λ) is the
unique map of sets (hence set involution) such that, for all b ∈ B(λ), and i ∈ I,

• eiξ(b) = ξfθ(i)(b)
• fiξ(b) = ξeθ(i)(b)
• wt(ξ(b)) = w0wt(b)

where w0 is the long element of the Weyl groupW . ( For the existence and uniqueness
of ξ, ξ2 is a map of crystals and hence ξ2 = 1, see [HeKa06-1, BuSc17].) The involution
ξ acts by w0 on the weights and interchanges the action of ei and fθ(i). For An−1, ξ
acts by reversing the weight and interchanges the action of ei and fn−i; for Cn, ξ acts
by changing the sign of the weight and interchanges the action of ei and fi.

If B is a normal g-crystal, B is the disjoint union of connected components, each
of which is a crystal isomorphic to B(λ) for some dominant integral weight λ. We
define ξB on B by applying ξ to each one of its connected components. Each element
of B(λ) is generated by uλ (resp. ulowλ ) by applying fi’s (resp. ei’s). Hence the same
sequence of fi’s (resp. ei’s) applies to the highest weight (resp. lowest weight) of any
connected component of B isomorphic to B(λ).

The elements uλ and ulowλ are the unique elements of B(λ) of weight λ, respectively

w0λ. Hence, since wt(ξ(uλ)) = w0λ, and wt(ξ(ulowλ )) = λ, ξ interchanges highest

and weight elements of B(λ), and so ulowλ = ξ(uλ), ξ(u
low
λ ) = uλ. This implies that,

uλ = ejr · · · ej1(u
low
λ ), for some sequence j1, . . . , jr ∈ I, and

ulowλ = ξ(uλ) = ξ(ejr · · · ej1(u
low
λ )) = fθ(jr) · · · fθ(j1)(ξu

low
λ ) = fθ(jr) · · · fθ(j1)(uλ).

Corollary 2. Let b ∈ B(λ) and b = fjr · · · fj1(uλ), for jr, . . . , j1 ∈ I. Then

ξ(b) = eθ(jr) · · · eθ(j1)(u
low
λ ), wt(ξ(b)) = w0wt(b)

In particular,

• in type An−1, ξ(b) = en−jr · · · en−j1(u
low
λ ), and wt(ξ(b)) = revwt(b), where rev

is the reverse permutation (long element) of Sn,

• in type Cn, ξ(b) = ejr · · · ej1(u
low
λ ), and wt(ξ(b)) = −wt(b).

7.2. The full sl(n,C) reversal. For g = sl(n,C), ξ coincides with the Schützenberger
involution [Len07, BerZel96] also known as evacuation (evac for short) on SSYT(λ, n)
[Fu97, St01], and as reversal on the set SSYT(λ/µ, n) of type An−1 tableaux of skew-
shape λ/µ in the alphabet [n] [BSS96].

Let T ∈ B = SSYT(λ/µ, n) and let B(T ) be the connected component of the
crystal SSYT(λ/µ, n) containing T . Then B(T ) ≃ B(ν) for some partition ν and
rectification(T ) ∈ B(ν). Thereby, ξ(T ) is the unique tableau in B(T ) such that
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rectification ξ(T ) = evacuation(rectification(T )),

ξ(T ) = arectification(evacuation(rectification(T ))), (27)

where arectification denotes the inverse process of rectification [BSS96, ACM19]. More
precisely, the rectification (rect for short) procedure is recorded by assigning to the in-
ner shape µ of T a standard tableau S to form the tableau pair (S, T ). The entries of S
govern the jeu de taquin on T by sliding out all letters in the S filling, from the largest
to the smallest, to get a new tableau pair (rect(T ), S′) where S′ is the skew standard
tableau consisting of the slid letters from S. The anti-rectification procedure, arectifi-
cation, is defined by the reverse jeu de taquin to evacuation(rectification(T ) and is gov-
erned by the slid letters in S′ in the tableau pair (evacuation(rectification(T )), S′) from
the smallest to the largest. Eventually one obtains the tableau pair (S, reversal(T ))
where

reversal(T ) := arectification(evacuation(rectification(T ))). (28)

Next we will discuss g = sp(2n,C).

7.3. Lecouvey–Sheats symplectic jeu de taquin and symplectic Knuth equiv-

alence. If T is a KN tableau, we consider its word w(T ) ∈ C∗n obtained by reading
in the Japanese way the columns of T from rightmost to leftmost, each column read
from top to bottom.

7.3.1. Lecouvey–Sheats symplectic jeu de taquin. [Sh99, Lec02]
Let T be a punctured KN tableau with two columns C1 and C2 and split form

spl(T ) = lC1rC1lC2rC2, and let C1 have the puncture ∗. Let α be the entry under
the puncture of rC1 and β the entry to the right of the puncture of rC1,

spl(T ) = lC1rC1lC2rC2 =

. . . . . . . . . . . .

∗ ∗ β . . .

. . . α . . . . . .

. . . . . .

,

where α or β may not necessarily exist. The elementary steps of the symplectic jeu
de taquin, or SJDT for short, are the following:

A. If α ≤ β or β does not exist, then the puncture of T will change its position
with the cell beneath it. This is a vertical slide.

B. If the slide is not vertical, then it is horizontal. We then have α > β or that α
does not exist. Let C ′

1 and C ′
2 be the columns obtained after the slide. We have two

subcases, depending on the sign of β:
1. If β is barred, we are moving a barred letter, β, from lC2 to the punctured box

of rC1, and the puncture will occupy β’s place in lC2. Note that lC2 has the same
barred part as C2 and that rC1 has the same barred part as Φ(C1). Looking at T ,
we will have an horizontal slide of the puncture, getting C ′

2 = C2 \ {β} ⊔ {∗} and
C ′
1 = Φ−1(Φ(C1) \ ∗ ⊔ {β}). In a sense, β went from C2 to Φ(C1).
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2. If β is unbarred, the procedure is similar, but this time β will go from Φ(C2) to
C1; hence C

′
1 = C1 \ ∗ ∪ {β} and C

′
2 = Φ−1(Φ(C2) \ {β} ⊔ ∗). However, in this case

it may happen that C ′
1 is no longer admissible. In this situation, if i is the lowest

entry such that i, ī appear in C ′
1 and N(i) > i, we erase both i and i from the column

and remove a cell from the bottom and from the top of the column, and place all the
remaining cells orderly.

Applying elementary SJDT slides successively, eventually, the puncture will be a cell
such that α and β do not exist. In this case we redefine the shape to not include this
cell and the jeu de taquin ends. The SJDT when applied to semi-standard tableaux
in the alphabet [n] reduces to the ordinary jeu de taquin.

The SJDT is reversible, meaning that we can move ∗, the empty cell outside of
µ, to the inner shape ν of a skew tableau T of shape µ/ν, simultaneously increasing
both the inner and outer shapes of T by one cell. The slides work similarly to the
previous case: the vertical slide means that an empty cell is going up, and a horizontal
slide means that an entry goes from Φ(C1) to C2 or from C1 to Φ(C2), depending on
whether the slid entry is barred or not, respectively.

7.3.2. Symplectic Knuth equivalence. In this section we gather the necessary tools
from [LLT95, Lec02]. For w ∈ C∗n, let P (w) be the Kashiwara–Nakashima tableau
obtained by performing the Baker–Lecouvey insertion algorithm on w. We do not
need the algorithm in this paper, but refer the reader to [Ba00b, Lec02] for the original
descriptions. A detailed account can also be found in [Sa21b]. Given w1, w2 ∈ C

∗
n, the

relation w1 ∼ w2 ⇔ P (w1) = P (w2) defines an equivalence relation on C∗n known as
symplectic plactic equivalence. It is the analogous relation defined by Knuth relations
in the alphabet [n] [Fu97]. The symplectic plactic monoid is the quotient C∗n/ ∼. Each
symplectic plactic class is uniquely identified with a KN tableau.

The plactic monoid C∗n/ ∼ can also be described as the quotient of C∗
n by the

following symplectic plactic relations (we use the notation from [Lec02]):

R1

yzx ∼= yxz for x ≤ y < z with z 6= x̄

xzy ∼= zxy for x < y ≤ z with z 6= x̄

R2

yx− 1(x− 1) ∼= yxx and xxy ∼= x− 1(x− 1)y for 1 < x ≤ n and x ≤ y ≤ x̄

R3 (Symplectic contraction/dilation relation) w ∼ w \ {z, z}, where w ∈ C∗n and
z ∈ [n] are such that w is a non-admissible column, z is the lowest non-barred
letter in w such that N(z) = z+1 and any proper factor of w is an admissible
column.

Remark 10. [Sa21a] It can be proven that given a column word w ∈ C∗n, any proper
factor is admissible if and only if any proper prefix of w is admissible. Thus, in order
to be able to apply the plactic relation R3 to a non-admissible column word w, we need
only check that all proper prefixes of w are admissible, instead of all proper factors.
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For example,

2344̄3̄
R3
≡ 233̄, 12344̄3̄

R3
≡ 1233̄

R3
≡ 12. (29)

When Knuth relations are applied to factors of a word, the weight is preserved while
the length may not be. Knuth relations can be seen as jeu de taquin moves on words
or diagonally shaped tableaux, and each symplectic jeu de taquin slide preserves the
Knuth class of the reading word of a tableau [Lec02, Theorem 6.3.8]. The words 23231

and 11133 are Knuth related: 11133
R1
∼ 11313

R1
∼ 11331

R2
∼ 22331

R1
∼ 23231.

7.4. Full symplectic reversal.

7.4.1. Symplectic evacuation algorithm. In [Sa21a], Santos introduced a symplectic
evacuation algorithm on tableaux in KN(λ, n) denoted by evacCn which he proved
coincides with the full Lusztig–Schützenberger involution on a given Uq(sp(2n,C))-
crystal B(λ) associated to a representation of highest weight λ. The algorithm is
defined on a given tableau T ∈ KN(λ, n) as follows. First, one complements its entries,
that is, replaces all unbarred i’s by ī’s and all ī’s by i’s (this amounts to the action
of wC

0 = −id on the entries of the tableau). Second, one performs a rotation by π to
obtain a skew tableau. Finally, one performs symplectic rectification or insertion using
Lecouvey–Sheats symplectic jeu de taquin [Sh99, Lec02, Lec07], or Baker–Lecouvey
insertion [Ba00b, Lec02, Lec07] respectively. The resulting tableau is defined to be
evacCn(T ). We refer the reader to [Sa21a, Section 5] for detailed examples of the
algorithm. Santos’ evacuation mimics the Schützenberger evacuation on SSYT(λ, n)
by replacing the action of the long element of Sn with that of the long element of Bn.

7.4.2. Full symplectic reversal on KN skew tableaux. The set KN(λ/µ,m) is a normal
Cm crystal whose connected components are isomorphic to KN(ν,m) for some parti-
tion ν whose number of boxes |ν| might be less than |λ| − |µ|. Let n = m + j − 1,
where 1 ≤ j− 1 < n is the number of parts of µ and J = [j, n]. Shifting the entries of
the skew KN tableaux in KN(λ/µ,m) by j − 1, we may identify KN(λ/µ,m) with the
(normal) full sub-crystal B(λ, µ) ⊂ KNJ(λ, n) consisting of the tableaux in KN(λ, n)
with entries exclusively in 1 < · · · < j < j + 1 < · · · < j +m < j +m < · · · < j and
whose sub-tableaux on the alphabet {1, . . . , j − 1} is the fixed Yamanouchi tableau
of shape µ [Lec02, Lemma 6.1.3]. B(λ, µ) is stable under the action of fi+j−1, ei+j−1,
i = 1, . . . ,m, and it decomposes into connected components of KNJ(λ, n). That is, the
crystal operators, fi, ei, i = 1, . . . ,m do not change the skew-shape of a KN tableau
on the alphabet Cm, and KN(λ/µ,m) decomposes into connected components that
can be identified with the connected components of B(µ, λ).

In both type An−1 and type Cn, Kashiwara operators ei and fi commute with
SJDT slides. Let T ∈ B = KN(λ/µ, n). An inner corner in T is a box of µ such that
the boxes below and to the right are not in µ; an outer corner in T is a box of λ such
that the boxes below and to the right are not in λ. Let c be a fixed inner/outer corner
of T . An SJDT slide or a complete SJDT slide to the inner corner c means a slide of
the box c from an inner corner to an outer corner, or vice-versa. An SJDT slide to
the inner/outer corner c of T gives a new KN skew tableau SJDT (T, c), possibly with
fewer/more boxes. Applying an SJDT slide to the same inner corner c in all vertices
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of B(T ) defines an isomorphic crystal B(SJDT (T, c)) [Lec02, Theorem 6.3.8]. The
images of the KN tableaux in the same connected component of KN(λ/µ,m) under
this crystal isomorphism have the same skew shape [Lec02, Theorem 6.3.8]. Iterating
the SJDT to all inner corners of T rectifies T , producing rect(T ) [Sh99, Proposition
9.2], [Lec02, Theorem 6.1.9, Theorem 6.3.9].

At the end of each SJDT slide, the inner corner (outer corner) where the slide
started is filled, or the column where the slide started has 2 fewer (more) boxes [Sh99,
Proposition 9.2], [Lec02, Theorem 6.1.9]. The SJDT step where the tableau loses
two boxes in a column has a previous step where this column is non- admissible
but Knuth equivalent to the new column which is admissible. The step in reverse
SJDT where the tableau gains two boxes in a column is R3 Knuth equivalent to
the previous one which is admissible. Therefore, in each step of SJDT we get crystals
which are isomorphic. This allows, in the vein of reversal for An−1 skew semi-standard
tableaux, the definition of symplectic reversal, reversalCn , on type Cn skew tableaux
as a coplactic extension of evacuationCn .

Lemma 5. Let T ∈ B = KN(λ/µ, n). Then ξCn(T ) is the unique KN tableau in B(T )
that is symplectic Knuth equivalent to evacCn rect(T ), and

rectification ξCn(T ) = evacuation
Cn(rectification(T )). (30)

Proof. The crystal B(T ) ≃ B(ν) for some partition ν and rectification(T ) ∈ B(ν).
The full Schützenberger-Lusztig involution on KN tableaux of straight shape satisfies
ξCn(rect(T )) = evacuationCn(rect(T )), and crystal operators commute with SJDT
when passing from B(T ) to B(ν). Therefore, (30) holds. �

In Subsection 9.2.1 we will provide an algorithm for partial symplectic reversal on
KNJ(λ, n) with J = [j, n]. An algorithm for full Cn reversal on KN(λ/µ, n) will result
as a special case by considering the normal full sub-crystal B(µ, λ) of KNJ(λ, n).

8. Internal cactus group action on a normal crystal

8.1. Partial Schützenberger-Lusztig involutions. Partial Schützenberger invo-
lutions were first studied in the case g = sl(n,C) by Berenstein and Kirillov [BerKir95]
but have been defined by Halacheva in general for g: given J ⊆ I any sub-diagram,
the partial Schützenberger–Lusztig involution ξJ is defined to be the Schützenberger–
Lusztig involution ξBJ

on the normal crystal BJ [HaKaRyWe20]. The crystal BJ

decomposes into connected components, and we apply the Schützenberger–Lusztig
involution to each connected component. Let b ∈ B, and let uhigh, ulow be the high-
est and lowest weight elements of the connected component of BJ containing b. Let
b = fjr · · · fj1(u

high), with jr · · · j1 ∈ J . Then, for j ∈ J ,

ξJej(b) = fθJ(j)ξJ(b), (31)

ξJfj(b) = eθJ (j)ξJ(b), (32)

wtJ(ξJ(b)) = wJ
0wtJ(b), (33)



SYMPLECTIC CACTI, VIRTUALIZATION AND BERENSTEIN–KIRILLOV GROUPS 27

and

ξJ(b) = eθJ (jr) · · · eθJ (j1)(u
low).

Remark 11. If J = K ∪ K ′ ⊆ I is disconnected with K and K ′ connected sub-
diagrams of I, we have the sub-type Dynkin diagram K ×K ′, and the Weyl group is
WK×WK ′

with longest elements wK
0 and wK ′

0 , respectively, such that wJ
0 = wK

0 w
K ′

0 =

wK ′

0 wK
0 . The weight lattice of gK ⊕ gK ′ is ΛK∪K ′ := ΛK ⊕ΛK ′ (see [BuSc17]). Then

if θK and θK ′ are the graph automorphisms defined by wK
0 and wK ′

0 in K and K ′,
respectively, θJ = θKθK ′ = θK ′θK is a graph automorphism of the Dynkin graph
K ×K ′ and hence preserves the connected sub-diagrams K and K ′ of I as defined in
Section 3. Thanks to [Ha16, Lemmas 10.1.3, 10.1.4], [HaKaRyWe20, 2368–2369], the
crystal operators act componentwise on the normal crystal BK∪K ′ (a normal gK⊕gK ′–
crystal), and satisfy the following properties

fkfk′ = fk′fk, fkek′ = ek′fk, ekek′ = ek′ek, ekfk′ = fk′ek, for k ∈ K, k′ ∈ K ′, (34)

εk(ek′(b)) = εk(b), ϕk(ek′(b)) = ϕk(b), for k ∈ K, k′ ∈ K ′, and ek′(b) 6= 0

ek′ξBK
= ξBK

ek′ , fk′ξBK
= ξBK

fk′ , for k ∈ K, k′ ∈ K ′, (35)

ekξBK′
= ξBK′

ek, fkξBK′
= ξBK′

fk, for k ∈ K, k′ ∈ K ′. (36)

This extends to a disconnected sub-diagram with more than two connected sub-diagrams.
Henceforth, from [Ha16, HaKaRyWe20], ξK and ξK ′ commute

ξKξK ′ = ξK ′ξK .

Lemma 6. Let J = K ∪K ′ ⊆ I be a disconnected sub-diagram of I with K and K ′

connected. Then BK∪K ′ is a normal crystal, and the Schützenberger–Lusztig involu-
tion on BK∪K ′, ξK∪K ′ satisfies

ξK∪K ′ = ξKξK ′ = ξK ′ξK .

Proof. The result follows from the previous remark: ξKξK ′ = ξK ′ξK is an involu-
tion, and from (34), (35) and (36), it satisfies the conditions (31), (32) above. In

addition, the weight map wtk∪k′ : B
wt
→ Λ → ΛK∪K ′ = ΛK ⊕ ΛK ′ and therefore,

wtk∪k′(ξKξK ′(b)) = (wtK(ξK(b)),wtK ′(ξK ′(b)) = wK
0 w

K ′

0 (wtK(b),wtK ′(b)). Since there
is only one set involution on BK∪K ′ satisfying (31), (32), and (33), we have that
ξK∪K ′ = ξKξK ′ = ξK ′ξK . �

The partial Schützenberger–Lusztig involutions ξJ, for any J ⊆ I a connected
Dynkin sub-diagram of I, satisfy the Jg cactus relations.

Theorem 1 ([Ha16]). The map sJ 7→ ξJ, for all J ⊆ I connected Dynkin sub-diagrams
of I, defines an action of the cactus group Jg on the set B; that is, the following is a
group homomorphism

Φg : Jg → SB
sJ 7→ ξJ.

Moreover wtJ(ξJ(b)) = wJ
0wtJ(b), b ∈ B.
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In other words, sJ acts on each connected component of B by permuting its vertices
via ξJ exchanging highest weight and lowest weight elements.

Remark 12. (1) The action of Jg factorizes through the quotient by the braid relations

of Wg.
(2) The partial Schützenberger–Lusztig involutions satisfy the cactus relations, and,

in particular, for g = sl(n,C), and g = sl(n,C), sp(2n,C), it holds that

ξ
An−1

[n−i,n−1] = ξ
An−1

[1,n−1]ξ
An−1

[1,i] ξ
An−1

[1,n−1], 1 ≤ i < n, ξCn

[i,n] = ξCn

[1,n]ξ
Cn

[i,n]ξ
Cn

[1,n], 1 ≤ i ≤ n,

respectively.

The following corollary motivates what comes in the next section.

Corollary 3. (a) For the sl(n,C)-crystal SSYT(λ, n), the map

s[1,j] 7→ ξ[1,j] = evacj+1, 1 ≤ j ≤ n− 1,

where evacj+1 denotes the evacuation on the sub-tableaux of straight shape obtained
by restricting the entries to {1, . . . , j + 1} and fixing the remaining ones, defines an
action of the cactus group Jn on the set SSYT(λ, n).

(b) For the sp(2n,C)-crystal KN(λ, n), the map

s[1,j] 7→ ξCn

[1,j], 1 ≤ j ≤ n− 1, (37)

s[j,n] 7→ ξCn

[j,n], 1 ≤ j ≤ n, (38)

defines an action of Jsp(2n,C) on the set KN(λ, n), where ξCn

[1,n] = ξCn = evacCn ,

ξCn

[1,j], 1 ≤ j ≤ n − 1 is given by the Baker embedding, Theorem 5, and ξCn

[j,n], 1 ≤

j ≤ n − 1 is given either by the partial symplectic reversal in (52), Subsection 9.2.1
or by the Baker embedding, Theorem 6.

8.2. The virtual symplectic cactus group action on an sl(2n,C)-crystal and
the virtualization of an sp(2n,C)-crystal. On An−1 semi-standard tableaux, there
is a straightforward algorithm to compute the action of a partial Schützenberger–
Lusztig involution ξJ with J a connected An−1 Dynkin sub-diagram. Let I = [n− 1]
and J = [p, q] ⊂ I, 1 ≤ p ≤ q < n, be a connected sub-diagram. The J-partial reversal,
reversalJ , is the reversal on SSYTJ(λ, n) which means the reversal or Schützeberger in-
volution ξ applied to each connected component of SSYTJ(λ, n). Let T ∈ SSYT(λ, n),
then, from (27) and (28):

ξJ(T ) = reversalJ(T )

:= (T[1,p−1], reversal(T[p,q+1]), T[q+2,n])

= (T[1,p−1], arectification(evacuation(rectification(T[p,q+1]))), T[q+2,n]), (39)

where T = (T[1,p−1], T[p,q+1], T[q+2,n]) is such that T[1,p−1] is the tableau obtained
by restricting T to the alphabet [1, p − 1], T[p,q+1] is the skew tableau obtained by
restricting to the alphabet [p, q + 1], and T[q+2,n] is obtained by restricting to the
alphabet [q+2, n]. Indeed, if J = [1, q], reversal[1,q](T ) = evacq+1(T ). The case where
J is a disconnected sub-diagram of I will be a consequence of Lemma 6.
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To define an internal action of the virtual symplectic cactus group J̃2n on a crystal
SSYT(µ, n, n̄) with µ a partitition with at most 2n parts, thanks to Lemma 6, we now
explicitly characterize the partial Schützenberger-Lusztig involution on a disconnected
sub-diagram J ∪J ′ of the A2n−1 Dynkin diagram such that J ⊆ [n−1] and J ′ ⊆ [n̄, 2̄]
are connected sub-diagrams. In the case of the A2n−1 Dynkin diagram, we label its
nodes either in [2n− 1] or in {1, . . . , n, n̄, . . . , 2̄}.

Theorem 2. Let J ∪ J ′ be a disconnected sub-diagram of the A2n−1 Dynkin diagram
I = {1, . . . , n, n̄, . . . , 2̄} such that J ⊆ [n − 1] and J ′ ⊆ [n̄, 2̄] are connected sub-

diagrams. Then ξ
A2n−1

J∪J ′ , the Schützenberger-Lusztig involution on SSYTJ∪J ′(µ, n, n̄),
with µ a partition with at most 2n parts, satisfies

ξ
A2n−1

J∪J ′ = ξ
A2n−1

J ξ
A2n−1

J ′ = ξ
A2n−1

J ′ ξ
A2n−1

J (40)

= reversal
A2n−1

J reversal
A2n−1

J ′ = reversal
A2n−1

J ′ reversal
A2n−1

J . (41)

where ξ
A2n−1

J = reversal
A2n−1

J and ξ
A2n−1

J ′ = reversal
A2n−1

J ′ are the Schützenberger-
Lusztig involutions on SSYTJ(µ, n, n̄) and SSYTJ ′(µ, n, n̄), respectively.

Remark 13. This statement is indeed also valid for the Schützenberger-Lusztig in-
volution on SSYTJ∪J ′(µ, n) where J ∪ J ′ is a disconnected sub-diagram of the An−1

Dynkin diagram with n odd.

The cactus group J2n acts on an A2n−1-crystal of semi-standard tableaux via

partial reversals. We now conclude that the virtual symplectic cactus J̃2n, Definition
3, a subgroup of J2n, also does. In the next section, Subsection 9.5, we establish that
this action has the feature to preserve the subset E(KN(λ, n)).

Theorem 3. For the sl(2n,C)-crystal of tableaux SSYT(µ, 2n), with µ a partition
with at most 2n parts, the map

s̃[1,q]∪[2n−q,2n−1] 7→ ξ
A2n−1

[1,q]∪[2n−q,2n−1] =ξ
A2n−1

[1,q] ξ
A2n−1

[2n−q,2n−1]

=evacq+1evac2nevacq+1evac2n, 1 ≤ q < n,
(42)

s̃[q,2n−q] 7→ ξ
A2n−1

[q,2n−q] =reversal
A2n−1

[q,2n−q], 1 ≤ q ≤ n,

(43)

defines an action of the virtual symplectic cactus group J̃2n on the set SSYT(µ, 2n).
That is, the following is a group homomorphism

Φ̃sl(2n,C) : J̃2n → SB

s̃J 7→ ξ
A2n−1

J ,

where B = SSYT(µ, 2n) and J as in (42)or (43). Moreover, the action of J̃2n on
SSYT(λA, n, n̄) preserves the subset E(KN(λ, n)).

Proof. Since J2n acts on SSYT(µ, 2n), the partial Schützenberger involutions ξJ, with
J a connected sub-diagram of the A2n−1 Dynkin diagram I = [2n−1], satisfy the J2n
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cactus relations namely the ones in Lemma 3 which are the J̃2n relations. We consider

J̃2n with generators (25), (26). In Subsections 9.4.1 and 9.5, (58), we conclude that

J̃2n acts on the set SSYT(λA, n, n̄) permuting its elements in a way that the subset
E(KN(λ, n)) is preserved. �

Therefore, the partial Schützenberger involutions ξJ, with J any connected sub-
diagram of the A2n−1 Dynkin diagram of the form J = [q, 2n − q], [q, n] ⊆ [n], or

J = [1, q] ∪ [2n − q, 2n − 1], [1, q] ⊆ [n − 1], satisfy the virtual symplectic cactus J̃2n
relations.

9. Partial symplectic Schützenberger–Lusztig involutions and

algorithms

For J a connected sub-diagram of the Dynkin diagram I = [n−1] of type An−1, the
partial Schützenberger involution ξJ coincides with J-partial reversal, that is, reversalJ
(39). The case wherein J is a disconnected sub-diagram of I has been studied in
Theorem 2 and Remark 13.

So far, there is no known form of tableau-switching for KN tableaux. The algorithm
to compute J-partial symplectic reversal, reversalCn

J , with J = [p, n] a sub-diagram in
the Dynkin diagram I of type Cn, presented in subsection 9.2 and summarized in
(52), is inspired by this problem and mimics the type A partial reversal algorithm on
type An−1 tableaux, summarized in (39). The case J = [p, q] ⊆ I, p < q < n, is solved
by virtualization in Subsection 9.4.1. In fact, all partial symplectic reversals can be
virtualized as shown in Subsection 9.4.1.

9.1. Dynkin sub-diagram with a sole node and the Weyl group action. Let B
be a normal crystal. If J has a sole node i of I, ξi := ξ{i}, the Schützenberger–Lusztig
involution to the i-strings (the connected components) of B{i}, agrees with the Kashi-
wara g-crystal reflection operator, originally studied by Lascoux and Schützenberger in
the gl(n,C) case [LSü81] and rediscovered by Kashiwara for any Cartan type [Kas94].

Theorem 4. [Kas94, Section 7] {ξi : i ∈ I} define an action of the Weyl group W on
the underlying set of the normal crystal B, ri.b = ξi(b), for b ∈ B, such that

(1) eiξi = ξifi,
(2) ri.wt(b) = wt(ξi(b)),

(3) ulowλ = w0.u
high
λ , if B = B(λ).

The i-string of b ∈ B: ϕi(ξi(b)) = εi(b), or equivalently εi(ξi(b)) = ϕi(b)

ei(b) b fi(b) ξi(b) f
ϕi(b)
i (b)e

εi(b)
i (b)

εi(b) ϕi(b)

Next propositions are a follow-up of the action of the Weyl group on i-strings where
useful information is gathered.

Proposition 6. (1) For Uq(sp(2n,C)) and the alphabet Cn: given i ∈ [n− 1], let
u− be a word in the alphabet {i, i+ 1} with length ℓ(u−) = r, and let v+ be a
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word in the alphabet {i, i + 1} with length ℓ(v+) = s. Then, for all ri ∈ Bn,
1 ≤ i ≤ n− 1,

ri.(u
−v+) = ξi(u

−v+) =





u−1 e
r−s
i (u−2 )v

+, r > s

u−v+, r = s

u−f s−r
i (v+1 )v

+
2 , r < s

, (44)

such that when r > s, u− = u−1 u
−
2 , with ℓ(u−2 ) = r − s, and when r < s,

v = v+1 v
+
2 with ℓ(v+1 ) = s− r.

When i = n,
rn.n

rns = ξn(n
rns) = nsnr. (45)

(2) If b ∈ B(λ) with b = fjr · · · fj1(uλ), and rk · · · rirj is a reduced word for w0 ∈
W , then

ξ(b) = eθ(jr) · · · eθ(j1)(rk · · · rirj.uλ).

(3) For Uq(sp(2n,C)): the crystal reflection operators ξi satisfy the relations of
the Weyl group Bn:
• ξ2i = 1, 1 ≤ i ≤ n,
• ξiξj = ξjξi, |i− j| > 1, 1 ≤ i, j ≤ n,
• (ξiξi+1)

3 = 1, 1 ≤ i ≤ n− 2,
• (ξn−1ξn)

4 = 1.

Example 6. From (44), (45), the action of ξi on a KN tableau is given by the sig-
nature rule on its reading word [KasNak91, Lec02]:

(1)

T =

1 2 2 3 2 1
2 4 3 3 1
4 2 1
4

→

+ − − 3 + −
− 4 3 3 −
4 + −

4

→

+ − − 3 + −
− 4 3 3 −
4 + −

4

→

+ 1 1 3 + −
− 4 3 3 −
4 + 2
4

→ ξ1(T ) =

1 1 1 3 2̄ 1̄
2 4̄ 3̄ 3̄ 1̄
4 2̄ 2
4

, wt(ξ1(T )) = r1.wt(T ) = r1(−2, 1,−1,−1) = (1,−2,−1,−1)

The reading word of T is 121212212 and

ξ1(121212212) = −(+−)−−−+(+−)→ −(+−)+ + ++ (+−) = 121121212

wt(121121212) = (1,−2) = r1.wt(121212212) = (−2, 1)

S =
2 3 3 2 1
4 4 1 1
4 2

→
− 3 3 + −
4 4 − −

4 +
→
− 3 3 + +
4 4 + −

4 +
→
− 3 3 + 2
4 4 2 −

4 +
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→ ξ1(S) =
2 3 3 2̄ 2
4 4 2 1̄
4 +

, wt(ξ1(S)) = r1.wt(S) = r1(−3,−1, 2,−1) = (−1,−3, 2,−1)

(2) ξ4(T ) = ξ4

1 2 2 3 2 1
2 4 3 3 1
4 2 1
4

= ξ4

1 2 2 3 2 1
2 4 3 3 1
4 2 1
4

=

1 2 2 3 2 1
2 4 3 3 1
4 2 1
4

wtξ4(T ) = r4.wt(T ) = r4(−2, 1,−1,−1) = (−2, 1,−1, 1).

Proposition 7. Let B(λ) be a type Cn crystal, J ⊆ I and BJ = BJ(λ). Let b ∈ B(λ).

The connected component of BJ containing b has highest weight element bhighJ and

lowest weight element blowJ . Then

(1) blowJ = ra · · · rd.b
high
J = ξa · · · ξd(b

high
J ) where ra · · · rd is a short word for wJ

0 ∈

W J with a, . . . , d ∈ J , and b = fjr · · · fj1(b
high
J ) for some jr, . . . , j1 ∈ J .

(2) If J = [p, n], B[p,n] is a type Cn−p+1 crystal, then

ξJ(b) = ejr · · · ej1(ra · · · rd.b
high
J ), wtJ(ξJ(b)) = −wtJ(b),

where wtJ(x) ∈ Z
n−p+1, x ∈ B, denotes wt(x) ∈ Z

n restricted to the entries
in [p, n].

(3) If J = [p, q], 1 ≤ p ≤ q < n, B[p,q] is a type Aq−p+1, crystal, and

ξJ(b) = eq−p−jr+1 · · · eq−p−j1+1(ra · · · rd.b
high
J ), wtJ(ξJ(b)) = reverse(wtJ(b)),

where wtJ(x) ∈ Z
q−p+1, x ∈ B, denotes wt(x) ∈ Z

n restricted to the entries
in [p, q + 1].

9.2. Dynkin sub-diagram J = [j, n]: J-symplectic reversal. On the set KN(λ, n),

ξCn = ξCn

[1,n] coincides with Santos’ symplectic evacuation evacCn (see 7.4.1 or [Sa21a,

Section5]). The partial Schützenberger–Lusztig involution ξCn

[j,n] is the Schützenberger–

Lusztig involution on each connected component of KN[j,n](λ, n).

9.2.1. The action of the Knuth operator R3 on a skew tableau. Given 1 < j ≤ n,
the Levi branched crystal KN[j,n](λ, n) decomposes into connected components. Let
T ∈ KN(λ, n), which belongs to some connected component of KN[j,n](λ, n), and let
T[±j,n] denote the restriction of T to the alphabet [±j, n]. T[±j,n] is a KN skew tableau
on the alphabet Cn (Lemma 7). However, T[±j,n] might have non-admissible columns
with respect to the alphabet [±j, n]. This means that by doing a shift of −(j−1) to the
entries of T[±j,n], we might produce a non-admissible skew tableau on the alphabet
Cn−j+1 (recall Definition 1 and Remark 2). We show that under the action of the
contractor operator R3, T[±j,n] is symplectic Knuth equivalent to a KN skew tableau
on the alphabet [±j, n]. Consequently, the connected component containing T[±j,n]

is symplectic Knuth equivalent to a crystal connected component of admissible skew
tableaux on the alphabet [±j, n] (of the same skew shape).
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Proposition 8. [Lec02, Proposition 2.3.3] Let C1, . . . , Ck be admissible columns on
the alphabet Cn. Then T = C1C2 · · ·Ck is a KN tableau on the alphabet Cn if and only
if l(Ci) ≤ r(Ci+1), that is, if l(Ci)r(Ci+1) is a type A2n−1 semi-standard tableau for
i = 1, . . . , k − 1.

Lemma 7. Let T ∈ KN(λ, n). The restriction of T to the alphabet [±j, n] = [n]\{1 <
· · · < j − 1 < j − 1 < · · · < 2̄ < 1̄}, T±j,n, is a KN skew tableau on the alphabet Cn
where T±j,n might have non-admissible columns with respect to the alphabet [±j, n].

Proof. If a cell of T has a barred letter in [±j − 1], then the cells to the southeast
have barred entries in [±j − 1], and if a cell of T has a non-barred letter in [±j − 1],
then the cells to the northwest are non-barred and belong to [j − 1]. Therefore, the
non-barred letters of T in [±j−1] define a partition shape, say µ, in T , and the barred
letters in [±j − 1] define a skew shape λ/ν where µ ⊆ ν ⊆ λ. Hence the cells of T
filled in [±j, n] = [n] \ {1 < · · · < j − 1 < j − 1 < · · · < 2̄ < 1̄} define the skew shape
ν/µ. �

Lemma 8. Let C1 and C2 be two columns with entries on the alphabet [±j, n] such
that C1C2 is a skew KN tableau on the alphabet Cn. Assume that C1 and C2 have
exactly m ≥ 0 and t ≥ 0 pairs of symmetric entries (x, x̄), respectively, with N(x) > x
with respect to the alphabet [±j, n]. The columns are admissible skew tableaux on the
alphabet Cn but not necessarily on the alphabet [±j, n] when j > 1. Then C1 has at
least m boxes strictly below the row containing the last box of C2, and C2 has at least
t boxes strictly above the row containing the top box of column C1.

Proof. Consider spl(C1C2) = lC1rC1lC2rC2 in [±n], which is a type A2n−1 semi-
standard tableau on the alphabet Cn. Under the lemma’s assumptions, when m > 0,
C1 is not-admissible in [±j, n] and has m > 0 pairs of symmetric entries (αi, ᾱi) where
N(αi) > αi, i = 1, . . . ,m; when t > 0, C2 is not admissible in [±j, n] and has t > 0
pairs of symmetric entries (βi, β̄i) where N(βi) > βi, i = 1, . . . , t. Therefore, from the
definition of spl(C1C2), the top box of r(C1) is filled in the interval [±j, n], and the
first t entries of lC2 are filled in [j − 1]. Since rC1lC2 is a type A2n−1 semi-standard
tableau on the alphabet Cn, it follows that the first t entries of column C2 are strictly
above the row containing the top box of column C1. On the other hand, from the
definition of spl(C1C2), the last m boxes of r(C1) are filled in {(j − 1) < · · · < 2̄ < 1̄},
and the bottom box of lC2 is filled in [±j, n]. Similarly, since rC1lC2 is a type A2n−1

semi-standard tableau on the alphabet Cn, it follows that the last m entries of column
C1 are strictly below the row containing the bottom box of column C2. �

Let (R3)m denote the iteration of the Knuth operator R3, m ≥ 0 times.

Proposition 9. Let C1, C2 be two columns on the alphabet [±j, n] such that C1C2

is a skew KN tableau on the alphabet Cn under the conditions of the previous lemma.

Let C1
(R3)m

≡ X, where X is an admissible column on [±j, n], and C2
(R3)t

≡ Y , where

Y is an admissible column on [±j, n]. Then C1C2
(R3)m

≡ XC2
(R3)t

≡ XY is a skew
KN tableau on [±j, n].
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Proof. Under our assumptions, C1 has m ≥ 0 pairs of symmetric entries (αi, ᾱi),
where N(αi) > αi, i = 1, . . . ,m, with respect to the interval [±j, n] (a column is
non-admissible on [±j, n] if m > 0), and the R3 contraction is applied m ≥ 0 times

to C1, C1
(R3)m

≡ X, where X is admissible on [±j, n]. Henceforth, after applying the
contraction R3 m times to C1, the relevant m pairs of symmetric entries are deleted,
the top m entries and the bottom m entries of column C1 are made empty and the
remaining entries of C1 are put in order in the remaining |C1| − 2m boxes of C1 to
define the admissible column X on [±j, n]. Similarly, under our assumptions about
C2, C2 has t ≥ 0 pairs of symmetric entries (βi, β̄i) such that N(βi) > βi, i = 1, . . . , t,
with respect to the interval [±j, n]. After applying the contraction R3 t to C2, the
relevant t pairs of symmetric entries are deleted, the top t entries and the bottom t
entries of column C2 are made empty and the remaining entries of C2 are put in order
in the remaining |C2| − 2t boxes of C2 to define the admissible column Y on [±j, n].
Thus, from Lemma 8, the resulting pair XY of admissible columns has skew shape.

Moreover, XY is a KN skew tableau on the alphabet [±j, n], that is, rX lY , with
entries on the alphabet [±j, n], is a type A2n−1 semi-standard tableau. By definition
of spl(X)spl(Y ), rX lY has the same skew shape as XY . Note that

rX = rC1 \ ({α1, . . . αm} ⊔ [±j − 1])

is obtained from rC1 by emptying the top m boxes and bottom m boxes of rC1 and
by filling in order the remaining boxes of rC1 with rC1 \ ({α1, . . . αm} ⊔ [±j − 1]).
Indeed, from Lemma 8,

rX ≤ lC2 \ [j − 1],

and in particular, rXlC2 \ [j−1]) is a semi-standard tableau. Recall that the top box
of rC1 is strictly below the top t boxes of rC2 (exactly the ones in lC2 filled in [j−1]),
and the bottom box of lC2 is strictly above the bottom m boxes of rC1 (exactly the

ones in rC1 filled in (j − 1) < · · · < 1̄).
Finally, note that

lY = lC2 \ ([j − 1] ⊔ {β̄1, . . . , β̄t}),

and if rXlC2\[j−1]) is a semi-standard tableau, then rXl(C2\([j−1]⊔{β̄1, . . . , β̄t}) =
rX lY is also a semi-standard tableau. �

9.2.2. Reduced symplectic jeu de taquin. Given T ∈ KN(λ/µ, n) and j ∈ [n] such
that T has all entries in [±j, n], the following is an algorithm to compute the reduced
symplectic jeu de taquin on T on the interval [±j, n], denoted SJDTj. The skew
tableau T might not be admissible on the alphabet [±j, n]. This means that we apply
the SJDT after shifting all entries in T by −(j− 1) and iterating on T the contractor
operator R3 the needed number of times to get an admissible skew tableau on the
alphabet Cn−j+1. When j = 1, we recover the ordinary SJDT.

Definition 4. Reduced SJDT (SJDTj)

• Let Tj be the tableau obtained by replacing each non-barred entry c and barred
entry c̄ in T by c− j + 1 and c− j + 1, respectively.
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• If Tj is not a KN tableau in KN(λ/µ, n − j + 1), we have some columns

containing pairs of the form b, b such that b ∈ [n − j + 1] is lowest in the
column and N(b) > b. Iteratively, we apply the Knuth contractor R3 operator
to Tj until we make all columns admissible. Define Tj to be the resulting
tableau with all admissible columns.
• Compute SJDT on Tj as usual.
• Replace each non-barred entry m and m̄ in SJDT (Tj) by m + j − 1 and
m− j + 1, respectively.

The reduced rectification to the alphabet [±j, n], denoted rectificationj (rectj), of T
is the iteration of the SJDTj to all inner corners in T . Indeed, rectj(T ) is the shift
by j − 1 of all entries of rect(Tj). When j = 1 we recover the ordinary rectification.

Here is an illustrative example- first, we compute a complete SJDT slide on the
interval [±1, 3]:

∗ 2
3 2
3

SJDT
→

1 1
3 ∗

3

.

Whereas, complete the SJDT2 slide, the complete SJDT slide reduced to the in-
terval [±2, 3], is such that:

∗ 2
3 2
3

→ T2 =
∗ 1
2 1
2

R3
→

∗
2
2

SJDT
→

2
2
∗
.

Therefore,

∗ 2
3 2
3

SJDT2→
3
3
∗
.

Another illustration: first we compute an ordinary complete SJDT slide,

∗ 3
3 3
3

→ spl(T ) =
∗ ∗ 2 3
2 3 3 2
3 2

SJDT
→

2 ∗
3 2
2

SJDT
→

2 2
3 ∗

2

.

On the other hand, a complete SJDT2 slide means:

∗ 3
3 3
3

→ T2 =
∗ 2
2 2
2

SJDT
→

1 ∗
2 1̄
1

SJDT
→

1 1̄
2 ∗

1

R3
→ 1̄

2 ∗

Therefore,

∗ 3
3 3
3

SJDT2→
2 ∗
3 2̄
2

SJDT2→
2 2̄
3 ∗

2

R3
→ 2̄

3 ∗
SJDT2→ 3 2̄ = rect2(T ).
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9.2.3. Partial symplectic reversal: colorful symplectic tableau switching. Let T ∈
KN(λ, n) and j ≥ 1. Let B be the crystal connected component of KN[j,n](λ, n)
containing T . B is a highest weight crystal and all vertices of B are KN tableaux on
the alphabet Cn, with the letters in [±j − 1] frozen, as the crystal operators in B are
indexed by [j, n] and do not act on the entries filled in [±j − 1].

Let H be the highest weight element of B, and let wt(H[±j,n]) ∈ Z
n−j+1 be its high-

est weight, whereH[±j,n] is the restriction of H to the alphabet [±j, n]. The restriction
of H to the alphabet [±j, n] is a skew KN tableau on the alphabet Cn. The entries of
H in [j − 1] define a semi-standard tableau T+

[j−1] of shape, say µ, and the entries in

[j − 1, 1̄] define a skew semi-standard tableau T−
[j−1,1̄]

of shape λ/ν, where µ ⊆ ν ⊆ λ.

Hence the cells of H filled in [±j, n] = [n] \ {1 < · · · < j − 1 < j − 1 < · · · < 2̄ < 1̄}
define the skew shape ν/µ, and because the crystal operators in B are indexed by
[j, n], they do not change the skew shape ν/µ either. Therefore, since all the vertices
of B are connected to H through those crystal operators, the vertices of B restricted
to the alphabet [±j, n] have the same skew shape ν/µ and the same semi-standard
tableaux T+

[j−1] and T
−
[j−1,1̄]

[Lec02, Lemma 6.1.3].

Step I. The sequence of isomorphic crystals from T[±j,n] to its reduced

rectification. I.1 - The Cn−j+1 connected crystal B0 containing T[±j,n].

Erase in the vertices of B the entries in [±j − 1]; that is, erase the semi-standard
tableaux T+

[j−1] and T−
[j−1,1̄]

. We obtain the connected Cn−j+1 crystal B0 of semi-

standard skew tableaux of shape ν/µ with entries in the alphabet [±j, n], possibly
with some non-admissible columns, containing T[±j,n]. These KN skew tableaux over

Cn might have non-admissible columns over [±j, n]. More precisely, B0 is the connected
crystal of words on the alphabet [±j, n], with highest element the word of H[±j,n].

The set B0 bijects the set B, with the same crystal graph structure and the same
weight vertices as B. Hence, B0 and B are isomorphic crystals.

I.1.1- The green inner standard tableau U0 for any vertex of B0.

Define a standard tableau U0 of shape µ filled in a completely ordered alphabet of
green letters {g1 < · · · < g|µ|} where |µ| is the number of boxes of µ. Assign the inner

standard tableau U0 the inner shape of each vertex of B0. Recall T[±j,n] is the image

of T in B0; see the tableau pair (U0, T[±j,n]) in Figure 1.

I.2 - The Cn−j+1 crystal Bx of KN skew tableaux R3 isomorphic to B0.

Let H0 := H[±j,n] be the highest weight element of the Cn−j+1 crystal B0. The

skew tableau H0 of shape ν/µ may have non-admissible columns on the alphabet
[±j, n]. Let r < s < · · · < q < t be the non-admissible columns of H0. Then exactly
the same columns in all vertices of B0 are non-admissible. The Knuth contraction
R3 relation, Subsection 7.3.2, defines a crystal isomorphism; it commutes with the
crystal operators and preserves the weight. Moreover, each time R3 is applied to a
column of some vertex of B0, it is also applied to the same column in every vertex of
B0 (see [Lec02, Proposition 3.2.4, Corollary 3.2.5]).
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(U0, T[±j,n]) =

• . . . •
• •...

. . .
•

T[±j,n]

Figure 1. T[±j,n] in the crystal B0 and the inner tableau U0.

In each vertex of B0, apply the R3 contraction operation to column i, for i =
r, s, . . . , q, t, until column i becomes admissible. For i = r, s, . . . , q, t, each time we
apply R3 to column i, a pair of entries (k, k̄) is erased (whenever k ∈ [n] is minimal
for N(k) > k, k and k̄ appear in the column and all prefixes are admissible). Then the
cells from the top and the bottom of the current column i are emptied; the remaining
entries are placed in order in the remaining cells between those erased. We obtain a
new crystal of KN skew tableaux on the alphabet [±j, n] isomorphic to the crystal
B0.

Let x be the total times R3 has to be applied to H0, from column r to column t as
explained above, to get a KN skew tableau on alphabet [±j, n]. Denote the resulting
KN skew tableau by Hx. Note that for each column of any vertex of B0, the number of
times R3 is applied is the same. We then obtain the sequence of isomorphic crystals

B0 R3
≃ B1 R3

≃ · · ·
R3
≃ Bxr

R3
≃ Bxr+1 R3

≃ · · ·
R3
≃ Bxr+xs

R3
≃ · · ·

R3
≃ Bxr+xs+···+xq+xt = Bx,

where x = xr + xs + · · · + xq + xt and xi is the number of times we apply R3 to

column i of H0, for i = r, s, . . . , q, t. The crystal Bx, isomorphic to B0, is obtained
by applying R3 x times to each vertex of B0, namely, xi times to column i, for
i = r, . . . , q, t, of each vertex of Bx. Equivalently, Bx is the crystal whose highest
weight element is the KN skew tableau Hx of shape νx/µx, where νx ⊆ ν, µ ⊆ µx

and |µx| − |µ| = |ν| − |νx| = x is the number of times R3 has been applied to H0 (or
T[±j,n]).

I.2.1 - The pair (Ux, Vx) of green-purple inner and purple outer standard

tableaux for any vertex of Bx.
Let

{g1 < · · · < g|µ| < p1 < p2 < · · · < px < p′x < · · · < p′2 < p′1} (46)

be a completely ordered alphabet of |µ|+2x letters consisting of |µ| green letters and
x unprimed and x primed purple letters.

Define the standard tableau Ux of shape µx, where µ ⊆ µx and |µx| = |µ| + x,
to be an extension of U0 filled with the |µ| green letters by filling the extra x cells,
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the total number of cells made empty at the top of each non-admissible column in
a vertex of B0, with the unprimed purple letters {p1 < · · · < pxr < · · · < px}.
Define the standard tableau Vx of shape ν/νx by filling the x cells made empty at
the bottom of each non-admissible column in a vertex of B0 with the primed purple
letters p′x < · · · < p′xr

< · · · < p′1. The filling rule is as follows.
Fill successively the pair of cells made empty each time R3 is applied, with one

unprimed purple letter and one primed purple letter, p1 < p′1, . . . , pxr < p′xr
, pxr+1 <

p′xr+1, . . . , pxr+xs < p′xr+xs
, . . . , px < p′x, with the unprimed letter at the top of the

column and the primed letter at the bottom of the column. We impose the order

g1 < · · · < g|µ| < p1 < · · · < pxr < pxr+1 < · · · < pxr+xs < · · · < px <

< p′x < · · · < p′xr+xs
< · · · < p′xr+1 < p′xr

< · · · < p′1.

That is, each time an unprimed purple letter and a primed purple letter are added
to Ux and Vx, respectively, the unprimed letter is strictly larger than any green letter
and any unprimed purple letter already added to Ux, and simultaneously, the primed
purple letter is strictly smaller than any primed purple letter already added to Vx.

By construction, the pair (Ux, Vx) of inner and outer standard tableaux is the same
for any vertex of Bx. More precisely, Ux of shape µx is the extension of U0 filled with
the alphabet {g1 < · · · < g|µ| < p1 < p2 < · · · < px}; Vx of skew shape ν/νx is filled

with the alphabet of primed purple letters p′x < · · · < p′xr+···+xq
< · · · < p′xr+xs

<

· · · < p′xr+1 < p′xr
< · · · < p′1. Regarding Ux, extend the column r of U0 with the xr

unprimed purple letters p1 < · · · < pxr , the column s with the xs unprimed purple
letters pxr+1 < · · · < pxr+xs , and finally the column t with the xt unprimed purple
letters pxr+···+xq+1 < · · · < pxr+···+xq+xt = px; regarding Vx of skew shape ν/νx, start
with the skew shape ν/µ0, and fill the bottom xr boxes of column r with the alphabet
of primed purple letters p′xr

< · · · < p′1, the bottom xs of column s with the alphabet
p′xr+xs

< · · · < p′xr+1, and, finally, the bottom xt boxes of column t with the alphabet
p′x < · · · < p′xr+xs+···+xq+1. See the triple (Ux,H

x, Vx) in Figure 2.
I.3 - Rectification of the Cn−j+1 crystal Bx and reduced rectification

of T[±j,n]

Consider the triple of tableaux (Ux,H
x, Vx) previously defined. Apply complete

SJDTj slides successively to the cells of Ux, from the largest entry to the smallest
one, to rectify Hx. At the end of each complete SJDTj slide, we get an outer cell
filled with the letter where the slide started in Ux. While Hx is being rectified, the
cells of Ux are slid to end up as outer corners and added to the skew standard tableau
Vx.

The rectification of Hx does not depend on the choice of the inner corner made in
each step during the rectification process [Lec02, Corollary 6.3.9]. Applying SJDTj
to any corner of Ux in an element of Bx (recall that for all elements of Bx, Ux is the
same) gives a crystal isomorphism. This observation is equivalent to the fact that the
rectification does not depend on the filling of Ux: Ux is a choice to keep track of the
rectification of Hx (or of any other vertex of Bx). If a complete SJDTj slide applies
to an inner corner of Hx, then a complete SJDTj slide also applies to the same inner
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Figure 2. The triple (Ux,H
x, Vx) with H

x in gray, Vx in purple, and
U0(⊆ Ux) in green.

corner in every vertex of the crystal Bx and creates the same outer corner filled with
the same letter.

However, if the number of boxes of Hx, |Hx|, exceeds the minimal number of boxes
of its Knuth class, it will be necessary to apply SJDTj more than |Ux| = |µ|+x times
to rectify Hx. When Hx has the minimal number of boxes of its Knuth class, only
x unprimed purple letters and |µ| green letters will slide outwards and join the outer
tableau Vx.

Let 2y ≥ 0 be the number of boxes of Hx that exceeds the minimal number of
boxes of its Knuth class, that is,

2y = |Hx| − |rectificationj(H
x)|.

When Hx has the minimal number of boxes of its Knuth class, y = 0. Necessarily 2y
boxes of Hx will be lost in the SJDTj rectification process. Henceforth, the SJDTj
B.2 case will be applied y times, each application creates a non- admissible column
followed by the application of a contractor R3 operation resulting in the loss of two
boxes.

Remark 14. Theorem 6.1.9 in Lecouvey’s paper [Lec02] says: if the B.2 case appears
with the creation of a non-admissible column when applying complete SJDT to an
inner corner of a KN skew tableau, it has to be at the initial column where the inner
corner was originally contained.

This observation implies that each of the y mentioned non-admissible columns will
only occur in the columns containing the inner corners where the slide started.

The complete SJDTj slides applied successively to the entries of Ux, as mentioned,
will transform the crystal Bx into an isomorphic crystal of KN skew tableaux, as long
as the SJDTj B.2 case does not create a non-admissible column. Otherwise, one has
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an isomorphic crystal where each vertex has a non-admissible column. In this case,
we apply the contractor operator R3 to that column in each vertex, erasing a pair
(k, k̄) if k ∈ [±j, n] is the lowest entry such that N(k) > k . Then, as in I.2 above,
the cells from the top and the bottom of the current column are emptied and the
remaining entries are placed in order. We get a new isomorphic crystal of KN skew
tableaux where each vertex has two fewer boxes. As observed above, this may only
happen in the y columns where SJDTj was applied, specifically, those containing the
inner corners where the slides started; no other boxes are deleted in the rectification
process of Bx.

Eventually, Hx is rectified to rectification(Hx), as are all vertices of Bx, and we get
the crystal R of straight KN tableaux with highest weight element rectification(Hx),

B0 ≃ Bx ≃ R.

I.3.1 - The green-purple-red standard tableau V of every vertex in the

Cn−j+1 crystal R containing rectj(T[±j,n]).
Let

Bx,1,Bx,1,−,Bx,2,Bx,2,− . . . ,Bx,y,Bx,y,−

be the sequence of 2y isomorphic crystals appearing in the rectification process from
Bx to R, tracking each complete SJDTj slide which triggers a B.2 case and the
subsequent application of a contractor R3 operator to that non-admissible column.
In particular, for i = 1, . . . , y, Bx,i is the crystal where for the ith time in the complete
SJDTj slide, the B.2 case appeared to create a non-admissible column in the column

containing the inner corner where the slide started, and Bx,i,− is the crystal obtained
by applying an R3 contractor operator to that non-admissible column.

For i = 1, . . . , y, let Hx,i and Hx,i,− be the pair of highest weight elements of the
crystal pair Bx,i and Bx,i,−, respectively. Each Hx,i has exactly one non-admissible
column, and Hx,i,− has non-admissible columns.

We have to store 2y new auxiliary letters to record the 2y empty cells created by
the y applications of an R3 contractor as a consequence of the creation of y non-
admissible columns by the complete SJDTj slide where the B.2 case appeared and
created a non-admissible column.

Consider the triple of tableaux (Ux,H
x, Vx) corresponding to the crystal Bx. Let

(Ux,1, H
x,1, Vx,1) be the triple of tableaux obtained from (Ux,H

x, Vx) by applying
complete SJDTj slides to the entries of Ux and transforming the KN skew tableau
Hx into Hx,1, where for the first time in the complete SJDTj slide, the B.2 case
appears and creates a non-admissible column; that is, Hx,1 has a non-admissible
column, and the highest weight elements of all previous crystals obtained from Bx

had all columns admissible. After the said complete SJDTj slides to Ux, Ux,1 is the
inner standard tableau of Hx,1, and Vx,1 is obtained from Vx by adding the slid entries
from Ux to Vx. Vx,1 is indeed a standard tableau because by construction, the entries
of Ux are strictly smaller than the primed purple entries of Vx,

{g1 < · · · < g|µ| < p1 < p2 < · · · < px < p′x < · · · < p′1}.
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The pair (Ux,1, Vx,1) of inner and outer standard tableaux is the same for every vertex

of Bx,1:

Ux,1 ⊆ Ux, Vx,1 ⊇ Vx.

We have to apply an R3 contractor operator to Hx,1 (and to every vertex of Bx,1)
to transform the non-admissible column into an admissible one: a pair of symmetric
entries in each vertex of Bx,1 will be deleted, the top and bottom cells of that column
will be emptied and the remaining entries will be placed in order. Let Bx,1,− be the
new crystal of KN skew tableaux isomorphic to Bx,1, and let Hx,1,− be its highest
weight element (it two has fewer boxes than Hx,1). Note the number of the column
where R3 acts is the same for every vertex of Bx,1. Fill the empty entries with red
letters r1 < r′1, with r1 on the top and r′1 on the bottom, where in the complete
SJDTj slide, the B.2 case appears and has created a non-admissible column such
that r1 is strictly larger than any entry of Ux,1, and r′1 is strictly smaller than any
entry of Vx,1. Vx,1 is filled with the entries of Ux already slid and with all primed
purple letters. The cell with the red letter r1 was the cell of Ux where the complete
SJDTj slide started and the B.2 case appeared with the creation of a non-admissible
column.

Let Ux,1,+ be the standard tableau obtained by adding the red letter r1 to Ux,1,
and let Vx,1,+ be the standard tableau obtained by adding the primed red letter r′1 to
Vx,1 in the manner described,

Ux,1 ⊂ Ux,1,+ ⊆ Ux, Vx,1,+ ⊃ Vx,1 ⊇ Vx.

We keep applying complete SJDTj slides to entries of Ux,1,+, from the largest to
the smallest, to rectify Hx,1,−, so the cell r1 will be the first to slide outwards and
become an outer corner.

Let (Ux,2,H
x,2, Vx,2) be the triple of tableaux obtained from (Ux,1,+,H

x,1,−, Vx,1,+)
by applying complete SJDTj slides to the entries of Ux,1,+ and transforming the KN
skew tableau Hx,1,− into Hx,2, where for the second time in the complete SJDTj
slide, the B.2 case appears with the creation of a non-admissible column; that is, Hx,2

has a non-admissible column, and the highest weight elements of all previous crystals
obtained from Bx,1,− had all columns admissible. After these complete SJDTj slides
to Ux,1,+, Ux,2 is the inner standard tableau of Hx,2; Vx,2 is obtained from Vx,1,+ by
adding the slid entries from Ux,1,+ to Vx,1,+. Vx,2 is indeed a standard tableau because
by construction the entries of Ux,1,+ are strictly smaller than the entries of Vx,1,+. At
this point, the red letter r1 has already slid from Ux,1,+ to Vx,2; that is, r1 is no longer
in Ux,2 and instead belongs to Vx,2,

Ux,2 ⊆ Ux,1 ⊂ Ux,1,+ ⊆ Ux, Vx,2 ⊃ Vx,1,+ ⊃ Vx,1 ⊇ Vx

Let Bx,2 be the crystal with highest weight element Hx,2. We have to apply the
R3 contractor operator to Hx,2 (and to every vertex of Bx,2) to transform the non-
admissible column into an admissible one: a pair of symmetric entries in each vertex
of Bx,2 will be deleted, the top and bottom cells of that column will be emptied and
the remaining entries will be placed in order. Let Bx,2,− be the new crystal of KN
skew tableaux isomorphic to Bx,2, and let Hx,2,− be its highest weight element (it has
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two fewer boxes than Hx,2). Fill the empty entries with red letters r2 < r′2, r2 on the
top and r′2 on the bottom of the column, where in the complete SJDTj slide, the B.2
case appears and has created a non-admissible column such that r2 is strictly larger
than any entry of Ux,2, and r

′
2 is strictly smaller than any entry of Ux,2 already slid.

The primed letters are considered to be slid because by the time of their creation,
they are outer corners.

The cell with the red letter r2 was the cell of Ux,1,+ where the complete SJDTj
slide started and the B.2 case appeared with the creation of a non-admissible column.
Let Ux,2,+ be the standard tableau obtained by adding the red letter r2 to Ux,2, and
let Vx,2,+ be the standard tableau obtained by adding the primed red letter r′2 to Vx,2.
We keep applying complete SJDTj slides to the entries of Ux,2,+ from the biggest to
the smallest to rectify Hx,2,−.

At this point, one has the following relative ordering of the red letters, where r2
belongs to Ux,2,+ and r′2 < r1 < r′1 belong to Vx,2,+:

r2 < r′2 < r1 < r′1,

Ux,2 ⊂ Ux,2,+ ⊆ Ux,1 ⊂ Ux,1,+ ⊆ Ux, Vx,2,+ ⊃ Vx,2 ⊃ Vx,1,+ ⊃ Vx,1 ⊇ Vx.

Continue in this fashion. Let Bx,y be the crystal obtained after a complete SJDTj
slide to an entry of Ux,y−1,+, where the B.2 case arises and creates a non-admissible
column for the y-th time. Let Ux,y be the standard tableau obtained from Ux,y−1,+

after applying the complete SJDT slides to its entries so far. We have to apply the R3

contractor operator to every vertex of Bx,y to transform the non-admissible column
into an admissible one: a pair of symmetric entries in each vertex of Bx,y will be
deleted, the top and bottom cells of that column will be emptied and the remaining
entries will be placed in order. Let Bx,y,− be the new crystal of KN skew tableaux
isomorphic to Bx,y. Fill the empty entries with red letters ry < r′y, as before with ry
on the top and r′y on the bottom of that column such that ry is strictly larger than

any entry of Ux,y, and r
′
y is strictly smaller than any entry of Ux,y−1,+ already slid.

The cell with the red letter ry was the cell of Ux,y−1,+ where the complete SJDTj
slide started and the B.2 case appeared with the creation of a non-admissible column.
Let Ux,y,+ be the standard tableau obtained by adding the red letter ry to Ux,y, and let
Vx,y,+ be the standard tableau obtained by adding the primed red letter r′y to Vx,y. We
keep applying complete SJDTj slides to the entries of Ux,y,+ from the largest to the
smallest, and eventually, we rectify Hx,y,− without further recourse of the contractor
R3. We reach the crystal R, where every vertex is rectified. The crystal R is called
the rectification of B0 .

At this point one has the following relative ordering among the 2y red letters:

ry < r′y < · · · < r2 < r′2 < · · · < r1 < r′1

and the rectification storing tableaux

∅ ⊂ Ux,y ⊂ Ux,y,+ ⊆ Ux,y−1 ⊂ · · · ⊂ Ux,2 ⊂ Ux,2,+ ⊆ Ux,1 ⊂ Ux,1,+ ⊆ Ux,

V ⊃ Vx,y,+ ⊃ Vx,y ⊃ Vx,y−1,+ ⊃ Vx,y−1 ⊃ · · · ⊃ Vx,2,+ ⊃ Vx,2 ⊃ Vx,1,+ ⊃ Vx,1 ⊇ Vx,
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where V is the standard tableau obtained by adding to Vx,y,+ via sliding the letters
from Ux,y,+. We have the following ordering of all colored letters, green, purple
(primed and unprimed), and red (primed and unprimed) in the skew standard tableau
V :

g1 < · · · < ry < r′y < gl < · · · < rd < r′d < · · · < g|µ| <

< p1 < p2 < · · · < rk < r′k < · · · < pi < · · · < r1 < r′1 < · · · < px < p′x < · · · < p′1.
(47)

We have constructed the following sequence of isomorphic crystals, stored in V via
the slid colorful letters:

B0 R3
≃ · · ·Bxr

R3
≃ · · ·Bxr+xs

R3
≃ · · ·Bxr+xs+···+xt = Bx (48)

Bx
SJDTj

≃ · · ·Bx,1 R3
≃ Bx,1,−

SJDTj

≃ · · ·Bx,2 R3
≃ Bx,2,−

SJDTj

≃ · · ·Bx,y R3
≃ Bx,y,− (49)

Bx,y,−
SJDTj

≃ · · ·
SJDTj

≃ R. (50)

Remark 15. In our construction, purple letters are larger than all green ones (46).
However, for the red ones together with the two other colors, we just write (47).

I.4 - The Schützenberger-Lusztig involution on the Cn−j+1 crystals B0

its rectification, the crystal R, and the reversal.
Let L0 be the lowest weight element of the Cn−j+1 connected normal crystal B0.

The crystal R with highest weight element rectificationj(H
0) is the rectification of

the crystal B0 and contains rectificationj(T[±j,n]). Let F be the composition of the

sequence of lowering operators connecting H0 to T[±j,n] in B0, F (H0) = T[±j,n].

The Schützenberger-Lusztig involution ξ in B0 gives ξ(T[±j,n]) = F−1(L0), where

F−1 means the sequence obtained by replacing each lowering operator fi in F with
the corresponding raising operator ei. In each crystal of the sequence (48), (49),
(50) above, the same sequence F (F−1) connects the corresponding highest (low-
est) weight element to the corresponding coplactic image of T[±j,n] (ξ(T[±j,n])). In

particular, F connects rectificationj(H
0) to rectificationj(T±j,n), F (rectificationjH

0) =
rectificationj(T[±j,n]). By Santos [Sa21a], the Schützenberger-Lusztig involution in

R guarantees that evacCn−j+1(rectificationj(T[±j,n]) = F−1(rectificationj(L
0) is in R.

Thanks to the crystal isomorphisms and Lemma 5,

reversalCn−j+1(T[±j,n]) = F−1(L0) = arectificationj evac
Cn−j+1(rectificationj(T[±j,n])).

(51)

To compute the reversal of T[±j,n] in B0 without using the sequence F of crystal oper-

ators and the highest/lowest weight elements H0, L0 of B0, we use Santos’ evacuation
on rectj(T[±j,n]) and the rectification sequence of crystals backwards in (48), (49),(50)
stored in the standard skew tableau V .

Step II. Computation of symplectic evacuation of rectj(T[±j,n]) in the

Cn−j+1 crystal R.
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The tableau rectj(T[±j,n]) is admissible in the alphabet [±j, n]. Use Santos’ algo-
rithm as follows: take π-rotation and change the sign of rectj(T[±j,n]); then, apply

SJDTj to obtain evacCn−j+1(rectificationj(T[±j,n])) in the crystal R.
Replace the tableau pair (rectificationj(T[±j,n])), V ) with

(evacCn−j+1(rectificationj(T[±j,n])), V ).

Step III. Symplectic reversal of T[±j,n] in the Cn−j+1 crystal B0.

Consider the pair of tableaux (evacCn−j+1(rectificationj(T[±j,n])), V ), where V is the
standard tableau consisting of all the slid letters in the rectification sequence (48),
(49),(50) on the alphabet of green, purple and red letters.

Apply the reverse SJDTj , RSJDTj, to the entries of V from the smallest to the
largest to send evacCn−j+1(rectj(T[±j,n])) to reversal(T[±j,n]) = F−1(L0) in the Cn−j+1

crystal B0.
When the SJDTj applies to an unprimed red letter ri, i ∈ {1, . . . , y}, in V , the

letter ri slides to the top of a column with the cell r′i on the bottom. At this point, we

have reached the crystal Bx,i. Then we apply the dilation operator R3 to the column
containing the pair (ri, r

′
i) by erasing those entries and adding a pair of symmetric

entries (k, k̄) so that we get a non-admissible column on the alphabet [±j, n]. The
SJDTj applies now to the next letter bigger than r′i. In this complete reverse slide,
the SJDTj B.2 case occurs.

When the reverse SJDTj slides have been applied to all non-primed purple letters,
we have reached the crystal Bx, where the columns r, s, . . . , t have xi non-primed
purple letters px1+···+xi−1+1 < · · · < px1+···+xi

on the top and the corresponding
primed letters on the bottom for i = r, s, . . . , t. Then, for i = t, . . . , s, r, we apply
the dilation operator R3 to each such column i xi times, and we reach the crystal
B0, where each vertex has non-admissible columns r, s, . . . , t. In particular, we obtain
reversalCn−j+1(T[±j,n]).

Step IV. Partial symplectic reversal of T computes ξCn

[j,n](T ).

ξCn

[j,n](T ) is the Schützenberger–Lusztig involution of T = (T+
[j−1], T[±j,n], T

−
[j−1,1̄]

)

in the crystal connected component B ≈ B0 of KN[j,n](λ, n). Replace T[±j,n] with

reversalCn−j+1(T[±j,n]), (51), in T ,
which gives

ξCn

[j,n](T ) = reversalCn

[j,n](T ) = (T+
[j−1], arectjevac

Cn−j+1(rectj(T[±j,n])), T
−
[j−1,1̄]

). (52)

Remark 16. • If we put j = 1 in the colorful algorithm, we reduce to Step II
of Cn evacuation.
• If T ∈ SSYT(λ, n) ⊆ KN(λ, n), our colorful tableau switching algorithm re-
duces to just the green color, that is, to the ordinary tableau switching of
the tableau-pair (U0, T[j,n]), with U0 a standard tableau of shape µ and T[j,n]
a semi-standard skew tableau of shape λ/µ on the alphabet [j, n]. The semi-
standard skew-tableau T[j,n] on the alphabet [j, n] is also a Cn−j+1 admissible
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tableau. R3 does not apply, and SJDTj reduces to the ordinary JDT. There-
fore, purple and red colors do not pop up in Step I. This means Step I returns
the pair (rectj(T[j,n], V ), with rectj(T[j,n]) a semi-standard tableau in the al-
phabet [j, n] with |λ| − |µ| boxes and V completely green. Step II computes
the symplectic Cn−j+1 evacuation of rectj(T[j,n]); this step produces a semi-

standard tableau of the same shape on the alphabet [n̄, j̄]. Step III applies the
ordinary reverse JDT to evacCn−j+1 rectj(T[j,n]) governed by the green V and

returns a semi-standard skew tableau of shape λ/µ on the alphabet [n̄, j̄]. Step

IV computes the partial reversal reversalCn

J (T ), J = [j, n], with T−
[j−1,1̄]

empty,

ξCn

[j,n](T ) = reversal
Cn

[j,n](T ) = (T+
[j−1], arectjevac

Cn−j+1(rectj(T[j,n]))). (53)

• The algorithm for the full Cm reversal of a KN skew tableau T ∈ KN(λ/µ,m)
results from our colorful tableau switching algorithm by considering the image
of T , (Tµ, T̂ ), in the full sub-crystal B(µ, λ) ⊆ KN[j,n](λ, n), where n = m+j−1
(Subsection 7.4.2). Let B be the crystal connected component of B(µ, λ) con-

taining (Tµ, T̂ ), where Tµ is the Yamanouchi tableau of shape µ and T̂ is ob-

tained by increasing each of the entries of T by j−1. Then, restricting (Tµ, T̂ )

to the alphabet [±j, n], T̂ is an admissible Cn−j+1 skew tableau in the Cn−j+1

crystal B0. Our algorithm reduces to Step I with just green and red, Step II
and Step III. Finally, we subtract j − 1 from the entries of reversalCn−j+1(T̂ )

to get reversalCm(T ). However, subtraction by j−1 cancels the last step in the
reduced SJDTj (Definition 4), and therefore it is enough to apply SJDT.

This means that the algorithm for the full Cm reversal of the KN skew
tableau T results from our algorithm with B

0 = B(T ) a type Cm crystal, x = 0
and applying SJDT to U0 to get (rect(T ), V ), where V is a skew standard
tableau without purple letters. Then RSJDT applied to V gives

reversal
Cm(T ) = arectification evac

Cm(rectification(T )).

9.3. Examples of full and partial symplectic reversal.

Example 7. Full reversal of a skew tableau, J = I. In this case, we have no

purple letters, as no letters are deleted at the beginning. Let T =
2 2 1

2 2 1
1

∈

KN((4, 3, 2)/(1), 3). We compute ξC3(T ) as follows. First, we fill in the empty box in
T with a green letter (it defines the one box standard tableau U0), to which we perform
symplectic jeu de taquin until it becomes an outer corner.

(U0, T ) =

g 2 2 1
2 2 1
1

SJDT
→

1 g 2 1
2 1 1
1

SJDT
→

r g 2 1
2 1 1
r

SJDT
→

r 2 g 1
2 1 1
r

SJDT
→

r 2 1 1
2 1 g

r
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SJDT
→

2 2 1 1
r 1 g

r

SJDT
→

2 2 1 1
1 r g

r
⇒ rect(T ) = 2 2 1 1

1
, V = r g

r
.

r < g < r̄

Taking π-rotation and changing the signs of rect(T ), we again apply SJDT to compute
evacC3(rect(T )):

∗ ∗ ∗ 1
1 1 2 2

SJDT
→

∗ ∗ 1 ∗
1 1 2 2

SJDT
→

∗ ∗ 1 2
1 1 2 ∗

SJDT
→

∗ 1 1 2
1 ∗ 2 ∗

SJDT
→

∗ 1 1 1
1 2 ∗ ∗

SJDT
→ 1 1 1 2

∗ 2 ∗ ∗
SJDT
→ 1 1 1 2

2 ∗ ∗ ∗
= evac

C3(rect(T )).

We replace rect(T ) with evacC3(rect(T )) in (rect(T ), V ) and apply reverse SJDT to
V to compute ξC3(T ) = reversal

C3(T ):

(evacC3(rect(T )), V ) =
1 1 1 2
2 r g

r

RSJDT
→

1 1 1 2
r 2 g

r

RSJDT
→

r 1 1 2
1 2 g

r

R3
≡

1 1 1 2
2 2 g

2

RSJDT
→

1 1 1 2
2 g 2
2

RSJDT
→

1 1 1 2
g 2 2
2

RSJDT
→

g 1 1 2
1 2 2
2

= (U0, ξ
C3(T ))

⇒ ξC3(T ) =
1 1 2

1 2 2
2

.

Example 8. Let P =

1 2 2 1̄
4 4 3
4 2̄ 1̄
3̄

∈ KN((4, 3, 3, 1), 4). We have wt(P ) = (−1, 1,−2, , 1).

To compute ξC4

[2,4](P ) = reversal
C4

[2,4](P ), we freeze the letters 1, 1̄ in P and consider

P[±2,4]. P[±2,4] is not an admissible C3 tableau in the alphabet [±2, 4]: the second col-

umn 242̄ is not an admissible C3 column; 242̄
SJDT2→ 4. The column reading of P[±2,4]

is 23̄242̄44̄3̄
R3
≡ 23̄444̄3̄. We include this non-admissible second column in the SJDT2

sequence to rectify P[±2,4].

1. Rectification of P[±2,4]

(U0, P[±2,4]) =

g 2 2
4 4 3
4 2̄
3̄

SJDT2→

g p 2
4 4 3̄
4 p′

3̄

SJDT2→

g 2 3
4 4 p

4 p′

3̄

SJDT2→

2 4 3
4 g p

4 p′

3̄
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SJDT2→

c 4 3
2 g p

3 p′

r′

SJDT2→

2 4 3
3̄ g p
r p′

r′

= (rect2P[±2,4], V )⇒ rect2P[±2,4] =
2 4 3
3̄

,

V =
g p

r p′

r′

, r < r′ < g < p < p′.

2. Computation of evacC3 rect2(P[±2,4]). Taking π-rotation and changing the signs
of rect2(P[±2,4]), we again apply SJDT2:

3
3 4̄ 2̄

SJDT
→ 3 2̄

3 4̄

SJDT
→ 3 3 2̄

4̄

SJDT
→ 3 3 2̄

4̄
= evac

C3rect2P[±2,4].

3. Reversal of P[±2,4]. Replace rect2(P[±2,4]) with evacC3(rect2(P[±2,4])) in (rect2(P[±2,4]), V )
and apply RSJDT2 to V .

(evacC3 (rect2P[±2,4]), V ) =

3 3 2
4̄ g p
r p′

r′

RSJDT2→

r 3 2
3 g p

4̄ p′

r′

RSJDT2→

2 3 2
3 g p

4̄ p′

2̄

RSJDT2→

g 2 2
3 3 p

4 p′

2̄

RSJDT2→

g p 3
3 3 3̄
4 p′

2̄

RSJDT2→

g 2 3
3 3 3̄
4 2̄
2̄

= (U0, reversal
C3(P[±2,4]))

⇒ reversal
C3(P[±2,4]) =

2 3
3 3 3̄
4̄ 2̄
2̄

.

4. Replace P[±2,4] with reversal
C3(P[±2,4]) in P to obtain

reversal
C4

[2,4](P ) =

1 2 3 1
3 3 3̄
4̄ 2̄ 1
2̄

,wt[2,4](ξ
C4

[2,4](P )) = −wt[2,4](P ) = (−1, 2,−1).

9.4. General Dynkin sub-diagram and virtualization. Let ξCn

[1,j], 1 ≤ j ≤ n −

1, be the Schützenberger–Lusztig involution on KN[1,j](λ, n). KN[1,j](λ, n) is a type
Aj crystal of Kashiwara–Nakashima tableaux of shape λ on the alphabet [±n] with
lowering and raising operators fi and ei, respectively, given by the type Cn signature
rule with i ∈ [1, j]. Notice that the unique crystal operators which change the signs
of the entries are fn and en, which are forgotten. Next we give a computation of
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ξCn

[p,q], for any 1 ≤ p ≤ q ≤ n, via virtualization E and bring it back to KN[p,q](λ, n) by

applying E−1, see Theorem 5 and Theorem 6 below.
In the next section, we give a computation of ξCn

[1,j], 1 ≤ j ≤ n−1, via virtualization

E and bring it back to KN[1,j](λ, n) by applying E−1. See Theorem 5 below.

9.4.1. Embedding of a partial symplectic Schützenberger–Lusztig involution and back.
Let J ⊆ [n] be a sub-Dynkin diagram of the type Cn Dynkin diagram I = [n]. Let
U be a connected component of the Levi branched crystal KNJ(λ, n) with J ⊆ [n]
and with highest and lowest weight elements uhigh and ulow, respectively. Recall from
Subsection 5.2, Proposition 2, that each connected component U of the Levi branched
crystal KNJ(λ, n) is embedded via E into a connected component of the Levi branched
crystal SSYTJ∪J̄(λ, n) with highest and lowest weight elements E(uhigh) and E(ulow),
respectively.

Let P = (P+, P−) ∈ SSYT(λA, n, n̄). The crystals SSYT[p,q](λ
A, n, n̄) and

SSYT[q+1,p+1](λ
A, n, n̄) are isomorphic to SSYT[p,q](λ

A
+, n) and SSYT[q+1,p+1](λ

A/λA+, n̄),

respectively (recall Remark 5). The corresponding pair of isomorphic crystals has the
same multiset of highest weight vectors in Z

q−p+1 respectively, regarding the sub-
Dynkin diagram [p, q]. We may then write

ξ
A2n−1

[p,q] ξ
A2n−1

[q+1,p+1]
(P ) = (ξ

An−1

[p,q] (P+), ξ
An−1

[q+1,p+1]
(P−)). (54)

Theorem 5. Let T ∈ KN[p,q](λ, n) of type Ap−q+1, 1 ≤ p ≤ q < n. Then

ξ
A2n−1

[p,q]∪[q+1,p+1]
(E(T )) = ξ

A2n−1

[p,q] ξ
A2n−1

[q+1,p+1]
(E(T )) = E(ξCn

[p,q](T )).

Moreover,

ξCn

[p,q](T ) = E−1
reversal

A2n−1

[p,q] reversal
A2n−1

[q+1,p+1]
E(T ). (55)

Proof. Recall Proposition 2, Remark 5 and (14). Then it follows from Theorem 2. �

It is now convenient to change the labeling of the A2n−1 Dynkin diagram. Instead of
[k, k + 1], we write [k, 2n−k], and SSYT[k,2n−k](λ, n, n̄). This relabelling is illustrated
in the picture below.

1 2 3 n− 1 n

1 2 3 n− 1

n

n+ 12n− 32n− 22n− 1

Theorem 6. Let T ∈ KN[k,n](λ, n) of type Cn−k+1 for some 1 ≤ k ≤ n. Then

ξ
A2n−1

[k,2n−k](E(T )) = E(ξCn

[k,n](T )).

Moreover, on SSYT(λA, n, n̄), ξ
A2n−1

[k,2n−k] = reversal
A2n−1

[k,2n−k], and

ξCn

[k,n] = E−1
reversal

A2n−1

[k,2n−k]E. (56)
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Proof. Recall Corollary 2 and that, in the case of the branched crystal SSYT[k,2n−k](λ, n, n̄),
θ(i) = 2n − i, for i ∈ [k, 2n − k]. Let U be the connected component of KN[k,n](λ, n)

containing T , and let the highest and lowest weight elements of U be uhigh and ulow,
respectively.

T = fir . . . fi1(u
high), i1, . . . , ir ∈ [k, n],

E(T ) = fAir f
A
2n−ir

. . . fAi1f
A
2n−i1

(E(uhigh)), i1, . . . , ir ∈ [k, n], (57)

and
ξCn

[k,n](T ) = eir . . . ei1(u
low).

Then, from Subsection 5.1, (10),

E(ξCn

[k,n](T )) = E(eir . . . ei1(u
low)) = eAire

A
2n−ir . . . e

A
i1
eA2n−i1

E(ulow)

and, from (57),

ξA[k,2n−k](E(T )) = eAθ(ir)e
A
θ(2n−ir)

. . . eAθ(i1)e
A
θ(2n−i1)

(E(ulow))

= eA2n−ir
eAir . . . e

A
2n−i1

eAi1(E(ulow))

= eAire
A
2n−ir . . . e

A
i1
eA2n−i1

E(ulow) = E(ξC[k,n](T )).

Finally, (56) follows from (39). �

Using a generalized form of Lemma 6, the following corollary is a generalization of
the two theorems above.

Corollary 4. Let T ∈ KN[p,q]∪[k,n](λ, n) of subtype Ap−q+1 × Cn−k+1 for some 1 ≤
p ≤ q < k − 1 < n. Then

ξ
A2n−1

[p,q]∪[2n−q,2n−p]∪[k,2n−k](E(T )) = ξ
A2n−1

[p,q] ξ
A2n−1

[2n−q,2n−p]ξ
A2n−1

[k,2n−k](E(T )) = E(ξCn

[p,q]∪[k,n](T )).

Moreover, on SSYT(λA, n, n̄), ξ
A2n−1

[p,q] = reversal
A2n−1

[p,q] , ξ
A2n−1

[k,2n−k] = reversal
A2n−1

[k,2n−k] and

ξ
A2n−1

[2n−q,2n−p]
= reversal

A2n−1

[2n−q,2n−p]
.

Remark 17. Both ξ
A2n−1

[p,q]∪[2n−q,2n−p] and ξ
A2n−1

[k,2n−k] act on the set SSYT(λA, n, n̄) to

define a permutation such that the subset E(KN(λ, n)) is preserved. In other words,
each of these involutions defines a permutation on E(KN(λ, n)) when their action is
restricted to this subset.

Corollary 5. Let SSYT(µ, 2n) with µ a partition with at most 2n parts, and let Bn

be the Weyl group realized as < ri = (i i+ 1)(2n − i 2n − i+ 1), rn = (n n+ 1), 1 ≤

i ≤ n − 1 >. Then {ξ
A2n−1

i ξ
A2n−1

2n−i , ξ
A2n−1
n , 1 ≤ i ≤ n − 1} define an action of Bn

on SSYT(λ, 2n) by ri.b = ξ
A2n−1

i ξ
A2n−1

2n−i b, 1 ≤ i ≤ n − 1, and rn.b = ξ
A2n−1
n .b, for

b ∈ SSYT(λ, 2n) such that

(1) e
A2n−1

i e
A2n−1

2n−i ξ
A2n−1

i ξ
A2n−1

2n−i = ξ
A2n−1

i ξ
A2n−1

2n−i f
A2n−1

i f
A2n−1

2n−i , 1 ≤ i < n,

(2) e
A2n−1
n e

A2n−1
n ξ

A2n−1
n = ξ

A2n−1
n f

A2n−1
n f

A2n−1
n ,

(3) wt(ri.b) = riwt(b), 1 ≤ i ≤ n,
(4) w0.Tµ = T low

µ , w0 = (rn · · · r1)
n the long element of Bn.
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(5) if µ = λA is the virtual partition for some λ, it preserves the action of
Bn on the underlying set of the crystal E(KN(λ, n)) embedded in the crys-
tal SSYT(λA, 2n).

Proof. (5) It follows from Theorem 5 and Theorem 6 with p = q and respectively k = n

that ξ
A2n−1
p ξ

A2n−1

p+1
(E(T )) = ξ

A2n−1
p ξ

A2n−1

2n−p (E(T )) = E(ξCn
p (T )) and ξ

A2n−1
n (E(T )) =

E(ξCn
n (T )). From Proposition 6, 3, {ξCn

n : 1 ≤ i ≤ n} define an action of Bn on

KN(λ, n). Therefore {ξ
A2n−1

i ξ
A2n−1

2n−i , ξ
A2n−1
n , 1 ≤ i ≤ n − 1} is the translation of this

action to the embedded crystal E(KN(λ, n)) in SSYT(λA, 2n). �

9.5. Virtualization of the action of Jsp(2n,C) on the crystal KN(λ, n). We have
the following commutative diagram corresponding to the crystal embedding E and
the partial Cn and A2n−1 Schützenberger–Lusztig involutions, where [p, q] ⊆ [n − 1]
and [p, n] ⊆ [n] are connected subintervals of the Dynkin diagram of Cn,

KN(λ, n) SSYT(λA, n, n̄)

KN(λ, n) SSYT(λA, n, n̄)

E

E

ξCn

[p,n] ξCn

[p,q] ξ
A2n−1

[p,p+1]
ξ
A2n−1

[p,q]∪[q+1,p+1]

Φ̃E
gl2n

:J̃2n −→ SE(KN(λ, n)) (58)

s̃[p,q]∪[q+1,p+1] 7→ ξ
A2n−1

[p,q]∪[q+1,p+1]
= ξ

A2n−1

[p,q] ξ
A2n−1

[q+1,p+1]

s̃[p,p+1] 7→ ξ
A2n−1

[p,p+1]

Theorem 3 and Remark 17 imply that the action of J̃2n on SSYT(λA, n, n̄) preserves

the subset E(KN(λ, n), and thus, we have an action of J̃2n on the set E(KN(λ, n))
defined by

Φ̃E
sl(2n,C) : J̃2n −→ SE(KN(λ, n))

s̃[p,q]∪[q+1,p+1] 7→ ξ
A2n−1

[p,q]∪[q+1,p+1]
= ξ

A2n−1

[p,q] ξ
A2n−1

[q+1,p+1]

s̃[p,p+1] 7→ ξ
A2n−1

[p,p+1]

such that Φ̃E
sl(2n,C)(s̃J) = Φ̃sl(2n,C)(s̃J)|E(KN(λ, n)) ∈ SE(KN(λ, n)). Let ı̃ : Jsp(2n,C) →

J̃2n be the group isomorphism defined by s[1,j] 7→ s̃[1,j]∪[j+1,2̄], 1 ≤ j < n, and

s[j,n] 7→ s̃[j,j+1], 1 ≤ j < n, (see Proposition 4), and ı : SKN(λ, n) → SE(KN(λ, n))
the group isomorphism defined by ı(σ) = EσE−1. The virtualization of the action
of Jsp(2n,C) on the crystal KN(λ, n) is then realized from the following commutative
diagram
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Jsp(2n,C) SKN(λ, n)

J̃2n
SE(KN(λ, n))

Φsp(2n,C)

Φ̃E
sl(2n,C)

ı̃ ı Φ̃E
sl(2n,C) ı̃ = ıΦsp(2n,C) (59)

From (59)

Φ̃E
sl(2n,C) ı̃(s[1,j]) = Φ̃E

sl(2n,C)(s̃[1,j]∪[j+1,2̄]) = ξ
A2n−1

[1,j]∪[j+1,2̄]

= ıΦsp(2n,C)(s[1,j]) = ıξCn

[1,j] = EξCn

[1,j]E
−1 = ξ

A2n−1

[1,j]∪[j+1,2̄]
,

Φ̃E
sl(2n,C) ı̃(s[j,n]) = Φ̃E

sl(2n,C)(s[j,j+1]) = ξ
A2n−1

[j,j+1]

= ıΦsp(2n,C)(s[j,n]) = ıξCn

[j,n] = EξCn

[j,n]E
−1 = ξ

A2n−1

[j,j+1]
.

9.6. Virtualization example.

Example 9. Consider n = 6, J = [1, 5] and the KN tableau T of shape λ = 2ω6 +
ω5 + ω2:

T =

1 2 3 3
2 4 5 1
3 6 5
5 6 3
6 5 1

5 4

, wt(T ) = (−1, 2, 0, 0,−1, 1)

From λ we may immediately write λA = 2ωA
6 + 2ωA

6 + ωA
7 + ωA

5 + ωA
10 + ωA

2 , and
from λA we write the Baker recording tableau Qλ of shape λA as a sequence of shapes
where we successively fill the boxes along columns, top to bottom, from 1 to |λA| =
4|ωA

6 |+ |ω
A
7 |+ |ω

A
5 |+ |ω

A
10|+ |ω

A
2 | = 48,

ωA
2 ⊆ ω

A
10 + ωA

2 ⊆ ω
A
5 + ωA

10 + ωA
2 ⊆ ω

A
7 + ωA

5 + ωA
10 + ωA

2 ⊆ ω
A
6 + ωA

7 + ωA
5 + ωA

10 + ωA
2

⊆ 2ωA
6 +ω

A
7 +ω

A
5 +ω

A
10+ω

A
2 ⊆ 3ωA

6 +ω
A
7 +ω

A
5 +ω

A
10+ω

A
2 ⊆ 4ωA

6 +ω
A
7 +ω

A
5 +ω

A
10+ω

A
2 = λA

Qλ =

1 3 13 18 25 31 37 43

2 4 14 19 26 32 38 44

5 15 20 27 33 39 45

6 16 21 28 34 40 46

7 17 22 29 35 41 47

8 23 30 36 42 48

9 24

10

11

12

.
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Labelling the columns of T from left to right as C4, C3, C2 and C1, we have:

ψ(C4) =

1 1

2 2

3 3

4 5

6 6

5 4

, ψ(C3) =

1 2

2 4

3 6

6 5

5 3

4 1

, ψ(C2) =

2 3

4 5

6 4

6 2

5 1

3

1

, ψ(C1) =

2 3
4 1
5

6

6

5

4

3

2

1

.

Then E(T ) has shape λA = 4ωA
6 + ωA

7 + ωA
5 + ωA

10 + ωA
2 ,

wt(E(T )) = wt(wT ) = (3, 6, 4, 4, 3, 5, 3, 5, 4, 4, 2, 5),

and E(T ) = [∅ ← wT ],

E(T ) = [∅ ← w(ψ(C1))← w(ψ(C2))← w(ψ(C3))← w(ψ(C4))] =

1 1 1 2 2 2 4 3
2 2 2 3 4 5 5 1
3 3 3 4 6 6 3
4 5 6 6 6 5 2
6 6 6 5 5 3 1

5 5 4 4 3 1

4 1

3

2

1

which has recording tableau Q(wT ) = Qλ.
Considering the barred and unbarred parts of E(T ) separately, we compute the

evacuation, evac, of the unbarred part and the reversal, reversal, of the barred part,
yielding:

evac

1 1 1 2 2 2 4

2 2 2 3 4 5 5

3 3 3 4 6 6

4 5 6

6 6

=

1 1 1 1 1 4 4

2 2 2 3 3 5 5

3 3 4 5 5 6

4 5 6

5 6

and
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reversal

∗ ∗ ∗ ∗ ∗ ∗ ∗ 3
∗ ∗ ∗ ∗ ∗ ∗ ∗ 1
∗ ∗ ∗ ∗ ∗ ∗ 3
∗ ∗ ∗ 6 6 5 2
∗ ∗ 6 5 5 3 1

5 5 4 4 3 1

4 1

3

2

1

=

∗ ∗ ∗ ∗ ∗ ∗ ∗ 5
∗ ∗ ∗ ∗ ∗ ∗ ∗ 2
∗ ∗ ∗ ∗ ∗ ∗ 5
∗ ∗ ∗ 6 6 6 2
∗ ∗ 6 5 4 4 1

6 5 4 4 2 2

4 1

3

2

1

.

Putting these tableaux together, one obtains

ξA11

[1,5]⊔[6̄,2̄]
(E(T )) = (evac(E(T )+), reversal(E(T )−)).

Using Qλ to perform the reverse column Schensted insertion on the resulting A11

tableau ξA11

[1,5]⊔[6̄,2̄]
(E(T )) provides the image under ψ of four KN columns C ′

1, C
′
2, C

′
3,

C ′
4:

ψ(C ′
4) =

1 1

2 2

3 3

4 5

5 6

6 4

, ψ(C ′
3) =

1 1

2 3

4 5

6 6

5 4

4 2

, ψ(C ′
2) =

3 4

5 5

6 5

6 2

4 1

2

1

, ψ(C ′
1) =

1 5
4 2
5

6

6

5

4

3

2

1

and applying ψ−1 to each column results in:

C ′
4C

′
3C

′
2C

′
1 =

1 1 4 3
2 3 5 2
3 5 4
5 6 2
6 5 1

6 3

= ξ[1,5](T ).

wt[1,5](ξ
C
[1,5](T )) = reverse(wt(T )) = (1,−1, 0, 0, 2,−1).

This solution has been verified in [SageMath].
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10. The type Cn Berenstein–Kirillov group

10.1. The type A Berenstein–Kirillov group. The type A Berenstein–Kirillov
group BK (or Gelfand–Tsetlin group) [BerKir95] is the free group generated by the
Bender–Knuth involutions [BeKn72] ti, i > 0, modulo the relations they satisfy on
semi-standard Young tableaux of any (straight) shape.

Definition 5. The Bender–Knuth involution ti, i ≥ 1, is an operation that acts on a
semi-standard tableau T of any shape (skew or straight) as follows:

• pairs (i, i+ 1) within each column of T are considered fixed, and other occur-
rences of i’s or i+ 1’s are considered free
• if a row within T has k free i’s followed by l free i+1’s, then we replace these
letters by l free i’s followed by k free i+ 1’s.

The ti’s have many known relations in BK [BerKir95, CGP16]:

t2i = 1, for i ≥ 1 [BerKir95, Corollary 1.1] (60)

titj = tjti, for |i− j| > 1 [BerKir95, Corollary 1.1], (61)

(t1q[1,i])
4 = 1, for i > 2 [BerKir95, Corollary 1.1], (62)

(t1t2)
6 = 1, [BerKir95, Corollary 1.1], (63)

(tiq[j,k−1])
2 = 1, for i+ 1 < j < k, [CGP16], (64)

where

q[1,i] := t1(t2t1) · · · (titi−1 · · · t1), for i ≥ 1, (65)

q[j,k−1] := q[1,k−1]q[1,k−j]q[1,k−1], for j < k. (66)

Remark 18. (1) It is not known whether the latter forms a complete set of rela-
tions.

(2) [BerKir95, Section 2] On straight-shaped semi-standard Young tableaux,

q[1,i] = ξ[1,i], i ≥ 1, q[j,k−1] = ξ[j,k−1], j < k, (67)

and q[j,j] = q[1,j]q[1,1]q[1,j] computes the crystal reflection operator ξj = ξ[j,j],
where q[1,1] = ξ[1,1] = t1, for j ≥ 1. In particular, q[1,i] = ξ[1,i] = evaci+1,
the evacuation restricted to the alphabet [i + 1], and q[j,k−1] computes the
Schützenberger evacuation restricted to the alphabet [j, k], ξ[j,k−1] =
evackevack−j+1evack, for j < k.

(3) Relation (64) implies that in particular, (tiξj)
2 = 1, j > i+1, which generalizes

the relation (t1q[1,i])
4 = 1 .

(4) For a generic (straight or skew) shaped semi-standard Young tableau T , wt(ti(T )) =
wt(ξi(T )) = riwt(T ), ri ∈ Sn for all n ≥ 1. However, ti 6= ξi, for i > 1;
t1 = ξ1 needs only coincide on straight shaped semi-standard Young tableaux.
Moreover, ti, 1 ≤ i < n, do not need to satisfy the braid relations of Sn, how-
ever, they do on key tableaux, that is, straight shaped tableaux whose weight is
a permutation of its shape [Fu97].

Let BKn be the subgroup of BK generated by t1, . . . , tn−1.
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Proposition 10. [BerKir95, Remark 1.3] As elements of BK,

t1 = q[1,1], ti = q[1,i−1]q[1,i]q[1,i−1]q[1,i−2], for i ≥ 2, q0 := 1.

The elements q[1,1], . . . , q[1,n−1] are generators of BKn.

The following result is both a consequence of the combinatorial action of the cactus
group Jn via partial Schützenberger involutions ξ[1,i] on the straight-shape tableau
crystal SSYT(λ, n), as defined by Halacheva [Ha16], and the cactus group Jn relations
satisfied by the generators q[i,j] = ξ[i,j] of BKn when acting on SSYT(λ, n), as studied
by Chmutov, Glick and Pylyavskyy via the growth diagram approach [CGP16].

Theorem 7. The following are group epimorphisms from Jn to BKn:

(1) s[i,j] 7→ q[i,j] [CGP16, Theorem 1.4],
(2) s[1,j] 7→ q[1,j] [BerKir95, Remark 1.3], [Ha16, Section 10.2], [Ha20, Remark

3.9].

The group BKn is isomorphic to a quotient of Jn. The generators q[1,1], . . . , q[1,n−1]

of BKn (and therefore q[i,j]) satisfy the relations of Jn.

Remark 19. It follows from [CGP16] that (63) is the only known relation which
does not follow from the cactus group Jn relations. It is in fact equivalent to the braid
relations satisfied by the crystal reflection operators ξi = ξ[1,i]t1ξ[1,i], 1 ≤ i < n, on a
Uq(sl(n,C)) crystal [BerKir95, Proposition 1.4], [Ro21].

Remark 20. We may define the two dual sets of generators

t̃n−i := q[1,n−1]tiq[1,n−1], 1 ≤ i < n, (68)

called dual Bender–Knuth involutions, and

q̃[1,i] := q[1,n−1]q[1,i]q[1,n−1] = q[n−i,n−1], 1 ≤ i < n,

for BKn. Indeed, from Proposition 10 and Theorem 7, one has

t̃n−1 = q[n−1,n−1], t̃n−i = q[n−i+1,n−1]q[n−i,n−1]q[n−i+1,n−1]q[n−i+2,n−1],

for 2 ≤ i < n, q[n,n−1] := 1, and wt(t̃n−i(T )) = rn−i.wt(T ) for T ∈ SSYT(λ, n) and
ri ∈ Sn, i < n.

The dual generators satisfy a list of relations similar to (60) (61), (62), (63), (64):

t̃2n−i = 1, for i ≥ 1 (69)

t̃n−it̃n−j = t̃n−j t̃n−i, for |i− j| > 1, (70)

(t̃n−1t̃n−2)
6 = 1, (71)

(t̃n−iq̃[j,k−1])
2 = (t̃n−iq[n−k+1,n−j])

2 = 1, for n− k < n− j < n− i− 1, (72)

where

q̃[1,i] = t̃n−1(t̃n−2t̃n−1) · · · (t̃n−it̃n−i+1 · · · t̃n−1), for i ≥ 1, (73)

q̃[j,k−1] := q[n−k+1,n−j] = q[n−k+1,n−1]q[n−k+j,n−1]q[n−k+1,n−1], for j < k. (74)
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Remark 21. We note some features of the operators (68) when acting on straight
shaped semi-standard tableaux. Set evac := evacn. Let 1 ≤ i < n, and T = (A,B) ∈
SSYT(λ, n) where A of straight shape is the restriction of T to the alphabet [1, n−i−1]
and B, an extension of A, is the restriction of T to the alphabet [n − i, n]. One has
evac(A,B) = (evac rect(B),X) with X such that rect (X) = evac (A). Therefore,

t̃n−i(T ) = t̃n−i(A,B) = evac ti evac(A,B) by (68)

= evac ti(evac rect(B),X), such that rect(X) = evac(A)

= evac(ti evac rect(B),X)

= (evac rect(X), Z)

= (A,Z) such that rect(Z) = evac ti evac rect(B). (75)

10.2. The type Cn Berenstein–Kirillov group and virtualization. Symplectic
Bender–Knuth involutions tCn

i are not known for KN tableaux. Motivated by the fact
that for n ≥ 1, q[1,1], . . . , q[1,n−1] are generators for the Berenstein–Kirillov group BKn

in type A, and that on straight shaped semi-standard tableaux, they coincide with
the action of the partial Schützenberger-Lusztig involutions ξ[1,i], 1 ≤ i < n, we use

the action of the partial Schützenberger-Lusztig involutions ξCn

[1,i], 1 ≤ i ≤ n− 1, and

ξCn

[i,n] 1 ≤ i ≤ n, on KN tableaux of any straight shape on the alphabet Cn to define

the type Cn Berenstein–Kirillov group, BKCn .

Definition 6. Given n ≥ 1, the symplectic Berenstein–Kirillov group BKCn is the
free group generated by the 2n− 1 partial Schützenberger-Lusztig involutions

qCn

[1,i] := ξCn

[1,i], 1 ≤ i < n,

and
qCn

[i,n] := ξCn

[i,n], 1 ≤ i ≤ n,

on straight shaped KN tableaux on the alphabet Cn modulo the relations they sat-
isfy on those tableaux. We also define qCn

[1,0] = qCn

[0,n] = qCn

[n+1,n] := 1 and qCn

[j,k−1] :=

qCn

[1,k−1]q
Cn

[1,k−j]q
Cn

[1,k−1], 1 ≤ j < k ≤ n.

Thanks to Theorem 1, (37) and (38), one has that BKCn is a quotient of Jsp(2n,C).

The generators of BKCn satisfy the cactus group Jsp(2n,C) relations.

Theorem 8. The following is a group epimorphism from Jsp(2n,C) to BK
Cn:

s[1,j] 7→ qCn

[1,j], 1 ≤ j < n, s[j,n] 7→ qCn

[j,n], 1 ≤ j ≤ n.

BKCn is isomorphic to a quotient of Jsp(2n,C).

We next define symplectic Bender–Knuth involutions tCn

i , 1 ≤ i ≤ 2n − 1, on

straight shaped KN tableaux that in turn generate BKCn .

Definition 7. The 2n− 1 symplectic Bender–Knuth involutions tCn

i on KN tableaux
of straight shape on the alphabet Cn are defined by

tCn

1 := qCn

[1,1], t
Cn

i := qCn

[1,i−1]q
Cn

[1,i]q
Cn

[1,i−1]q
Cn

[1,i−2], 2 ≤ i ≤ n− 1, (76)
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tCn
n := qCn

[n,n] = ξCn
n , tCn

n−1+i := qCn

[n−i+1,n]q
Cn

[n−i+2,n], 2 ≤ i ≤ n. (77)

Thanks to the Jsp(2n,C) relations satisfied by the generators of BKCn ,

qCn

[j,j] = qCn

[1,j]q
Cn

[1,1]q
Cn

[1,j] = qCn

[1,j]t
Cn

1 qCn

[1,j]

(Definition 6 with j = k− 1) computes the symplectic crystal reflection operator ξCn

j ,

for 1 ≤ j ≤ n, on KN tableaux (see Proposition 6, (3)).

Remark 22. The symplectic Bender–Knuth involutions tCn

i , 1 ≤ i ≤ n, act on the

weights of the elements in the crystal KN(λ, n), wt(tCn

i (T )) = wt(ξCn

i (T )) = ri.wt(T ),
ri ∈ Bn, 1 ≤ i ≤ n, inducing an action of the Weyl group Bn on these weights,
although, as we shall see, in Subsection 10.3, they do not define an action of the
hyperoctahedral group Bn =< r1, . . . , rn > on the set KN(λ, n). Let T ∈ KN(λ, n) and
wt(T ) = (v1, . . . , vn) ∈ Z

n, then

wt(tCn

i (T )) = ri.wt(T ), 1 ≤ i < n,

wt(tCn
n (T )) = (v1, . . . ,−vn) = rn.wt(T )

wt(tCn

2n−i(T )) = (v1, . . . ,−vi, . . . , vn) = rn−1 · · · rn−irnrn−i · · · rn−1(v1, . . . , vn)

= tn−1 · · · tn−itntn−i · · · tn−1(v1, . . . , vn), 1 ≤ i < n.

Proposition 11. The symplectic Bender–Knuth involutions tCn

i , 1 ≤ i ≤ 2n − 1,

generate BKCn . In particular,

(1) qCn

[1,i] = pCn

1 pCn

2 · · · p
Cn

i , 1 ≤ i < n, and

(2) qCn

[i,n] = tCn

2n−i · · · t
Cn
n , 1 ≤ i ≤ n,

where pCn

i := tCn

i · · · t
Cn
2 tCn

1 is the symplectic promotion, 1 ≤ i ≤ 2n − 1.

Proof. (1) We show by induction on i that qCn

[1,i] = qCn

[1,i−1]p
Cn

i . Note that qCn

[1,1] = pCn

1 =

tCn

1 . Furthermore, for i > 1, qCn

[1,i] = qCn

[1,i−1]t
Cn

i qC[1,i−2]q
Cn

[1,i−1]. Then, assuming that for

some fixed positive integer k, qCn

[1,j] = qCn

[1,j]p
Cn

i for all j ∈ [1, k − 1], our inductive

hypothesis implies

qCn

[1,k] = qCn

[1,k−1]t
Cn

k qC[1,k−2]q
Cn

[1,k−1] = qCn

[1,k−1]t
Cn

k qC[1,k−2]q
Cn

[1,k−2]p
Cn

k−1

= qCn

[1,k−1]t
Cn

k pCn

k−1 = qCn

[1,k−1]p
Cn

k .

(2) We proceed by induction on i in the statement qCn

[n−i−1,n]
= tCn

n+it
Cn

n+i−1 · · · t
Cn
n .

As a base case, when i = 1, we have tCn
n = qCn

[n,n]. As an inductive step, we assume

the statement is true for all j ∈ [1, k] for some fixed positive integer k, so
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tCn

n+k+1−1 = tCn

n+k

= qCn

[n−k,n]q
Cn

[n−(k−1),n]

⇒ tCn

n+kq
Cn

[n−(k−1),n] = qCn

[n−k,n]

⇒ qCn

[n−k,n] = tCn

n+kt
Cn

n+k−1 · · · t
Cn
n .

�

By Theorem 7, the involutions q
A2n−1

[i,j] ∈ BK2n, i ≤ i ≤ j < 2n, satisfy the cactus J2n

relations. Consider in BK2n the involution q
A2n−1

[1,i] with its dual q̃
A2n−1

[1,i] := q
A2n−1

[2n−i,2n−1],

for 1 ≤ i < n (Remark 20), and q
A2n−1

[i,2n−i], 1 ≤ i ≤ n.

Definition 8. The virtual symplectic Berenstein–Kirillov group B̃K2n is the subgroup
of BK2n generated by the 2n− 1 involutions

q
A2n−1

[1,i]∪[2n−i,2n−1] := q
A2n−1

[1,i] q
A2n−1

[2n−i,2n−1] = q
A2n−1

[2n−i,2n−1]q
A2n−1

[1,i] , 1 ≤ i < n, (78)

q
A2n−1

[i,2n−i], 1 ≤ i ≤ n, (79)

modulo the relations they satisfy when acting on semi-standard tableaux of any straight
shape.

By Theorem 2, q
A2n−1

[1,i]∪[2n−i,2n−1] coincides with ξ
A2n−1

[1,i]∪[2n−i,2n−1] on semi-standard

tableaux of any straight shape, 1 ≤ i < n. (In particular, in E(KN(λ, n)), for any
partition λ with at most n parts.)

Remark 23. The action of q
A2n−1

[1,i]∪[2n−i,2n−1] on a semi-standard tableau is non trivial

only in the entries ≤ 2n. Therefore it is enough to consider the sets SSYT(λ, 2n) with
λ any partition with at most 2n parts.

Proposition 12. For 1 ≤ i < n, consider the Bender–Knuth involution t
A2n−i

i with

its dual t̃
A2n−i

2n−i in BK2n. The group B̃K2n also has the 2n− 1 generators

t
A2n−1

[i]∪[2n−i] := t
A2n−1

i t̃
A2n−1

2n−i = t̃
A2n−1

2n−i t
A2n−1

i , 1 ≤ i < n, (80)

t
A2n−1

n−i+1,n+i := q
A2n−1

[n−i+1,n+i−1]q
A2n−1

[n−i+2,n+i−2] (81)

= q
A2n−1

[n−i+2,n+i−2]q
A2n−1

[n−i+1,n+i−1], 1 ≤ i ≤ n. (82)

where q
A2n−1

[n+1,n−1] := 1. We call them the virtual symplectic Bender–Knuth involutions.

Proof. The group BK2n satisfies the J2n relations and B̃K2n ⊆ BK2n. Hence q
A2n−1

[1,i] q
A2n−1

[2n−i,2n−1]

= q
A2n−1

[2n−i,2n−1]q
A2n−1

[1,i] , 1 ≤ i < n, and by (23),

q
A2n−1

[n−i+1,n+i−1]q
A2n−1

[n−i+2,n+i−2] = q
A2n−1

[n−i+2,n+i−2]q
A2n−1

[n−i+1,n+i−1], 1 ≤ i ≤ n.
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In addition, from Remark 20 in BK2n,

t
A2n−1

i t̃
A2n−1

2n−i = q
A2n−1

[1,i−1]q
A2n−1

[1,i] q
A2n−1

[1,i−1]q
A2n−1

[1,i−2]q
A2n−1

[2n−i+1,2n−1]q
A2n−1

[2n−i,2n−1]q
A2n−1

[2n−i+1,2n−1]q
A2n−1

[2n−i+2,2n−1]

= q
A2n−1

[2n−i+1,2n−1]q
A2n−1

[2n−i,2n−1]q
A2n−1

[2n−i+1,2n−1]q
A2n−1

[1,i−1]q
A2n−1

[1,i] q[1,i−1]q
A2n−1

[1,i−2]q
A2n−1

[2n−i+2,2n−1]

= t̃
A2n−1

2n−i t
A2n−1

i , 1 ≤ i < n. (83)

Again by Remark 20 in BK2n and (83), for 1 ≤ i < n,

q
A2n−1

[1,i]∪[2n−i,2n−1] = q
A2n−1

[1,i] q
A2n−1

[2n−i,2n−1]

= p
A2n−1

1 · · · p
A2n−1

i q
A2n−1

[1,2n−1]p
A2n−1

1 · · · p
A2n−1

i q
A2n−1

[1,2n−1]

= p
A2n−1

1 · · · p
A2n−1

i p̃
A2n−1

2n−1 · · · p̃
A2n−1

2n−i

= t
A2n−1

1 t̃
A2n−1

2n−1 (t
A2n−1

2 t̃
A2n−1

2n−2 t
A2n−1

1 t̃
A2n−1

2n−1 ) · · · (t
A2n−1

i t̃
A2n−1

2n−i · · ·

· · · t
A2n−1

2 t̃
A2n−1

2n−2 t
A2n−1

1 t̃
A2n−1

2n−1 )

= t
A2n−1

[1]∪[2n−1](t
A2n−1

[2]∪[2n−2]t
A2n−1

[1]∪[2n−1]) · · · (t
A2n−1

[i]∪[2n−i] · · ·

· · · t
A2n−1

[2]∪[2n−2]t
A2n−1

[1]∪[2n−1]),

where q
A2n−1

[1,i] = p
A2n−1

1 · · · p
A2n−1

i with p
A2n−1

i := t
A2n−1

i · · · t
A2n−1

2 t
A2n−1

1 , and

p̃
A2n−1

2n−i := q
A2n−1

[1,2n−1]p
A2n−1

i q
A2n−1

[1,2n−1]

= t̃
A2n−1

2n−i · · · t̃
A2n−1

2n−2 t̃
A2n−1

2n−1 , 1 ≤ i < n.

On the other hand, for 1 ≤ i ≤ n,

q
A2n−1

[n−i+1,n+i−1] = q
A2n−1

[n,n] (q
A2n−1

[n,n] q
A2n−1

[n−1,n+1])(q
A2n−1

[n−1,n+1]q
A2n−1

[n−2,n+2]) · · ·

· · · (q
A2n−1

[n−(i−2),n+i−2]q
A2n−1

[n−i+1,n+i−1])

= t
A2n−1

n,n+1 t
A2n−1

n−1,n+2t
A2n−1

n−2,n+3t
A2n−1

n−i+2,n+i−1t
A2n−1

n−i+1,n+i.

�

Remark 24. If T is an A2n−1 semi-standard tableau, wt(t
A2n−1

[i]∪[2n−i](T )) = rir2n−i.wt(T ),

where ri = (i i+ 1) and r2n−i = (2n− i 2n− i+ 1) are simple transpositions in S2n,
for 1 ≤ i < n, and wt(tn−i+1,n+i(T )) = (n− i+1 n+ i)wt(T ), where (n− i+1 n+ i)
is the transposition of S2n that swaps n − i + 1 and n + i, for 1 ≤ i ≤ n. The

virtual symplectic Bender–Knuth involutions t
A2n−1

[i]∪[2n−i], 1 ≤ i < n, and t
A2n−1

n,n+1 act on

the weights in Z
2n of the elements in the crystal SSYT(λ, 2n), inducing an action of

the Weyl group Bn, realized as < (i i+1)(2n− i 2n− i+1), (n, n+1), 1 ≤ i < n >,
on these weights.

Thanks to Theorem 3, we have that B̃K2n is a quotient of the virtual symplectic

cactus J̃2n. The generators (78) and (79) of the group B̃K2n satisfy the relations of

the cactus J̃2n, or equivalently, those of the cactus Jsp(2n,C).
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Theorem 9. The following is a group epimorphism from J̃2n to B̃K2n:

s̃[1,j]∪[2n−j,2n−1] 7→ q
A2n−1

[1,j]∪[2n−j,2n−1], 1 ≤ j < n, s̃[j,2n−j] 7→ q
A2n−1

[j,2n−j], 1 ≤ j ≤ n.

B̃K2n is isomorphic to a quotient of J̃2n, and via the isomorphism between Jsp(2n,C) and

J̃2n that sends s[1,j] 7→ s̃[1,j]∪[2n−j,2n−1], 1 ≤ j < n, and s̃[j,n] 7→ s̃[j,2n−j], 1 ≤ j ≤ n,
is also isomorphic to a quotient of Jsp(2n,C).

Because the action of J̃2n on the set SSYT(λA, n, n̄) preserves the subsetE(KN(λ, n)),
see Remark 17, we now relate the virtual symplectic and symplectic Bender–Knuth
involutions by embedding the crystal KN(λ, n) into the crystal SSYT(λA, n, n̄).

Theorem 10. The symplectic Bender–Knuth involutions tCn

i , 1 ≤ i ≤ 2n − 1, in

BKCn can be realized by the virtual symplectic Bender–Knuth involutions t
A2n−i

i t̃
A2n−i

2n−i ,

1 ≤ i < n, and t
A2n−1

n−i+1,n+i, 1 ≤ i ≤ n, in B̃K2n, and vice-versa,

tCn

i = E−1t
A2n−1

i t̃
A2n−1

i+1
E = E−1t

A2n−1

i t̃
A2n−1

2n−i E, 1 ≤ i < n,

tCn

n+i−1 = E−1t
A2n−1

n−i+1,n+iE, 1 ≤ i ≤ n.

Proof. By Theorem 5, for 1 ≤ i < n,

tCn

i = qCn

[1,i−1]q
Cn

[1,i]q
C
[1,i−1]q

Cn

[1,i−2] =

E−1(ξ
A2n−1

[1,i−1]
ξ
A2n−1

[i,2̄]
)EE−1(q

A2n−1

[1,i]
q
A2n−1

[i+1,2̄]
)EE−1(ξ

A2n−1

[1,i−1]
q
A2n−1

[i,2̄]
)EE−1(ξ

A2n−1

[1,i−2]
ξ
A2n−1

[i−1,2̄]
)E

= E−1(ξ
A2n−1

[1,i−1]ξ
A2n−1

[1,i] ξ
A2n−1

[1,i−1]ξ
A2n−1

[1,i−2]ξ
A2n−1

[i,2̄]
ξ
A2n−1

[i+1,2̄]
ξ
A2n−1

[i,2̄]
ξ
A2n−1

[i−1,2̄]
)E

= E−1(t
A2n−1

i t̃
A2n−1

i+1
)E.

By Theorem 6, for 2 ≤ i ≤ n, tCn

n+i−1 = qCn

[n−i+1,n]q
Cn

[n−i+2,n], and tCn
n = qCn

[n,n] =

ξCn
n . �

10.3. Symplectic Bender–Knuth involutions and the character of a KN

tableau crystal. The C2 Weyl group is B2 =< r1, r2 : r2i = 1, (r1r2)
4 = 1 > with

long element r2r1r2r1, and the C2 symplectic Bender–Knuth involutions are tC2
1 = ξC2

1 ,

tC2
2 = ξC2

2 , tC2
3 = ξC2

[1,2]ξ
C2
2 = ξC2

2 ξC2

[1,2] (see Example 10), and one has

ξC2 = tC2
3 tC2

2 6= tC2
2 tC2

1 tC2
2 tC2

1 = tC2
1 tC2

2 tC2
1 tC2

2 .

From Proposition 6, (3), B2 indeed acts on the C2-crystal KN(λ, 2) via t
C2
1 := ξC2

1 and

tC2
2 := ξC2

2 . Therefore, in this case, tC2
1 and tC2

2 define an action of Weyl group B2 on
the crystal KN(λ, 2). However, the action of the Schützenberger–Lusztig involution

ξC2

[1,2] = ξC2 on KN(λ, n) does not coincide in general with the action of the long

element of the Weyl group B2, that is, ξ
C2 6= tC2

1 tC2
2 tC2

1 tC2
2 = tC2

2 tC2
1 tC2

2 tC2
1 .

For instance, considering T = 2 1̄
2̄

in Example 4, despite

wt(tC2
2 tC2

1 tC2
2 tC2

1 (T )) = (1, 0) = wC
0 (−1, 0) = wt(ξC2

[1,2](T )),
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the coincidence of the actions of the Schützenberger–Lusztig involution and of the
long element of the Weyl group can only be ensured when T is the highest weight or
lowest weight element in the crystal KN(λ, n), as Proposition 7 ensures. But T is not
in that case, and in fact

r2r1r2r1.T = tC2
2 tC2

1 tC2
2 tC2

1 ( 2 1̄
2̄

)

= tC2
1 tC2

2 tC2
1 tC2

2 ( 2 1̄
2̄

) = 1 2̄
2

6= ξC2

[1,2](T ) =
1 2
2̄

.

In general, for n ≥ 3, the symplectic Bender–Knuth involutions, tCn

1 , . . . , tCn
n , do

not define an action of the Weyl group Bn =< r1, . . . , rn−1, rn > on the set KN(λ, n).
On the other hand, contrary to the An−1 case, the Schützenberger–Lusztig involution
ξCn is not given by the long word of Bn in the first n symplectic Bender–Knuth
involutions. One has in fact ξCn = tCn

2n−1 · · · t
Cn
n , as stated in Proposition 11.

To show the former claim, recall that the first n− 1 generators of the Weyl group
Bn satisfy the braid relations (6) of Sn, but we claim that, in general, tCn

i tCn

i+1t
Cn

i 6=

tCn

i+1t
Cn

i tCn

i+1, i.e., (t
Cn

i tCn

i+1)
3 6= 1 for 1 ≤ i < n. To show this inequality, note that by

Theorem 10, it is enough to consider the virtual symplectic Bender–Knuth involutions
and the corresponding virtual inequality

t
A2n−1

i t̃
A2n−1

2n−i t
A2n−1

i+1 t̃
A2n−1

2n−(i+1)t
A2n−1

i t̃
A2n−1

2n−i 6= t
A2n−1

i+1 t̃
A2n−1

2n−(i+1)t
A2n−1

i t̃
A2n−1

2n−i t
A2n−1

i+1 t̃
A2n−1

2n−(i+1).

(84)

From Proposition 10 and Remark 20, t
A2n−1

i t̃
A2n−1

2n−(i+1) = t̃
A2n−1

2n−(i+1)t
A2n−1

i , for 1 ≤ i < n.

If we had equality in (84), then

t̃
A2n−1

2n−i t̃
A2n−1

2n−(i+1)t̃
A2n−1

2n−i t
A2n−1

i t
A2n−1

i+1 t
A2n−1

i = t̃
A2n−1

2n−(i+1)t̃
A2n−1

2n−i t̃
A2n−1

2n−(i+1)t
A2n−1

i+1 t
A2n−1

i t
A2n−1

i+1

⇔ (t̃
A2n−1

2n−(i+1) t̃
A2n−1

2n−i )3 = (t
A2n−1

i t
A2n−1

i+1 )3.

Applying this identity to the A11 tableau E(T ) = (P+, P−) in the virtualization
Example 9.6 would imply that

(t̃A11

6̄
t̃A11

5̄
)3(E(T )) = (tA11

4 tA11
5 )3(E(T ))⇔

(P+, (t̃A11

6̄
t̃A11

5̄
)3(P−)) = ((tA11

4 tA11
5 )3(P+), P−), (85)

but this is impossible, as (tA11
4 tA11

5 )3(P+) 6= P+. Note that the LHS of (85) follows
from t̃2n−i(P

+, P−) = evac tievac(P
+, P−) and Remark 21.

Despite the fact that the symplectic Bender Knuth involutions tCn

i , 1 ≤ i ≤ n, do
not define an action of the Weyl group Bn on the set KN(λ, n), similarly to the type
An−1 case, they can be used to show that the character of the crystal KN(λ, n) is
a symmetric Laurent polynomial with respect to the action of the Weyl group Bn.
Let E := Z[x±1 , . . . , x

±
n ] be the ring of Laurent polynomials on the variables x1, . . . , xn

over Z, and let EBn = {f ∈ E : ri.f = f, ri ∈ Bn, 1 ≤ i ≤ n}, where ri.x
α := xri.α,
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for xα := xα1
1 · · · x

αn
n , α ∈ Z

n and ri ∈ Bn, be the subring of symmetric Laurent
polynomials.

The character of KN(λ, n) is the symplectic Schur function spλ(x) in the sequence

of variables x = (x1, . . . , xn). Thanks to Remark 22, wt(tCn

i .b) = ri.wt(b) for any

b ∈ KN(λ, n) and 1 ≤ i ≤ n. Therefore, since tCn

i , 1 ≤ i ≤ n, is an involution on the
set KN(λ, n), spλ(x) is a symmetric Laurent polynomial

spλ(x) =
∑

b∈KN(λ, n)

xwt(b) =
∑

b∈KN(λ, n)

xwt(t
Cn
i b), 1 ≤ i ≤ n,

=
∑

b∈KN(λ, n)

xri.wt(b) = spλ(ri.x), 1 ≤ i ≤ n.

10.4. Relations for the symplectic Berenstein–Kirilov group. Thanks to The-
orem 8 and Theorem 9, we now provide the following relations for BKCn equivalently

B̃K2n. The relations (9) and (10) below are the only ones known for BKCn , equiva-

lently, B̃K2n which do not follow from the cactus group Jsp(2n,C) relations, equivalently,

the virtual cactus group J̃2n relations (see also Remark 25).

Proposition 13. The symplectic Bender–Knuth involutions tCn

i = 1, i = 1, . . . , 2n−
1, satisfy the following relations:

(1) (tCn

i )2 = 1, i = 1, . . . , 2n− 1.

(2) (tCn

n+i−1t
Cn

n+j−1)
2 = 1, 1 ≤ i, j ≤ n.

(3) (tCn

i tCn

j )2 = 1, |i− j| > 1, 1 ≤ i, j < n.

(4) (tCn

i tCn

n+j−1)
2 = 1, i < n− j.

(5) (tCn

i qCn

[j,k−1]
)2 = 1, i+ 1 < j < k ≤ n.

(6) (tCn

i qCn

[j,n])
2 = 1, i+ 1 < j ≤ n.

(7) (tCn

n+i−1q
Cn

[j,n])
2 = 1, 1 ≤ i, j ≤ n.

(8) (tCn

n+i−1q
Cn

[j,k−1])
2 = 1, n− i+ 1 < j < k ≤ n.

(9) (tCn
1 tCn

2 )6 = 1, n ≥ 3.

(10) (tCn

n−1 · · · t
Cn

2 tCn

1 tCn

2 · · · t
Cn

n−1t
Cn
n )4 = 1.

The virtual symplectic Bender–Knuth involutions t
A2n−i

i t̃
A2n−i

2n−i = EtCn

i E−1, 1 ≤ i < n,

and t
A2n−1

n−i+1,n+i = EtCn

n−i+1E
−1, 1 ≤ i ≤ n, in B̃K2n satisfy the same relations as those

of BKCn by replacing tCn

i by t
A2n−i

i t̃
A2n−i

2n−i , 1 ≤ i < n, and tCn

n+i−1 by t
A2n−1

n−i+1,n+i,
1 ≤ i ≤ n.

Proof. Recall Theorems 8 and 9.
(1) (tCn

1 )2 = (qCn

[1,1])
2 = 1, (tCn

n )2 = (qCn

[1,n])
2 = 1. For 2 ≤ i ≤ n, (tCn

n−1+i)
2 =

(qCn

[n−i+1,n]q
Cn

[n−i+2,n])
2 = 1 is equivalent to the Jsp(2n,C) relation 3C(i).

For 2 ≤ i ≤ n− 1,

(tCn

i )2 = qCn

[1,i−1]q
Cn

[1,i]q
Cn

[1,i−1]q
Cn

[1,i−2]q
Cn

[1,i−1]q
Cn

[1,i]q
Cn

[1,i−1]q
Cn

[1,i−2] = 1
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follows from the cactus Jsp(2n,C) relation 3C(ii) and the observations that

qCn

[1,i−1]q
Cn

[1,i−2] = qCn

[2,i−1]q
Cn

[1,i−1], q
Cn

[1,i−1]q
Cn

[2,i−1] = qCn

[1,i−2]q
Cn

[1,i−1],

qCn

[1,i]q
Cn

[2,i−1] = qCn

[2,i−1]q
Cn

[1,i].

(2) Let i 6= j. From 3C(i),

tCn

n+i−1t
Cn

n+j−1 = qCn

[n−i+1,n]q
Cn

[n−i+2,n]q
Cn

[n−j+1,n]q
Cn

[n−j+2,n]

= qCn

[n−j+1,n]q
Cn

[n−j+2,n]q
Cn

[n−i+1,n]q
Cn

[n−i+2,n] = tCn

n+j−1t
Cn

n+i−1.

(3) Recall (60) and Remark 20. Then

(tCn

i tCn

j )2 = (E−1t
A2n−1

i t̃
A2n−1

2n−i EE
−1t

A2n−1

j t̃
A2n−1

2n−j E)2

= E−1(t
A2n−1

i t
A2n−1

j )2(t̃
A2n−1

2n−i t̃
A2n−1

2n−j )2E = 1, for |i− j| > 1, 1 ≤ i, j ≤ n− 1.

(4) For i < n− j,

tCn

i tCn

n+j−1 = qCn

[1,i−1]q
Cn

[1,i]q
Cn

[1,i−1]q
Cn

[1,i−2]q
Cn

[n−j+1,n]q
Cn

[n−j+2,n]

= qCn

[n−j+1,n]q
Cn

[n−j+2,n]q
Cn

[1,i−1]q
Cn

[1,i]q
Cn

[1,i−1]q
Cn

[1,i−2]

due to the Jsp(2n,C) relation 2C.
(5) For i+ 1 < j < k ≤ n,

(tCn

i qCn

[j,k−1])
2 = (E−1t

A2n−1

i t̃
A2n−1

2n−i EE
−1ξ

A2n−1

[j,k−1]ξ
A2n−1

[2n−k+1,2n−j]E)2

= E−1(t
A2n−1

i ξ
A2n−1

[j,k−1]t̃
A2n−1

2n−i ξ
A2n−1

[2n−k+1,2n−j])
2E,

for 2n− k < 2n − j < 2n − i− 1

= E−1t
A2n−1

i ξ
A2n−1

[j,k−1]t̃
A2n−1

2n−i ξ
A2n−1

[2n−k+1,2n−j]

t
A2n−1

i ξ
A2n−1

[j,k−1]t̃
A2n−1

2n−i ξ
A2n−1

[2n−k+1,2n−j]E

= E−1t
A2n−1

i ξ
A2n−1

[j,k−1]t
A2n−1

i ξ
A2n−1

[j,k−1]t̃
A2n−1

2n−i ξ
A2n−1

[2n−k+1,2n−j]

t̃
A2n−1

2n−i ξ
A2n−1

[2n−k+1,2n−j]E

= E−1(t
A2n−1

i ξ
A2n−1

[j,k−1])
2(t̃

A2n−1

2n−i ξ
A2n−1

[2n−k+1,2n−j])
2E

= E−1(t̃
A2n−1

2n−i ξ
A2n−1

[2n−k+1,2n−j])
2E = 1,

for 2n− k < 2n − j < 2n − i− 1.

(6) For i+ 1 < j ≤ n,

tCn

i qCn

[j,n] = E−1t
A2n−1

i t̃
A2n−1

2n−i ξ
A2n−1

[j,2n−j]E, 2n− i− 1 > 2n− j ≥ n (64),(72)

= E−1ξ
A2n−1

[j,2n−j]t
A2n−1

i t̃
A2n−1

2n−i E, by Theorem 6

= qCn

[j,n]t
Cn

i .
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(7) (tCn

n+i−1q
Cn

[j,n])
2 = 1, 1 ≤ i, j ≤ n.

tCn

n+i−1q
Cn

[j,n] = E−1ξ
A2n−1

[n−(i−1),n+(i−1)]ξ
A2n−1

[n−(i−2),n+(i−2)]ξ
A2n−1

[j,2n−j]E

= E−1ξ
A2n−1

[j,2n−j]ξ
A2n−1

[n−(i−1),n+(i−1)]ξ
A2n−1

[n−(i−2),n+(i−2)]E, by Theorem 9

= qCn

[j,n]t
Cn

n+i−1.

(8) (tCn

n+i−1q
Cn

[j,k−1])
2 = 1, n− i+ 1 < j < k ≤ n.

tCn

n+i−1q
Cn

[j,k−1] = E−1ξ
A2n−1

[n−(i−1),n+(i−1)]ξ
A2n−1

[n−(i−2),n+(i−2)]ξ
A2n−1

[j,k−1]ξ
A2n−1

[2n−k+1,2n−j]E

= E−1ξ
A2n−1

[n−(i−1),n+(i−1)]ξ
A2n−1

[j,k−1]ξ
A2n−1

[2n−k+1,2n−j]ξ
A2n−1

[n−(i−2),n+(i−2)]E

by Theorem 9

= E−1ξ
A2n−1

[j,k−1]ξ
A2n−1

[2n−k+1,2n−j]ξ
A2n−1

[n−(i−1),n+(i−1)]ξ
A2n−1

[n−(i−2),n+(i−2)]E,

by Theorem 9

= qCn

[j,k−1]t
Cn

n+i−1.

(9) Recall (63) and Remark 20, (71). Then, for n ≥ 3,

(tCn
1 tCn

2 )6 = E−1(t
A2n−1

1 t̃
A2n−1

2̄
t
A2n−1

2 t̃
A2n−1

3̄
)6E

= E−1(t
A2n−1

1 t
A2n−1

2 t̃
A2n−1

2̄
t̃
A2n−1

3̄
)6E

= E−1(t
A2n−1

1 t
A2n−1

2 )6(t̃
A2n−1

2̄
t̃
A2n−1

3̄
)6E

= E−1(t̃
A2n−1

2̄
t̃
A2n−1

3̄
)6E

= E−1(t̃
A2n−1

2n−1 t̃
A2n−1

2n−2 )6E = 1.

(10) From Proposition 6, (3), we know that (ξCn

n−1ξ
Cn
n )4 = 1. Then, from Defintion

6 and (77), one has

(ξCn
n−1ξ

Cn
n )4 = (qCn

[1,n−1]t
Cn
1 qCn

[1,n−1]t
Cn
n )4

= (qCn

[1,n−2]p
Cn

n−1t
Cn

1 qCn

[1,n−2]p
Cn

n−1t
Cn
n )4, by Proposition 11. (86)

From [BerKir95, Proposition 1.4, (a)] and mimicking its proof in conjunction with
relation (5), we may write

qCn

[1,n−1] = qCn

[1,n−2]p
Cn
n−1 = (pCn

n−1)
−1qCn

[1,n−2]. (87)

Therefore, using (87),
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(ξCn
n−1ξ

Cn
n )4 = (86) = (qCn

[1,n−2]p
Cn
n−1t

Cn
1 (pCn

n−1)
−1qCn

[1,n−2]t
Cn
n )4

= (qCn

[1,n−2]p
Cn

n−1t
Cn

1 (pCn

n−1)
−1tCn

n qCn

[1,n−2])
4 by relation (4)

= qCn

[1,n−2](p
Cn

n−1t
Cn

1 (pCn

n−1)
−1tCn

n )4qCn

[1,n−2]

= qCn

[1,n−2](p
Cn

n−1t
Cn

1 (pCn
n )−1)4qCn

[1,n−2]

Since (qCn

[1,n−2])
2 = 1, we get

(pCn
n−1t

Cn
1 (pCn

n )−1)4 = (tCn
n−1 · · · t

Cn
2 tCn

1 tCn
2 · · · t

Cn
n )4 = 1, where pCn

0 := 1.

In particular, for n = 2, (tCn

1 tCn

2 )4 = 1. �

Remark 25. (1) The relation (9) in BKCn , respectively

(t
A2n−1

1 t
A2n−1

2 )6(t̃
A2n−1

2n−1 t̃
A2n−1

2n−2 )6 = 1, in B̃K2n,

is equivalent to the braid relations of Bn, (ξ
Cn

i ξCn

i+1)
3 = 1, for 1 ≤ i < n − 1,

respectively

(ξ
A2n−1

i ξ
A2n−1

2n−i ξ
A2n−1

i+1 ξ
A2n−1

2n−i−1)
3 = (ξ

A2n−1

i ξ
A2n−1

i+1 )3(ξ
A2n−1

2n−i ξ
A2n−1

2n−i−1)
3 = 1,

the braid relations of S2n, for 1 ≤ i < n− 1, [BerKir95, Proposition 1.4, (d)].

(2) The identity (ξCn
n−1ξ

Cn
n )4 = 1 in BKCn translates to B̃K2n as (ξ

A2n−1

n−1 ξ
A2n−1

n+1

ξ
A2n−1
n )4 = 1. Thus relation (10) in BKCn translates to B̃K2n as

(t
A2n−1

n−1 · · · t
A2n−1

1 t̃
A2n−1

n+1 · · · t̃
A2n−1

2n−1 ξ
A2n−1
n )4 = 1. (88)

The relation ξ
A2n−1

n−1 ξ
A2n−1
n ξ

A2n−1

n−1 = ξ
A2n−1
n ξ

A2n−1

n−1 ξ
A2n−1
n , although true in BK2n,

does not hold in B̃K2n because ξ
A2n−1
n ∈ B̃K2n and it would imply ξ

A2n−1

n−1 ∈

B̃K2n which is absurd. From Remark 24, we know that the generators of

B̃K2n induce an action of Bn on the weights of SSYT(λ, 2n) and one has dif-

ferently wt(ξ
A2n−1

n−1 (T )) = rn−1wt(T ). This means that the relation (88) in

B̃K2n does not follow from the previous corresponding relations in Proposition
13. Alternatively we could have used Corollary 5 to obtain (10).

10.5. Example: the C2 Bender–Knuth involutions and their virtual images.

The known relations for group the BKC2 with generators tC2
1 , tC2

2 , tC2
3 are t2i =

(t1t2)
4 = (t2t3)

2 = 1, i = 1, 2, 3.

Example 10. We illustrate the symplectic Bender–Knuth involutions tC2
1 , tC2

2 , tC2
3 in

BKC2 as well their virtual images in B̃K4: Λ = Z
2 and B2 =< r1, r2 >; if (a, b) ∈ Z

2,

r1(a, b) = (b, a) and r2(a, b) = (a, b̄); tC2
1 = ξC2

1 , tC2
2 = ξC2

2 , tC2
3 = ξC2

[1,2]ξ
C2
2 = ξC2

2 ξC2

[1,2].
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Using the type C2 signature rule

1, 2̄ → +

2, 1̄ → −

2→+

2̄→−

we compute tC2
1 T = ξC2

1 T , where

T = 1 1 2 2 2 2̄ 1̄ 1̄
2 2̄ 2̄ 1̄ 1̄

, wt(T ) = (−2, 1)

1̄1̄2̄21̄21̄22̄12̄12

1̄1̄1̄21̄22̄12̄ 7→ 1̄1̄1̄12̄12̄12̄,

tC2
1 T = ξC2

1 T = 1 1 1 1 2 2̄ 1̄ 1̄
2 2̄ 2̄ 2̄ 1̄

wt(tC2
1 (T )) = (1,−2).

Virtualization of tC2
1 in A3: t

C2
1 = E−1ξA3

2̄
tA3
1 E = E−1tA3

1 ξA3

2̄
E. The shape of T

is 3ω1 + 5ω2, and thus the shape of E(T ) and E(tC2
1 T ) is 3(ω1 + ω3) + 10ω2, where

ωk = (1k), 1 ≤ k ≤ 3,

E(T ) =
1 1 1 1 1 1 2 2 2 2 2 2 2̄ 2̄ 1̄ 1̄
2 2 2 2̄ 2̄ 2̄ 2̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄
2̄ 1̄ 1̄

,

and

E(tC2
1 T ) = E(ξC2

1 T ) =
1 1 1 1 1 1 1 1 1 2 2 2 2̄ 2̄ 1̄ 1̄
2 2 2 2̄ 2̄ 2̄ 2̄ 2̄ 2̄ 2̄ 1̄ 1̄ 1̄
2̄ 1̄ 1̄

.

Using the A3 signature rule

1 → + 2→+ and 2̄ → +

2 → − 2̄→− 1̄ → −

(89)

we compute

ξA3

2̄
tA3
1 E(T ) = ξA3

2̄

1 1 1 1 1 1 1 1 1 2 2 2 2̄ 2̄ 1̄ 1̄
2 2 2 2̄ 2̄ 2̄ 2̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄
2̄ 1̄ 1̄

=
1 1 1 1 1 1 1 1 1 2 2 2 2̄ 2̄ 1̄ 1̄
2 2 2 2̄ 2̄ 2̄ 2̄ 2̄ 2̄ 2̄ 1̄ 1̄ 1̄
2̄ 1̄ 1̄

= E(tC2
1 T )
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Therefore,

tC2
1 (T ) = E−1ξA3

2̄
tA3
1 E(T ).

Virtualization of tC2
2 : tC2

2 = E−1ξA3
2 E.

T = 1 1 2 2 2 2̄ 1̄ 1̄
2 2̄ 2̄ 1̄ 1̄

,

tC2
2 (T ) = ξC2

2 (T ) = 1 1 2 2 2̄ 2̄ 1̄ 1̄
2 2̄ 2̄ 1̄ 1̄

wt(tC2
2 (T )) = (−2,−1)

E(tC2
2 (T )) = ξA3

2 E(T )

tC2
2 (T ) = E−1ξA3

2 E(T )

ξA3
2 E(T ) = ξA3

2

1 1 1 1 1 1 2 2 2 2 2 2 2̄ 2̄ 1̄ 1̄
2 2 2 2̄ 2̄ 2̄ 2̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄
2̄ 1̄ 1̄

=
1 1 1 1 1 1 2 2 2 2 2̄ 2̄ 2̄ 2̄ 1̄ 1̄
2 2 2 2̄ 2̄ 2̄ 2̄ 1̄ 1̄ 1̄ 1̄ 1̄ 1̄
2̄ 1̄ 1̄

= E(tC2 (T ))

Virtualization of tC2
3 : tC2

3 = E−1ξA3
2 tA3

1 (tA3
2 tA3

1 )(tA3

2̄
tA3
2 tA3

1 )E.

T = 1 1 2 2 2 2̄ 1̄ 1̄
2 2̄ 2̄ 1̄ 1̄

, wt(T ) = (−2, 1)

tC2
3 (T ) = ξC2

2 ξC2

[1,2](T ) = ξC2

[1,2]ξ
C2
2 (T ) = 1 1 1 1 2 2 2̄ 1̄

2 2 2̄ 2̄ 1̄
, wt(tC2

3 (T )) = (2, 1)

E(tC2
3 (T )) = E(ξC2

2 ξC2

[1,2](T )) = ξA3
2 E(ξC2

[1,2](T )) = ξA3
2 evac

A3E(T ) = evac
A3ξA3

2 E(T ),

tC2
3 (T ) = E−1ξA3

2 evac
A3E(T ) = E−1ξA3

2 tA3
1 (tA3

2 tA3
1 )(tA3

2̄
tA3
2 tA3

1 )E(T ).

11. Open questions and final remarks

It remains to establish whether or not BKCn satisfies additional relations besides
those listed in Proposition 13.

Chmutov, Glick and Pylyavskyy [CGP16] have determined relationships between
subsets of relations in the groups BKn and Jn which yield a presentation for the cactus
group Jn in terms of Bender–Knuth generators. Rodrigues [Ro20, Ro21] has also
introduced a shifted Berenstein–Kirillov group with many parallels with the original
BK group. Following Halacheva she has defined a cactus group action of Jn via
partial shifted Schützenberger–Lusztig involutions (partial shifted reversal) on the
Gillespie-Levibnson-Puhrboo shifted tableau crystal [GLP17]. On the other hand,
with the shifted tableau switching she has defined shifted Bender–Knuth involutions,
and following Chmutov, Glick and Pylyavskyy she has yield a presentation for the
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cactus group Jn in terms of shifted Bender–Knuth generators. In the same vein,
it is natural to seek precise relationships between subsets of relations in the two

groups B̃K2n and the virtual symplectic cactus group J̃n. It is also natural to seek

a presentation of the virtual symplectic cactus group J̃2n in terms of the virtual
symplectic Bender–Knuth generators.

Glossary

BKCn: The type Cn symplectic Berenstein–Kirillov group. 4, 5, 56, 57, 60, 62, 65, 67
BKn: The subgroup of BK generated by the first n − 1 Bender–Knuth involutions

t1, . . . , tn−1. 54–56, 67
BK: The Berenstein–Kirillov group (or Gelfand-Tsetlin group) [BerKir95]. 54, 55, 67
KNJ(λ, n): The Levi branched crystal of Kashiwara–Nakashima tableaux obtained

by deleting in KN(λ, n) all the arrows not labelled in J ⊂ I. 10–12, 15, 16,
25, 26, 47, 48

SSYT(λ, n): The Uq(sl(n,C))-crystal of semi-standard Young tableaux of shape λ
and entries in [n]. 8, 22, 25, 28, 44, 55, 56

J̃2n: The virtual symplectic cactus group. 4, 5, 20–22, 28–30, 50, 59, 60, 62, 68

B̃K2n: The virtual symplectic Berenstein–Kirillov group, a subgroup of BK2n satisfy-

ing the relations of the virtual symplectic cactus group J̃2n. 5, 58–60, 62, 65,
68

E: The virtualization map defined by Baker [Ba00a, Proposition 2.2, Proposition 2.3]
on type Cn Kashiwara–Nakashima tableaux. 4, 12–16, 29, 47–50, 52, 53, 58,
60, 66, 67

Jn: The cactus group Jsl(n,C). 3, 16–18, 28, 55, 67, 68
Jsp(2n,C): The symplectic cactus group with generators sJ for J any connected sub-

diagram of the Cn Dynkin diagram subject to the relations in Lemma 2. 1, 2,
4, 5, 17, 18, 20–22, 28, 50, 56, 57, 59, 60, 62, 63

R3: The symplectic contraction/dilation relation in the symplectic plactic monoid
C∗n/ ∼. 24, 26, 32–37, 39–44, 46

C∗n: The monoid of words in the alphabet Cn. 13, 14, 23, 24
Cn: {1 < · · · < n < n̄ < · · · < 1̄}. 3, 4, 8, 9, 11–13, 30, 32, 33, 35, 36, 56
g: Finite dimensional, complex, semisimple Lie algebra. 2, 3, 5–8, 16–18, 22, 23,

26–28, 30
B(λ): The normal g-crystal with highest weight λ. 2, 8, 22, 25, 30–32, 69
BJ : The Levi branched normal crystal BJ , the restriction of B to the sub-diagram J

of I. 7, 15, 26, 32, 69
B: A normal crystal. 2, 7, 8, 22, 25–27, 29, 30, 32, 35, 36, 45
KN(λ, n): The U(sp(2n,C)) crystal of Kashiwara–Nakashima tableaux of shape λ in

the alphabet Cn. 2, 4, 8, 10–15, 25, 28, 29, 32, 33, 35, 44, 49, 50, 57, 58, 60–62
SSYT(λA, n, n̄): The Uq(sl(2n,C))-crystal of semi-standard Young tableaux of shape

λA and entries in Cn. 4, 12–14, 29, 48–50, 60
SSYTJ(λ, n): The Levi branched crystal, the restriction of SSYT(λ, n) to J ⊆ [n−1].

28



Glossary 69

reversal
Cn

J : J-partial symplectic reversal, the symplectic reversal KNJ(λ, n) with J ⊆
[n] a connected sub-diagram containing the node n. 30, 45

reversal
Cn: Combinatorial procedure to compute the Schützenberger involution ξ on
KN(λ, n). 26

reversalJ : J-partial reversal, the reversal on SSYTJ(λ, n) with J ⊆ [n− 1]. 28, 30
reversal: Combinatorial procedure to compute the Schützenberger involution ξ on

SSYT(λ, n). 22, 23, 28, 44, 52, 53
ξB: The Schützenberger–Lusztig involution on the normal crystal B. 2, 22
ξJ: The partial Schützenberger–Lusztig involution to the sub-diagram J ⊆ I is the

Schützenberger–Lusztig involution ξBJ
on the normal crystal BJ . 26–30, 32

ξ: The Schützenberger–Lusztig involution on B(λ). 22, 23, 28, 31, 43
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ceedings of FPSAC21, Séminaire Lotharingien de Combinatoire, 85B.53, 12pp.
[Sa21a] J. M. Santos. Symplectic keys and Demazure atoms in type C, Electronic J. Combin., 28, 2,

2021, arXiv:1910.14115v3

http://arxiv.org/abs/2104.11799
http://arxiv.org/abs/1910.14115


Glossary 71

[Sa21b] J. M. Santos. Symplectic right keys – Type C Willis’ direct way, in Proceedings of FPSAC21,
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