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SYMPLECTIC CACTI, VIRTUALIZATION AND
BERENSTEIN-KIRILLOV GROUPS

OLGA AZENHAS, MOJDEH TARIGHAT FELLER, AND JACINTA TORRES

ABSTRACT. We explicitly realize an internal action of the symplectic cactus group,
recently defined by Halacheva for any complex, reductive, finite-dimensional Lie al-
gebra, on crystals of Kashiwara—Nakashima tableaux. Our methods include a sym-
plectic version of jeu de taquin due to Sheats and Lecouvey, symplectic reversal, and
virtualization due to Baker. As an application, we define and study a symplectic
version of the Berenstein—Kirillov group and show that it is a quotient of the sym-
plectic cactus group. In addition two relations for symplectic Berenstein—Kirillov
group are given that do not follow from the defining relations of the symplectic
cactus group.
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1. INTRODUCTION

The cactus group was originally defined by Henriques—Kamnitzer [HeKa06-1] in
the context of coboundary categories defined by Drinfeld [Dr90]. Coboundary cat-
egories are monoidal categories equipped with a commutor, that is, a collection of
natural isomorphisms o4 5 : A ® B — B ® A satisfying certain properties. The idea
of studying the cactus group was originally due to A. Berenstein and was taken up by
Henriques—Kamnitzer in [HeKa06-1], who defined it and further showed that it can be
realized as the fundamental group of the moduli space of marked real genus zero stable
curves. The original idea of Berenstein was to construct a commutor in the category
of crystals of a complex, reductive, finite-dimensional Lie algebra, by first defining an
involution [€g| { Bl —[Bl for each crystal [Bl which flips the crystal by exchanging highest
weight elements with lowest weight elements. In the case of sl(n, C') with the tableau
model for the highest weight crystal it was known that coincides with the

Schiitzenberger involution on semi-standard Young tableaux of shape A [BerZel96].
See [BuScl7l Sections 4.3, 14.3.3] and the references therein.

Let [ be a complex, semisimple Lie algebra with Dynkin diagram X. There is a
Dynkin diagram automorphism 6 : X — X defined by ag(;) = —woa;, where wy is the
longest element of the Weyl group of g The cactus group Jg, defined by Halacheva
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in [Ha20l [Hal6], is the group generated by o7, where I runs over all connected sub-
Dynkin diagrams of X, subject to the following relations:

0? =1, (1)
ojog =oyor it J C X, JUI is disconnected (2)
oroy =og,porif J C I (3)

where 67 is the automorphism on I defined by the longest element of the parabolic
group W!. Halacheva has defined an internal action of the cactus group Jg on a
normal [g-crystal by partial Schiitzenberger—Lusztig involutions £;. From this action
we know that partial Schiitzenberger—Lusztig involutions satisfy the cactus group
Jg) relations [HaKaRyWe20]. Halacheva [Ha20] initiated a combinatorial study of
the cactus group for [ = sl(n,C) by comparing the action of [J,] = sl(n,C) OD &
normal s[(n, C)-crystal with that of the Berenstein—Kirillov group on Gelfand-Tsetlin
patterns (or semi-standard Young tableaux) [BerKir95]. Using a different approach,
Chmutov, Glick and Pylyavskyy [CGP16] have also found relationships between those
two groups.

Our results compose a combinatorial study of the cactus group for the symplec-
tic Lie algebra [g) = sp(2n,C). There are many combinatorial models for sp(2n, C)-
crystals: De Concini tableaux [DeCo79], King tableaux [Ki75], Lakshmibai-Seshadri
[LakSes91] and Littelmann paths [Lit95] [Lit97], the alcove path model of Gaussent—
Littelmann [GLO0O5] and the one of Lenart—Postnikov [LenPos08], but we work with
Kashiwara—Nakashima tableaux, for which a rich combinatorial structure exists
[KasNak91l, HonKan02, Lec02, Lec07]. We review the basics in Sections Bl and [l
For each connected sub-Dynkin diagram I of X, we define the explicit action of £ on
a given Kashiwara—Nakashima tableau. The algorithmic procedure for that action is
given by virtualization. In the case when I forms a Dynkin diagram of type C,,_g,
it is also given by the I-partial symplectic reversal, a symplectic analogue of partial
reversal on A,_1 tableaux. Thereby we provide a combinatorial action of the cactus
generators oy on the set of Kashiwara—Nakashima tableaux on the alphabet [C,] This
is addressed in Sections [8 and [@l The case of I = X has already been developed
by Santos in [Sa2la], where he defines an operation on straight shaped Kashiwara—
Nakashima tableaux which is a symplectic analogue of the Schiitzenberger involution
operation, also known as evacuation, on straight shaped A, _1 semi-standard Young
tableaux. This procedure includes the symplectic jeu-de-taquin defined by Sheats in
[Sh99], and further developed by Lecouvey [Lec02] using crystal isomorphisms. This
is the content of Section [7l

For I C X such that I forms a Dynkin diagram of type C,,_j, we define an al-
gorithm for [I-partial symplectic reversal which generalizes Santos’ algorithm in the
sense that, when I = X, our algorithm is exactly the same. The symplectic C,,_j re-
versal extends symplectic C,_j evacuation to arbitrary semi-standard skew tableaux
on the alphabet C,,_; whose shift of the entries by k£ are admissible on the alphabet
[C.} The C,,_j reversal of a such semi-standard skew tableau P on the alphabet C,,_p,
is characterized to be the unique skew tableau coplactic equivalent to P and plactic
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equivalent to the C,,_ evacuation of the symplectic rectification of P.

An important inspiration behind our generalization is the operation of tableau-
switching [BSS96] of Benkart, Sottile and Stroomer on A,,_; semi-standard tableaux.
Given an admissible tableau on the alphabet [C,] we start off by freezing the entries
corresponding to nodes not appearing in I, creating at the same time a new Young
tableau U with Young shape defined by the positive frozen entries as well as a skew
tableau P consisting of the non-frozen entries. The tableau pair (U, P), sharing a
common border, pass through each other via symplectic jeu de taquin (SJDT for
short). After performing this procedure, a new pair (R,V) with R the symplectic
rectification of P and V consisting of the entries of U as well as some new, colored
letters. Each color records a precise instance of the symplectic rectification of P. Our
symplectic colourful tableau switching is reversible since SJDT is reversible. It reduces
to the A,,_; tableau switching on tableaux in the alphabet [n]. This work is carried
out in detail in Subsection of this paper, yielding the formula (52)), and illustrated
in Subsection

For the general case we use the virtualization map defined by Baker [Ba(OOa], that
is, an injective map

E KN, 1) — SSYTOA, n,7)|

which assigns to the sp(2n, C)-crystal a subset of the sl(2n,C)-crystal
SSYT(AM,n, @) in a reversible way. This is discussed in Section fl We show that
one may apply the map [E] then perform a certain partial Schiitzenberger—Lusztig
involution in the type sl(2n,C)-crystal without leaving the image of [E]l reverse the
virtualization map [E] and obtain our desired result. Subsection .4.T] provides The-
orem [f] and Theorem [6] with such algorithmic procedures. Additionally, in Definition
Bl Section [6] we define the wvirtual symplectic cactus group |J: - and show that it is a
subgroup of Ja, isomorphic to the symplectic cactus group [Jy(2,,,c)} In Theorem [3]

Section [ an action of the virtual symplectic cactus group on the set [SSYT(A\*, n,n)|
is defined. The subset is preserved under this action as shown in Sub-
sections and In particular, in Subsection [@.5] we realize such action of
the virtual symplectic cactus group on the virtual images of Kashiwara—Nakashima
tableaux and show that it virtualizes the action of the symplectic cactus group on
Kashiwara—Nakashima tableaux. This work is illustrated in Section

As an application, in Section [I0, we define symplectic Bender-Knuth involutions
combinatorially EDeﬁnition 7). We start off by defining the type C, Berenstein—
Kirillov group as the free group generated by the partial symplectic
Schiitzenberger—Lusztig involutions with respect to connected subdiagrams of the
type C, Dynkin diagram of the form I = [n] modulo the relations they satisfy on
Kashiwara—Nakashima tableaux of any straight shape in the alphabet [C;] These gen-
erators of [BIC" satisfy the relations of the symplectic cactus group (Theorem [§]). We
show that symplectic Bender—Knuth involutions are also generators of I3 B

We study relations for under the virtualization map [El More precisely, we
consider the relations Satisﬁed by the embedding of generators of[BX ] in [EKN(X, )
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C SSYT(M,n, n); we call this group (Definition §) the virtual symplectic Berenstein—
Kirillov group a subgroup of the type As,_1 Berenstein—Kirillov group B,
satisfying, in particular, the relations of the virtual cactus group (Theorem [)).
Proposition [I2] gives the virtual symplectic Bender-Knuth involutions generators of
which are shown in Theorem to be the virtualization of the symplectic
Bender—Knuth involutions. The virtual image of the groupsatisﬁes the relations
of Some of the ones listed in Proposition[I3are obtained by applying the partial
inverse to the virtualization map. Relations (@) and (I0) in Proposition [I3] are the
only ones that do not follow from the the symplectic cactus group They
are instead equivalent to the braid relations of type C),, Weyl group. In particular,
relation ([I0) is not similar to any relation in previous Berenstein—Kirillov groups.
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Kirillov groups and cacti in the framework of the ICERM program “Research Commu-
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3. BaAsIcs

Let [g) be a finite dimensional, complex, semisimple Lie algebra. Let I be the Dynkin
diagram associated to the root system of @ A = {«; : i € I'} the set of simple roots,
W its Weyl group, generated by the simple reflections {r; : i € I}, and wy € W the
longest Weyl group element. We will use the numbering of the vertices of I given
by [Bo VI|]. The Dynkin diagram has an automorphism, a permutation of its nodes
which leaves the diagram invariant, 6 : I — I defined by ag(;) = —woa, for any node
i € I, where wq is the longest element of W. We will also denote by A the integral
weight lattice associated to the root system of [ It is generated by the fundamental
weights w;, 7 € I. For a connected sub-diagram of I, J C I, denote by 87 : J — J the
Dynkin diagram automorphism that satisfies ag, ;) = —wy aj, for any node j € J,
where wb] is the longest element of the parabolic subgroup W7 C W (the Weyl group
for [ restricted to J) [BjBr05]. When J = I one has the original notation 6; = 6. We
focus on the cases where [ = sl(n,C),sp(2n,C). We will often abuse notation and
write a Dynkin diagram I with n nodes as the interval [n]. The corresponding Weyl
groups are the symmetric group &,, on n letters and the hyperoctahedral group B,
respectively, where B,, is the free group generated by rq,...,7,_1,7, subject to the
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relations
r2=1,1<i<n, (4)
(rir))?=1,1<i<j<m,l|i—j|>1, (5)
(ririz1)®=1,1<i<n-—2, (6)
(rp—1mn)t =1 (7)
The free group generated by r1,...,r,_1, subject to the relations above, for 1 <4, j <

n, is &, realized by the simple transpositions r; = (i,7 + 1) on the set [n]. The group
B, has 2"n! elements and is realized by the signed transpositions r; = (4,i+1) (7,7 + 1),
i=1,....,n—1,and r, = (n,m) ontheset {1<---<n<n<---<2<1}. That is,
we may see B,, embedded in Gy, by folding {1 <---<n<n <--- <2< 1} through
a central symmetry. The long element of B,, has length n?, while the long element of
S, has length n(n—1)/2. For instance, r1r9rir9 = rorirar is the long element of Bo,
and, more generally, (ry, -+ -rory)™ = (r172 -+ - r,)™ is the long element of B,, [BjBr05].

Occasionally, for the sake of clarity, we write w(‘)4 and woc for the corresponding
longest elements of &,, and B,, respectively, or simply wy when there is no room for
confusion. Given a vector v € Z", we have that r;, with i € [n — 1], acts on v, r;v,
swapping the i-th and the (i + 1)-th entries, and 7, acts on v, r,v, changing the sign
of the last entry. Henceforth, wg' reverses v, wi (vi,...,v,) = (vp,...,v1), and w§
changes the sign of the entries of v, wgv = —u.

Recall the sl(n, C) simple roots a; = €; —e;41, i € [n— 1], and the sp(2n, C) simple
roots a; = e; — €41, ¢ € [n — 1] and «,, = 2e,,, where e;, i € [n], is the R™ standard
basis. The A,,—; Dynkin diagram automorphisms above, since —wpa; = —(—ap—;) =
i, is given by (i) = n — i, with ¢ € I = [n — 1]. For instance,

n=>5 Ay 1 2 3 4
4/4/_\\
n=6 As 1 2 3 4 5

The C,, Dynkin diagram automorphisms above, since for wy € B, —woq; =
—(—a;) = a, is given by 0(i) = ¢, with ¢ € I = [n]. The weight lattices are A = Z" for
sp(2n,C) and A = Z"/(1,...,1) for sl(n,C). We will often work with representatives
in the case of sl(n,C). The fundamental weights are w; = 23-:1 e,1 <i<mnand
respectively have representatives w;, 1 <7 <n — 1.

3.1. Levi sub-diagrams. Let [ be a finite Dynkin diagram. A Levi sub-diagram J
of I obtained by deleting from [ a subset of its nodes is the Dynkin diagram of a semi-
simple Lie algebra g; C[g known as a Levi sub-algebra which is the Levi component
of the parabolic Lie sub-algebra of [g] generated by the Chevalley generators associated
to the nodes of J.
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Example 1. If we remove the last node (the one labelled by n) from the Dynkin
diagram of type C,, we obtain a Dynkin diagram of type A,_1. which corresponds to
the Levi sub-algebra sl(n,C) of sp(2n,C).

1 2 3 n—1 n
Cn ————e
1 2 3 -1
Apy —e

Example 2. The semisimple Lie algebra s1(3,C) x sp(4,C) is a Levi sub-algebra of
sp(12,C). Note that the semisimple Lie algebra sl(n,C) x sl(2,C) is not a Levi sub-
algebra of sp(2n,C), as its Dynkin diagram of type A,_1 x Ay cannot be obtained from
the type C,, diagram by deleting some of its vertices.

4. NORMAL sl(n,C), sp(2n,C)-CRYSTALS AND LEVI RESTRICTIONS

Crystals corresponding to finite-dimensional (quantum group) U, (§)-representations
belong to a family of crystals called normal crystals [BuScl7, HaKaRyWe20]. In clas-
sical types, these crystals may be realized by a tableau model [KasNak91] and have
nice combinatorial properties. Normal crystals arise as the crystals associated to the
finite-dimensional representations of a quantum group U, () for some Lie algebra
[BuSc17]. These crystals decompose into connected components, one for each irre-
ducible component to the representation at hand. The Levi restriction of a normal
crystal is still a normal crystal, and the union of some connected components of a
normal crystal is also a normal crystal [BuScI7, [HaKaRyWe20]. The crystals that
we deal with are tableau crystals for finite-dimensional representations of Uy (sl(n,C))
and Uy(sp(2n,C)).

A [@rerystal is a finite set [Bl along with maps

wt {Bl— A, e, f; {BI=[BIU {0}, i, i {Bl— 7,
obeying the following axioms for any b,b’ €Bland i € I,
o U =¢;(b) if and only if b = f;(V'),
o if f;(b) # 0 then wt(f;(b)) = wt(b) — ay;
if ¢;(b) # 0, then wt(e; (b)) = wt(b) + «;, and
o ¢;(b) = max{a € Z>¢ : €!(b) # 0} and ¢;(b) = max{a € Z>¢ : f{*(b) # 0}.
o 0i(b) — &i(b) = (wt(b), '),

20

oy are the coroots.
(3] 1

where o) =

Remark 1. Our abstract[grcrystals are defined with the additional condition that they
are seminormal [BuSclT].

The crystal graph of Blis the directed graph with vertices in [Bl and edges labelled
by i € I. If fi(b) =V for b,b/ €B| then we draw an edge b — b'. See Example H
Given an arbitrary subset J C I, [Bj]is defined to be the crystal Bl restricted to the
sub-diagram J of I, the Levi branched crystal. The crystal graph of [B ;] has the same

vertices as [Bl but the arrows are only those labelled in .J; that is, we forget the maps
can

ei, fi,pi, and g;, for ¢ ¢ J [BuScl7]. The weight map is WA Ay, where wt is
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the weight map of Bl A is the weight lattice of g, Ay = A/ < w; : i ¢ J > is the
weight lattice of gy, and A “%" A is the canonical projection. If[= sp(2n,C) and we
restrict to J = [n — 1], then we obtain a sl(n,C)-crystal. For instance, if we restrict
an sp(2n, C)-crystal to J = [n — 1], then we obtain an sl(n, C)-crystal. Given b €B]
B(b) denotes the connected component of [Bl containing b.

A [@rerystal is normal if it is isomorphic to a disjoint union of the crystals
where is the crystal associated to an irreducible, finite-dimensional
[Otrepresentation of highest weight X, where A € A is a dominant weight. In this
work, where we focus on [ = sp(2n, C), respectively [§ = sl(n,C), dominant weights
in Z™, respectively in Z"/ < (1,...,1) >, correspond precisely to partitions, that is,
weakly decreasing vectors in Z™ with non-negative entries, respectively to weakly de-
creasing vectors in Z", and each such representative is equivalent to a unique partition
in Z"~ ! < 7", where the last entry is fixed as zero. An important property of normal
crystals [Blis the existence of a unique highest weight vertex for each connected com-
ponent of Bl that is, an element which is a source in the corresponding crystal graph,
whose weight is dominant. In the highest weight vertex x has weight wt(z) = A.
Note that we work solely with highest weight crystals, namely, crystals [B] such that
for each b € Bl there exists a finite sequence ai,as,...,a; € I and a highest weight
element w, €BI(b) such that b = fg, - - - fay fa, (up). For b,b" Bl we have B(b) = B(b')
if and only if up = uy . From now on, we will refer to sp(2n, C)-crystals by Cj,-crystals,
and sl(n, C)-crystals by A,,_j-crystals.

4.1. Kashiwara—Nakashima tableaux. Let|B(\)/be the irreducible C),-crystal with

highest weight a partition A of at most n parts. We realize [B(\)|as the crystal KN(\, n)]
of Kashiwara—Nakashima tableaux [KasNak91] of shape A on the alphabet

Cl={1<---<n<n<---<1}

The irreducible A, _i-crystal with highest weight a partition A of at most n parts
is realized as the crystal of semi-standard tableaux of shape A on the
alphabet [n]. We also will refer to these tableaux as the A,_; tableaux of shape
A. The crystal is a connected sub-crystal of The weight of an
A,_1 tableau T, respectively a Kashiwara—Nakashima tableau U, is represented by,
respectively is, the vector (u1, ..., ) € Z™, where u; denotes the number of i’s in T,
respectively the number of i’s minus the number of i’s in U.

Kashiwara—Nakashima tableaux (KN for short) are semi-standard Young tableaux
in the alphabet [C,] which satisfy some extra conditions. They are a variation of De
Concini symplectic tableaux [DeCo79]. A semi-standard Young tableau of any shape
(skew or straight) with entries in [C,|is KN if and only if the following two conditions
hold.

e Each one of its columns is admissible.
o [ts splitting is a semi-standard Young tableau.

Definition 1. Let C be a semi-standard column in the alphabet [Cy| of length at most
n. Let Z = {z1 > ... > 2z} be the set of non-barred letters z in [Cy] such that both
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z and Z appear in C. We say that the column C is admissible if there exists a set
T ={t1 > ... >t} of unbarred letters t that satisfies:

o t,t¢C;
e t1 < 21 and is maximal with this property;
o t; <min(ti—1,z) and is mazimal with this property.

The split of a column is the two-column tableau [C'rC where IC is the column obtained
from C by replacing z; by t; and possibly re-ordering, and rC is obtained from C by
replacing z; by t; and possibly re-ordering. The splitting of a tableau consisting of
admissible columns is the concatenation of the splits of its columns.

Given p C X partitions with at most n parts, KN(A/u,n) denotes the normal C,,-
crystal of KN tableaux of skew shape \/u on the alphabet [C,] [Lec02, Lemma 6.1.3,
Corollary 6.3.9].

Example 3. Let n = 2. The column is admissible, however, is not. Notice

o w|H|H|

that although each one of its columns is admissible, the tableau 1s not KN,

because its split,

[N
[
[N
—

15 not semi-standard.

We will mostly use the notation and definitions from [Lec02] [Lec07]. We also refer
the reader to the references therein.

Remark 2. [Lec02, Remark 2.2.2] The mazximal height of an admissible column is
n. Moreover, a column C' is admissible if and only if, for any m € [n], the number
N(m) of letters x in C such that either x < m or x > m satisfies N(m) < m.
Moreover, if there exists in C a letter m < n such that N(m) > m, then C' contains
a pair (z,z) satisfying N(z) > z.

Remark 3. In [Lec02], coadmissible columns are defined as well (see [Lec02, p.301]).
We will not delve into the details here, however, we remark that there exists a bijection
between admissible and coadmissible columns given by filling in the shape of the given
admissible column C with the unbarred letters of IC' from top to bottom in increasing
order, followed by the barred letters of rC in the same fashion. We will denote this
bijection by ® and use it in[7.3

Example 4. The Cy crystal KN(\,2) of shape X = (2,1). Fach node in the graph
represents an element of the crystal. There is a blue, respectively red, arrow connecting
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an element a to an element b whenever fi(a) = b, respectively fa(a) = b.

11|
2
V% N
112 111
2 3
~N- ~N-
1] 32 1 2|
2 3
"4 N
1] 2 1 i|
— ~N-
2 2
—— = 2 2|
Y "4 —
— 2
11| —
— "4 N
2 —
— 22| 212
2 i
<4 ~ %
2|1 2] 2
3 T
~N- ~N-
2] 1 22|
1 1
N "4
3 i|
1

4.1.1. Levi branching of KN tableau crystals. For J C I, [KN;(\, n)|is the restriction
of KN(\, n)|to the sub-diagram J of I: as a crystal graph it has the same set of vertices
as|KN(A, n)|but only contains the arrows labelled by J, and it is also a normal crystal.

The highest weight elements of are those C,, tableaux in where

the only incoming edges are colored in [n] \ J.

Example 5. We have the Levi-branched crystals KNgay (X, 2) and KNy (A, 2) respec-
tively from left to right for X = (2,1). Both are Ai-crystals. The highest weights, with
multiplicity, in the LHS have representatives (2,1),(1,2),(1,0), (0,1),(0,1),(—1,2),
(=1,0),(=2,1). In the quotient of Z? by the fundamental weight w1 = (1,0), these
are equivalent to the vectors (0,1),(0,2),(0,0), (0,1),(0,1),(0,2),(0,0),(0,1), respec-
tively. In practice, this means that we have ignored the multiplicity of the letters
{1,—1} in the tableaux of the LHS to compute the highest weights. On the RHS, we
consider another embedding of 7. — 72 given by the quotient 72/ < (1,1) >, since
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we = (1,1). The computation of the highest weights on the RHS is similar to that of
the LHS, and we thus leave it as an exercise for the reader.

1 1| 1 1|
2 2
Y "4
12 11 12 11
2 2 2 2
h ~
12 12| 12 12|
2 2 2 2
N
1 1|1 1 1|1
— — h
3 2 2 2
L L~ 22| L L 22|
2 _ 2
1 S 1 1| S
— "4 —
3 _ 3 _
L= 2 2| 2 L~ 2 2| 2
2 1 2 1
v
2 2|3 2|1 2|3
2 1 2 1
N ~
2 2]2] 2|1 2]2]
1 1 1 1
2|1 211
1 1

If J =[p,q], 1 <p<q<n,the crystal graph consists of the KN tableaux
of with arrows colored in J. Recall the C), signature rule [KasNak91} Lec02),

BuSc17] to compute the action of the crystal operators on a word in the alphabet [C,]

If ¢ < n, the Levi branched crystal KN[nq]()\,n) is a type Ag—p+1 normal crystal.
,q+ 1}
and generators ; = (4,7 + 1)(j,j+ 1), j € J. We say that the entries outside of
[tp,g+ 1] ={p<---<q+1}U{qg+1 < --- < p} are frozen, which amounts to
saying that the KN tableaux of the set in the same connected component
of KNp, (A, n) are stable in the entries over [Cp|\ [£p,q + 1] under the action of
the Kashiwara operators f;, e;, i € [p,q|. That is, if ¢ < n, in the same connected
component of KNy, (), n), the subtableaux consisting of the letters {1 < ... <p—1},

{p—1<---<1}or{g+2<---<n<n<--<q+2} are the same.

The Weyl group is W7 = S(p,g+1), the symmetric group on the letters {p,...
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If ¢ = n, the Levi branched crystal KNy, ,j(A,n) is isomorphic to a type Cy—pi1
normal crystal. The Weyl group is W/ = By, ) generated by the signed permutations
on the subset {p < --- <n <7 < --- < i}. The entries outside of [£p,n] = {p < --- <
n<m<---<p} are frozen; within the same connected component of the
subtableaux either consisting of the letters {1 < --- <p—1}or {p—1< --- < 1}
are the same. In Example [ since sl(2,C) = sp(2,C), we get two crystals of types

A = O,
5. VIRTUALIZATION

In this section we closely follow Baker [Ba(OOa, Section 2] and adopt the notation
used there. In Example[0.6] we present a detailed example of the content in this sec-
tion. We include it later rather than earlier because it includes some more information
which is not yet presented up to the end of this section.

5.1. Baker embedding and Baker recording tableau. Let
A= w4+ Awn €27
with w; = Zgzl e; € Z", 1 < j < n the fundamental weights of type C,,. Let

J

wf:ZeieZ%forlgjgn (8)
i=1
2n—j+1
wf‘:wg‘n_jﬂz Z e, €2 forl<j<n 9)

i=1

be the As,_; fundamental weights, and consider as well the Z?" partition

n—1
M =20 + Z Ai(w? + wﬁr—l).
i=1

Let [SSYT(A\?, n,n)| be the type Ag,_1 crystal of semi-standard Young tableaux in
the alphabet [C,] of shape A4. We will denote the corresponding crystal operators by

f# for i €[Cy] and consider, for 1 < i < n, the operators f¥ = fA fi’i—l, i < n, and

fE = (f4?2. Let [El denote the wvirtualization map defined on type C, Kashiwara—
Nakashima tableaux defined by Baker [Ba0Oal, Proposition 2.2, Proposition 2.3]. More
precisely, [£] is an injective map

[E:[KN(X, n)] < [SSYT (A, n, 7)| (10)

such that [E( fi(T)) = fEET)) for T € KN(X\,n)} 1 < i <n. We will denote by £~}
the restriction of any left inverse of [El to the image of [KN(X, n)| under [El

Given an admissible column C' in the alphabet [C,] of shape w;, 1 < i < n, denote
by ¥(C) its Baker virtual split [BaOOa, Proposition 2.2], a two column type Ag,—1
tableau of shape wf! + w4, ;. The map 1 is injective and embeds admissible columns

of length i, in the alphabet [Cy] into SSYT(w# + w4l _;,n,7A),1 < i < n. We define
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1~1 analogously to E~'. From [Ba00al, Proposition 2.3] we know that, if we write T
as a concatenation of its columns, that is, T'= C} - - - C1, then

[EXT) = [0 <= w(¥(C1)) -+ = w((Ck))],
where the word w(i)(C)) of the type As,_1 two-column tableau ¢ (C) is given by
the Japanese reading of its two columns (from top to bottom and right to left), and
P < w is the Schensted column insertion of a word w into a type Ao, _1 semi-standard
Young tableau P in the alphabet [Cy] [Fu97, [St01].

Let T € be the highest weight element; that is, T is the Yamanouchi
tableau of shape and weight A on the alphabet [n] (each row i is solely filled with
the letter 7). Then [EXT\) = T\a is the highest weight element of [SSYT(A\",n,n)|
that is, the Ay,_; Yamanouchi tableau of shape and weight A4 in the alphabet [C,]
The image of by [Elin [SSYT(A\, n, n)|is the crystal generated by acting with
the lowering operators fiE on the highest weight element T )‘\4 of ISSYT(A\, n,n)l For
T € KN(A,n), where T'= Cj - - - C1, we write

wr = w((Cr)) - w((Cy))-

Then wr is a word in [C7], the monoid of words in the alphabet [Cy] and [EXT") = [ +
wrp]. We will call the recording tableau of the column insertion of wrp, Q(wr), the
Baker recording tableau associated to T.

Proposition 1. For T €|KN(\,n)|, the Baker recording tableau Q(wr) depends only
on A. From now on, we will denote by Q) the Baker recording tableau associated to

A

Proof. By abuse of notation, we will denote by the same symbols the type As,_1
crystal operators on the Ag,_1 crystal [C;] of words and those on semi-standard Young
tableaux in the same alphabet. Now, we know that there exists a sequence 1 <
i1, .,ix < msuch that fi, - f;, (T\) = T. Therefore fZ ... fE(E(Ty)) =LEXT), where
[EXTy) = T\a, the highest weight element of [SSYT (A, n,n), and so

5 e f(wTA) =uwr

(recall that fF = (f7!)?) because the connected components of the crystal[Cy] of words
of type Ag,—1 with highest weight elements wp, and w(E(T))) = w(Tya) have the
same highest weight A and are hence isomorphic. In particular, both wy and wr,
belong to the same connected component of the crystal [C}| of words of type Ag,—1,
namely, the connected component containing the Yamanouchi word wr, of weight A
(recall that all words wr have the same rectification shape A and that all As,_q
crystal operators commute with jeu de taquin). Now, we consider a version of the
RSK correspondence [Fu97, [St01, Kwo09, BuScl7] which is a bijection

C<%  |J SSYT(u.n @) x SYT(p) (11)
“w

(p)<2n
RSK

w = (P(w),Q(w)) (12)
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where SYT () is the set of standard Young tableaux of shape p, P(w) = [ < w] and
Q(w) is the corresponding recording tableau which encodes the sequence of shapes
produced by the column insertion of w. In particular for each standard Young tableau
Q of shape p the pre-image RSK™1(SSYT (1, n,7) x {Q}) is a crystal isomorphic to
SSYT(u,n, ), and all of these pre-images are disjoint and cover [Cf] In particular this
means that all the words wp for T € are contained in the same connected
component of [C7] defined by:

RSK~! (BSVTO ] % {Q(uwr, )}).
Thereby, Q(wr) = Q(wr,) for all T' € d

Corollary 1. Let A =wp, + -+ +wp,, 1 <my <--- <my, <n, and let

M= wi +w;7411 +-- +w§4n—mk +w;741k €z’

2n—mi

Then Qx can be written out of the shape A as a sequence of shapes by adding
successively the columns w;?h,w?n_ml, . ,w;?lk,wﬁ‘n_mk, whose bozes are filled along

columns, top to bottom with consecutive numbers from 1 to |\4|:

A A A A A
@ C wml C w2n—m1 + Wmy C wmg + w2n—m1 + wml

A A A A
C w2n—m2 + wmz + w2n—m1 + wml

A A

A A A
c-- Cwmk+”'+w2n—m2+wm2+w2n—m1+wm1

A A A A _ WA
C Won—my, +wmk +oee +w2n—m1 +wm1 =A%

Given a partition A with at most n parts, and 7' = Cj---Cy € [KN(\,n)| let
U(T) = (w(y(Ch)), ..., w(¥(Cy))) €[C;] (here the word is presented as a k-tuple) and

U = (7L, .., 97, Then (ET),Qy) = RSKU(T) = (P(wr),Q)) and

-1 _ —1 —1
B =V ROR RN )« )

the;e RSKX @ denotes the inverse of RSK restricted to [EI[KN(A,n)) x
Qr}-

The computation of RSKX{QA} uses Q) to perform the inverse of column

Schensted insertion. See Example [9.0]

Remark 4. Let T €[KN(\, n)| and [EXT) €|SSYT(A\*,n,n)l Then

wt(EXT)) = wt(wr) = (a1, ..., an, 0, . .., 1) € Z2}
18 such that
2wt(T) = (o — g, .., 0 — ) € Z". (13)
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5.2. The Levi branched crystal and virtualization. Recall that a Levi branched
crystal B} J C I, T a Dynkin diagram, is obtained by ignoring the maps f;, e, @i, &,
for i ¢ J. Let I be the Ag,_1 Dynkin diagram with nodes {1,...,n,7n,...,2}.

1 2 3 n—1

X

-2 -3 —4 -n

For each connected sub-diagram J = [p,¢] or [k,n] with 1 <p < ¢g<n and k < n, of
[n], let J = [¢+ 1,p + 1] respectively [n,k + 1], if k < n, and J = () if k = n be the
corresponding connected sub-diagram of [n, 2].

Each connected component of the Levi branched crystal KN 7(A,n) with J =
[p,4q], [k,n], 1 <p<q<n,k<n,is embedded via[El into a connected component of
the Levi branched crystal SSYT ; 7(A,n) such that J U J is a disconnected diagram
of [1,...,n,n,...2] if ¢ < n, and otherwise, JUJ = [k,k+ 1] or J = J if J = {n}.
Consider the Levi branching of the type C, crystalto Ag—pr1,1 <p<qg<n,
and Cp_gy1, k < n. The Levi type A;_,+1 Dynkin diagram is obtained via folding
from the Levi subtype Ay_p+1 X Ag—pt1 of Ag,—1 which is obtained by removing
the nodes 1,...,p—1,¢q+1,...,n,A,...,q+2,p+2,...,2 from the A, ;1 Dynkin
diagram. The Levi type C),_r11,k < n, is obtained via folding from the Levi subtype
Agp_ors1 of Ag,_1 obtained by removing the nodes 1,...,k — 1,k,...,2 from the
Asgp—1 Dynkin diagram [BuScl7].

In [Ba00al, Proposition 2.3 (ii)], it is shown that given b € the C), crystal
length functions sic, gpic, 1 < i < n, on b, and the As,_1 crystal length functions

A _A A

: A A : A : .
e em 1 <i<n, g, and ¢, =1 <i <n, g7, on [E)(b) are nicely related:

e (b) = e D)) = e D)), 1< <n, and e (b) = 1/2¢; (ED)),
and similarly for ¢¢(b), 1 < i < n, where ¢;(b) = max{k € Zs¢ : eF(b) # 0} and

)

¢i(b) = max{k € Z>¢ : f¥(b) # 0}. This means that b is the highest weight element
of a connected component U of if and only if, for all 7 € J,

e (EXb)) = A (EXb)) = & (b) = 0, for all i € J \ {n}

and

MED) =S (b) =0, if n e J.
(Similarly, in the case b is the lowest weight element, by replacing appropriately,
sic with goZ-C and 6{‘, sﬁr—l with 90;4, respectively gpﬁ_—l, and 2 with ¢2.)
Henceforth,
S =0,ieJe e ED)=0icJUJ
and
() =0,ieJe gMEWD) =0, icJUJ.
In other words, because our crystals are seminormal, [Eb) is the highest weight el-
ement of the connected component V' of SSYT ;,7(\,n) containing [E{b) and [EXU).
It is therefore unique. A similar statement holds for the lowest weight element. The
next proposition now easily follows.
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Proposition 2. Let J C [n] be a connected sub-diagram of the type C, Dynkin
diagram. Let U be a connected component of the Levi branched crystal
with highest and lowest weight elements u"8" and u'*" respectively. Then [EXU) is
contained in a connected component of the Levi branched crystal SSYT ;,7(A,n) with
highest and lowest weight elements [EXu"&") and [E u'™") respectively.

Remark 5. GivenT € SSYT(u,n,n), with p a partition with at most 2n parts, T may
be decomposed into two disjoint semi-standard tableaux T and T—, T = (T, T7),
where T is the semi-standard tableau of shape u+ on the alphabet [n] defined by the
entries of T in [n], that is, TT € SSYT(uy,n), called the positive part of T, and T~
is the semi-standard tableau of skew shape u/py on the alphabet [7i, 1] defined by the
entries of T in [n,1], that is, T~ € SSYT(u/uy,n), called the negative part of T.
Provided that we only apply fiA, ef‘ with i € JUJ" disconnected such that J C [n—1]
and J' C [n,2], respectively, this shape decomposition is preserved. Those crystal
operators preserve the shape decomposition above because, according to the type Asn_1
signature rule, they only change positive (resp. negative) letters into positive (resp.
negative) letters.

For JU J' disconnected, ‘)"]’-4]";4 = fﬁff, with 7 € J, 7/ € J. We then write, for
s drk ©J and {5y, dn ) © T,

fir it (D) = (Fr - SR (T, f - (T0)) (14)
6. THE CACTUS GROUP AND VIRTUALIZATION

Halacheva [Hal6l [HaKaRyWe20] has defined a more general version of the cactus
group [J ] originally defined by Henriques-Kamnitzer [HeKa06-1] in terms of generators
and relations.

Definition 2 ([Hal6l [HaKaRyWe20] ). Let[g be a finite-dimensional, semisimple Lie
algebra with Dynkin diagram I. The cactus group Jg has generators s; where J runs
over the connected sub-diagrams of the Dynkin diagram I of[g, and relations:

13 33:1 , forall JC I,
8. sysp = sypsy, for all J,J C 1 such that J U J" is disconnected,
30 sssy = 89,57, for all J'C JC 1.

Remark 6. Note that when J' C J, 48 says that s; commutes with sy by reversing
J" with respect to J. We also have a group epimomorphism Jg — W taking s; to wb]
([HaKaRyWe20], [Hal6, Remark 10.0.1]). Together with 3§, this implies the relations

o0(J ’ 0;5(J
wowg wo :wo( ) and wy wi wi :wOJ( ),

If I is the A,,—1 Dynkin diagram, 6 acts on J by reversing the connected interval
of nodes J, whereas in the C,, type it depends on whether J contains the node with
label n or not.

Lemma 1. The cactus group Jync) = [l is the group with generators sy, where J
runs over all connected sub-diagrams of I = [n—1], the A,_1 Dynkin diagram, subject
to the relations
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1A. s2=1,J C[n—1],
2A. sysyp = sypsy, forall J,J" C [n—1] such that JU J' is disconnected.
SA. Spp.q)Sika) = Sppra-Lpta-HSlp.a for k.1 C [p,a] [ —1].

Proof. Relations 1g) and 2g] translate directly to 1A. and 2A. Consider two nested
intervals [k,1] C [p,q] C [n — 1]. The Weyl group W4 is the quotient

WP = W/ Staby ([1,p — 1] U[q + 1,n])
and wy (aj) = —apiq—j, J € J. Then Opp.q(d) =p+q—d for d € [p,q]. After this
observation one sees that Relation 3g) translates directly into 3A above.

]
Remark 7. The first and third relations ensure that the n — 1 elements of the form
sy 1 <k<n—1, (15)

generate [Jyl, since any sj; j may be written as
S[i.g) = S[1,j15(1,-+1)5[1,5]- (16)

By conjugation with sy ,_q), the elements sy ,_1),1 < i < n—1, also form a set of
generators.

Lemma 2. The cactus group is the group with generators sy, where J runs
over all connected sub-diagrams of the C, Dynkin diagram I = [n], subject to the
relations

1C. s% =1,J C[n],
2C. sysy = sysy, for all J,J" C [n] such that JU J' is disconnected,
3C. (Z) Sip,n)S[k,1] = S[k,1)S[p,n) [kvl] C [pvn] C [’I’L],
(”) pq S[kl [p—l—q—l,p—l—q—k]s[p,q]; [k:7l] c [pv Q] C [’I’L - 1]
Proof. Relations 1g) and 2g] translate directly to 1A. and 2A. Consider two nested
intervals [k,l] C [p,q]. If [p,q] C [n — 1], we are in type A,_p, hence 3C.(ii) holds,
which is just relation 3A. If ¢ = n, then we are in type C),_,+1. The Weyl group

WPnl is the restriction of the hyperoctahedral group B, to the generators TpsvsTn,
(as a group of signed permutations, it is the restriction to the set

pn] = {p < <n<n<--<p),
and wy (a;) = —a; for j € J. Therefore 6, ,(d) = d for d € [k,l] and Relation 3C.

(i) follows directly from 3g]
U

Remark 8. Note that the elements sy, J C [n—1], subject to the relations above, gen-
erate the cactus group [J] As in ([{G)), the following are alternative 2n — 1 generators

of apiencf

S[l,j]7 1 < j <n-— 17 (17)
S, 1 <7 <n. (18)
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Remark 9. We may observe that[J,] is a subgroup of defined by the subset of
generators sy, J C [n — 1], indezed by connected sub-diagrams of the A,_1 connected
sub-diagram [n — 1] of the C,, Dynkin diagram I = [n], subject to the relations above
1.C, 2.C and 3.C, (ii).

Proposition 3. If[g is a finite-dimensional semisimple Lie algebra, and [ C[g] is a
Levi sub-algebra, then Ji is a subgroup of Jg.

Proof. Let I be the Dynkin diagram corresponding to [gand J C I the sub-diagram
corresponding to the Levi sub-algebra [. Any connected sub-diagram K of J is also a
connected sub-diagram of I, hence one can define a map on generators by s% > sﬁ{.
Here generators of .Jg are denoted by Sf{, and generators of .J; by 8{{. Remark
implies that this map is a morphism of groups. The map is clearly injective because

the generators of Jg are all distinct.
O

6.1. Embedding of into Jon. We have observed that [J] is a subgroup of

We now show that there is a group embedding of into Jo, by folding
the As,_1 Dynkin diagram through the middle node n:

1 2 3 n—1 n
—— o —o— ——=—0
1 n—1

D
27L71 2n—2 2n—3 n+1

Why should such an embedding exist? Let us consider the following elements of

Jon:
s/[p,q} 1= S[p.q)S[2n—g,2n—p] = S[2n—g,2n—p|S[p,q)> for all [p,q] € [n —1].

In Lemma Ml we show that these elements together with the generators s, o, for
p < n generate a subgroup of Jo,, isomorphic to Notice the similarity between
this and the construction of sp(2n,C) as a sub-algebra of s[(2n, C) by folding [Kac83),
Chapter 8, pp. 89 — 102]. Moreover, the following lemma provides not only concrete
combinatorial motivation for Lemma [, but will also be the main ingredient in its
proof.

Lemma 3. The following relations hold in Jay,:

st a=1l1<p<q<n, 19
3[2[,72”_17} =1,1<p<n, 20
s/[pmsl[k’” = s[ J]s , [p,q] U[k,I] C [n— 1] disconnected, 21

S[p,2n—p|S[k,2n—k] = S[k,2n— k]s[p on—p), 1 <p <k <n,
S[p72n—p}8/[k,l} = s'[m]s[ 2n—p]» 1<p<k<l<n,
/

f p1<p<k<l<qg<n.

I
Slp.alSkl) = Spta— l,p+q—k]s[p,q
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There are no more relations among the elements S/[p7q] and [y on—k), for all p,q] C
[n— 1] and [k,n] C [n].

Proof. We have the relations (I9), (20) and (23)),

2 2 2 2 1A.
S/[P#I] = (S[p,q1S[2n—q,2n—p)) = S[p,q)S2n—g,2n—p] — 1-

1A.
S[2p,27L—p} — 1
For 1 <p<g<mnand1l<k<I<n such that [p,q] U [k,] is disconnected, the sub-
diagrams [p, q|U[2n —¢q,2n —p], and [k,lJU[2n —1,2n — k] of [2n — 1] are disconnected,
hence
/ 1 2A. ’
Spa®kl) T Pk pal
Additionally, if ¢ = n, the sub-diagram [k, ] U [p,2n — p] U [2n —[,2n — k] in [2n — 1]
is disconnected, hence

2A

S[p72n—p} S/[k‘,l} = S/[k;,l}s[p,Qn—p} .

Moreover,

3A.
S[p,2n—p|Slk,2n—k] = S[2n—(2n—k),2n—k]S[p,2n—p] = S[k,2n—k]S[p,2n—p]

for 1 <p < k < n, hence relation (22 holds. Now, for 1 < p < k <! < n we have:

3A.
S[p,2n—p|S[k,l|S[2n—1,2n—k] = S[2n—1,2n—k]S[p,2n—p|S[2n—1,2n—k]
3A.
= S[2n—1,2n—k]S[2n—(2n—k),2n—(2n—1)] S[p,2n—p]

=S[2n—1,2n—k]S[k,1]S[p,2n—p]

which establishes relation (23]). Finally, for 1 < p < k < I < ¢ < n the following
holds:

81p.alSTed] =SlpsalS12n—a,2n—p] Sk 1) S[2n—1,2n— ]

2é's[p,q]S[k,l]s[Qn—an_P}S [2n—1,2n—F]

Sé'S[P—irq—lvp-Fq—k} 5lp,al 5[2n—(p+q—Fk),2n—(p+¢-1)]¥[2n—q,2n—p]

2é'S[P+q—lvp+q—k} 5[2n—(p+q—k),2n—(p+q—1)]°[p,q)5[2n—q,2n—p]
- S,[p+q—l,p+q—k]8/[P7Q]'

This establishes relation (24]). Any relation R’ = 1 with the elements s’[p’q} =
S(p,g|S[2n—gq,2n—p] AN S[k 2n_k), for some [p,q] C [n — 1] and [k,n] C [n], translates
to a relation R = 1 involving generators of Ja,, of the form sp, 41, S[2—q,2n—p] I DPairs,
and s, 2k}, for some [p,q] C [n — 1] and [k, n] C [n], which satisfy the same kind
of relations as sfp’q} and S[; 2,—p]- Therefore from R = 1 we don’t get new relations
R =1. O
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Definition 3. The virtual symplectic cactus group is the group with generators
57, where J runs over all sub-diagrams of I = [2n — 1], the As,—1 Dynkin diagram,
of the form J = [p,2n — p| for all [p,n] C [n], or J = [p,q] U [2n — q,2n — p] for all
[p,q] C [n — 1] subject to the relations

1A. §%=1,J C[2n—1],
2A. 5755 = 8yp8y, such that J U J' is disconnected with respect to all [p,q] C [n],

3121 (7’) '§[p,2n—p]g[q,l}U[Qn—lQn—q] = g[q,l}U[Qn—l,Qn—q]‘§[p72n—p}7 [%” - [p7 n] - [TL],
(”) fOT [kvl] - [pv Q] C [TL - 1])
§[p,q}u[2n—q,2n—p]§[k,l]U[2n—l,2n—k] =
'§[q+p—l,q+p—k]U[2n—p+2n—q—(2n—k),2n—p+2n—q—(2n—l)]‘§[p7q]u[2n—q72n—p} =

Slg+p—Lg+p—K|U2n—(p+)+h,2n—(p+a)+]S[p,q)U[2n—q,2n—p]-
The following are 2n — 1 alternative generators of

S un—j2n—1, 1 <7 <n-—1, (25)
Sii2n—g), 1 <J<mn. (26)

Proposition 4. There is an isomorphism 2.
Proof. Clearly and satisfy the same relations corresponding to all con-

nected sub-diagrams [p, ¢| C |n|. Furthermore, the maps

Pz~ ol

Slp,q] ™ S[p,glU[2n—g,2n—p]>
Slpn] 7 S[p,2n—p];

-

are eiimorphisms inverse to each other. This follows directly from the definitions

of and (Definition Bl and Lemma [2] respectively). Therefore, ~
O

Lemma 4. The following assignment defines a group injection from to Jon:

U Papeng] = Jon

/
S[p,ql — Sip.ql’ 1<p<qg<n,

=S| 1<p<n.

S p,2n—p]s

p,n|

Proof. We begin by showing that the map induced by I' is indeed a group homomor-
phism. We check the relations 1C. — 3C. from Lemma 2
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1C. We have that for 1 <p <¢q <n,

@
D(sppg”) = S = L

while for 1 < p < n, we have F(s[p,n]Q) = s[zp n—p] @ 1.

2C. For 1 <p<g<mnand1l<k<I<n such that [p,q] U [k,I] is disconnected,
the sub-diagrams [p, q] U [2n — ¢,2n — p], and [k, ] U [2n — [, 2n — k] of [2n — 1]
are disconnected, hence

€D
F(S[qu]s[kvl]):sfp,q}sfk,l} = S/[k,l}sl[p,q] = T (sk,5p,q))-

Additionally, if ¢ = n, the sub-diagram [k, 1] U [p,2n — p] U [2n — [, 2n — k]
in [2n — 1] is disconnected, hence

@
L (8pn1ST,0) =S, 2n—p15(k) = kg Sip2n—p=L (Sk15[pm))-

3C. (i) We have that for 1 <p <k <nand 1 <p <k <[ < n respectively:

L (8[p,n)5[k,n]) = Sip,2n—plSk,2n—k] = S[k,2n—kS[p,2n—p] = L (S[k,n]5[p,n])

23)

L(S[pnSik,d]) = Sip2n—p|Sik,[S2n—1,2n—k = S2n—1,2n—k]S[k,{|S[p.2n—p] = L (S[k1)5[pn])-
(17) Let 1 <p< k<l <gq<n. Then

P(S[Pﬂ]s[kvl]) = S/[p,q]s/[k,l] = S/[p—l-q—l,p—i-q—k]s/[p,q} = F(S[p-‘rq—l,p-l-q—k]s[nq])‘

We have now finished proving that I' is a group morphism. To show that it is injective,
one needs to show that its left inverse defined by the assignment

rl—e}t: im(T) C Jy,

S/[p,q} = Sy 1Sp<q<nm,
S[p,2n—p] = Spn) 1<p<n.

is also a group morphism. This however follows from Lemma [3]the previous calcula-
tions: the generators of im(I") satisfy the relations from Lemma [2] and there are no
more relations between them (all possible cases have been already covered above). [
Proposition 5. The group 18 1somorphic to a subgroup of Jo,.

Proof. The map

‘—) Jgn

g[p,q}U[Qn—an—p] — S/[p,q}y 1< p<gqg<n,
S[p,2n—p] 7 S[p,2n—ps 1 <P < 7.

is a a group injection. This follows directly after composing the maps from Proposition
Ml and Lemma [l
O
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We may also think of as the unfolding of in Jo,.

7. FULL SCHUTZENBERGER—LUSZTIG INVOLUTIONS AND ALGORITHMS

7.1. Full Schiitzenberger—Lusztig involution. Let |B(\)|be the normal [gicrystal
with highest welght A. Let uy and ulow be the highest, respectively lowest, weight

elements of The Schutzenberger Lusztig involution €] : |B(\)| — |[B(A)| is the

unique map of sets (hence set involution) such that, for all b € [B(A\)} and i € I,

. ei@(b) :Elfé)(i)(b)

o fHIb) =ea(

o wt(E(d)) = wowt (b)
where wy is the long element of the Weyl group W. ( For the existence and uniqueness
of £, €2 is a map of crystals and hence ¢2 = 1, see [HeKa06-1}, BuSc17].) The involution
acts by wp on the weights and interchanges the action of e; and fy(;). For A1,
acts by reversing the weight and interchanges the action of e; and f,,_;; for Cp,, [(| acts
by changing the sign of the weight and interchanges the action of e; and f;.

If Bl is a normal [grerystal, Bl is the disjoint union of connected components, each
of which is a crystal isomorphic to for some dominant integral weight A. We
define [€g| on [Bl by applying [¢] to each one of its connected components. Each element
of is generated by w) (resp. u')f""’ ) by applying f;’s (resp. e;’s). Hence the same
sequence of f;’s (resp. e;’s) applies to the highest weight (resp. lowest weight) of any
connected component of [Bl isomorphic to

The elements u) and u')f""’ are the unique elements of of weight A, respectively

woA. Hence, since wt((uy)) = woA, and Wt(]zl(ub"v = ), £ interchanges highest
and weight elements of B()), and so u" = [g(uy), El(u'°w = uy. This implies that,
uy = ej, -+ - ej, (uP"), for some sequence jy, ..., j, € I, and

U =B(ur) =[les, e (W) = foggny+ Foin @S™) = fag) - Fagin (un)-
Corollary 2. Let b €|B(A)|and b= f; --- fj,(ur), for jr,...,j1 € I. Then

o) = €o(j,) " o )(uﬁ‘\’w), wt(&](b)) = wowt(b)
In particular,

low

e in type Ap_1,[E[(b) = en_j, - en_j, (u?), and wt(€[(b)) = rev wt(b), where rev
1s the reverse permutation (long element) of S,

e in type Cp, [{b) = ¢j, - - e, (uP™), and wt(E(b)) = —wt(b).

7.2. The full sl(n, C) reversal. For[g = sl(n,C),[fcoincides with the Schiitzenberger
involution [Len(7, BerZel96] also known as evacuation (evac for short) on
[Fu97, [St01], and as [reversall on the set SSYT(\/u,n) of type A,_1 tableaux of skew-
shape \/u in the alphabet [n] [BSS96].

Let T € Bl = SSYT(\/u,n) and let B(T) be the connected component of the
crystal SSYT(A/u,n) containing 7. Then B(T) ~ B(v) for some partition v and
rectification(T") € B(v). Thereby, [§[T) is the unique tableau in B(7') such that



SYMPLECTIC CACTI, VIRTUALIZATION AND BERENSTEIN-KIRILLOV GROUPS 23

rectification[f T") = evacuation(rectification(T")),

[E(T") = arectification(evacuation(rectification(T))), (27)

where arectification denotes the inverse process of rectification [BSS96, [ACM19]. More
precisely, the rectification (rect for short) procedure is recorded by assigning to the in-
ner shape p of T' a standard tableau S to form the tableau pair (S, 7). The entries of S
govern the jeu de taquin on T by sliding out all letters in the S filling, from the largest
to the smallest, to get a new tableau pair (rect(T),S’) where S’ is the skew standard
tableau consisting of the slid letters from S. The anti-rectification procedure, arectifi-
cation, is defined by the reverse jeu de taquin to evacuation(rectification(7") and is gov-
erned by the slid letters in S’ in the tableau pair (evacuation(rectification(7")), S”) from
the smallest to the largest. Eventually one obtains the tableau pair (S[reversal(7'))
where

[reversall(T") := arectification(evacuation(rectification(7'))). (28)
Next we will discuss [g]= sp(2n,C).

7.3. Lecouvey—Sheats symplectic jeu de taquin and symplectic Knuth equiv-
alence. If T'is a KN tableau, we consider its word w(T") € [C}] obtained by reading
in the Japanese way the columns of T' from rightmost to leftmost, each column read
from top to bottom.

7.3.1. Lecouvey—Sheats symplectic jeu de taquin. [Sh99, Lec02]

Let T be a punctured KN tableau with two columns C7 and C5 and split form
spl(T) = 1C1rC11CyrCy, and let Cy have the puncture x. Let « be the entry under
the puncture of rC; and § the entry to the right of the puncture of rC1,

spl(T) = 1C1rC11CyrCy = ,

where « or 8 may not necessarily exist. The elementary steps of the symplectic jeu
de taquin, or SJDT for short, are the following:

A. If o < B or 8 does not exist, then the puncture of T" will change its position
with the cell beneath it. This is a vertical slide.

B. If the slide is not vertical, then it is horizontal. We then have o > 8 or that «
does not exist. Let Cf and C) be the columns obtained after the slide. We have two
subcases, depending on the sign of S:

1. If B is barred, we are moving a barred letter, 5, from (C5 to the punctured box
of r(1, and the puncture will occupy ’s place in [C5. Note that [Cy has the same
barred part as Co and that rC; has the same barred part as ®(Cy). Looking at T,
we will have an horizontal slide of the puncture, getting C, = Cy \ {8} U {*} and
Ci = d H®(Cy) \ *U{B}). In a sense, B went from Cy to ®(Cy).
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2. If 8 is unbarred, the procedure is similar, but this time g will go from ®(C3) to
Cy; hence O] = C1 \ * U {8} and C} = ®~1(®(Cy) \ {8} U *). However, in this case
it may happen that C7 is no longer admissible. In this situation, if i is the lowest
entry such that i,7 appear in C}] and N (i) > i, we erase both i and i from the column
and remove a cell from the bottom and from the top of the column, and place all the
remaining cells orderly.

Applying elementary SJDT slides successively, eventually, the puncture will be a cell
such that o and 8 do not exist. In this case we redefine the shape to not include this
cell and the jeu de taquin ends. The SJDT when applied to semi-standard tableaux
in the alphabet [n] reduces to the ordinary jeu de taquin.

The SJDT is reversible, meaning that we can move *, the empty cell outside of
i, to the inner shape v of a skew tableau T' of shape p/v, simultaneously increasing
both the inner and outer shapes of T by one cell. The slides work similarly to the
previous case: the vertical slide means that an empty cell is going up, and a horizontal
slide means that an entry goes from ®(C7) to Cy or from Cy to ®(C3), depending on
whether the slid entry is barred or not, respectively.

7.3.2. Symplectic Knuth equivalence. In this section we gather the necessary tools
from [LLT95, Lec02]. For w € [C}] let P(w) be the Kashiwara—Nakashima tableau
obtained by performing the Baker—Lecouvey insertion algorithm on w. We do not
need the algorithm in this paper, but refer the reader to [BaO0bl [Lec02] for the original
descriptions. A detailed account can also be found in [Sa21b]. Given wq,ws € @, the
relation w; ~ wp < P(w;) = P(ws) defines an equivalence relation on [C}] known as
symplectic plactic equivalence. It is the analogous relation defined by Knuth relations
in the alphabet [n] [Fu97]. The symplectic plactic monoid is the quotient|C’]/ ~. Each
symplectic plactic class is uniquely identified with a KN tableau.

The plactic monoid [Cf]/ ~ can also be described as the quotient of C} by the
following symplectic plactic relations (we use the notation from [Lec02]):

R1

yzx Zyxrz for x <y < z with z # %
xzy = zay for v < y < z with z # %

R2
yr—1(z—1)ZyrTz and 2Ty Zx — Lz — 1)y for I <z <nandz <y <z

R3] (Symplectic contraction/dilation relation) w ~ w \ {z,%}, where w € [C;] and
z € [n] are such that w is a non-admissible column, z is the lowest non-barred
letter in w such that N(z) = z+ 1 and any proper factor of w is an admissible
column.

Remark 10. [Sa2la] It can be proven that gien a column word w € [C;], any proper
factor is admissible if and only if any proper prefix of w is admissible. Thus, in order
to be able to apply the plactic relation[R3] to a non-admissible column word w, we need
only check that all proper prefixes of w are admissible, instead of all proper factors.
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For example,

LIS B3 1553 B,

23413 = 233, 123443 (29)

When Knuth relations are applied to factors of a word, the weight is preserved while
the length may not be. Knuth relations can be seen as jeu de taquin moves on words
or diagonally shaped tableaux, and each symplectic jeu de taquin slide preserves the
Knuth class of the reading word of a tableau [Lec02, Theorem 6.3.8]. The words 23231

and 11133 are Knuth related: 11133 2 71313 & 11331 %2 22331 & 23231,
7.4. Full symplectic reversal.

7.4.1. Symplectic evacuation algorithm. In [Sa2la], Santos introduced a symplectic
evacuation algorithm on tableaux in denoted by evac®” which he proved
coincides with the full Lusztig-Schiitzenberger involution on a given Ug(sp(2n,C))-
crystal associated to a representation of highest weight A. The algorithm is
defined on a given tableau 7" € [KN(\, n)| as follows. First, one complements its entries,
that is, replaces all unbarred i’s by i’s and all ’s by i’s (this amounts to the action
of woc = —id on the entries of the tableau). Second, one performs a rotation by 7 to
obtain a skew tableau. Finally, one performs symplectic rectification or insertion using
Lecouvey—Sheats symplectic jeu de taquin [Sh99, Lec02), Lec07], or Baker—Lecouvey
insertion [Ba0Obl Lec02| [Lec07] respectively. The resulting tableau is defined to be
evac“(T). We refer the reader to [Sa2lal Section 5] for detailed examples of the
algorithm. Santos’ evacuation mimics the Schiitzenberger evacuation on
by replacing the action of the long element of G,, with that of the long element of B,,.

7.4.2. Full symplectic reversal on KN skew tableaux. The set KN(\/u, m) is a normal
C), crystal whose connected components are isomorphic to KN(v, m) for some parti-
tion v whose number of boxes |v| might be less than |A| — |u|. Let n = m+j — 1,
where 1 < j—1 < n is the number of parts of u and J = [j, n|. Shifting the entries of
the skew KN tableaux in KN(A/pu, m) by j — 1, we may identify KN(A/u, m) with the
(normal) full sub-crystal B(A, u) C consisting of the tableaux in
with entries exclusively in 1 < -+ - <j<j+1<---<j+m<j+m<---<jand
whose sub-tableaux on the alphabet {1,...,7 — 1} is the fixed Yamanouchi tableau
of shape p [Lec02, Lemma 6.1.3]. B(A, p) is stable under the action of flﬂ 1, €itj—1s
i=1,...,m, and it decomposes into connected components of |KN ;( That is, the
crystal operators fiei, i =1,...,m do not change the Skew-shape of a KN tableau
on the alphabet C,,, and KN()\/ ,u,m) decomposes into connected components that
can be identified with the connected components of B(u, ).

In both type A,_1 and type C,, Kashiwara operators e; and f; commute with
SJDT slides. Let T €[Bl= KN(A\/u,n). An inner corner in T is a box of p such that
the boxes below and to the right are not in u; an outer corner in 7" is a box of A such
that the boxes below and to the right are not in A. Let ¢ be a fixed inner/outer corner
of T. An SJDT slide or a complete SJDT slide to the inner corner ¢ means a slide of
the box ¢ from an inner corner to an outer corner, or vice-versa. An SJDT slide to
the inner/outer corner ¢ of T' gives a new KN skew tableau SJDT (T, c), possibly with
fewer /more boxes. Applying an SJDT slide to the same inner corner ¢ in all vertices
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of B(T') defines an isomorphic crystal B(SJDT(T,c)) [Lec02, Theorem 6.3.8]. The
images of the KN tableaux in the same connected component of KN(\/u, m) under
this crystal isomorphism have the same skew shape [Lec02, Theorem 6.3.8]. Iterating
the SJDT to all inner corners of T rectifies T', producing rect(7") [Sh99, Proposition
9.2], [Lec02, Theorem 6.1.9, Theorem 6.3.9].

At the end of each SJDT slide, the inner corner (outer corner) where the slide
started is filled, or the column where the slide started has 2 fewer (more) boxes [Sh99,
Proposition 9.2], [Lec02, Theorem 6.1.9]. The SJDT step where the tableau loses
two boxes in a column has a previous step where this column is non- admissible
but Knuth equivalent to the new column which is admissible. The step in reverse
SJDT where the tableau gains two boxes in a column is [R3] Knuth equivalent to
the previous one which is admissible. Therefore, in each step of SJDT we get crystals
which are isomorphic. This allows, in the vein of reversal for A,,_1 skew semi-standard
tableaux, the definition of symplectic reversal, on type C), skew tableaux
as a coplactic extension of evacuation®.

Lemma 5. Let T B = KN(\/u,n). Then £97(T) is the unique KN tableau in B(T)

that is symplectic Knuth equivalent to evac®™ rect(T), and

rectification € (T)) = evacuation®" (rectification(T)). (30)

Proof. The crystal B(T) ~ B(v) for some partition v and rectification(T') € B(v).
The full Schiitzenberger-Lusztig involution on KN tableaux of straight shape satisfies
¢ (rect(T)) = evacuation® (rect(T)), and crystal operators commute with SJDT
when passing from B(T') to B(v). Therefore, (B0]) holds. O

In Subsection we will provide an algorithm for partial symplectic reversal on
KN (A, n)|with J = [j,n]. An algorithm for full C), reversal on KN(\/u, n) will result
as a special case by considering the normal full sub-crystal B(u, A) of [KN ;(\, n)]

8. INTERNAL CACTUS GROUP ACTION ON A NORMAL CRYSTAL

8.1. Partial Schiitzenberger-Lusztig involutions. Partial Schiitzenberger invo-
lutions were first studied in the case @ = sl(n, C) by Berenstein and Kirillov [BerKir95]
but have been defined by Halacheva in general for [} given J C I any sub-diagram,
the partial Schiitzenberger—Lusztig involution |£|is defined to be the Schiitzenberger—
Lusztig involution qg on the normal crystal [B] [HaKaRyWe20]. The crystal [B]
decomposes into connected components, and we apply the Schiitzenberger—Lusztig
involution to each connected component. Let b € B and let u"&", 4'°" be the high-
est and lowest weight elements of the connected component of [B;] containing b. Let
b= fj. - f; (ul€"), with j,---j; € J. Then, for j € J,

€1k (0) = fo,;HEND), (31)
Hfj(b) = ee(f(j)(b% (32)

wt ([E)b)) = wiwt(b), (33)
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and
€)= ea,(j,) - €0, 1) (™)

Remark 11. If J = K U K’ C I is disconnected with K and K’ connected sub-

diagrams of I, we have the sub-type Dynkin diagram K x K', and the Weyl group is
WHExWE with longest elements wi and wlS' , respectively, such that wy = wiwl' =
wé(/w{f. The weight lattice of g ® 9 is Axur’ = Ax @ Ak (see [BuScl7]). Then
if Ok and Ok are the graph automorphisms defined by wé< and wé{, m K and K',
respectively, 05 = OOk = 00k is a graph automorphism of the Dynkin graph
K x K' and hence preserves the connected sub-diagrams K and K' of I as defined in
Section[3. Thanks to [Hal6, Lemmas 10.1.3, 10.1.4], [HaKaRyWe20| 2368-2369], the
crystal operators act componentwise on the normal crystal Bi g (a normal g &g —

crystal), and satisfy the following properties

fefw = frrfrr frew = ew fr, exer = eper, epfrr = frer, forke K k' € K', (34)
er(ew (b)) = ex(b), prlew (b)) = wr(b), fork € K.k € K', and e (b) # 0
ey = EBrerrs frépyx = &gy iy for ke Kk € K, (35)
eréBy = EBy ks f1éBy = EBy Sy for k€ K K € K. (36)
This extends to a disconnected sub-diagram with more than two connected sub-diagrams.
Henceforth, from [Hal6l HaKaRyWe20], {x and £k commute
Exér = kK.

Lemma 6. Let J = KUK’ C I be a disconnected sub-diagram of I with K and K’
connected. Then Bik is a normal crystal, and the Schitzenberger—Lusztig involu-
tion on Byyk', Exukr satisfies

Sxur = Exéxr = SkéK-

Proof. The result follows from the previous remark: g€ = £k is an involu-
tion, and from (34)), B5) and (B4, it satisfies the conditions [BI), ([B2) above. In
addition, the weight map wty s {Bl WA — Axug = Ax @ Ak and therefore,
W (Ex€xr (b)) = (Wi (Ex (D)), Wi (Exr (D)) = wiwlS (Wi (b), wt e (b)). Since there
is only one set involution on Bgy g satisfying (B1), (32), and (B3], we have that
Exuk’ = Exékr = k€K O

The partial Schiitzenberger—Lusztig involutions for any J C I a connected
Dynkin sub-diagram of I, satisty the Jg cactus relations.

Theorem 1 ([Hal6l). The map sj — [}, for all J C I connected Dynkin sub-diagrams
of I, defines an action of the cactus group Jg on the set [B; that is, the following is a

group homomorphism
g: fa —
A e d

Moreover wt;(EAb)) = wi wt;(b), b [B.
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In other words, s; acts on each connected component of Bl by permuting its vertices
via || exchanging highest weight and lowest weight elements.

Remark 12. (1) The action ofJ@factom'zes through the quotient by the braid relations
of WHI.

(2) The partial Schiitzenberger—Lusztig involutions satisfy the cactus relations, and,
in particular, for@= sl(n,C), and: sl(n,C),sp(2n,C), it holds that

5f2m 1= 5[1n 1]5111 ln 1} I<i<m, f[m 5 ﬁm]ﬁ 1§i§n,

respectively.
The following corollary motivates what comes in the next section.
Corollary 3. (a) For the sl(n,C)-crystal [SSYT(A,n)|, the map
s[4 > €1, = evaci+1, 1 <j<n-—1,

where evacjy1 denotes the evacuation on the sub-tableauz of straight shape obtained
by restricting the entries to {1,...,7 + 1} and fizing the remaining ones, defines an

action of the cactus group [T, on the set[SSYT(\,n)|
(b) For the sp(2n,C)-crystal |[KN(\,n)|, the map

spy) = &y 1<i<n—1, (37)

defines an action of [Jyanc)| on the set [KN(A, n)|, where 50" = (O = evactn,

5[%3} 1 <75 <n-—11is given by the Baker embeddmg, Theorem 4, and f[ n],l <

Jj < n—1 is given either by the partial symplectic reversal in ([B2), Subsection [2]]
or by the Baker embedding, Theorem [6l.

8.2. The virtual symplectic cactus group action on an sl(2n,C)-crystal and
the virtualization of an sp(2n, C)-crystal. On A,,_; semi-standard tableaux, there
is a straightforward algorithm to compute the action of a partial Schiitzenberger—
Lusztig involution [€)] with J a connected A,_; Dynkin sub-diagram. Let I = [n — 1]
and J = [p,q] C I,1 < p < g < n, beaconnected sub-diagram. The J-partial reversal,
is the [reversall on [SSYT ; (A, n)| which means the [reversall or Schiitzeberger in-
volution [f] applied to each connected component of Let T €|SSYT (A, n))
then, from (27) and (28):

€N(T) =reversal [ T)
= (T[l,p—l} M](T[p,qﬂ}), T[q+2,n})

= (11 p—1), arectification(evacuation(rectification(7}, g+1)))); Tig+2,n)s  (39)

where T = (T[l,p_l},T[p,qul},T[qH,n]) is such that Ty, 1) is the tableau obtained
by restricting 7' to the alphabet [1,p — 1], T; [p.q+1] 1s the skew tableau obtained by
restricting to the alphabet [p,q + 1], and Tl442,n) is obtained by restricting to the
alphabet [¢+2,n]. Indeed, if J = [1, q], reversal; ;1(T') = evacy41(7T). The case where
J is a disconnected sub-diagram of I will be a consequence of Lemma



SYMPLECTIC CACTI, VIRTUALIZATION AND BERENSTEIN-KIRILLOV GROUPS 29

To define an internal action of the virtual symplectic cactus group on a crystal
SSYT(u,n,n) with p a partitition with at most 2n parts, thanks to Lemma [6] we now
explicitly characterize the partial Schiitzenberger-Lusztig involution on a disconnected
sub-diagram J U J’ of the As, 1 Dynkin diagram such that J C [n—1] and J’ C [n, 2]
are connected sub-diagrams. In the case of the As, 1 Dynkin diagram, we label its
nodes either in [2n — 1] or in {1,...,n,7,...,2}.

Theorem 2. Let JUJ' be a disconnected sub-diagram of the As,_1 Dynkin diagram

I ={1,...,n,n,...,2} such that J C [n — 1] and J' C [n,2] are connected sub-

diagrams. Then {?&7}71, the Schiitzenberger-Lusztig involution on SSYT ;. (1, n, 1),

with p a partition with at most 2n parts, satisfies

Aoy Aop_1 Aoy Aop_1 Aoy
é-JLQJLL]ll :§J2n 1€Jl2l 1 :gJ/2n 1€J2L 1 (40)
= reversalgb”’lreversa/??”’1 = reversa/’j?"*lreversalgb”*l. (41)
where ' = reversal ;""" an " = reversal ;"7 are the Schiitzenberger-
h Lx;\zn 1 /vjz 1 d jlz 1 ,:;\2 1 the Schiit b g

Lusztig involutions on SSYT (pu,n,n) and SSYTj(u,n,n), respectively.

Remark 13. This statement is indeed also valid for the Schiitzenberger-Lusztig in-
volution on SSYT ;. (1, n) where JU J' is a disconnected sub-diagram of the A,_1
Dynkin diagram with n odd.

The cactus group Jo, acts on an Ag,_i-crystal of semi-standard tableaux via
partial reversals. We now conclude that the virtual symplectic cactus Definition
[, a subgroup of Jo,, also does. In the next section, Subsection [0.5] we establish that

this action has the feature to preserve the subset [EI[KN(\, n))).

Theorem 3. For the sl(2n,C)-crystal of tableaur SSYT(u,2n), with p a partition
with at most 2n parts, the map
Agn—1

Aon—1 sA2n-1

5[1,qJu[2n—q,2n—1] €[1,q]u[2n—q,2n—1] 25[1,q] €[2n—q,2n—1}
=evac,41evacopevacy1evaca,, 1<q<n,
(42)
~ A2n71 _ A2n71
S[q,2n—q T §[q’2n_q] —reversa/[q’%_q]7 1<q<n,
(43)

defines an action of the virtual symplectic cactus group on the set SSYT(u,2n).
That is, the following is a group homomorphism

Dyii2n,0) : - Gp
5 6(1]42n71,

where B = SSYT(u,2n) and J as in [@2)or [@3)). Moreover, the action of on
ISSYT(A\, n, n)| preserves the subset [EKN(X, n))).

Proof. Since Ja, acts on SSYT(u, 2n), the partial Schiitzenberger involutions [£)] with
J a connected sub-diagram of the Ay, 1 Dynkin diagram I = [2n — 1], satisfy the J,
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cactus relations namely the ones in Lemma [3] which are the relations. We consider

with generators (25]), (26]). In Subsections [0.4.1] and 0.5] (58]), we conclude that

ol acts on the set [SSYT(A, n, n)| permuting its elements in a way that the subset
[EI(KN(A, n))) is preserved. O

Therefore, the partial Schiitzenberger involutions with J any connected sub-
diagram of the Ay, Dynkin diagram of the form J = [¢,2n — ¢|, [¢,n] C [n], or

J=[1,¢qU[2n —¢q,2n — 1], [1,q] C [n — 1], satisfy the virtual symplectic cactus
relations.

9. PARTIAL SYMPLECTIC SCHUTZENBERGER—LUSZTIG INVOLUTIONS AND
ALGORITHMS

For J a connected sub-diagram of the Dynkin diagram I = [n—1] of type A,,_1, the
partial Schiitzenberger involution [¢)| coincides with J-partial reversal, that is,
39). The case wherein J is a disconnected sub-diagram of I has been studied in
Theorem 2l and Remark [I3l

So far, there is no known form of tableau-switching for KN tableaux. The algorithm
to compute J-partial symplectic reversal, reversaIE" with J = [p,n] a sub-diagram in
the Dynkin diagram I of type C,,, presented in subsection and summarized in
([B2)), is inspired by this problem and mimics the type A partial reversal algorithm on
type A,_1 tableaux, summarized in ([39). The case J = [p,q] C I, p < ¢ < n, is solved
by virtualization in Subsection In fact, all partial symplectic reversals can be
virtualized as shown in Subsection

9.1. Dynkin sub-diagram with a sole node and the Weyl group action. Let[Bl
be a normal crystal. If J has a sole node i of I, &; := {y;), the Schiitzenberger—Lusztig
involution to the i-strings (the connected components) of By;,, agrees with the Kashi-
wara[grcrystal reflection operator, originally studied by Lascoux and Schiitzenberger in
the gl(n, C) case [LS1i81] and rediscovered by Kashiwara for any Cartan type [Kas94].

Theorem 4. [Kas94, Section 7] {¢; : i € I} define an action of the Weyl group W on
the underlying set of the normal crystal[B, r;.b = &;(b), for b € B, such that
(1) ei&i = & fi,
(2) ri.wt(b) = wt(& (b)),
(3) ul™ = wo.ul®, if B =B}
The i-string of b Bt ¢;(&;(b)) = £;(b), or equivalently &;(&; (b)) = i (b)
ei(b) ©i(b)

e?‘(b)(b) ei(b) b 1i(b) &i(b) ffi(b)(b)

Next propositions are a follow-up of the action of the Weyl group on i-strings where
useful information is gathered.

Proposition 6. (1) For Uy(sp(2n,C)) and the alphabet [Cyl: given i € [n — 1], let
u™ be a word in the alphabet {i,i + 1} with length {(u™) = r, and let v* be a
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word in the alphabet {i,7 + 1} with length £(vt) = s. Then, for all r; € By,
1<i<n-—1,
uye; *(uy)vt, r>s
ri.(uvT) =&woh) = uut, r=s , (44)

wfT (o vg, < s

such that when r > s, u= = uj uy, with (u; ) = r — s, and when r < s,
v =v{v] with {(v])=s—r.
When i = n,
rp. '’ =&, (m'n’) =n'n'. (45)
(2) If b € with b= fj. -+ fj,(uy), and i, - - ryr; is a reduced word for wy €
W, then

D) = eq(j,) - o) (e - - - rirjun)-
(3) For Uy(sp(2n,C)): the crystal reflection operators & satisfy the relations of
the Weyl group By,:
e 2=1,1<i<n,
o §i& =8, li—jl>1,1<i,j<n,
o (&&iv1)P=1,1<i<n-2,
i (fn_1£n)4 =1

Example 6. From (@), [A5), the action of & on a KN tableau is given by the sig-
nature rule on its reading word [KasNak91, Lec02]:

(1)
1[2]2][3]2][7] +-[=[3[+]] +[-[-[3[+]-] 11 [3][+]-]
_ 2B —[4[3[3]= —|2[3[3]= —2[3[3]=
= pn A R A+
4] 4] 4] 4]
1T1]3[5]7]
—a) = FEEP @) = (@) = (2,1, -1,-1) = (1,-2,-1,-1)
14 ]
The reading word of T is 121212212 and
£(121212212) = —(+—) — — — +(+—) = —(+—)+ + + + (+—) = 121121212
wt(121121212) = (1, —2) = r1.wt(121212212) = (=2, 1)
2[3[3[2]1] —[3[3[+][] —[3[3[+][+] —[3]3[+]2]
S=[4[2[1]1] - [4lz]-]-] - [4lz[H]-] - [Ala2[=
4|2 4|+ 4|+ 4|+
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2]

[l [NV

3
— fl(S) = 2 , Wt(fl(S)) = Tl.Wt(S) = 7‘1(—3, —1,2,—1) = (—1,—3,2, —1)

NN
+ [l eo

1] 1]

= [po]

I NVl

|
wl|wo
=[]
wl|wo

DO [ DO
=l o
NSJIEENT ]
=l o
DO~ [ DO
=l o

(2) &4(T) =& =&

NN
’v-lkl»-lkl\iwi
’v-lkl»-lkl\iwi

witly(T) = ra.wt(T) = ry(—2,1,-1,-1) = (-2,1,—1,1).
Proposition 7. Let[B(\) be a type Cy, crystal, J C I and[Bj=[B(N). Let b € [B(M)]

The connected component of [By| containing b has highest weight element b'}'g and
lowest weight element b{}"’”. Then

(1) blow = r, - "rd.b'}igh =& --£d(b’}igh) where rq -+ - 14 is a short word for wy €

W with a,...,d € J, and b= fjr,---fjl(bgigh) for some jp,...,j1 € J.
(2) If J = [p,n], By is a type Cp_py1 crystal, then

EAD) = ) - ejy(ra- - rabyE"), ws€40)) = —wts (D),
where wty(z) € Z" Pl x B, denotes wt(xr) € Z" restricted to the entries

in [p,n].
(3) If J=Ip,q], 1 <p<q<mn, Byg is atype Aq_pi1, crystal, and

EAD) = eqopior1 - €qpijir1(ra- 1.0y, wt; [EXD)) = reverse(wt; (b)),

where wty(x) € Z97PT1 & d B, denotes wt(x) € Z" restricted to the entries
in [p,q+ 1].

9.2. Dynkin sub-diagram J = [j,n|: J-symplectic reversal. On the set[KN(\,n)

6 = g[(i%n} coincides with Santos’ symplectic evacuation evac® (see .41 or [Sa2lal,

Section5]). The partial Schiitzenberger—Lusztig involution 55’;} is the Schiitzenberger—
Lusztig involution on each connected component of KN[; (A, ).

9.2.1. The action of the Knuth operator [R3l on a skew tableau. Given 1 < j < n,
the Levi branched crystal KN[jm}()\,n) decomposes into connected components. Let
T e which belongs to some connected component of KN{;, (A, n), and let
11+, denote the restriction of 7' to the alphabet [£7, n]. T4 is @ KN skew tableau
on the alphabet [Cy (Lemma [). However, T}, ;] might have non-admissible columns
with respect to the alphabet [+, n]. This means that by doing a shift of —(j—1) to the
entries of T[4, ,], we might produce a non-admissible skew tableau on the alphabet
Cn—j+1 (recall Definition [Il and Remark [2). We show that under the action of the
contractor operator [R3], 14,5 1s symplectic Knuth equivalent to a KN skew tableau
on the alphabet [4j,n]. Consequently, the connected component containing 7j; )
is symplectic Knuth equivalent to a crystal connected component of admissible skew
tableaux on the alphabet [£7, n] (of the same skew shape).
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Proposition 8. [Lec02, Proposition 2.3.3] Let C1,...,Ck be admissible columns on
the alphabet|Cy. Then T = C1C5 -+ - Cy is a KN tableau on the alphabet[Cy| if and only
if 1(C;) < r(Ciyr), that is, if 1(Cy)r(Civ1) is a type Aan—1 semi-standard tableau for
i=1,... k1.

Lemma 7. Let T € |KN(\,n)|. The restriction of T to the alphabet [+j,n] = [n]\ {1 <
o< j-1<j—1<-<2<1}, Tyjn, is a KN skew tableau on the alphabet [Cy)
where Ty, might have non-admissible columns with respect to the alphabet [£j,n].

Proof. If a cell of T has a barred letter in [£j — 1], then the cells to the southeast
have barred entries in [+j — 1], and if a cell of T" has a non-barred letter in [+j — 1],
then the cells to the northwest are non-barred and belong to [j — 1]. Therefore, the
non-barred letters of 7" in [+j — 1] define a partition shape, say u, in T, and the barred
letters in [+j — 1] define a skew shape A\/v where u C v C A. Hence the cells of T
filled in [£j,n] =[]\ {1 < - <j—-1<j—1<--- <2< 1} define the skew shape
v/u. O

Lemma 8. Let Cy and Cy be two columns with entries on the alphabet [£7,n] such
that C1Cs is a skew KN tableau on the alphabet [Cpl. Assume that Cy and Cy have
exactly m > 0 and t > 0 pairs of symmetric entries (x, ), respectively, with N(x) > x
with respect to the alphabet [+j,n]. The columns are admissible skew tableaux on the
alphabet [Cy] but not necessarily on the alphabet [+j,n] when j > 1. Then Cy has at
least m bozxes strictly below the row containing the last box of Cy, and Cy has at least
t boxes strictly above the row containing the top box of column Cf.

Proof. Consider spl(C1Cs) = IC1rC1lCorCy in [£n], which is a type Ag,_1 semi-
standard tableau on the alphabet [C,;] Under the lemma’s assumptions, when m > 0,
(1 is not-admissible in [+, n] and has m > 0 pairs of symmetric entries (o, @;) where
N(o;) > o, i =1,...,m; when t > 0, C5 is not admissible in [£j,n] and has t > 0
pairs of symmetric entries (8;, 3;) where N(B;) > f3;,i = 1,...,t. Therefore, from the
definition of spl(C1C2), the top box of r(Cy) is filled in the interval [£7, n], and the
first ¢ entries of [Cy are filled in [j — 1]. Since rC1lC5 is a type Ag,—1 semi-standard
tableau on the alphabet [C] it follows that the first ¢ entries of column Cy are strictly
above the row containing the top box of column C;. On the other hand, from the
definition of spl(C1Cs), the last m boxes of r(Cy) are filled in {(j — 1) < -+ <2 < 1},
and the bottom box of [Cs is filled in [47,n|. Similarly, since rC11C5 is a type Ag,—1
semi-standard tableau on the alphabet [C,] it follows that the last m entries of column
(' are strictly below the row containing the bottom box of column Cs. O

Let (R3)™ denote the iteration of the Knuth operator [R3l m > 0 times.

Proposition 9. Let C1, Cy be two columns on the alphabet [£j,n] such that C1Co
is a skew KN tableau on the alphabet [Cy] under the conditions of the previous lemma.

m

t
Let C; = X, where X is an admissible column on [£j,n], and Cy =Y, where

®3" B3

Y is an admissible column on [+j,n]. Then C1Cs b = XY is a skew

KN tableau on [+j,n].
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Proof. Under our assumptions, C7 has m > 0 pairs of symmetric entries (a;,@;),
where N(«a;) > a4, @ = 1,...,m, with respect to the interval [+j,n] (a column is
non-admissible on [£7,n] if m > 0), and the [R3] contraction is applied m > 0 times

to C1, Cy @ X, where X is admissible on [47, n]. Henceforth, after applying the
contraction [R3lm times to Cf, the relevant m pairs of symmetric entries are deleted,
the top m entries and the bottom m entries of column C7 are made empty and the
remaining entries of C; are put in order in the remaining |Cy| — 2m boxes of C; to
define the admissible column X on [£7j,n]. Similarly, under our assumptions about
Cy, Cy has t > 0 pairs of symmetric entries (3;, 3;) such that N(8;) > Bi,i =1,...,t,
with respect to the interval [+j,n]. After applying the contraction [R3l ¢ to Cs, the
relevant ¢ pairs of symmetric entries are deleted, the top t entries and the bottom ¢
entries of column Cy are made empty and the remaining entries of Cy are put in order
in the remaining |Cy| — 2t boxes of Cy to define the admissible column Y on [+, n].
Thus, from Lemma [8 the resulting pair XY of admissible columns has skew shape.

Moreover, XY is a KN skew tableau on the alphabet [£+j, n], that is, rX [Y, with
entries on the alphabet [+j,n], is a type Ag,_1 semi-standard tableau. By definition
of spl(X)spl(Y), X IY has the same skew shape as XY. Note that

rX =10\ ({ou, ... am} U [£5 — 1])

is obtained from rC7 by emptying the top m boxes and bottom m boxes of rCy and
by filling in order the remaining boxes of rC; with rC; \ ({a1,...an} U [xj — 1]).
Indeed, from Lemma [g],

rX <lICy\ [j — 1],

and in particular, rX1Cy \ [j — 1]) is a semi-standard tableau. Recall that the top box
of rC} is strictly below the top ¢ boxes of 7Cy (exactly the ones in ICy filled in [j —1]),
and the bottom box of [C5 is strictly above the bottom m boxes of rC (exactly the
ones in rCy filled in (j —1) <--- < 1).

Finally, note that

Y =1C\ (F — U A{Bi,-..,Bt}),

and if r X1C5\ [j—1]) is a semi-standard tableau, then r X1(Co\ ([j—1]U{B1,...,B}) =
rX 1Y is also a semi-standard tableau. O

9.2.2. Reduced symplectic jeu de taquin. Given T € KN(\/pu,n) and j € [n] such
that T has all entries in [£7,n], the following is an algorithm to compute the reduced
symplectic jeu de taquin on T on the interval [£j,n], denoted SJDTj. The skew
tableau T might not be admissible on the alphabet [+, n]. This means that we apply
the SJDT after shifting all entries in 7" by —(j — 1) and iterating on T" the contractor
operator [R3l the needed number of times to get an admissible skew tableau on the
alphabet C,,_;4+1. When j = 1, we recover the ordinary SJDT.

Definition 4. Reduced SJDT (SJDT;)

o Let T} be the tableau obtained by replacing each non-barred entry c and barred
entrycinT byc— 7+ 1 and c — j+ 1, respectively.
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o If T; is not a KN tableau in KN(A/p,n — j + 1), we have some columns
containing pairs of the form b,b such that b € [n — j + 1] is lowest in the
column and N (b) > b. Iteratively, we apply the Knuth contractor [R3l operator
to Tj until we make all columns admissible. Define T; to be the resulting
tableau with all admissible columns.

o Compute SJDT on T} as usual.

e Replace each non-barred entry m and m in SJDT(Tj) by m + j — 1 and
m — j + 1, respectively.

The reduced rectification to the alphabet [£j, n], denoted rectification; (rect;), of T
is the iteration of the SJDTj to all inner corners in 7". Indeed, rect;(T) is the shift
by j — 1 of all entries of rect(T;). When j = 1 we recover the ordinary rectification.

Here is an illustrative example- first, we compute a complete SJDT slide on the
interval [£1, 3]:

2 1
2 *

SIDT
—

]c,owo %

]oole

Whereas, complete the SJDT5 slide, the complete SJDT slide reduced to the in-
terval [£2, 3], is such that:

|2 1
3§ —>T2: QT @SJ—D)T.
3] 2]
Therefore,
g % ST .
3]

Another illustration: first we compute an ordinary complete SJDT slide,

%3 *[%[2]3 2| % 2(2
3[3] — spl(T) = [2[3]3]2] >8" [3]3] *8BT [3]«
3] 312 2] 2]
On the other hand, a complete SJDT5 slide means:
* |3 * |2 1 1|1 -
33| » b= [2]2] 18" [2]1] %" 2] @21
13] 2] 1] 1
Therefore,
* |3 2| * 212 = _
3151 S/B%: r313] S/B% 3T I@ - z SIBT: [312] _ rect, (7).
13 2] 2]
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9.2.3. Partial symplectic reversal: colorful symplectic tableau switching. Let T €

and j > 1. Let Bl be the crystal connected component of KNUM(A,n)
containing T'. Blis a highest weight crystal and all vertices of [B] are KN tableaux on
the alphabet [C], with the letters in [4j — 1] frozen, as the crystal operators in [Bl are
indexed by [j,n] and do not act on the entries filled in [+5 — 1].

Let H be the highest weight element of Bl and let wt(Hy; ) € Z"=I+1 be its high-
est weight, where H; | is the restriction of H to the alphabet [£7,n]. The restriction
of H to the alphabet [+j,n] is a skew KN tableau on the alphabet [C,] The entries of
H in [j — 1] define a semi-standard tableau T [;.'_1] of shape, say pu, and the entries in

[7 — 1, 1] define a skew semi-standard tableau T— ;, of shape A/v, where p C v C A.

[—-1.1]
Hence the cells of H filled in [£j,n] =]\ {1< - <j—-1<j-1<---<2<1}
define the skew shape v/u, and because the crystal operators in [B] are indexed by
[7,n], they do not change the skew shape v/ either. Therefore, since all the vertices
of IBl are connected to H through those crystal operators, the vertices of [Bl restricted
to the alphabet [+j,n] have the same skew shape v/u and the same semi-standard
tableaux T[;.r_l} and T[g_'Tl,ﬂ [Lec02, Lemma 6.1.3].

Step 1. The sequence of isomorphic crystals from 7T.;, to its reduced
rectification. I.1- THE C,_j;1 CONNECTED CRYSTAL B’ CONTAINING Tjy; -

Erase in the vertices of [Bl the entries in [£j — 1]; that is, erase the semi-standard

tableaux T[;.r_l} and T[;Tl 1 We obtain the connected C),_;;1 crystal B? of semi-

standard skew tableaux of shape v/ with entries in the alphabet [£7,n], possibly
with some non-admissible columns, containing 7} ;,). These KN skew tableaux over
[CJmight have non-admissible columns over [+, n]. More precisely, B” is the connected
crystal of words on the alphabet [+, n], with highest element the word of H|4; .

The set BY bijects the set [Bl, with the same crystal graph structure and the same
weight vertices as Bl Hence, B” and [Bl are isomorphic crystals.

I.1.1- THE GREEN INNER STANDARD TABLEAU U, FOR ANY VERTEX OF BP.

Define a standard tableau Uy of shape p filled in a completely ordered alphabet of
green letters { } where |p] is the number of boxes of . Assign the inner
standard tableau Uy the inner shape of each vertex of B®. Recall T] [+j,n] is the image
of T in BY; see the tableau pair (U, Ti4jm)) in Figure [

I.2 - THE Cj,_j41 CRYSTAL B* oF KN SKEW TABLEAUX [R3] 1soMOrPHIC TO BY.

Let HY := H\y; ) be the highest weight element of the Cj_;11 crystal BY. The
skew tableau H° of shape v/u may have non-admissible columns on the alphabet
[+7,n]. Let 7 < s < --- < q < t be the non-admissible columns of H°. Then exactly
the same columns in all vertices of B are non-admissible. The Knuth contraction
[R3] relation, Subsection [[.3.2] defines a crystal isomorphism; it commutes with the
crystal operators and preserves the weight. Moreover, each time [R3lis applied to a
column of some vertex of B, it is also applied to the same column in every vertex of
BY (see [Lec02, Proposition 3.2.4, Corollary 3.2.5)).
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(U0, Trajm)) =

o

Titjm)

FIGURE 1. T4, in the crystal BY and the inner tableau Up.

In each vertex of B?, apply the R3] contraction operation to column 4, for i =
r,8,...,q,t, until column ¢ becomes admissible. For ¢ = r,s,...,q,t, each time we
apply [R3l to column 14, a pair of entries (k, k) is erased (whenever k € [n] is minimal
for N (k) > k, k and k appear in the column and all prefixes are admissible). Then the
cells from the top and the bottom of the current column ¢ are emptied; the remaining
entries are placed in order in the remaining cells between those erased. We obtain a
new crystal of KN skew tableaux on the alphabet [£j,n] isomorphic to the crystal
B.

Let z be the total times [R3] has to be applied to H?, from column r to column ¢ as
explained above, to get a KN skew tableau on alphabet [+7,n]. Denote the resulting
KN skew tableau by H*. Note that for each column of any vertex of B?, the number of
times [R3]is applied is the same. We then obtain the sequence of isomorphic crystals

R3 [[R3l

] -] Tr+Tst+Tgt+Tt _ RT
e~ Br s q t_B7

where ¢ = z, + s + -+ + g + 2, and x; is the number of times we apply [R3] to
column i of HY, for i = r,s,...,q,t. The crystal B?, isomorphic to BY, is obtained
by applying [R3l = times to each vertex of BY, namely, z; times to column i, for
i=7r...,q1t, of each vertex of B*. Equivalently, B* is the crystal whose highest
weight element is the KN skew tableau H* of shape v*/u®, where v* C v, u C p*
and |p®| — |u| = |v| — [v*| = x is the number of times [R3] has been applied to H® (or
Tisjm))-

I.2.1 - THE PAIR (U, V,) OF GREEN-PURPLE INNER AND PURPLE OUTER STANDARD
TABLEAUX FOR ANY VERTEX OF BY.

Let

<pL<pa<- < py<p, <o <ph<p 46
x

be a completely ordered alphabet of |u|+ 2z letters consisting of |u| green letters and
x unprimed and x primed purple letters.

Define the standard tableau U, of shape u”*, where p C p® and |p*| = |u| + =z,
to be an extension of Uj filled with the |u| green letters by filling the extra x cells,
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the total number of cells made empty at the top of each non-admissible column in
a vertex of BY, with the unprimed purple letters {p; < --- < p,. < -+ < p.}.
Define the standard tableau V, of shape v/v* by filling the z cells made empty at
the bottom of each non-admissible column in a vertex of B® with the primed purple
letters p), < --- < pl, < --- <pj. The filling rule is as follows.

Fill successively the pair of cells made empty each time [R3]is applied, with one
unprimed purple letter and one primed purple letter, py < p',... . pe, < Pl P41 <

column and the primed letter at the bottom of the column. We impose the order

Pr < < Prp <Prpt1 <00 < Ptz <00 < Prp <

<Py < < Ppgay < < Pygn <Dy, < < DY

That is, each time an unprimed purple letter and a primed purple letter are added
to U, and V,, respectively, the unprimed letter is strictly larger than any green letter
and any unprimed purple letter already added to U,, and simultaneously, the primed
purple letter is strictly smaller than any primed purple letter already added to V.

By construction, the pair (U,, V) of inner and outer standard tableaux is the same
for any vertex of B*. More precisely, U, of shape u* is the extension of Uy filled with
the alphabet { < pp < pg < - < pgt; Vi of skew shape v/v” is filled
with the alphabet of primed purple letters p;, < -+ < pj ., < - <pp . <
oo <Pl 4 < P, < - < py. Regarding Uy, extend the column r of Uy with the z,
unprimed purple letters p; < --- < p,,, the column s with the x; unprimed purple
letters p,,+1 < -+ < Pz,4z., and finally the column ¢ with the x; unprimed purple
letters pu, . quyt1 < < Duptotagtae, = Po; regarding V, of skew shape v/v7%, start
with the skew shape v/pg, and fill the bottom x, boxes of column r with the alphabet
of primed purple letters p/, < --- < p/, the bottom x4 of column s with the alphabet
Pyvw, <0 <Pl 41, and, finally, the bottom z; boxes of column ¢ with the alphabet
Pl < < ]);T+ws+,,,+zq+1. See the triple (U, H*,V,) in Figure 2
I.3 - RECTIFICATION OF THE C,_j11 CRYSTAL B* AND REDUCED RECTIFICATION
OF Tltjm)

Consider the triple of tableaux (U,, H*,V,) previously defined. Apply complete
SJDT; slides successively to the cells of U, from the largest entry to the smallest
one, to rectify H”. At the end of each complete SJDT] slide, we get an outer cell
filled with the letter where the slide started in U,. While H® is being rectified, the
cells of U, are slid to end up as outer corners and added to the skew standard tableau
Ve.

The rectification of H* does not depend on the choice of the inner corner made in
each step during the rectification process [Lec02, Corollary 6.3.9]. Applying SJDT;
to any corner of U, in an element of B* (recall that for all elements of B*, U, is the
same) gives a crystal isomorphism. This observation is equivalent to the fact that the
rectification does not depend on the filling of U,: U, is a choice to keep track of the
rectification of H® (or of any other vertex of B). If a complete SJDTj slide applies
to an inner corner of H”, then a complete SJ DT} slide also applies to the same inner
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FIGURE 2. The triple (U,, H*,V,) with H* in gray, V, in purple, and
Up(C Uy) in green.

corner in every vertex of the crystal B* and creates the same outer corner filled with
the same letter.

However, if the number of boxes of H*, |H*|, exceeds the minimal number of boxes
of its Knuth class, it will be necessary to apply SJDT; more than |U,| = |p|+ 2 times
to rectify H*. When H?® has the minimal number of boxes of its Knuth class, only
x unprimed purple letters and || green letters will slide outwards and join the outer
tableau V.

Let 2y > 0 be the number of boxes of H® that exceeds the minimal number of
boxes of its Knuth class, that is,

2y = |H"| — |rectification;(H")|.

When H? has the minimal number of boxes of its Knuth class, y = 0. Necessarily 2y
boxes of H* will be lost in the SJDT; rectification process. Henceforth, the SJDT;
B.2 case will be applied y times, each application creates a non- admissible column
followed by the application of a contractor [R3l operation resulting in the loss of two
boxes.

Remark 14. Theorem 6.1.9 in Lecouvey’s paper [Lec02| says: if the B.2 case appears
with the creation of a non-admissible column when applying complete SJDT to an
inmer corner of a KN skew tableau, it has to be at the initial column where the inner
corner was originally contained.

This observation implies that each of the y mentioned non-admissible columns will
only occur in the columns containing the inner corners where the slide started.

The complete SJ DT} slides applied successively to the entries of U,, as mentioned,
will transform the crystal B® into an isomorphic crystal of KN skew tableaux, as long
as the SJDT}; B.2 case does not create a non-admissible column. Otherwise, one has



40 OLGA AZENHAS, MOJDEH TARIGHAT FELLER, AND JACINTA TORRES

an isomorphic crystal where each vertex has a non-admissible column. In this case,
we apply the contractor operator [R3] to that column in each vertex, erasing a pair
(k,k) if k € [£],n] is the lowest entry such that N(k) > k . Then, as in 1.2 above,
the cells from the top and the bottom of the current column are emptied and the
remaining entries are placed in order. We get a new isomorphic crystal of KN skew
tableaux where each vertex has two fewer boxes. As observed above, this may only
happen in the y columns where SJDT); was applied, specifically, those containing the
inner corners where the slides started; no other boxes are deleted in the rectification
process of B”.

Eventually, H” is rectified to rectification(H"), as are all vertices of B*, and we get
the crystal R of straight KN tableaux with highest weight element rectification(H?"),

BY ~ B* ~ R.

1.3.1 - THE GREEN-PURPLE-RED STANDARD TABLEAU V OF EVERY VERTEX IN THE
Cr—j+1 CRYSTAL R CONTAINING RECT]'(TH:]-M).
Let

Bm717 Bm717_7 Bm727 Bm727_ e Bw,?J, Bx7y7_

be the sequence of 2y isomorphic crystals appearing in the rectification process from
B to R, tracking each complete SJDT); slide which triggers a B.2 case and the
subsequent application of a contractor [R3] operator to that non-admissible column.
In particular, for i = 1,...,y, B®" is the crystal where for the ith time in the complete
SJDTj slide, the B.2 case appeared to create a non-admissible column in the column
containing the inner corner where the slide started, and B**~ is the crystal obtained
by applying an [R3] contractor operator to that non-admissible column.

Fori=1,...,y, let H®" and H®"~ be the pair of highest weight elements of the
crystal pair B®" and B%%~, respectively. Each H*"' has exactly one non-admissible
column, and H%"»~ has non-admissible columns.

We have to store 2y new auxiliary letters to record the 2y empty cells created by
the y applications of an [R3] contractor as a consequence of the creation of y non-
admissible columns by the complete SJDT) slide where the B.2 case appeared and
created a non-admissible column.

Consider the triple of tableaux (U,, H*,V,) corresponding to the crystal B*. Let
(U1, H®', V1) be the triple of tableaux obtained from (U,, H®,V,) by applying
complete SJDT) slides to the entries of U, and transforming the KN skew tableau
H? into H®! where for the first time in the complete SJDTj slide, the B.2 case
appears and creates a non-admissible column; that is, H®! has a non-admissible
column, and the highest weight elements of all previous crystals obtained from B*
had all columns admissible. After the said complete SJDTj slides to Uy, U, 1 is the
inner standard tableau of H*!, and Vi1 is obtained from V,, by adding the slid entries
from U, to V. V1 is indeed a standard tableau because by construction, the entries
of U, are strictly smaller than the primed purple entries of V,

{ <pL<p2 < <pp<ph<--<pi}
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The pair (U1, Vz.1) of inner and outer standard tableaux is the same for every vertex
of B®1:
U:c,l - U:ca V:c,l ) Vx

We have to apply an [R3] contractor operator to H*! (and to every vertex of Bm’l)
to transform the non-admissible column into an admissible one: a pair of symmetric
entries in each vertex of B®! will be deleted, the top and bottom cells of that column
will be emptied and the remaining entries will be placed in order. Let B®»~ be the
new crystal of KN skew tableaux isomorphic to B*!, and let H*~ be its highest
weight element (it two has fewer boxes than H®!). Note the number of the column
where [R3] acts is the same for every vertex of B®!. Fill the empty entries with red
letters 1 < 1}, with r; on the top and | on the bottom, where in the complete
SJDT; slide, the B.2 case appears and has created a non-admissible column such
that 7 is strictly larger than any entry of U, i, and 7| is strictly smaller than any
entry of V1. V, 1 is filled with the entries of U, already slid and with all primed
purple letters. The cell with the red letter r; was the cell of U, where the complete
SJDTj slide started and the B.2 case appeared with the creation of a non-admissible
column.

Let U, 1+ be the standard tableau obtained by adding the red letter r; to U, 1,
and let V1 + be the standard tableau obtained by adding the primed red letter /| to
V1 in the manner described,

Um,l C Um,l,—l— c Uma Vm,l,—l— D) Vm,l ) Vx

We keep applying complete SJDTj slides to entries of U, 1 4, from the largest to
the smallest, to rectify H®1~, so the cell 7, will be the first to slide outwards and
become an outer corner.

Let (Uy,a, H*?,V, 2) be the triple of tableaux obtained from (U, 1+, H®"~, Vo1 4)
by applying complete SJDT} slides to the entries of U, 1 4+ and transforming the KN
skew tableau H®'~ into H*?, where for the second time in the complete SJDT;
slide, the B.2 case appears with the creation of a non-admissible column; that is, H%?2
has a non-admissible column, and the highest weight elements of all previous crystals
obtained from B®"~ had all columns admissible. After these complete S.J DT} slides
to Ug,14, Uy 2 is the inner standard tableau of H®?2; Vz,2 is obtained from V1 + by
adding the slid entries from Uy 1 4 to V1 4. V; 2 is indeed a standard tableau because
by construction the entries of U, 1 + are strictly smaller than the entries of V, 1 ;. At
this point, the red letter | has already slid from U, 1 + to V; o; that is, r; is no longer
in U, 2 and instead belongs to V; o,

Ux,2 c Uw,l C Ux,l,—l— c Ux, Vx,2 D) Vm,l,—l— D) Vm,l 2 Vx

Let B*2 be the crystal with highest weight element H*2. We have to apply the
[R3] contractor operator to H*? (and to every vertex of Bx’2) to transform the non-
admissible column into an admissible one: a pair of symmetric entries in each vertex
of B®? will be deleted, the top and bottom cells of that column will be emptied and
the remaining entries will be placed in order. Let B*?~ be the new crystal of KN
skew tableaux isomorphic to B®2, and let H%2~ be its highest weight element (it has
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two fewer boxes than H*2). Fill the empty entries with red letters 75 < 75, 75 on the
top and 7% on the bottom of the column, where in the complete SJDT} slide, the B.2
case appears and has created a non-admissible column such that ro is strictly larger
than any entry of Uy o, and 7 is strictly smaller than any entry of U, o already slid.
The primed letters are considered to be slid because by the time of their creation,
they are outer corners.

The cell with the red letter o was the cell of U, 1+ where the complete SJDT}
slide started and the B.2 case appeared with the creation of a non-admissible column.
Let U2 + be the standard tableau obtained by adding the red letter 7o to U, 2, and
let V, 2.+ be the standard tableau obtained by adding the primed red letter 7%, to V; o.
We keep applying complete SJ DT} slides to the entries of U, 2 1 from the biggest to
the smallest to rectify H®2~.

At this point, one has the following relative ordering of the red letters, where 79
belongs to Uy 2 4+ and ry, < 1 < | belong to Vg2 +:

ro < ThH <1y <7,

U:c,2 C U:c,2,+ c Ux,l C Ux,l,—i— C Ux: Vx,2,+ D) Vx,2 D) V:c,l,-‘,— D) Vx,l 2 V:c

Continue in this fashion. Let B**Y be the crystal obtained after a complete SJDT}
slide to an entry of U, ,_1 4+, where the B.2 case arises and creates a non-admissible
column for the y-th time. Let U, , be the standard tableau obtained from U, ,_1
after applying the complete SJDT slides to its entries so far. We have to apply the R3]
contractor operator to every vertex of B¥Y to transform the non-admissible column
into an admissible one: a pair of symmetric entries in each vertex of B™Y will be
deleted, the top and bottom cells of that column will be emptied and the remaining
entries will be placed in order. Let B®Y ™ be the new crystal of KN skew tableaux
isomorphic to B*Y. Fill the empty entries with red letters r, < ’r',’y, as before with r,
on the top and 'r?; on the bottom of that column such that r, is strictly larger than
any entry of U, ,, and 'r?; is strictly smaller than any entry of U, ,_1 4+ already slid.

The cell with the red letter r, was the cell of U, ,_1 4+ where the complete SJDT}
slide started and the B.2 case appeared with the creation of a non-admissible column.
Let U 4, + be the standard tableau obtained by adding the red letter r, to Uy, and let
Vz,y,+ be the standard tableau obtained by adding the primed red letter T’Z// to V. We
keep applying complete SJDTj slides to the entries of U, , 4 from the largest to the
smallest, and eventually, we rectify H%Y%~ without further recourse of the contractor
[R3l We reach the crystal R, where every vertex is rectified. The crystal R is called
the rectification of BY .

At this point one has the following relative ordering among the 2y red letters:

Ty <1y <<y <1y < -ee <1y <Y
and the rectification storing tableaux
@ C Um,y C Um,y,—l— c Um,y—l c---C Um,2 C Um,2,+ - Um,l C Ux,l,—l— - Ux,

VOoOVey+ DVeyDdDVey14+DVey 1D DVeoar DVeo D Vi1 DVe1 2V,
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where V' is the standard tableau obtained by adding to V , 4 via sliding the letters
from U,y +. We have the following ordering of all colored letters, green, purple
(primed and unprimed), and red (primed and unprimed) in the skew standard tableau
V.

o <y <7y <G < KTy <y <o < gy <

<p1<p2<---<Tk<r§€<'--<pi<---<r1<r’l<---<pw<p;<~--<p’1.
(47)

We have constructed the following sequence of isomorphic crystals, stored in V' via
the slid colorful letters:

BO@.. @ er‘l'l‘sm”‘ er+x5+...+xt

B T ~

— B” (48)

ge 20 gea B pen - 8T g B gan - SI0T ey Bl gy - (49)
wu_ SIDT;  SJDT;
B 'Y, ~ e ~ (50)

Remark 15. In our construction, purple letters are larger than all green ones ([40).
However, for the red ones together with the two other colors, we just write ({47]).

I.4 - THE SCHUTZENBERGER-LUSZTIG INVOLUTION ON THE C,_j;1 CRYSTALS BY
ITS RECTIFICATION, THE CRYSTAL R, AND THE REVERSAL.

Let LY be the lowest weight element of the Cy—j+1 connected normal crystal BY.
The crystal R with highest weight element rectification;(H) is the rectification of
the crystal B and contains rectification;(74;,)). Let F' be the composition of the
sequence of lowering operators connecting H® to Ttjn) in B, F (H%) = Tt j -
The Schiitzenberger-Lusztig involution [ in B gives [[(Tiw;q) = F~'(LY), where
F~! means the sequence obtained by replacing each lowering operator f; in F with
the corresponding raising operator e;. In each crystal of the sequence (48]), (49I),
(BO) above, the same sequence F (F~!) connects the corresponding highest (low-
est) weight element to the corresponding coplactic image of Ty, @(Ti+)))- In
particular, ' connects rectification;(HY) to rectification; (T ), F(rectification; H) =
rectification;(7]+;,). By Santos [Sa2la], the Schiitzenberger-Lusztig involution in
R guarantees that evac®»—i+!(rectification; (7|1 ) = F~'(rectification;(L°) is in R.
Thanks to the crystal isomorphisms and Lemma, [3]

reversalc"*j“(T[ijm}) = F71(L") = arectification; evac“n—i+1 (rectification; (Ti4,5)))-
(51)
To compute the reversal of Tj; ) in B without using the sequence F of crystal oper-

ators and the highest /lowest weight elements H°, Lg of BY, we use Santos’ evacuation
on rect;(7}4; ) and the rectification sequence of crystals backwards in (@8]), (@9),([E0)
stored in the standard skew tableau V.

Step II. COMPUTATION OF SYMPLECTIC EVACUATION OF RECT;(T}4;,)) IN THE
Ch—j+1 CRYSTAL R.
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The tableau rect;(7}+;,)) is admissible in the alphabet [+j,n]. Use Santos’ algo-
rithm as follows: take m-rotation and change the sign of rect;(7}4;,)); then, apply
SJDT; to obtain evac“»-i+1 (rectification; (7|4 ,)) in the crystal R.

Replace the tableau pair (rectification;(7i1; 1)), V) with

(evacCn—i+1 (rectification;(Ti+; 1)), V).

Step III. SYMPLECTIC REVERSAL OF Tj4;,) IN THE Cp,_j11 CRYSTAL BY.

Consider the pair of tableaux (evac®n-i+1 (rectification; (T} ), V), where V' is the
standard tableau consisting of all the slid letters in the rectification sequence (48]),
([@9)),([B0) on the alphabet of green, purple and red letters.

Apply the reverse SJDT;, RSJDTj, to the entries of V' from the smallest to the
largest to send evac®»=i+1 (rect;(Tjy ,))) to keversal(Tiy; ) = F~'(Lo) in the Cr_j41
crystal BY.

When the SJDT} applies to an unprimed red letter r;, ¢ € {1,...,y}, in V, the
letter r; slides to the top of a column with the cell r/ on the bottom. At this point, we
have reached the crystal B**. Then we apply the dilation operator R3] to the column
containing the pair (r;,7,) by erasing those entries and adding a pair of symmetric
entries (k,k) so that we get a non-admissible column on the alphabet [47j,n]. The
SJDT); applies now to the next letter bigger than 7. In this complete reverse slide,
the SJDT}; B.2 case occurs.

When the reverse SJ DT} slides have been applied to all non-primed purple letters,
we have reached the crystal B®, where the columns 7, s,...,t have x; non-primed
purple letters py .., 1 +1 < -+ < Pzi4-..42, o0 the top and the corresponding
primed letters on the bottom for ¢ = r,s,...,t. Then, for i = t¢,...,s,r, we apply
the dilation operator [R3] to each such column ¢ x; times, and we reach the crystal
B, where each vertex has non-admissible columns 7, s, . .., ¢. In particular, we obtain
reversal“n—i+1 (Ti4j,m))-

Step IV. PARTIAL SYMPLECTIC REVERSAL OF 1" COMPUTES 55’; ](T).

557’;4 (T') is the Schiitzenberger—Lusztig involution of T' = (T J_l],T jn)s T, [.]_‘Tlvﬂ)

in the crystal connected component B ~ BY of KN{j)(A;m). Replace Tiyj,) with
reversalc"*j“(T[ij,n]), (BID), in T,
which gives

55%} (T) = reversal[c;’"n](T) = (TJ_I], arectjevacc"*j“(rectj(ﬂij7n})),T[J__Tl7ﬂ). (52)
Remark 16. e If we put j = 1 in the colorful algorithm, we reduce to Step II

of Cy, evacuation.

o If T € |SSYT(\,n)| C [KN(X,n), our colorful tableau switching algorithm re-
duces to just the green color, that is, to the ordinary tableau switching of
the tableau-pair (UO,T[j,n]), with Uy a standard tableau of shape p and 1j;
a semi-standard skew tableau of shape A/u on the alphabet [j,n|. The semi-
standard skew-tableau Tj; ) on the alphabet [j,n] is also a Cy,_j11 admissible
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tableau. [R3| does not apply, and SJTDT; reduces to the ordinary JDT. There-
fore, purple and red colors do not pop up in Step I. This means Step I returns
the pair (rect;(1}; ), V), with rectj(1}; ) a semi-standard tableau in the al-
phabet [j,n] with |\| — |u| boxes and V' completely green. Step II computes
the symplectic Cy,_j41 evacuation of rectj(T[jm); this step produces a semi-
standard tableau of the same shape on the alphabet [n,j]. Step III applies the
ordinary reverse JDT to evaccnﬂ*lrectj(T[j,n]) governed by the green V and

returns a semi-standard skew tableau of shape \/u on the alphabet [n, j]. Step

IV computes the partial reversal T), J =[j,n], with T, []_,le] empty,

55”%](T) = reversaﬁ?n} (T) = (TG’_”,

The algorithm for the full C,, reversal of a KN skew tableau T € KN(A\/p,m)
results from our colorful tableau switching algorithm by considering the image
of T, (T}, T), in the full sub-crystal B(u, \) C KN (A, n), where n = m+j—1
(Subsection [74.3). Let[B be the crystal connected component of B(u, \) con-
taining (TH,T), where T}, is the Yamanouchi tableau of shape p and T is ob-
tained by increasing each of the entries of T by j—1. Then, restricting (T),, T)
to the alphabet [+7,n], T is an admissible Ch—j+1 skew tableau in the Cp_jiq
crystal BY. Our algorithm reduces to Step I with just green and red, Step II
and Step III. Finally, we subtract j — 1 from the entries of reversa/C”*j“(T)
to get reversalc™ (T). However, subtraction by j— 1 cancels the last step in the
reduced SJDT; (Definition[4), and therefore it is enough to apply SJIDT.

This means that the algorithm for the full C,, reversal of the KN skew
tableau T results from our algorithm with B® = B(T) a type Cy, crystal, x =0
and applying SIDT to Uy to get (rect(T),V), where V is a skew standard
tableau without purple letters. Then RSJDT applied to V' gives

arect;evac—i+1 (rect; (Tijm)))- (53)

reversal“m (T)) = arectification evac”™ (rectification(T')).

9.3. Examples of full and partial symplectic reversal.

Example 7. Full reversal of a skew tableau, J = I. In this case, we have no

purple

KN((4,
T with

2

2[2]1]
1 €

letters, as no letters are deleted at the beginning. Let T =

i\l

3,2)/(1),3). We compute £°3(T) as follows. First, we fill in the—empty box in
a green letter (it defines the one box standard tableau Uy ), to which we perform

symplectic jeu de taquin until it becomes an outer corner.

(U(]vT)

1]

1] 1 1

—|

1 sior = 1 sior
= =

i\l

I[Nl

=[]
=[xl

NI
=l

sIDT SIDT
= = =

= No] | =
=

ESE
=
’~:| ol| =
—_
’~:| ol| =

2
1]
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1 ‘ SIDT
%

1]

=Nl
=

SJIDT
%

=[]
—|

= rect(T) =

’\3| < [ral

B
=]l

L]
r< T
Taking w-rotation and changing the signs of rect(T), we again apply SIDT to compute
evac®s (rect(T)):

k| x| x|1| SIDT |*x|*x|1]|*| SIDT |*x|*x|[1[2]| SIOT |*x|1|1|2| SJOT |*({1(1]1
112021 7 [1(1l2l2] — [1(l2l= = [1[*2[=]  [1]2]*|*
ST 111112} /BT |1]1]1]2 = evac®®(rect(T)).
x| 2| % | * VAR EIES

We replace rect(T) with evac®(rect(T)) in (rect(T), V') and apply reverse SJDT to
V to compute £°3(T) = reversal”*(T):

1[1]1]2] 1[1]1]2] r[1]1]2] 1[1]1]2]
(evac®s (rect(T)), V) = [2]7 RIOT 9 RSIOT 179 I]Em 202
L] L] T 2]
RSJDT 11]1 2‘ RSJDT 111]1 2‘ RSIJDT 11 2‘
= [2]v]2 = 2]2 = [1]2]2] = (U0, €52 (T))
2] 2] 2]
1[1]2]
=& (1) = [1]2]2
12]
1[2]2]1]
Example 8. Let P — % ; 5_’1’ € KN((4,3,3,1),4). We have wt(P) = (—1,1,—2,,1).
13 ]

To compute 55?4](13) = reversalg‘;q(P), we freeze the letters 1,1 in P and consider

Piio 4. Plaoy) is not an admissible C3 tableau in the alphabet [£2,4]: the second col-

umn 242 is not an admissible Cs column; 242 SIRT

is 23249413 = 934443, We include this non-admissible second column in the S.J DT,
sequence to rectify P[i2,4].

1. Rectification of Py 4

4. The column reading of Piio 4

212] | p2] ] 2[3] ] 2[4[3] |
41413 SIDT, |4]4|3 SIDT> |4|4|Pp SIDT, [4]9]|p
Uy, P, = =13 = = = = = =
(07 [:|:2,4}) 42 ilp/ z_Lp’ z_Lp’
3] 3] 3] 3]




SYMPLECTIC CACTI, VIRTUALIZATION AND BERENSTEIN-KIRILLOV GROUPS 47

cl4]3] | 2[4[3] |
sior, [2]0[p] siom [3[0]p 2[4]3]
— 7 = — = (recty P, , V) = recty P = (= ,
ST A (rectaPlig 45, V) 2P = 3]
v "
|
V= P r<r < <p
- r p/ ) p p.
/
]

2. Computation of evac®® recty(Pio4)). Taking m-rotation and changing the signs
of recta(Pio4)), we again apply SJDT;:

; soT |3 2] SIBT |3 2] SIRT 312/ = evac®®

314

reCtgP[iQA] .

NS

3
34 4

3. Reversal of Piy24). Replace recty(Piio.4)) with evacCS(rectg(P[ﬂA])) in (recty(Piya4)), V)
and apply RSJDTs to V.

ey oy (AP RSIDTy [3[ 0[P RSJOTz |30 |P RSIDT; 313D
(evac™® (rectaPiyo4)), V) s 1|y 41 4|y
B il 2 2
aE 213
RSIQT ngr 3{ | R % g S = (Up, reversal® (Puy 4)))
2] 2]

(OS] SN

DI | DN

= reversal? (Pla24) =

’l\)l i co

4. Replace Pio 4 with reversa/c3(P[i274}) in P to obtain

[]

reversalgiq(P) = » WE2 4] (55?4](13)) = —wipq(P) = (-1,2,-1).

[\ [SV] 1]
—[eor o

’l\i)\ =IO

9.4. General Dynkin sub-diagram and virtualization. Let 5[%].], 1<537<n—
1, be the Schiitzenberger—Lusztig involution on KNy jj(A,n). KN j1(A,n) is a type
A; crystal of Kashiwara-Nakashima tableaux of shape A on the alphabet [£n] with
lowering and raising operators f; and e;, respectively, given by the type C,, signature
rule with i € [1,j]. Notice that the unique crystal operators which change the signs
of the entries are f, and e,, which are forgotten. Next we give a computation of
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g[gj’q}, for any 1 < p < g < n, via virtualization [E] and bring it back to KNp, (A, n) by
applying E~!, see Theorem [§ and Theorem [ below.

In the next section, we give a computation of 5[%}]? 1 < j <n-—1, via virtualization
[El and bring it back to KNy (A, n) by applying E~!. See Theorem [{ below.

9.4.1. Embedding of a partial symplectic Schiitzenberger—Lusztig involution and back.
Let J C [n] be a sub-Dynkin diagram of the type C,, Dynkin diagram I = [n]. Let
U be a connected component of the Levi branched crystal with J C [n]
and with highest and lowest weight elements u"&" and u'°", respectively. Recall from
Subsection £.2] Proposition 2], that each connected component U of the Levi branched
crystal is embedded via[Elinto a connected component of the Levi branched
crystal SSYT ;. 7()\, n) with highest and lowest weight elements [Eu"&") and [E(u'*"),
respectively.

Let P = (PT,P7) € SSYT(A*,n,n). The crystals SSYTp, 4(A*,n,n) and
SSYT 51 541 (A, n, ) are isomorphic to SSYTpq (A4, n) and SSYT 51 541 M/ n),
respectively (recall Remark[]). The corresponding pair of isomorphic crystals has the
same multiset of highest weight vectors in ZI7P*! respectively, regarding the sub-
Dynkin diagram [p, g]. We may then write

Aop_1 ~Aop n— —+ n —
gl (p) = (g (P gl (P7)), (54)
Theorem 5. Let T € KNy, (A, n) of type Ap_g11,1 <p < q<n. Then

Azpn—1 Agp—1 sA2n-1 Chn
E o D) = & o &t e BXT)) =LEXE, 7, (1))
Moreover,

§[p (1) =E” 1reversalAz” 1reversalAif1 1+1]E(T). (55)

Proof. Recall Proposition 2, Remark Bland (I4]). Then it follows from Theorem 2l [J
It is now convenient to change the labeling of the Ay, _1 Dynkin diagram. Instead of

[k, k + 1], we write [k, 2n — k], and SSYT ;. o,,_1) (A, 12, 7). This relabelling is illustrated
in the picture below.

1 2 3 n—1 n
~— e o —e—<—»
1 2 3 n—1

>7L
2n—1 2n—2 2n—3 n+1

Theorem 6. Let T' € KNy, (A, n) of type Cp_jy1 for some 1 <k <n. Then
A n
iz @(T)) =g, (T))-

Moreover, on [SSYT(\*,n, ), {?f;nlk = reversa/A2"

qkn} E~ reversal[ff; ! nE- (56)

and

—K)’
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Proof. Recall Corollary[2land that, in the case of the branched crystal SSYT;, 2,1 (A, 1, 1),
(i) = 2n — i, for i € [k,2n — k]. Let U be the connected component of KN (A, n)

containing 7', and let the highest and lowest weight elements of U be uM&" and u'o%,
respectively.

T:fir'“fh(uhigh)aila'uyir € [k7n]7
E(T) = fzf:f;;—zr . 'fﬁfﬁ—il(m(uhigh)%il?’ .. 7iT € [kvn]v (57)
and

(D) = e

Then, from Subsection 5.1, (0],
B (1) LB, . en (™)) = e, ... eibed s Bw™)
and, from (IEZI)
k2” k](IEI( ) = 9A )eé4(2n—zr)‘ e@(zl (2n i1) (]EKUIOW))

i, (uloY).

o

12471 s 6;}0 . eQn i1 21 ( ))
6‘;: e?n Gt eﬁ e?n 11 ulow :m(g[i,n} (T))
Finally, (56) follows from (39]). O

Using a generalized form of Lemma [ the following corollary is a generalization of
the two theorems above.

Corollary 4. Let T' € KN, gjuj,n)(As 1) of subtype Ap—g11 X Cp_jy1 for some 1 <
p<qg<k—1<n. Then

Ao A n—1¢A2n— A n Ch
5[10,211}LJ%Qn—an—p]U[k,Qn—k](I:E(T)) ; 15[231—q1,2n —p] [k22n 1k (E(T)) :m(g ,qJU[k, n](T))

i\ — A2n71 _ 2n—1 Azp—1
Aﬁoreover, on [SSYT(\, n,n), £[p7q} = reversa/[évq] ) £k2n K T reversa/[fliz K] and
2n—1
5[2n—q,2n—p} = reversa/én 0.2n—p|°
Aon—1 Azn—1

Remark 17. Both € palol2n—q.2n—p] and & act on the set |SSYT(\*,n,n)| to

[k,2n—k
define a permutation such that the subset [EN|KN(X\,n)|) is preserved. In other words,
each of these involutions defines a permutation on [EKN(A,n))) when their action is
restricted to this subset.

Corollary 5. Let SSYT(u,2n) with p a partition with at most 2n parts, and let By,
be the Weyl group realized as < r; = (ii+1)2n—i2n—i+1),r, =(nn+1), 1 <
it <n—1>. Then {{?2”’152551, ,‘?2"’1,1 < i < n — 1} define an action of B,
on SSYT(\,2n) by ri.b = 5;42”*15547122;113, 1<i<n—1, and rp.b = E52 1 b, for
b e SSYT(\, 2n) such that

(1) eA2n 1 124;7121514271 1£A2n 1 £A2n 152 2 — lfAZn lf;:zznz 1’

A7 A A A Aoy, A
(2) en2L 1 n2n 1€n2n 1 :€n2n lfn2L lfnZn 17

(8) wt(r;.b) = riwt(b), 1 <i<n,
(4) wo. T, = T/j""’, wo = (rp -+ +-11)" the long element of By,.

1<1<n,
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(5) if p = A is the virtual partition for some X, it preserves the action of
B, on the underlying set of the crystal [EKN(\,n)) embedded in the crys-
tal SSYT(A4,2n).

Proof. (5) It follows from Theorem[Bland Theorem [ with p = g and respectively k = n
that &>~ €220 ET)) = &> &2, (EXT)) =CENES™(T)) and &>~ (ET)) =
CE(ES(T)). From Proposition B, Bl {¢$* : 1 < i < n} define an action of B, on
Therefore {5?2"’1554;2;1,5,?2"’1, 1 < i < n—1} is the translation of this
action to the embedded crystal in SSYT(A\, 2n). O

9.5. Virtualization of the action of on the crystal [KN()\, n)l. We have

the following commutative diagram corresponding to the crystal embedding [E] and
the partial C), and Ag,_1 Schiitzenberger—Lusztig involutions, where [p,q] C [n — 1]
and [p,n] C [n] are connected subintervals of the Dynkin diagram of C,,

RNOo)]— 2 BT O )

Chn Ch Aop—1 | gA2n—1
€t | €l ST | Spalo@ T T

T F

oF — RN, 7)) (58)
~ Aop_1 _ fAon1 Ao
Sp.qUETL P = S aom o = Sipal SEETpT
3 — £A2E
[p,p+1] [p.p+1)

Theorem B and Remark [T imply that the action of |Joy|on [SSYT (A, n, 1) preserves

the subset [E[KN()A, n)| and thus, we have an action of on the set [EJ[KN(A, n)))
defined by

~ ' i,
P ion,0) | — ENKN (A, n))
3 L £A2n71 —¢ 2 2n71£A2n71
[p.qlVlg+1p+1] p.aUlgTLp1] ~ Slpal  SlgFLpTl)
51, 511 — gham1
[p,p+1] [p,p+1]

&E Y& : 5.
such that Oy, ¢) (57) = Paen,0) (51)BRN, n)) € TERN, n))- Let 7+ Popen.c] =
be ~the group is.omorphism deﬁnefi.by S[14] §[1,j]u[jﬁ2}= 1 <5 < n, and
Sjn] = Sz 1S 7 <m (see Proposition M), and ¢ : ~ GEKN, 7))

the group isomorphism defined by 2(c) = EocE~!. The virtualization of the action

of on the crystal [KN(\, n)|is then realized from the following commutative

diagram
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Q. (2n,0)
epzn.c)] —— FRN(X 7]
il Zl (I)g(zm(c)i = Z(I)sp(2n,(C) (59)
ENKN(A, 1))
sl(2n,C)
From (B3]
= ~ F ~ Aon
q)g(gn,cﬂ(s[l,ﬂ) = q)g(zn,@(s[mu[ﬁlz) 5[12]]U1 GF1.2]
Cn _ 72eCn n
= Zq)sp(2n,(C) (S[l,j]) = Zé‘[l,j] = 5[1 ]]E g[lfj}UEm,?}’

~ Aon
@51(271 C) (S[J n) = (I)g(% C)( [3.5+1] ) éh[32]+11
J— Cn pr— n
= Dap(on, ) (s1j01) = 857y = BE B = %0
9.6. Virtualization example.

Example 9. Consider n = 6, J = [1,5] and the KN tableau T of shape \ = 2wg +
Wy + wy:

= [l

’ Wt(T) = (_17270707_171)

=l ot| ot

US| or|w N
ISl = E=2 A

From \ we may immediately write A = 2wi' + 2wi' + wd + wi + wih + Wi, and
from A we write the Baker recording tableau Qy of shape A\ as a sequence of shapes
where we successively ﬁll the bozes along columns, top to bottom, from 1 to |\4| =

A A
Awg'| + |w ]+ |wg| + |wip] + |wg'| = 48,
wi Cwip+wi Cwil +wip+wh Cwp +wd +wip+wi Cwf +wr +wh +wip +w

C 2w?+w?+w?+wﬁ]+w§4 C 3w?+w?+w?+wﬁ]+w§4 - 4w6A+w§4+w5A+wﬁ)+w§4 =\

3 |13]18|25|31|37]43
4 114|19|26|32| 38|44
1520(27|33|39|45
16]21|28|34|40/46
17|122|2935|41|147
23|30|36/42/48
24

’5|:|5©00\10301\)N
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Labelling the columns of T from left to right as Cy,Cs, Co and C1, we have:

213
411
11 12 i 2 B
212 214 — 6
303 306 614 i
P(Cy) = 105 ,(C3) = alE ,P(Co) = 6]2 Y(Ch) = H
6|6 5(3 g L 1
54 401 T El
— 12
1]
Then[EXT) has shape M\ = 4w + wit + wil + wil) + ws,
wt(E(T)) = wt(wr) = (3,6,4,4,3,5,3,5,4,4,2,5),
and [EXT) = [0 + wr],
1({1(1(2(1212(4|3
2121213141551
313|13(4|6(6(3
4(5|6|6|6|5|2
o _|6]6|6|5|5|3|1
101
13
12
1]

which has recording tableau Q(wr) = Q.

Considering the barred and unbarred parts of [EXT) separately, we compute the
evacuation, evac, of the unbarred part and the reversal, [reversal, of the barred part,
yielding:

111|1]2(2|2]4 1]1|1]1]1|4]4

21212(3|4|5]|5 2122 905
evac|3|3|3]4|6|6 =13|3]4]|5|5]|6

415]6 415]6

6|6 5|6

and
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=l

NSl

=]l % | *
N O | % | %

O % | % | % | %
=[O % | % | *
WlCU[DI| * | % | *
=l o % | % | %
=IO % | % | % | %
ool % | % | %
DO| || [ % | % | %
DO| || [ % | * | %

=l % | % | % | % | %
=IOy % | % | % | % | %

’HI|N>I|COI ol % | % | % | % | %
[=irol]cat]i[a] # [+ [+ [+ ] +

Putting these tableauz together, one obtains

‘;‘15 6.2 (EXT)) = (evac(ENT)") [reversal(EXT)™)).

Using QA to perform the reverse column Schensted insertion on the resulting Aix
tableau £ 0 5 6.2 (EXT)) provides the image under 1 of four KN columns C7, C}, C%,

Ci:

15
412
1)1 1)1 g ;l 15
212 2|3 — 6
33 , 45 1815 N
516 HE =5 1
6|4 412 T 13
— 12
1]
and applying ¥~ to each column results in:
1(1|413
21315|2
3154
CCLCL0T = —= = T).
1000 = TS ,5(T)
6|51
6]3

Wt[175}(£€75} (T')) = reverse(wt(T')) = (1,—1,0,0,2, —1).
This solution has been verified in [SageMath].
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10. THE TYPE C,, BERENSTEIN-KIRILLOV GROUP

10.1. The type A Berenstein—Kirillov group. The type A Berenstein—Kirillov
group (or Gelfand-Tsetlin group) |[BerKir95| is the free group generated by the
Bender—Knuth involutions [BeKn72] ¢;, ¢ > 0, modulo the relations they satisfy on
semi-standard Young tableaux of any (straight) shape.

Definition 5. The Bender—Knuth involution t;, 1 > 1, is an operation that acts on a
semi-standard tableau T of any shape (skew or straight) as follows:
e pairs (i,i+ 1) within each column of T are considered fized, and other occur-
rences of i’s or i+ 1’s are considered free
e if a row within T has k free i’s followed by [ free i+ 1’s, then we replace these
letters by I free i’s followed by k free i + 1°s.

The t;’s have many known relations in [BerKir95l [CGP16]:

t2 =1, for i > 1 [BerKir95|, Corollary 1.1] (60)

tit; = tjt;, for |i — j| > 1[BerKir95l, Corollary 1.1], (61)

(th[l,ﬂ)4 =1, for i > 2 [BerKir95l, Corollary 1.1], (62)

(ti1t2)® =1, [BerKir95, Corollary 1.1], (63)

(tiayr—1)° = 1, for i+1<j <k, [CGP16], (64)
where

Q) = taltats) - (Litio1 - - 1), for ¢ > 1, (65)

Qi k—1] = Q1k—11901,k—519[1,k—1]> for j < k. (66)

Remark 18. (1) It is not known whether the latter forms a complete set of rela-

(2) [t]ZSOeZ;ir95, Section 2] On straight-shaped semi-standard Young tableau,
qa = &y 02> 1 1) = k-1 J < K, (67)

and q(j ) = qu,74901,19]1,5 computes the crystal reflection operator §; = & 4,
where q(11) = &1, = t1, for j = 1. In particular, qp ) = §n,) = evaciti,
the evacuation restricted to the alphabet [i + 1], and qijk—1] computes the
Schiitzenberger evacuation restricted to the alphabet [j, k], k-1 =
evacpevacy_j1evacy, for j <k.

(3) Relation (64)) implies that in particular, (t;£;)* =1, j > i+1, which generalizes
the relation (t1qp )t =1 .

(4) For a generic (straight or skew) shaped semi-standard Young tableau T, wt(t;(T)) =
wt(&(T)) = riwt(T), r; € &, for all n > 1. However, t; # &, fori > 1;
t1 = & needs only coincide on straight shaped semi-standard Young tableaux.
Moreover, t;, 1 < i < n, do not need to satisfy the braid relations of S,,, how-
ever, they do on key tableauz, that is, straight shaped tableauzr whose weight is
a permutation of its shape [Fu97].

Let be the subgroup of [BK] generated by t1,...,t,_1.
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Proposition 10. Remark 1.3] As elements of [BK],
b1 =qp1,1); ti = Q-4 901,i-19[1,i—2], fori > 2, qo = 1.
The elements q[,1), - - -, q1,n—1] are generators of [BIC,]

The following result is both a consequence of the combinatorial action of the cactus
group [J,] via partial Schiitzenberger involutions §[1, on the straight-shape tableau

crystal [SSYT (), n)| as defined by Halacheva [Hal6], and the cactus group [J,] relations
satisfied by the generators q; jj = &[; ;) of when acting on [SSYT (), n)| as studied
by Chmutov, Glick and Pylyavskyy via the growth diagram approach [CGP16].

Theorem 7. The following are group epimorphisms from [Jy] to [BK,|:

(1) sp 1+ qpi 5 [CGP16, Theorem 1.4],
(2) spj = qpj) [BerKir95, Remark 1.3], [Hal6l Section 10.2], [Ha20, Remark
3.9].

The group is isomorphic to a quotient of [l The generators qp 1y, - - -, q[1,n—1
of BK.,] (and therefore qj; ;1) satisfy the relations of [J,)

Remark 19. It follows from [CGPI16] that (@3] is the only known relation which
does not follow from the cactus group[J,| relations. It is in fact equivalent to the braid
relations satisfied by the crystal reflection operators §& = & t1€1,, 1 <i < n, on a
U,(sl(n,C)) crystal Proposition 1.4], [Ro21].

Remark 20. We may define the two dual sets of generators

tnei = qun—1]tidp 1], 1 <i<n, (68)
called dual Bender—Knuth involutions, and

qd = qn-191.4391,n-1] = dn—in-1), 1 <1<,
forBK,] Indeed, from Proposition[I0] and Theorem[7, one has

tn—1 = dn—1,n—-1) tn—i = An—i+1,n-1]9n—i,n—1)9n—i+1,n—1]49n—i4+2,n—1]

for2 <i<n, qpn_q:=1, and wt(t,_i(T)) = rp_i.wt(T) for T €[SSYT(\,n)| and

ri € Gy, 1 < n.
The dual generators satisfy a list of relations similar to (60)) (©1), [©2), [©3)), (©4)):

2 =1, fori>1 (69)

tn—itn—j = tn—jtn_s, for |i—j| > 1, (70)

(tn_1tn_2)® =1, (71)

(En—ilifji-1)° = (bni@—r1n—g)> =L for n—k<n—j<n—i-1, (72)

where
p,i) = tn—1(tn—otn_1) -+ (bn—itn—it1 - tn-1), fori>1, (73)
Qi k1) = Dkt 1,n—j] = An—k+1Ln—1)9n—k-+jn—1qn—k+1m—1], Jorj <k. — (74)
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Remark 21. We note some features of the operators (68) when acting on straight
shaped semi-standard tableauz. Set evac := evac,. Let 1 < i <n, and T = (A,B) €
SSYT(\, n)| where A of straight shape is the restriction of T to the alphabet [1,n—i—1]
and B, an extension of A, is the restriction of T to the alphabet [n —i,n]. One has
evac(A, B) = (evacrect(B), X) with X such that rect (X) = evac(A). Therefore,
th_i(T) = t,_i(A, B) = evact; evac(A, B) by (63

= evact;(evacrect(B), X), such that rect(X) = evac(A)

= evac(t; evacrect(B), X)

= (evacrect(X), Z)

= (A, Z) such that rect(Z) = evact; evacrect(B). (75)
10.2. The type C),, Berenstein—Kirillov group and virtualization. Symplectic
Bender—-Knuth involutions tiC" are not known for KN tableaux. Motivated by the fact
that for n > 1, g1, - - - , q[1,n—1) are generators for the Berenstein-Kirillov group [BK,]

in type A, and that on straight shaped semi-standard tableaux, they coincide with
the action of the partial Schiitzenberger-Lusztig involutions £ 3, 1 < ¢ < n, we use

the action of the partial Schiitzenberger-Lusztig involutions 5[({”1.}, 1<i<n-—1,and
5[(5%] 1 < i < n, on KN tableaux of any straight shape on the alphabet [C] to define
the type C,, Berenstein—Kirillov group,

Definition 6. Given n > 1, the symplectic Berenstein—Kirillov group is the
free group generated by the 2n — 1 partial Schiitzenberger-Lusztig involutions
aivy =€ 1<i<m,
and
Gy = Empy 1< <,
on straight shaped KN tableaux on the alphabet [Cy| modulo the relations they sat-

isfy on those tableaux. We also define qﬁ"o} = q[%"n} = q[C =1 and q[(;%_l] =

n1,n]
Uy L fiioyy 1S5 <k <.

Thanks to Theorem [Il (87) and (B8]), one has that is a quotient of
The generators of satisfy the cactus group relations.

Theorem 8. The following is a group epimorphism from to IBICCn]:
Cn . . .
Sl =y LSI<n S gy LSS0
is isomorphic to a quotient of.

We next define symplectic Bender—Knuth involutions tic", 1 <i:<2n-—1, on
straight shaped KN tableaux that in turn generate

Definition 7. The 2n — 1 symplectic Bender—Knuth involutions tlc” on KN tableaux

of straight shape on the alphabet [Cy] are defined by
tn ton
1 i

P CTL R Cn Cn Cn Cn -
=y B g g e 2sisn-1, (16)
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tc'r .

v e— Cn Cn >
= Gy = 60 1 S G 2 2<is<n. (T7)

Thanks to the relations satisfied by the generators of [BKC7]

Cn _ Cn Cn Cn Cn
4G5 = Gy = dt

(Definition [f with j = k — 1) computes the symplectic crystal reflection operator fjc"
for 1 < j < n, on KN tableaux (see Proposition [6, ([3)).

Remark 22. The symplectic Bender—Knuth involutions tic", 1 <i<mn, act on the
weights of the elements in the crystal[KN(X, n)] wt(tS (T)) = wt(EE™(T)) = ri.wi(T),
r; € By, 1 < i < n, inducing an action of the Weyl group B, on these weights,
although, as we shall see, in Subsection [10.3, they do not define an action of the

hyperoctahedral group B,, =< r1,...,m5 > on the set|KN(\,n)l Let T € |KN(\,n)| and
wt(T) = (v1,...,vn) € Z", then

wt(tS(T)) = rpwt(T), 1 <i <mn,

wt(tSn (T)) = (v, ..., —vn) = rp.wit(T)
Wt(tzn (1) = (i, =Viy ooy Un) =Tyt TpeiTpn—i - Tn—1(V1, ..., Un)
=tp—1-ln—ilnln—i--- tn—l(vla e 7vn)7 I<i<n.

Proposition 11. The symplectic Bender—Knuth involutions t; ” 1 <i<2n—1,
genemte- In particular,

(I)C]l,]_pl p2 : -pi”, 1<i<n, and
Chn ' .
(2) qzn] ton—i tgalglgn,

where p; ™ = tic” “e- tg”tf” 1s the symplectic promotion, 1 <1 < 2n — 1.

Proof. (1) We show by induction on ¢ that q[ qﬁ"@ i " Cn  Note that qﬁ"l} = p?” =

1 z]
tC” Furthermore, for ¢ > 1, q[l Z} = q[1 L 1]tlc q[1 i 2}‘][0171'—1]' Then, assuming that for

some fixed positive integer k, q[1 j] = q[l”j]pi " for all j € [1,k — 1], our inductive
hypothesis implies

Co _ Cn  Cp C Cn  _ Cn  4Cn C Cn Cn
) = dr—1te "I k—-290 -1 = G1e—11tk 911 k—2190 k—21Ph—1

_ Cu 4CuCn _ Cn Cn
= 40—tk PrE = A PR

_Cn G c
—i—1mn] — tn—?—ztn—il-z 1° 'tnn‘

As a base case, when i = 1, we have tg" = q[n ]’ As an inductive step, we assume
9

(2) We proceed by induction on ¢ in the statement q[

the statement is true for all j € [1, k] for some fixed positive integer k, so
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£Cn _ (Cn
n+k+1-1 " "n+k

_ Cn Chn
= Un—k,n]9n—(k—1),n]

Cn 4O
=1, kq[n (k D] = Yn=k,n)

_ 1Ch Cn
= q[n k] = bttt
]
By Theorem[7] the involutions q[AQ”]“1 € BKap,, i < i < j < 2n, satisfy the cactus Joy,
relations. Consider in B/Cy,, the involution q[lz’}l ! with its dual qﬁi’}l l.— qéi" len i
for 1 <i < n (Remark 20), and q?é’; 12} 1<i<n.

Definition 8. The virtual symplectic Berenstein—Kirillov group BK o is the subgroup
of BKq, generated by the 2n — 1 involutions

A2n—1 A2p—1 _A2n-1 A2p—1 Aon—1

91qugn—izn—1] = 914 9en—i2n—1] = 9en—i2n-1901,] > 1<i< (78)
dimy; 1<i<n, (79

modulo the relations they satisfy when acting on semi-standard tableaux of any straight
shape.

Azn—1 Agn—1
By Theorem 2 9[1,4)u[2n—i,2n—1] [1,iJU[2n—i,2n—1]

tableaux of any straight shape, 1 < i < n. (In particular, in [E[KN(), n)), for any
partition A with at most n parts.)

coincides with § on semi-standard

Remark 23. The action of q?ﬁugn i2n—1

only in the entries < 2n. Therefore it is enough to consider the sets SSYT(\,2n) with
A any partition with at most 2n parts.

| on a semi-standard tableau is non trivial

Proposition 12. For 1 <1 < n, consider the Bender—Knuth involution t:b"’i with
its dual £52" in BKay. The group |[BKoy| also has the 2n — 1 generators

n—i
i =t e = B 1< i<, (80)
t227+11 nti ‘= q?fnz-:l nti—1 }qf:‘fnz‘llz n+i—2] (81)
- q?zznzé nti- 2]qf3z2nz+11 ntio1pl ST (82)
where Ut 2” ! not] = 1. We call them the virtual symplectic Bender—Knuth involutions.
Proof. The group BKo,, satisfies the .Jo, relations and C BKs,. Hence qé?ﬁ’lqéi"_’ifzn_l]
qéi" 212n 1]qfl‘25 ''1<i<mn,and by 23),
Agp_1 Aop_1 Agp_1 Aop_1

q[n i+1,n+i—1 }q[n i+2n+i—2] q[n +2,n+i— 2}q[n i+1,n+i—1) I<i<mn,



SYMPLECTIC CACTI, VIRTUALIZATION AND BERENSTEIN-KIRILLOV GROUPS 59

In addition, from Remark 20]in BXCo,,

t:\zn 1t1247fnzl o E‘llzn 11qA2n lqA2n 1 Aop— lqA2n 1 qun 1 qun 1 qun 1
1—1]1[1,] (1,2 1] [1,:—2]1[2n—i+1,2n—1]1[2n—i,2n—1]{[2n—i+1,2n—1]1[2n—i+2,2n—1]
= qé;ﬂ z1+1 2n—1] QSZ" 212n 1]‘1[231” z1+1 2n—1] qﬁzz 711]q[1 il ", qﬁ i 21]qf421721n z1+2 2n—1]
= e 1 <<, (83)
Again by Remark 20/in BKs, and (83)), for 1 <i < n,
G otnmizn1) = G0 Gnin—)
_ p1142n71 . .p?Q'nfl {112;11711] 142n71 . .p?Q'nfl {11,2;117—11]
_ p1142n71 . _pAQn 1ﬁA737L11 . ﬁé“;nll

ot Agn— 1t2 2n— 1t1 2n— 1t1241fn11)
Agn—1 Aogn—1 Aogn—1 Agn—1
101 F0n—2oRn—1)  Clea—g

Aop— A
’ t[2]2u[21n—2}t[1]2u[21n—1})7

=1

Aon_1 Aon_1 Aon_1 Aon_1 | A2n—1 A2p—1,A2m_1
where q[u’f =p; " -eep; T with p Tt =T T, and
~Aon_1 . Asn—1  Aon_1 Aon_1
Pop—; q[l 2n— 1]pl q[l 2n—1]

A2 1 7A2n—1

_t2n7,' t22n1t2n1’1<z<n

On the other hand, for 1 <i <mn,
A2n 1 Azpn—1/ Asn—1 Azn—1 Agn—1 Azn—1
[n i+1n4i—1] q[n,n} (q[n,n] q[n—l,n-{—l})(q[n 1n+1]q[n 2n+2})
Azn 1 A2n 1
(q[n—(z 2),n+i— 2]q[n i+1,n+i— 1])
Agn—1,Aon—1  JAap—1  ,Aon—1 Agn—1

= tn,n-‘,—l tn—1,n+2tn—2,n+3tn—i+2,n+i—1tn—i+1,n+i‘

O
Remark 24. If T is an As,_1 semi-standard tableau, Wt(t[ }25[2711 i (1)) = riron—;.wt(T),
where r; = (i i+ 1) and rop—; = (2n —i 2n — i+ 1) are simple transpositions in Gy,
for1 <i<n, and wt(tp—it1n+i(T)) = (n—i+1 n+i)wt(T), where (n—i+1 n+1)
is the transposition of So, that swaps n — i + land n+1i, for1 < i <mn. The

Agn—1
U[2n—i]’

the weights in Z*™ of the elements in the crystal SSYT(A,2n), inducing an action of
the Weyl group By, realized as < (ii+1)2n—1 2n—i+1), (n,n+1), 1 <i<n >,
on these weights.

virtual symplectic Bender—Knuth involutions t 1<i<n, and tn2n"+11 act on

Thanks to Theorem Bl we have that is a quotient of the virtual symplectic
cactus The generators ([78) and (79)) of the group |BKy,| satisfy the relations of

the cactus |Joy) n, or equivalently, those of the cactus
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Theorem 9. The following is a group epimorphism from to '

Azn 1 . 2n 1 .
8[17]]U[2" —j,2n—1] 77 q[l,]]U[2n —j,2n—1]° l<j<mn, S[J 2n—j] 7 q[g 2n—j]’ I<j=<n.

is 1somorphic to a quotient of and via the isomorphism between and
that sends S[1,5] g[l,j}U[Zn—j,Zn—l]; 1 <5 <mn, and §[j,n] — 5[]‘72”_]'], 1<53<n,
18 also isomorphic to a quotient of.

Because the action of[Jo,|on the set[SSYT (A, n, n)|preserves the subset [E[KN (X, n)),
see Remark [[7] we now relate the virtual symplectic and symplectic Bender-Knuth
involutions by embedding the crystal into the crystal [SSYT(A\, n, n)l
Theorem 10. The symplectic Bender—Knuth involutions tc” 1<4i<2n-1,
can be realized by the virtual symplectzc Bender—Knuth involutions tAZ” Zt’;j" Zl,
1<i<n, and tn2';+11 npir 1 <0<, m and vice-versa,

tcn :E ltA2n 1tA27L 1E E 1 A2n 1t2 2n— 1E 1

<i<n,
Chn _ 1,A2n— :
tn—i—z 1 E- tnii—l—ll,n—i-iE’ 1 S1sn
Proof. By Theorem [, for 1 < i < n,
Cn _ Chn Cn C Cn —
G = Ao i) =

(£A2n 1£A2n I)EE ( Aop— lqA2n I)EE (£A2n lqAZn 1)EE (£A2n 1£A2n 1)

[1,i-1]5[; 2] U g [1i—-1]7[,2] Li=2]>[i-1,2]
A n A n— A n A n n— A n A n— A n
(5[122_ 1€ 12[] 1 12Z 11]5[122 21{-[22 1 [Zil 21€ 2 1€ Z2 : 21)
— E ( A2n 1tA27L 1)E
. Ch C Ch n — Cn
By Theorem [6 for 2 < i < n, t%, | = q[n_iH’n]q[n_HZn}, and tg =y =
£gn. O

10.3. Symplectic Bender—-Knuth involutions and the character of a KN
tableau crystal. The Cy Weyl group is By =< 71,72 : 12 = 1,(r1r2)* = 1 > with

long element 7’27‘17“27*1, and the Cs symplectic Bender—-Knuth involutions are t? f 2

= §202, t3 5[1 215 5525[1 ] (see Example [I0), and one has

€9 = 152452 £ 452257407 = 17257407152

From Proposition[@ (B]), Bz indeed acts on the Cy-crystal KN(A, 2) via t? = 102 and
tgz = 20 2. Therefore, in this case, t102 and tgz define an action of Weyl group Bs on
the crystal KN(A,2). However, the action of the Schiitzenberger—Lusztig involution
5522} = ¢%2 on [KN(X,7)| does not coincide in general with the action of the long
element of the Weyl group By, that is, €2 # t$252472452 = 52424524

oT1]
2]

Co,Co,C2,C
we(t5287 2452872 (T) = (1,0) = wg (—1,0) = wi(&[% (1)),

in Example [ despite

For instance, considering T =
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the coincidence of the actions of the Schiitzenberger—Lusztig involution and of the
long element of the Weyl group can only be ensured when T is the highest weight or
lowest weight element in the crystal as Proposition [{] ensures. But T is not
in that case, and in fact

rorirory. = tgztlcztgztlcz( % 1 ‘ )
2(1 2 1]2
= e (2 = (L2 sy o) = (2L
2] 2] 12 2]
In general, for n > 3, the symplectic Bender—-Knuth involutions, tf”, ...,t% do

not define an action of the Weyl group B,, =<r1,...,7h_1,T, > on the set
On the other hand, contrary to the A,_1 case, the Schiitzenberger—Lusztig involution
€% is not given by the long word of B, in the first n symplectic Bender-Knuth
involutions. One has in fact &7 = tg;j_l - t%n  as stated in Proposition [Tl

To show the former claim, recall that the first n — 1 generators of the Weyl group

B,, satisfy the braid relations (@) of &,,, but we claim that, in general, tzc”tg?ltzc” #+

tﬁblt?"tﬁll, ie., (tlc"tgfl)?’ # 1 for 1 < i < n. To show this inequality, note that by
Theorem [I0] it is enough to consider the virtual symplectic Bender—-Knuth involutions
and the corresponding virtual inequality

Aopn—17A2n-1 ,A2n—157A2n 1 Agn—1;A2n-1 Agn—17A2n-1 Aopn—17A2n-1 ,A2n—17A20 1
G e ity et tansi P il toplanti  tansi tigl  lope(it1)-
(84)
From Proposition [0 and Remark 20} e et S s e I (O I
p i an—(i+1) — ‘2n—(i+1)% ) > :

If we had equality in (84]), then
7A2n—17A2n-1  jA2n—1,A2n—1,A2n_1,A2n—1 _ jA2n—1 JFAon_1j7A2n—1 A2pn—1,A2m_1 ,A2n_1
bon—i lon_(ixn)lon—i G tif1 b = bon_rnlon—i lop—nlivt i til
7A2n— 7A2n-1\3 Agn—1,A2n-1\3
= (t2rf—(i1+1)t2rf—il) = (&)
Applying this identity to the Aj; tableau E(T) = (P*,P~) in the virtualization
Example would imply that

(EH TP (B(T) = (4 43 (B(T)) &
(PF, (M E3(PT) = ()P (P, P, (85)

but this is impossible, as (t{11t{11)3(Pt) # P*. Note that the LHS of (85) follows
from to,,_;(PT, P~) = evact;evac(P*, P~) and Remark 211

Despite the fact that the symplectic Bender Knuth involutions tlc”, 1<7<n,do
not define an action of the Weyl group B,, on the set similarly to the type
A,_1 case, they can be used to show that the character of the crystal is
a symmetric Laurent polynomial with respect to the action of the Weyl group B,.
Let £ := Z[az{c, e ,xf] be the ring of Laurent polynomials on the variables x1, ..., z,
over Z, and let EB» = {f € £ :ri.f = f,r; € B,, 1 <i < n}, where r;.2% := 2%,
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for % := 2" - 20", a € Z™ and r; € B,, be the subring of symmetric Laurent
polynomials.

The character of is the symplectic Schur function spy(x) in the sequence
of variables = (z1,...,2,). Thanks to Remark B2 wt(t“".b) = r;.wt(b) for any
b €[KN()\,n) and 1 < i < n. Therefore, since tz-c", 1 <i < n, is an involution on the
set [KN(A, n)l spy(z) is a symmetric Laurent polynomial

oa)= D amO= 3T T cisn,
KNG KNG

10.4. Relations for the symplectic Berenstein—Kirilov group. Thanks to The-
orem Rl and Theorem [ we now provide the following relations for IBKC"] equivalently
The relations (@) and (I0) below are the only ones known for |3 equiva-

lently, -Wthh do not follow from the cactus group [fop(2n.c)|relations, equlvalently,
the virtual cactus group [Jo,| relations (see also Remark IQE)

Proposition 13. The symplectic Bender—Knuth involutions tz-c” =1,i=1,...,2n—
1, satisfy the following relations:
(1) ("2 =1,i=1,...,2n 1.
(2) (tiatity1)’ =1, 1<dj <n.
(3) (¢t )2 =1, |i—j|>1,1<i,j<n.
(4) (tZC”tnﬂ D¥=1i<n—j.
(5) (t&n q[],c 1]) =1li+1<j<k<n.
(6) (t q[]n]) —1, i+1<j<n.
(@(le%ku):1mp4+1<j<kgm
(

@)F%@)_ana

n C7L n Cn n J—
(10) (-5t -t 4Gyt = 1.
The virtual symplectic Bender—Knuth involutions ¢ Aan— Zt’;ﬁ"l’ = EtiC"E_l, 1 <4 <n,
and tﬁz’;j:l i = EtS"ZHE_l 1<i<n,in BIC;; satisfy the same relations as those

of BKS"] by replacing t by tAQ" Zt?ﬁ”/, 1 <i<mn, and tgil L by tﬁi”ijrllmﬁ,

1< <n.
Proof. Recall Theorems [§ and [0
(1) (tC”>2 = (ai)? = 1, (15)? = (qn)? = 1. For 2 < i < m, (87,,)° =

(q[(iL" i1 n]q[n i1 n}) =1 is equivalent to the relation 3C/(i).
For2<i<n-1,

CoN2 _  Cp Cn Chp Ch Ch Cn Cn Chn —
(") = 4 O - -2 9 I Ao = L
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follows from the cactus relation 3C'(i7) and the observations that

1i-19,-2) = Y2-1190-1p qi-192,i-1 = qi—290,-1p

Cn Ch _ Cy Ch
91,092,i-1) = 92,i-119,1)
(2) Let i # j. From 3C(i),

Co  4Cn  _ Cn Cn Cn Cn
tnticatntio1 = i1 Tn—it2,n) Yo j+1,0] e j+2,n]
_ Cn Cn Cn Cn _Cn  ,Cn
= 4" 1.0 42,0 dn =it 1,0 dn—iv2,n] = tntj—1tnti-1-

(3) Recall ([©0) and Remark Then

(tzcnt_?n)2 — (E_lt?2n71t?;z;lEE_lt?2n71t§;z;1E)2

= BNt 2 (2 2 E = 1 for |i— j] > 1, 1< 4,5 <n - 1.

(3
(4) For i <mn —j,
Cn 4Cn _ Ch Cn . Cn Cn Chn Cn
Gty = 91,i-1191,9091,-1191,5-219n— 41,0 Yn—j+2,n]
_ Cn Chn Cn Cn Ch Ch
= Ypn—j+1,0 9n—j+2,n 911i-1 911,091, -1191,i-2)

due to the relation 2C.

(5) For i +1<j <k <n,

Cn Chn 2 —1,A2n—1;A2n—1 —1¢A2n—1 fA2n—1 2
(ti C]Mk_l}) = (& t; tony EE E[j,k—l]£[2n—k+172n—j]E)
17,201 pA2n—1 A1 fA2n—1 2
= B (6 an s Son b ,2n—i) B

for2n—k<2n—j<2n—i—1

t;ﬁlznflgf?;::ll} f‘;ii;l gézn:kl-i-l,%—j}E
= B S
s ééi’fﬁﬂ,zn—ﬂE
=g (t?2n71§§,?:11})2(51247351géifklﬂgn—ﬂfE
= E‘1(ffiizlféi'fﬁ+1,2n—ﬂ)2E =L

for2n—k<2n—j<2n—i—1.
(6) For i +1 < j <mn,

tOngCn = prigfonrfflenigdon poon 15 on— >0 [6),02)

[in] — n [4,2n—j]
= E_IESE?;_I]‘}th"*l%%ZlE, by Theorem

n

_ Ch
= Qi

63
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Chn Ch ..
(7) (tn+i_1q[j7n})2 =1,1<4,5<n.

Chn Chn —1 Agzn_1 Aozn_1 Azn_1
bntic19m) = E S 1) e - 1)) S (=20 -2)] S 20—
1pA2n—1 fA2n—1 Agn—1
= B 5 6 ) 1) -2t -y B by Theorem B
Ch
= 0t

(8) (tgiz_lqﬁ’;g_uf =l,n—i+1<j<k<n.

1eA2n-1 Azn—1 Aop—1 A2n-1

Chn Chn _
bty = F f[n (i=1)n+ (- 1)) S (i—2) - (i—-2)] S b1 [2n— ket 1,2n— 1] &
1pA2n-1 Aop—1 pA2n-1 A2n 1
=E é-[n—(z— n+(i—1)]€[j,k—1]5[2n—k+1,2n ]]€ —2),n+(i— )}E

by Theorem

_ p—1gAom—1 Ao Aop— Aop—
=L éb[],zk 11]5 22 Ifl+1,2n—j}£[n2—(il—1),n—l—(z’—1)}5[712—(1'1—2),71—#(2'—2)}E’
by Theorem

J— n Cn
= Gk-1lnti-1

(9) Recall ([63) and Remark 20, (7I)). Then, for n > 3,

(t?ntgn) _ =1, A 1{;2n71t§2n71£§2n71)6E

—1/4A2n-1,A2n—1 ;A2 1742016
(2] 2 té tg ) E

(ty
(
-1 (tzl‘lzn 1 t1242n71 )6 ({%421171 513421171 )GE
(f5
(.

-1

Aogn—1 51427171 )GE

Djbjbjtij

-1

2n1A2n16 _
2n— 1t2n2)E_1'

(10) From Proposition B, (), we know that (€57 £¢7)* = 1. Then, from Defintion
and (7)), one has

(&5 g5yt = (q[ln 1]’50”‘1[1” 1]’50)

(q[ln 2]pn 1tC”q[1n 2}pn 1tC”) , by Proposition 11 (86)

From [BerKir95, Proposition 1.4, (a)] and mimicking its proof in conjunction with
relation ([Bl), we may write

q[(f?n—l} = qﬁ?n—2]pgﬁl = (pgzl) lqﬁnn 2] (87)

Therefore, using (87),
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Cn ¢ConN4d _ .Cn Cn(,.Cn \—1 _Chp Cn\4
(é.n—lgn ) — (m) (q[ln Q}pn lt (pn—l) q[lm_g]tn )
Chn Chn(,Cn \—1,Cy Ch 4
(q[ln 2}pn "t ()t s, 2]) by relation (]
Chn(, Cn \—1,Cn\4 Ch
q[ln 2](pn (PR e) " ) q[1,n—2)
Chn (. Co—1\4 _Cpn
q[ln 2](pn 1t (pn ) ) q[l,n—2}
Since (q[(i;@—2])2 =1, we get
(pn 1tc" (pg")_1)4 (tc” -tg”t?”tg” e tg”)4 =1, where poo” = 1.
In particular, for n = 2, (tlc"t2")4 =1. O

Remark 25. (1) The relation @) in[BKC"], respectively
=1, in

s equivalent to the braid relations of By, (EC”EZ_H) =1, for1 <i<n-1,
respectively

(tiAQ'nfl t?anl ) (tﬁin 11 t?j" 21 )6

Aon—1 s A2n—1 s A2n—1 s A2n—1 \3 Aon—1 sA2n-1\3 /¢ A2n—1 ¢ A2n—1 \3
(fi 2n—i €i+1 2n—i—1) :(fz' §i+1 ) ( 2n—i 2n—i—1) =1,

the braid relations of &ap, for 1 <i <n—1, [BerKir95, Proposition 1.4, (d)].
(2) The identity (¢57,6$")* = 1 in - tmnslates to as (5;32'1 1{;?3 !
gatn- 4= 1. Thus relation [0) inBKC" translates to as

(G2 T T R ) = 1 (88)

The relation §A2"’1§n e 1§A2" Y=¢&, Azn— 1§A2" Lgfan—1 although true in BKoy,,

does mot hold in m because £52" " € [BKay| and it would imply §A2” 'e

BICo,| which is absurd. From Remark [24], we know that the generators of
BICoy| induce an action of B, on the weights of SSYT(X,2n) and one has dif-
ferently Wt(gAZ” "(T)) = rp_awt(T). This means that the relation (8S) in

- does not follow from the previous corresponding relations in Proposition
[13. Alternatively we could have used Corollary[3 to obtain (I0J).

10.5. Example: the (', Bender—-Knuth involutions and thelr v1rtual images.
The known relations for group the BK? with generators tl , t2 , t§2 are t? =
(tltg) == (tth) = 1, 1= 1,2,3.

Example 10. We illustrate the symplectzc Bender—Knuth involutions tc2 th, ty?
BK2 as well their virtual mages in BIC4 A 7% and Bg < 71, 7"2 > zf (a,b) € Z2
ri(a,b) = (b.a) and ra(a,b) = (a,b); 152 = &2, 152 = €8, 152 = €2, 66> = {26z
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Using the type Co signature rule

we compute t?zT = 5?2T, where
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—_

T =

] 1S

1

211]1]

2T =¢&°T = 5

Ca
tl

(1)) = (1,-2).

wit(

Virtualization of t?z in As: t?z =

E_1£§43t‘143E = E_ltf3£§43E. The shape of T

is 3wy + Bwy, and thus the shape of EXT) and EXt92T) is 3(wy 4 ws) + 10wy, where

wrp = (1%), 1 <k < 3,

il aTa]2]2 2] 2]2]2]2]2]1]1]
[EXT)= [2]2]|2]2]2]|2|2|1]|1|1|1]|1]1 ,
21111
and
. . tlafafafafafala] 2] 2]2]2]2]1]1]
E(§>T) LB T) = [2]2]2]2[2]2]2[2[2]2[1]1]1
2|11
Using the As signature rule
1 = + 2 —+ and 2 - +
2 - — 2 — — 1 - -
(89)
we compute
o A111111111222§§|1|1\
523t13|E|(T):£Q32222222111111
21111
tlafafafafafafafa] 22222 1]T] o
= [2]2]2]2]2]2]2]2]2]2]1]1]1 = Et°T)
21111
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Therefore,
t02(T) = B tME(T).
Virtualization of tc2 tc2 = E‘1§2A3E.
r— MIEEERA
2[2]2]1]1
Cs Cs 1[1 2[2]1]1]
t92(T) = €52(T) = =&t
C
wit(ty* (1)) = (=2,-1)
B> (1)) = &PE(T)
t52(T) = B¢ NE(T)
a2 ]222 2 2]2]2]1]1]
EMENT) = & 2222222 [T T T T]1]T
2111
a2 ]22]2]2]2]2]2]1]1] .
= [2]2]2[2]2[2]2[T]T[T]T[1]T =LEXt5 (T))
0|11

Virtualization of 5% 5> = E~1&0 118 (5%41°) (1145t E.

~ [afaT2]2]2]2]1]q] _
r- 2122 - wHT) = (-2,1)
192(T) = €826 (1) = 82y = (LI ey = (2,0)

EX15*(T)) =m<£§25°“2 (7)) = &ENES 2]< ) = & evac™ENT) = evac'*&E(T),
t$2(T) = B~ ¢4 evac™ENT) = B~ 113 (1541 (12134, * YEXT).
11. OPEN QUESTIONS AND FINAL REMARKS

It remains to establish whether or not satisfies additional relations besides
those listed in Proposition [I31

Chmutov, Glick and Pylyavskyy |[CGP16] have determined relationships between
subsets of relations in the groups[BK,]and[J,] which yield a presentation for the cactus
group [J] in terms of Bender-Knuth generators. Rodrigues [Ro20, Ro21] has also
introduced a shifted Berenstein—Kirillov group with many parallels with the original
group. Following Halacheva she has defined a cactus group action of [J,] via
partial shifted Schiitzenberger—Lusztig involutions (partial shifted reversal) on the
Gillespie-Levibnson-Puhrboo shifted tableau crystal [GLP17]. On the other hand,
with the shifted tableau switching she has defined shifted Bender-Knuth involutions,
and following Chmutov, Glick and Pylyavskyy she has yield a presentation for the
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cactus group [J,] in terms of shifted Bender-Knuth generators. In the same vein,
it is natural to seek precise relationships between subsets of relations in the two
groups and the virtual symplectic cactus group J,. It is also natural to seek
a presentation of the virtual symplectic cactus group - in terms of the virtual
symplectic Bender—-Knuth generators.

GLOSSARY

BKS: The type C, symplectic BerensteinKirillov group. @ B 56], £7), 60, 62, 65]

BK,: The subgroup of B generated by the first n — 1 Bender—Knuth involutions
t1,.. . ty—1. 64H56, 67

BK: The Berenstein—Kirillov group (or Gelfand-Tsetlin group) [BerKir95)]. 54, B3]

KN (A, n): The Levi branched crystal of Kashiwara—Nakashima tableaux obtained
by deleting in KN(\, n) all the arrows not labelled in J C [. [I0HIZ, O3] 16|
(25], 261 A7)

SSYT (A, n): The Uy(sl(n,C))-crystal of semi-standard Young tableaux of shape A
and entries in [n]. B 22] 25 28] @] B3]

Jon: The virtual symplectic cactus group. [l B, 20H22] 28H30] (0, (9, 60} [62]

Z/S’EQ,@: The virtual symplectic Berenstein—Kirillov group, a subgroup of BKs, satisfy-
ing the relations of the virtual symplectic cactus group Jon. B, BIHEN! 62 65,
0]

E: The virtualization map defined by Baker Proposition 2.2, Proposition 2.3]
on type C,, Kashiwara—Nakashima tableaux. @] [2HI6] 29 47H50] 2] (3], 8],
60, 66l 671

Jnt The cactus group Jg(n,c)- Bl L6HIS] 28] 55, 67 [6

Jep(2n,c): The symplectic Cactus group with generators sy for J any connected sub-
diagram of the C;, Dynkin diagram subject to the relations in Lemma 2] [ 2],
[ Bl 17, 18] 20H22] 28] 50} 56] 57}, 59, 60, 62} €3]

R3: The symplectic contraction/dilation relation in the symplectic plactic monoid
Cx/ ~. 2, 26, (3237, B9 I,

C}: The monoid of words in the alphabet C,. [I3] [4] 23]

Cot {1 < <n<n<- <1} B EE O IIH3, 30, 52 B3 55 56, 56

g: Finite dimensional, complex, semisimple Lie algebra. 2 [B BHS| T6HIR] 221 23]
26128,

B(\): The normal g-crystal with highest weight A. 2 8 22| 25], B0H32],

B;: The Levi branched normal crystal B, the restriction of B to the sub-diagram J
of I. 7 15 26l [32]

B: A normal crystal. 2l [7, B 221, 25H27] 29| B0l 32, 35 36l [5]

KN(A,n): The U(sp(2n,C)) crystal of Kashiwara—Nakashima tableaux of shape A in

the alphabet Cy,. 2} H] 8, TOHIE 25] 28], 29, 321 (33} 35] B4] 9] B0, 57, B8 60HG2]
SSYT (M, n,7n): The U,(sl(2n, C))-crystal of semi-standard Young tableaux of shape
A and entries in C,,. @ I2HI4) 29} @8 50]
SSYT (A, n): The Levi branched crystal, the restriction of SSYT(A,n) to J C [n—1].
28



Glossary 69

reversal?": J-partial symplectic reversal, the symplectic reversal KN j(A,n) with J C
[n] a connected sub-diagram containing the node n. [30]

reversal“": Combinatorial procedure to compute the Schiitzenberger involution ¢ on
KN(A, n).

reversal ;: J-partial reversal, the reversal on SSYT ;(A,n) with J C [n — 1]. 28]

reversal: Combinatorial procedure to compute the Schiitzenberger involution £ on

SSYT(A,n). 22 23] 28] B4 521 53]

ég: The Schiitzenberger—Lusztig involution on the normal crystal B. 2]

&y: The partial Schiitzenberger—Lusztig involution to the sub-diagram J C [ is the
Schiitzenberger—Lusztig involution g, on the normal crystal B 26H30]

&: The Schiitzenberger—Lusztig involution on [B(A)l 22 23| 28| BTl A3
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