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MODIFIED BDF2 SCHEMES FOR SUBDIFFUSION MODELS WITH
A SINGULAR SOURCE TERM

MINGHUA CHEN *, JIANKANG SHI f, AND ZHI ZHOU*

Abstract. The aim of this paper is to study the time stepping scheme for approximately
solving the subdiffusion equation with a weakly singular source term. In this case, many popular
time stepping schemes, including the correction of high-order BDF methods, may lose their high-
order accuracy. To fill in this gap, in this paper, we develop a novel time stepping scheme, where
the source term is regularized by using a k-fold integral-derivative and the equation is discretized by
using a modified BDF2 convolution quadrature. We prove that the proposed time stepping scheme
is second-order, even if the source term is nonsmooth in time and incompatible with the initial data.
Numerical results are presented to support the theoretical results.
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1. Introduction. For anomalous, non-Brownian diffusion, a mean squared dis-
placement often follows the following power-law

(z2(t)) ~ Kqt°.

Prominent examples for subdiffusion include the classical charge carrier transport in
amorphous semiconductors, tracer diffusion in subsurface aquifers, porous systems,
dynamics of a bead in a polymeric network, or the motion of passive tracers in living
biological cells [I8 [9]. Subdiffusion of this type is characterised by a long-tailed
waiting time probability density function () ~ ¢t~1=<, corresponding to the time-
fractional diffusion equation with and without an external force field [I9, Eq. (88)]

(M) Opu(x,t) — Of*Au(x,t) = f(z,t), 0<a <1,

Here f is a given source function, and the operator A = A denotes Laplacian on
a polyhedral domain Q C R? (d = 1,2,3) with a homogenous Dirichlet boundary
condition. The fractional derivative is taken in the Riemann-Liouville sense, that is,
8,51_0‘ f = 0:Jf with the fractional integration operator

1

T f(t) = %a) / (4= ) (e = st £10),

and * denotes the Laplace convolution: (f x ¢)(t) = fot ft=m7)g(r)dr.
Since the Riemann-Liouvile fractional derivative and the Caputo fractional deriva-
tive can be written in the form [22] p. 76]

1

t"%u(,0),
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which implies that the equivalent form of (#) can be rewritten as

—a A 0
(@) Opu(x,t) — CD; Au(z,t) = f(z,t) + %t(l‘”, 0<a<l
«
with the Caputo fractional derivative
oma 1 !
D, u(t) = m/o (t—s) %/ (s)ds, 0<t<T.

Applying the fractional integration operator J!=% to both sides of (#), we obtain
the equivalent form of (#) as, see [I7, Eq. (1.6)] or [26, Eq. (2.3)], namely,

(&) D% u(w, t)— Au(z, t) = F(%_a)fa « fz,1)

> A t)|i=
_ S Au@, Dlio )|t_°t*“, 0<a<l.
'l —a)

As another example, the fractal mobile/immobile models for solute transport
associate with power law decay PDF describing random waiting times in the immobile
zone, leads to the following models [24, Eq. (15)]

1

(©)  dul@,t)+Diule,t) - Au@,t) = ~rr—os

t7u(z,0), 0 <a <1

Note that the right hand side in aforementioned PDE models (#)-(<») might be
nonsmooth in the time variable. In this paper, we consider the subdiffusion model
with weakly singular source term:

(1.1) D u(x,t) — Au(z,t) = g(z,t) == t" o f(x,1)

with the initial condition u(z,0) = ug(z) := v, and the homogeneous Dirichlet bound-
ary conditions. The symbol o can be either the convolution * or the product, and
is a parameter such that

u > —1 if o denotes convolution, and p > —a if o denotes product.

The well-posedness could be proved using the separation of variables and Mittag—
Leffler functions, see e.g. [23] Eq. (2.11)].

Note that many existing time stepping schemes may lose their high-order accuracy
when the source term is nonsmooth in the time variable. As an example, it was
reported in [I0, Section 4.1] that the convolution quadrature generated by k step
BDF method (with initial correction) converges with order O(7!*#), provided that
the source term behaves like t#, u > 0, see Lemma 3.2 in [31], also see Table[6.1l The
aim of this paper is to fill in this gap.

It is well-known that the smoothness of all the data of (1) (e.g., f = 0) do not
imply the smoothness of the solution u which has an initial layer at ¢ — 07 (i.e.,
unbounded near ¢ = 0) [22] 23] 28]. There are already two predominant discretization
techniques in time direction to restore the desired convergence rate for subdiffusion
under appropriate regularity source function. The first type is that the nonuniform
time meshes/graded meshes are employed to compensate/capture the singularity of
the continuous solution near ¢ = 0 under the appropriate regularity source function
and initial data, see [3 1T} 13| [16] 20} 21} 28]. See also spectral method with specially
designed basis functions [4] [8 [33]. The second type is that, based on correction of
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high-order BDFk or Lj; approximation, the desired high-order convergence rates can
be restored even for nonsmooth initial data. For fractional ODEs, one idea is to
use starting quadrature weights to correct the fractional integrals [14] (or fractional
substantial calculus [I])

1 ¢ o . §
m/o (t_T) 1g(T>dT with g(t) =t f(t); n > —15

where the algorithms rely on expanding the solution into power series of t. For
fractional PDEs, a common practice is to split the source term into

J%(t) =

k=1 th—1

¢
g(t) = g(0) + l; 71019(0) + T d%yg.

Then approximating g(0) by 9, J'¢(0) may to a modified BDF2 scheme with correction
in the first step [5]. The correction of high-order BDFk or Ly convolution quadrature
are well developed in [10] 27] [32] when the source term sufficiently smooth in the time
variable. Performing the integral on both sides for (ILTl), e.g, approximate u(t) by
Oy J'u(t), a second-order time-stepping schemes are given in [34], where the singular
source function is g(x,t) = t* f (x) with a spatially dependent function f. How to deal
with a more general source term, which might be nonsmooth in the time variable, is
still unavailable in the literature.

In this paper, we develop a novel second-order time stepping scheme (IDk-BDF2)
for solving the subdiffusion ([LT]) with a weakly singular source term, where the low
regularly source term is regularized by using a k-fold integral-derivative (IDk) and
the equation is discretized by using a modified BDF2 convolution quadrature. We
prove that the proposed time stepping scheme is second-order, even if the source term
is nonsmooth in time and incompatible with the initial data. Numerical results are
presented to support the theoretical results.

The paper is organized as follows. In Section 2] we introduce the development
of the IDk-BDF2 scheme for model (). In Section 3 and 4, based on operational
calculus, the detailed convergence analysis of IDk-BDF2 are provided, respectively,
for general source function f(z,t) and certain form ¢ f(x). Then the desired results
with the low regularity source term t* o f(x,t) are obtained in Section 5. To show
the effectiveness of the presented schemes, the results of numerical experiments are
reported in Section 6. Finally, we conclude the paper with some remarks in the last
section.

2. IDk-BDF2 Method. In this section, we first provide IDk-BDF2 method for
solving subdiffusion (L)) if the source term g(z,t) possess the mild regularity. Let
V(t) = u(t) — v with V(0) = 0. Then the model ([T can be rewritten as

(2.1) DOV (t) — AV(t) = Av+g(t), 0<t<T.

From [I5] and [29], we know that the operator A satisfies the following resolvent
estimate

(2= A7 < cglz| ™" Vze D,

for all ¢ € (7/2,7), where ¥y := {z € C\{0} : |argz| < 0} is a sector of the complex
plane C. Hence, 2% € Xy with 0/ = af < 6 < 7 for all z € ¥y. Then, there exists a
positive constant ¢ such that

(2.2) H(zo‘ - A)_lH <clz|7Y Vze X
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2.1. Discretization schemes. Let G(t) = Jlg(t) and G(t) = J?g(t). By first
fundamental theorem of calculus, we may rewrite (2.1]) as

(2.3) ID1 Method : 92V (t) — AV (t) = 0,(tAv + G(t)), 0<t<T,

2
(2.4) ID2 Method : 92V (t) — AV (t) = 92 (%Av + g(t)) . 0<t<T.

Let t, =nm,n=0,1,..., N, be a uniform partition of the time interval [0, T'] with
the step size 7 = %, and let u™ denote the approximation of u(t) and ¢" = g(tn).
The convolution quadrature generated by BDF2 approximates the Riemann-Liouville
fractional derivative 0o (t,,) by

1 & ,
2.5 02" = — > wip"
(2.5) ¥ prs jzoszp

with ¢ = p(t,). Here the weights w; are the coefficients in the series expansion

I — 1/(3 1
2.6 828 =— & with 6.(8) == (5 —-26+ 8.
(2.6) CREDIL R 2 (3 -2+ 3¢)
Then IDk-BDF2 method for [23]) and (24) are, respectively, designed by
(2.7) ID1 — BDF2 Method :  92V™ — AV" = 8, (t, Av + G™).
2
(2.8) ID2 — BDF2 Method :  92V"™ — AV™ = 9?2 (EnAU + g") .

REMARK 2.1. In the time semidiscrete approzimation [21) and ([Z8]), we require
v € D(A), i.e., the initial data v is reasonably smooth. However one can use the
schemes Z70) and (Z8) to prove the error estimates with the nonsmooth data v €
L?(Q2), see Theorems and [Z00  Here, we mainly focus on the time semidiscrete
approzimation 1) and 28], since the spatial discretization is well understood. For
ezample, we choose vy, = Ryv if v € D(A) and vy, = Py if v € L*(Q) following
129, 130).

2.2. Solution representation for (2.3) and (Z4]). Taking the Laplace trans-
form in both sides of ([23]), it leads to

17(2) =(zv—-A)7! (zflAv + za(z)) .

By the inverse Laplace transform, there exists [10]

(2.9) Vi) = /F (2~ A (7 Av 4 2G(2) ) dz

o
with

(2.10) Ton={2€C:|z| =k, |argz| <O}U{z € C: 2 =re? r >k}
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and 0 € (w/2,7), kK > 0.
Similarly, applying the Laplace transform in both sides of ([24)), it yields

V(z)=(z—A)~! (zilAv + 226(2)) .

By the inverse Laplace transform, we obtain

(2.11) V(t) = L/F ez — A7t (zilAv + zng(z)) dz

21

2.3. Discrete solution representation for (Z7) and (Z8). Given a sequence
(kn)g® and take £(C) = D07 o k(™ to be its generating power series.

LEMMA 2.1. Let 6, be given in [Z8) and y1(§) = ﬁ, G(t) = Jtg(t). Then
the discrete solution of (21) is represented by
1 ~
V"= 5 e (6% (e™* ) — A) Lo, (e )T (71 (e7*")TAv + G(e"”)) dz
Vi Fg,m

with TG ={z €T, :[Sz| </}
Proof. Multiplying the [Z7) by " and summing over n with V' = 0, we obtain

i dovnen — i AVPEn = i B, (tn Av + GMYE™.
n=1 n=1

n=1

From (Z3) and (24), we have
S-S LS ure <3 LS e 2 3 LS e
n=1 n=1 7=0 = j=0 =0 n=j
:Z%ijvngn-l—j _ ijgjz‘/ngn:ég(g)"}(g)
j=0 ' n=0

n=0

Similarly, one has
S0, tn A" = 5, () (€)7 Av, Z 0-G"€" = §,(£)G(€)
n=1

with 71 (§) = @ It leads to

(2.12) V() = (62(6) = )7 6:(6) (m(©)rAv + G(©)) .

According to Cauchy’s integral formula, and the change of variables £ = e™*7, and
Cauchy’s theorem, one has [10]

(213) V"= = / ) et (52(e7) = A) 7 6(e7 ) (e )T Av + Gle ) ) ds

with I'y . = {z € I'g,,; : [Sz| < 7/7}. The proof is completed. O
LEMMA 2.2. Let §; be given in 286]) and v2(§) = %, G(t) = J?g(t). Then
the discrete solution of (2.8) is represented by

V=D [ et (00 (e ) — A) a2 (e ) (@7% + §<e”)) dz

21 Jpr
0.k
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with Ty ={z €T, : [Sz| </}
Proof. Multiplying the (&) by " and summing over n with V' = 0, we obtain

Sorve =Y avie =S o2 (Bavigr) e
n=1 n=1 n=1
The similar arguments can be performed as Lemma 2] it yields

DLV = 2(V(E), Y O Avg" = 52(§)72(€)* Av,
n=1 n=1

> 027" = BOF(E). () = 5

n=1

and

(2.14) 7O = 6200 - )7 220 (22 a0+ 5(6) ).

—ZT

Using Cauchy’s integral formula, and the change of variables ¢ = e
theorem, one has

, and Cauchy’s

(2.15) V"= —

2w
Fg,m

e*ln (5?(6_’”) — A)il 62(e™77) (727(5)7'2141) + §(€_ZT)> dz

with I'y - = {z € I'g,; : [Sz| < 7/7}. The proof is completed. 0

3. Convergence analysis: General source function g(z,t). In this section,
we provide the detailed convergence analysis of ID1-BDF2 in (Z7) approximation for
the subdiffusion ([23]), and ID2-BDF2 can be similarly augmented.

3.1. A few technical lemmas. First, we give some lemmas that will be used.
LEMMA 3.1. [I0] Let 6-(§) be given in (ZG). Then there exist the positive
constants c1,ce, ¢ and 0 € (1/2,0.) with 0. € (7/2,7), Ye >0 such that
crlzl < [0-(e7 )| S ealel,  [0-(e77T) — 2] < o7,

02(e7) = 2] < er?[22H%, 6,(e™T) € Dappr. V2T,

l
LEMMA 3.2. Let §.(£) be given in Z8) and v(§) = > oo nlé™ = ({d%) 1175
with 1 =0,1,2. Then there exist a positive constants ¢ such that

e ) iy I+1
TTJF -z <er'™t VzeTy,,

where 0 € (m/2,7) is sufficiently close to w/2.
Proof. The arguments can be performed in [27] for I = 1,2. For [ = 0, using

1 1 z—(1—e )t

l—e*ZTT =T (1—e2m)7 1z

)

and Lemma B1] it yields |1 — e *7| > ¢;|z|7 and

(3.1) |(1—e ) 1z| > c|z|® VzeTy,.
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Since

‘Z _ (1 _ 6727') 7,71’ P & (—ZT)j 7-71 P _i (—ZT)j 7.*1

(—21) ax~ (—27) 2
= |z — . = |72 . <7 |2|
] > i| <
=G+ = (+2)
Thus we have

1

}1 — P < crT.
—e

The proof is completed. O

I
LEMMA 3.3. Let 6-(€) be given in Z8) and v(§) = > o0 nlen = (5(%) 1175
with [ = 0,1,2. Then there exist a positive constants ¢ such that

(32) 5T(efzr)ﬁyl(e_ )TlJrl _ Zfl

I < erttt |z] + c7'2|z|271, VzeTy,,

where 0 € (m/2,7) is sufficiently close to m/2.
Proof. Let

57(6—27)7’7/!(61' )Tl+1 — Z_l = Jl + J2
with

Jy = 57(67”)%#“ —0.(e7 )7 and Jo =6, (e ) = 27l
According to Lemma [3.I] and [3:2] we have

6.,—(6_'27) (/W(el: )Tl+1 _ Z—l—l)

|J1] = < eo 2] et < ettt |z

and
| J2| = [(6-(e777) = 2) z_l_ly < ezl

By the triangle inequality, the desired result is obtained. O
l
LEMMA 3.4. Let 62 be given by Z8) and (&) =Y oo nl¢" = ({d%) 1—i£ with
1 =0,1,2. Then there exist a positive constants ¢ such that

—ery 1 (e77T)
b.(em*T) E—

—1

|52 - )

< crltt |z|17a + c7'2|z|2_l_o‘.

7,lJrl _ (Za o A)lzl‘

Proof. Let

(20 = ) ooy Mg oyt m g



8 M. CHEN, J. SHI, AND Z. ZHOU
with

I= @z = A7 ot MG e ],

o (2% — A)_l] 27

1= [(53(6—”) — A)
The resolvent estimate (22]) and Lemma B imply directly
(33) | (@2 = A) | < el
From (B3] and Lemma [33] we obtain
|| < er* 2] 4 er? |22
Using Lemma B (83) and the identity
(82(e7) — 4) " = (%~ 4)
= (2% = 02(e™*)) (82(e™*T) — A) T (27 — A)7L,

(3.4) 7

we estimate I as following
I1I]| < c7'2|z|2+o‘c|z|7o‘c|z|7o‘|z|71 < c7'2|z|27170‘.

By the triangle inequality, the desired result is obtained. O

LEMMA 3.5. Let 62 be given by Z0) and v1(&) = > oo n&" = ({d%) ﬁ =

(1_55)2. Then there exist a positive constants ¢ such that

6277 - )

- S (e M)y (e " )T2A — (2% — A)_lz_lAH <er?lz|.
Proof. Using identical (2® — A)"'27'A = —271 4+ (2% — A)~12%271 and

-1

(02(e™7) — A) 0, A = =6, (=) + (62(e=T) — A) 1 62(e )b, (7N A,
we get
(6%(e™*T) — A)71 S(e My (e ™M) T?A - (2% =AM A=+ Ty + T3+ Jy
with
J, = (53(6—”) _ A)_l 5%(e=") (5T(e—zrhl(e—zr)Tl+1 _ Z—l) 7
Ty = (02(e7 ) = A) 7 (82(e7T) = 27) 27,
Jg = ((5?(67'27-) - A)71 — (2% — A)fl) 227 Jy=2 =6 (e )y (e )R
According to (B3] and Lemmas Bl B3l with [ = 1, we estimate J;, Jo and Jy as
following
1]l < el 72[z]*7% 2] < e7? |2,
]l < elz| =02 |22 7 < er?[zl, |l < er? 2]
From Lemma B], (B3) and the identity ([B4]), we estimate J3 as following

1T5]1 < er? |22 72| 7 2]* 7 < er?[].

By the triangle inequality, the desired result is obtained. O
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3.2. Error analysis for general source function g(z,t). From G(t) = Jlg(t),
the Taylor expansion of source function with the remainder term in integral form:
¢ t?
Lxg(t) = G(t) = G(0) +tG'(0) + gG”(O) + g G"(t)
t? ¢
T g"(t).

= J'g(0) +1t9(0) + 54'(0)

Then we obtain the following results with ¢(=1)(0) = J'g(0).
LEMMA 3.6. Let V(t,) and V™ be the solutions of 23) and (1), respectively.

Let v =0 and G(t) := %g(lfl)(()) with | = 0,1,2. Then
HV(tn) _ VnH < (CTH_ltg_z + CT2t${+l—3) Hg(l—l)(o)H

(3.5)
Proof. Using ([29) and (ZI3), there exist
1 1
th - ztn a_A—l_ (l—l)Od
) =5z [, € C A7 o V0
and

1 B —zT

e%tn (5$(€7z7-) _ A) 15T(67z7-)”)/l(el' )Tl+1g(l71)(0)dz,

211 Fg,n
where 0 € (7/2,7) is sufficiently close to 7/2, and v (£) = Y o7 nfé™. Let
V(tn) —Vr=J1+ J

with
_ 1 2ty (Za A) ! o, —2T -1 —2T ’yl(e_ZT) I+1 (1-1)
5 Fge l o —(5T(e )—A) o, (e )TT g (0)dz,
and
1 11
e*tn (24 — A)7! gg(lfl)(O)dz.

Jo = —
27T'L FG,N\FEN

According to the triangle inequality, (2.2) and Lemma [34] one has
Tsin 0 rty, cos 6 (Tl+17°1_a + 72T2_l_0‘) dr Hg(l—l)(O)H

lal<e [T
ertncos v (plHlg2—a | 2,3-1-a) gy Hg(l—l)(o)H

0
+c/
-0

< (07-1“152’2 +c7'2tj‘;+l*3) Hg(l 1)(0)’

)

tn
s cos 9527l7ad5 S Ct%+l73,

T sin 6

for the last inequality, we use
ertn C059T27l70¢d,,,, — terlfS /
thk
0
Kln cosw( tn)Sflfa dw < Cterl,g

T sin 0
/;g
entn coswli37l7ad1/} — t2+l73 /
—0

(3.6) /99
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From (Z2)), it yields
00
||J2|| < CHg(lfl)(())H ert Coseriliadr
Tein0
<cr Hg(l l) H / ertncos0 2—l—a g < Cthg—H_S Hg(l—l)(o)H )

smG) 2

Here we using 1 < (
LEMMA 3.7. Let V( ) and V™ be the solutwns of 23) and (Iﬂ) respectively.

Let v =0, G().—;*g cmdfo )2~ g"(s)||ds < oo. Then

t’Vl
IV (tn) — V7| < er? / (tn — 5)* 1 |lg" (3)]] ds.

Proof. By ([23)), we obtain

~

V(tn) = L/F e (2% — A)7L2G(2)dz = (E(t) * G(t))(tn)

211
Y = (50 (S+a0) )t = ((£0+5) 200 @)
with
(3.8) £(t) = ﬁ /F A e

From ([2Z12), it yields

V(&) = (076 = )71 09GO = (9GO = Y_&ren Y G

— i ingjfnﬂ _ i i éa;z—jngn _ i igf_jngn _ i yren
n=0 j=0 j=0n=j n=0 j=0 n=0
with
Vn = zn:@i”*jGj = zn:@@ﬁ*jG(tj).
j=0 j=0

Here ) &E™ = %;(5) = (62(€) — A) "' 6.(€). From the Cauchy’s integral formula
and the change of variables £ = e7*7, we obtain the representation of the & as
following

sr=o [ = - / et (2e ) = A) b (e,

2mi Jjg|=p
where 0 € (7/2, ) is sufficiently close to 7/2 and x = ¢, in (ZI0).
According to [B3), Lemma Bl and 7¢,,' = 1 <1, there exists
(3.9)

Teino o
||éa;1|| S cr (/ ertn cos@rlfadT_’_/ entn coswﬁ270¢d¢ S Cth:iQ S th{il.
K

—6
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Let & (t) = > 0oy &EMOy, (1), with §;, being the Dirac delta function at ¢,,. Then

Moreover, using the above equation, there exist

(& +th)( ZZ@@” Tther ZZ@@" Ither ZZ@@"# s

n=0 j=0 j=0n=j j=0n=0
=D&y e =6 Zﬂﬁ” ©'u(8).
n=0 §=0
From (371), BI0) and [B.3]), we have the following estimate

< c¢l+1t272 + CT2t$:+l73 < CTltffl [1=0,1,2.

(3.11) H(g 5)*%>(t)

Next, we prove the following inequality B12) for ¢t > 0
2
(3.12) H ((cf; — &) * %) (t)H < et V€ (tpo,th).
By Taylor series expansion of &(t) at t = t,,, we get
t2 t2
(é”*;)() (é”* 2)(n)+(t—tn)((§’*t)(tn)
t—tn)? I
+ % (& x1) (tn) + 5/ (t — 5)2&(s)ds,
t’Vl

which also holds for (& %) (¢). Therefore, using @I, it yields

[

According to (B3)), (Z2) and (B.6), one has

oo 0
||éa(t)|| <ec (/ €those’l"17ad7'+/ entcosdJKQ(xdw) < cta72-
K —0

Moreover, we get
t tn tn
‘ / (t —8)*&(s)ds c/ (s — )% 2ds < c/ (s —t)s* tds < er?t L.
tn t t

Using the definition of & (t) = >, &6, (t) in (BI0) and EJ), we deduce

< er'tTHOTE por? ot <erhtd Tt < erft

< (tn—t)?| & < er?t272 <er*tet < et Vi (tyoy, th).

/ (26, (s)ds

n
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By @BII) and the above inequalities, it yields the inequality (8I2). The proof is
completed. O

THEOREM 3.8 (ID1-BDF2). Let V (t,) and V™ be the solutions of [23)) and 21),
respectively. Let v € L*(Q), g € C1([0,T); L*(Q)) and fot(t —5)*1g"(s)|| ds < oo.
Then the following error estimate holds for any t, > 0:

V" =Vt
29
< cr? (tﬁnvn g0+ 7 IO+ [ =9 )] ds) -

Proof. Subtracting (29) from ([2.I3)), we obtain
VP V() =1 — I+ I

with
1 _
1=5— etn [(5?(6_27—) —A) ! S M)y (e )12 — (2% — A) 127 Avdz,
T r‘gw
1o ! eFn (2% — A) 72 Awde,

_% Fe,ﬁ\r\gw
3 :; EZt" (5?(6_'27) _ A)*l 57(6_27)6(6_'27)(12
27 r\gn
1 ~

- — P (2% — A) 712G (2)dz.
271 Tor

According to the Lemma [3.5 we estimate the first term I; as following

Il <er® ol [ Je* el
Ly

313 TsTirnG . 0 .
( ) SCT2 ||’U|| </ ertncosérdr_i_/ emﬁncoswﬁ2d¢>

—0

§c7'2t;2 [lv]] -

Using the resolvent estimate ([Z2]), we estimate the second term I as following

(3.14) < [ et el oyl < ert? ol
0,k 0,k
since
o0
/ ‘eztn‘ |Z|_1|d2’| :/ ert"COSGT_ldT
F9,N\FT,~ #
(3.15) ’ .
< cr? ertnoosbp gy < c7'2t7:2

|
T sin 0

with 1 < (—Si29)272r2, T > S

From Lemmas B.6l and 317 with G(t) = tg(0) + %g’(O) + % x g"(t), there exist

tn
5]l < et 72 [lg(0)]| + et~ g/ (0)]] + 072/ (tn = )7 llg"(s)|l ds.
0
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The proof is completed. O
THEOREM 3.9 (ID2-BDF2). Let V (t,) and V™ be the solutions of 24)) and 2.3),

respectively. Let v € L*(Q), g € C*([0,T]); L*(2)) and fo )2 Hg"(s)| ds < .
Then the following error estimate holds for any t, > 0:
V" =Vt

tn
<o (tﬁnvn 2 g0+ O+ [ -9 g0 ds) .

Proof. Similar arguments can be performed as Theorem B8, we omit it here. O

4. Convergence analysis: Singular source function t*¢(z), © > —a. Form
Theorem and Theorem [B.9] it seems that there are no difference between ID1-
BDF2 and ID2-BDF2 for general source function. However, both of them are very
different for the singular source function with the form t*¢(x).

4.1. Low regularity source term. In the section, we first consider low regu-
larity source term g(x,t) = t"q(z) with p > 0 for subdiffusion (Z3]). We introduce
the polylogarithm function or Bose-Einstein integral

(@) Lif©) =3 5. peN.

LEMMA 4.1. [9,[32] Let |z7| <
The series

(4.2) Liy(e ") =T(1 —p)(27)P~' + Z(—

and 0 > /2 be close tow/2, andp # 1,2, .. ..

sin 6

L (z7)
;i

converges absolutely. Here ¢ denotes the Riemann zeta function, namely, ((p) =
Li,(1).
Let G(t) = Jig(t) = %q. Using G(z) = Fi‘:Ll)q and (29), we have

o 1 zt( o — —1 F(:u + 1)

(4.3) V(t) = S /F[M etz — A)7! ( Av + — 1) =

From (213), the discrete solution for the subdiffusion (2.7 is

1 ~
(44) V= — [ et (62(e*T) — A) 1o (e )7 (yl(e*”)mv + G(e’”)) dz
211 T

with v (e *7) = a 6:;)2 and I'y . ={z€Tg,:[S2] < 7/7}. Here

- s Tt .

G(g):nZlG +1Zn 5 =4 +1Lz,#,1(§) with 0<p <1,

LEMMA 4.2. Let 6 is given by Z8) and vi(§) = > oo, n'é™ ({dg) 1—15 with
1 =1,2 are given by LemmalZ3 Then there exist a positive constants ¢ such that

2|Z|l+270‘,

|2(em=) =) Th ol (e ) - (2 - )

H<5?<e-”> —a) e 2D e gyt < enfpoe vaery,,

I
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where 6 € (7/2,7) is sufficiently close to 7w/2.
Proof. First we consider

(5(e ) = A) T Sh(e ) — (2% — A) Lt = T4 1T
with
I=(82(e7*) = A) " (dh(e™) — £,
I = ((53(67”) —A) T o A)*l) A
According to (B3) and Lemma B} we obtain
1] < e[| +27e
Using the Lemma Bl (B3), (22) and the identity

T AT = (2 82 () (82 (e ) — A) T (20— A) Y

((52‘(6_”) — A)
we estimate I as following
11| < er?|z? |z~ %¢|z| 7% |2|' < er?|z| 2.

According to the triangle inequality, the desired result is obtained.
Next we consider

(5$(€_ZT) N A)—l 65—(6_27')’)7(67_)7_14-1 _ (Za —A)_lz_l =Ji+J>

!
with

J1 = (5?(6—”) - A)_l 55-(6_”) [%7)7_!4-1 -~ Z_l_l] ,

Jo = [((52‘(6_”) - A)_l SL(e ™) — (2% — A)_lzl} P
According to (B3] and Lemmas Bl B2l with [ = 1,2, we obtain
1] < er 2|7 < er?z|te.
From I and 11, we have
o]l < er?[2] 272|717t = er®lef e

According to the triangle inequality, the desired result is obtained. O

Tu+1

LeMMA 4.3. Let G(2) = 4 XD and Ge7) = ¢t i1 (e7*7). Then

|rGte=) = Ga)| < er 2l ng .

Proof. Using the definitions of G(z) and G(e~*7) and Lemma@Tlwith p = —pu—1,
we have

~ ~ A2 ' L
e -G = g (st - Tz )
<G [ eon L=l <ol

Jj=0
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The proof is completed. O
THEOREM 4.4 (ID1-BDF2). Let V(t,) and V™ be the solutions of [23)) and
@), respectively. Let v € L*(Q) and g(x,t) = thq(x), p >0, q(z) € L*(Q). Then

V" = V(tn)ll < et [[v]l + er 2072 lq] + er®t ™7 gl -

Proof. From Theorem B.8 the desired results is obtained with yu € N. We next
prove the case 1 ¢ N. Subtracting (@3] from (@), we obtain

Vn—V(tn)Zfl—Iz+Ig—I4

with
hmsh [ o e - A e ey - o ] e
YiNA r‘gw

L=t et (2% — A) 1271 Avdz,
27T’L Fe,m\r‘gw

=g [ e [0 ) = 4) 7 bolem )G ) - (2 — A)2G(e)] d
27T'L I‘g .

I, = et (2 — A)712G(2)dz.

_27T'L Feu’“\r‘g,n
According to (BI3) and BI4), we estimate I; and I as following
Il < er®t?[lvll - and ||| < et |lv]l -

From (BI3), we estimate that I, is similar to I» as following

L O
Fe,m\rﬂe—m

e et el el < erte e )
r

-
0,k ngﬁ

Finally we consider I3 = I37 + I3 with

—_—— Ztn (e% —2T\ __ —1 — 2T ~ —zry o~

In =55 - (62(e77) = A) " or(em) (rGle ) = G2) ) dz,
—i ztn Qf,—2zT\ _ —1 —z7y _ a 1 ~

Iz T omi ry ¢ ((6T C) A) 6-(e7*7) = (2 A) Z) G(z)dz.

According to (83) and Lemmas Bl and 3] there exists

[T < 2|l /F || 2] dz] < ert 2572 gl
0,1

From Lemma @2 and G(z) = ﬁ Fi‘jif)q, we estimate I35 as following
[32]] <er? |lgll /F €= 2P| 772 |dz| < er*ty 2 gl -
0,r

By the triangle inequality, the desired result is obtained. O



16 M. CHEN, J. SHI, AND Z. ZHOU

4.2. Singular source term. In this subsection, we consider the singular source
term g(z,t) = t*q(x) with p > —a for subdiffusion ([2.4).

Let G(t) = J2g(t) = ooy a- Using G(2) = 24 g and @I), we have

! M(p+1
0,k
From (ZI7), it yields
= L O AT (@T% N g~(e-f~”)) -

—2zT

zand 'y ={z €Ly, :[3z| < m/7}. Here

: y2(e”FT) e *Tte
with 2~ 20—

+2 T;L+2

g g T e |
_"Z::lg 5 _q(“”)(““);”‘“‘z ST )

LEMMA 4.5. Let G(z) = qri’iigl) and G(e ") = q%lﬂﬁ;hﬂe_”)- Then

HTQN(G_ZT) - Q\(Z)H < erht3 lgll, w¢N.

Proof. From Lemma (1] we have

N Tht3 - D(u+3)
—ZT _ L _ —ZT
HTg o H H (n+2)( u+1)< el (ZT)““’)qH
Thu+3 e (21 j
< —p—2—
PE Y, JZ: ) i IIqH
et gl

The proof is completed. O
THEOREM 4.6 (ID2-BDF2). Let V(t,) and V™ be the solutions of (24l and
@3), respectively. Let v € L*(Q) and g(x,t) = thq(x), p > —a, q(x) € L*(Q). Then

V™ = V(ta)ll < ert 2 vl + e 252 gl + er®t 7 gl

Proof. From Theorem [3.8 the desired results is obtained with x4 € N. We next
prove the case 1 ¢ N. Subtracting (ZI1)) from [2I5), we obtain

V- V(t)) =5 — I+ I — I

with
1 2t o —ar 1.9, —sr e*ZT_Fesz‘r 5 N . 71
I = 27 s e [(& (e7*T)—A)  &Z(e )2(1_67”)37 (2% — A)™ Avdz,
1
I =— e (2% — A)" 27 Avdz,
271 T\,
I3 :i 6Zt" [(5?(6727-) _ A)_l 572_(67ZT)T§(67ZT) _ (Za o A)—lz2§(z):| dZ,
21 7
I = et (2% — A) 122G (2)d=

27TZ FG,N\F;N
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Using 313), BI4) and Lemma 2] we estimate I; and I as following
Il < er®t?[lvll - and ||| < et ||v]l -

By BI3), we estimate that I is similar to I3 as following

nse [ fe e |20 e
F
<clil / eIl el er e
Finally we consider I3 = I31 + I3 with

1 ztn af, —2T\ _ —1co, _or S(,—2T\ _ (O

I =g Jl, (02(e77) = A) " 02(e ) (rG(e™) = §(2)) dz,
_ ztn Qf, —2T\ _ =1 e, —or (L0 -1.2)\ 7~

Iy =5~ ((5 (e7*7) — A) " 62(e ) — (x* — A) 'z )g(z)dz.

According to (BB]) and Lemmas Bl and [0 there exists

ol < er [ et 2Pl < er 2 L.

From Lemma [£2] we estimate I35 as following

Izl <er gl [ |
T

<ol [ e
T

By the triangle inequality, the desired result is obtained. O

|2[* 72| 770 dz|

21707 |dz] < ety 2 |lq

5. Convergence analysis: Source function ¢* o f(x,t) with p > —1. Based
on the discussion of Section 3 and 4, we now analyse the error estimates for subdiffu-
sion () with the singular source term t* o f(z,t).

5.1. Convergence analysis: Convolution source function t*xf(t), u > —1.
Let f(t) = f(0) +¢f'(0) +t = f”(t). Then we obtain

tr0) T (0)
p+1 o (p+1)(p+2)

Let G(t) = J'g(t) = 35"+ * f(t) with G(0) = 0. It yields

g(t) =t'x f(t) = +th st x fI(t).

= t”+2f(0) tu+3f/(0) 1 MLyt s f7
- O 3 1(0) e Y
(k+1)(n+2) (M+1)(u+2)(u+3)+_*(t @),

where we use

t t

1 1

thHl st = / (t — s) T lsds = %/ (t — s)"s?ds = %ﬁ * .
0 0



18 M. CHEN, J. SHI, AND Z. ZHOU

LEMMA 5.1. Let V(t,) and V™ be the solutions of Z3) and (1), respectively.
Let v="0, G(t) := 5% (t"  f"(t)) with > —1 and [y (t —5)* s x || f"(5)] ds < oc.
Then

tn

tn
IV (tn) = V7| < 7 / (bn — )16 5 | f(5)]] ds < er? / (0 — )| £ (s)]] ds.
0 0
Proof. By Lemma B with ¢’/ () = t* * f”(t), we obtain
tn
V(e =Vl < ert [t =9 st g5 ds
0
tn
< 072/ (t, — s)a_ls“ || f"(s)] ds
0

tn
= or? (170 ) 2 1 W)y, S 0r® [0 ) (5 s
0

The proof is completed. O

THEOREM 5.2 (ID1-BDF2). Let V (t,) and V™ be the solutions of [23)) and 21),
respectively. Let v € L*(Q), g(t) = t* * f(t) with u > —1 and f € C1([0,T); L*(Q)),
fot(t — ) Lsh || f"(s)| ds < co. Then

V" = V(ta)ll

tn
< er? <t;2||v| PO+ IO+ [ 6= ) ds)
< er? (tﬁnw RO+ PO+ [t = ) ds) -

Proof. According to Theorem[£4] Lemma 5.1l and similar treatment of the initial
data v in Theorem 3.8 the desired result is obtained. O

5.2. Convergence analysis: product source function t“f(t), u > 0. Let
G(t) = J'g(t) and f(t) = f(0) +tf'(0) + ¢ = f”(t). Then we have

_t”“f®)+t“”f%®
op+1 W+ 2

Let h(t) = t* (t = f"(t)) with h(0) = 0. It leads to

W) = pth =t (s (1) + 4 (L f7 (1)

G(t) =1 (" f(?))

+ L [t (£ f7(1)] -

with h’(0) = 0, since

t t t
W @) < ]uw-l [ e=sireas+ o [ psas| < e 15 @lds, 0>

Moreover, there exists

(5.1) W) = p (= 1) 872 (5 f7(8) + 20t (1x f7(8)) + £ £ (2).
Thus one has
12 12 t2

(5.2) 1*Mﬂ:tMM4~§Mmy+5*
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LEMMA 5.3. Let V(t,) and V™ be the solutions of 23) and (Z1), respec-

tively. Let v = 0, G(t) = 1% [tF (t* f"(t))] with p > 0 and f € CL([0,T]; L%(Q)),
T £ ()] ds < oo, fo(t—s)*~Ls#||f"(s)||ds < 0. Then

IV (ta) = V"] < er? (tz”l / ")l ds + / "t — 5 s 17 (5)] ds> .

Proof. Let h(t) =t (t x f”(t)). From (52), we have G(t) = 1 * h(t) = % x h''(t).
According to Lemma 37 and (B0, it yields

tn
|V (t,) — V™| < CTQ/ (tn —8)* W (s)||ds < er? (I + I + I3)
0
with
tn
I = / (t, —s)*! Hs”_2 (s % f”(s))H ds,
0

in

12_/()"(15”_5)&1 [s#~ 1 (1% f"(s)) ds and 13_/0 (tn — 5)* 71 18" f"(s)]] ds.

We estimate I as following

tn
I :/ (t, —s)* tst™!
0

tn tn tn
< [Tt [Tl dds = Bl [ )l
0 0 0

S

/s o wf”(w)dw” ds
0

since
t’Vl 1
/ (tn —5)* 1t lds = tfr”_l/ (1= 8)* ¢ 1ds = B(a, p)totr1,
0 0

Similarly, we estimate I3 as following

tn tn tn
I < / (tn —5)*71s"™! / £ (w)|| dwds = B(a, p)tet+! / £ (w)]| duw.
0 0 0

By the triangle inequality, we obtain

IV(ta) = V7 < 7 (tw-l [+ [ - 1) ds) |

The proof is completed. O

THEOREM 5.4 (ID1-BDF2). Let V(t,) and V™ be the solutions of [Z3)) and
&), respectively. Letv € L*(2), g(t) = t*f(t) with p > 0 and f € C*([0,T]; L3(2)),
Sy 17 (s)llds < oo, [y (t— ) L[| f"(s)] ds < co. Then

IV =Vl < e (2l + 8572 )+ 3+ £ O)])

tn tn
g (tw-l [ urolas+ [ s 1) ds) |

Proof. According to Theorem[£4], Lemma[5.3] and similar treatment of the initial
data v in Theorem [B.8] the desired result is obtained. O
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5.3. Convergence analysis: product source function t*f(t), —a < pu < 0.
Let G(t) = J?g(t) and f(t) = f(0) +tf(0) + ¢ f”(t). Then we have

n+2 w43 £
() = 01 (0) = s SO o).

Let h(t) =t (t = f"(t)) with h(0) = 0. It leads to

() = pt" = (1 (0) + 4 (1 f7(1)

which implies

W(0)] < (u+ 1) / | f7(s)] ds,

since

t t
()] < (u+ 1)t“/0 If"(s)]ds < (u+1)/0 s |f"(s)|ds with — 1< p < 0.

Thus we get

t2 t3 t3 t3 t3
(5.3) txh(t) = Sh(0) + Zh'(0) + 5« h'(t) = Zh'(0) + 5 R (D).

LEMMA 5.5. Let V(t,) and V™ be the solutions of Z4) and (ZJ)), respectively.
Let v = 0, G(t) = t* [t' (t=* f'(1))] with —a < u < 0 and f € CL([0,T]; L%(Q)),
Jo s°7 1()llds < oo, [yt = s)> s ||f"(s)| ds. Then

pn—1 tn h— tn
W)=Vl <ert (5 [0 relas e [ - oe e 1) as).
0 0

Proof. Let h(t) = t* (t = f”(t)). From (53], we have

t3 t3
G(t)=txh(t) = Eh'(O) + G n"(t).
According to Theorems 6] and (1)), it yields
t’Vl

V) = Vel < er? (1 o+ [
0
SCT2 (Il+[2+]3+]4)

(1 — 5)°~ 1 [1(5)] ds)

with

tn
= =1 [ (0)]) b:/ (b — 5)*1 [|s572 (s % 7 (5))]| ds.

0
I3 = ' n—8) 2 Hs* L (1% f"(s))||ds and I, = h S F i ds.
: / (tn — 5)* 1 |51 (L% f(s))|| ds and I, / (b — 5)* || " (s)]| ds

0

Since

tn tn
L= B )] < ets ! / S (s)ll ds < e / (tn — 5)* 16 | £ (3)]] ds,
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and

tn _
I = / (tn — s)"‘_lsuTl
0

tn _ tn _ p—1 tn _
< / (tn — S)O‘_lsuTl / w T I (w)| dwds < ctz—w2 / w T Ilf" (w)] dw,
0 0 0

/ o ws%lf”(w)de ds
0

S

where we use
tn — n—1 1 — 1 p=1
0 0

Similarly, we estimate I3 as following

p—1

tn tn tn
I, g/ (tn—s)aflsﬂfl/ " (w)]| dwds < ct2"3 / W | (w)] duw.
0 0

0

By the triangle inequality, we obtain

pn—1 tn _ tn
IV(ta) = V7 < o7 <ti':+2 / S5 (s) ] ds + / (tn — )" | 77(3)] ds> .

The proof is completed. O

THEOREM 5.6 (ID2-BDF2). Let V (t,) and V™ be the solutions of [Z4l) and ([23),
respectively. Letv € L*(Q), g(t) = tFf(t) with —a < p < 0 and f € C1([0,T]; L%(Q)),
[3s"7 [1£"(s) || ds < oo, [o(t—s)*~Vs#||f"(s)||ds. Then

IV =Vl < e (2l + 52 )+ 3t £ O)])

p—1 tn e tn
Ter? (tf:*z [ enas s [ -0t el ds) |

Proof. According to Theorem .6, Lemma[5.5] and similar treatment of the initial
data v in Theorem B.8 the desired result is obtained. O
REMARK 5.1. Theorems[4.0 and [2.8 are naturally extended to > —1.

6. Numerical results. We numerically verify the above theoretical results and
the discrete L?-norm is used to measure the numerical errors. In the space direction,
it is discretized with the spectral collocation method with the Chebyshev-Gauss-
Lobatto points [25]. Here we main focus on the time direction convergence order,
since the convergence rate of the spatial discretization is well understood. Since the
analytic solutions is unknown, the order of the convergence of the numerical results
are computed by the following formula

n (|[u72 — uM|/[Ju® — u?M))

In2

Convergence Rate =

with u¥ = V¥ + v in @7).
In the experiment, several algorithms including the correction BDF2 methods [10]
are carried out and compared with IDk-mehtod:

(6.1) BDF2 Method :  92V"™ — AV" = Av + ¢g".
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3 1
(6.2) Corr—BDF2 Method :  98V™ — AV" = §A’U + 590 +4g".

EXAMPLE 6.1. Let T =1 and Q = (—1,1). Consider subdiffusion (1)) with

v(z) =sin(x)v/1 — 22 and g(x,t) = 1+t +t*")o (1 — t)ﬁez(l + X(QJ)(I)).

Here J*g(x,t) = t*~1 % g(z,t), k = 1,2 are calculated by JacobiGL Algorithm
[2, [7], which is generating the nodes and weights of Gauss-Labatto integral with the
weighting function such as (1 —¢)* or (1 4 ¢)*.

Table 6.1: The discrete L2 norm |[u’ — u?V|| and convergent order of schemes (G.1)),
62) and 27), (Z8) with 8 =0, o = 0.7. Here o denotes the dot product.

Scheme u N =50 N =100 N =200 N =400 N =800
0.8 2.4743e-03 1.1981e-03  5.8732e-04  2.9005e-04  1.4390e-04
BDF2 1.0462 1.0286 1.0178 1.0113

-0.8  1.5948e-01  1.3256e-01  1.1109e-01  9.3707e-02  7.9450e-02
0.26679 0.25489 0.24549 0.23811
0.8 9.4381e-05 3.6107e-05 1.3189e-05 4.6888e-06  1.6386e-06

Corr-BDF2 1.3862 1.4529 1.4921 1.5168
-0.8 NaN NaN NaN NaN NaN

0.8 1.6660e-04 4.1216e-05 1.0249e-05 2.5553e-06  6.3792e-07
2.0151 2.0077 2.0040 2.0021

ID1-BDF2 -0.8  6.7744e-03  3.0380e-03  1.3367e-03  5.8281e-04  2.5299e-04
1.1570 1.1844 1.1976 1.2039

0.8 3.2389e-04  7.9995e-05  1.9879e-05 4.9539e-06  1.2374e-06
2.0175 2.0087 2.0046 2.0013

[D2-BDF2 -0.8  2.1611e-03  5.2769e-04  1.3018e-04  3.2292e-05  8.0280e-06
2.0340 2.0192 2.0112 2.0081

For subdiffusion PDEs model (), it is natural appearing the low regular-
ity /singular term such as

thf(x,t) or t" = f(x,t), p>-—1.

In this case, many popular time stepping schemes, including the correction of high-
order BDF methods may lose their high-order accuracy, see [I0, Section 4.1] and
Lemma 3.2 in [31], also see Table The correction BDF2 methods recovers super-
linear convergence order O(71T%*) provided that the source term behaves like t*#,
which is invalid for g < 0, since it is required the source function g € C([0, T]; L*(Q2)).

To fill in this gap, the desired second-order convergence rate can be achieved by
ID1-BDF2 with p > 0 but it is still likely to exhibit a order reduction with p < 0.
Furthermore, ID2-BDF2 method has filled a gap with —1 < p < 0, see Tables[6.1] and
Tables shows that ID1-BDF2 recovers second order convergence and this is
in agreement with the order of the convergence for t* x f(x,t), u > —1.

REMARK 6.1. For Hadamard’s finite-Part integral [0, p. 233]

t

1

/ stds = ——tMH < —1,
0 L+p
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Table 6.2: The discrete L2norm |[u’ — u?V|| and convergent order of schemes (Z.7)
and ([2.8) with 8 = 1.9, respectively. Here o denotes the dot product.

Scheme e uw N =50 N =100 N =200 N =400 N = 800
0.5 1.5025e-03 3.9778e-04 1.0433e-04 2.7198e-05  7.0660e-06
0.3 1.9174 1.9307 1.9396 1.9445
-0.9  4.9903e-03  2.7664e-03  1.4020e-03  6.8259e-04  3.2574e-04
0.85109 0.98050 1.0384 1.0673
ID1-BDF2 0.5 6.8462e-04 1.8033e-04 4.6484e-05 1.1840e-05  2.9948e-06
07 1.9247 1.9558 1.9731 1.9831
-0.9  2.0722e-02  1.0219e-02  4.8849e-03  2.3017e-03  1.0770e-03
1.0199 1.0648 1.0856 1.0956
0.5 3.1810e-03  8.4340e-04 2.2164e-04  5.7938e-05  1.5180e-05
0.3 1.9152 1.9280 1.9356 1.9323
-0.9  4.6179e-03  1.1806e-03  3.0298e-04  7.7857e-05  2.0182e-05
1.9677 1.9622 1.9603 1.9478
ID2-BDE2 0.5 1.9266e-03  5.0536e-04 1.3015e-04 3.3167e-05 8.4027e-06
07 1.9307 1.9571 1.9724 1.9808
-0.9 7.2846e-03  1.8010e-03  4.4808e-04 1.1179e-04  2.7922e-05
2.0161 2.0070 2.0030 2.0013

Table 6.3: The discrete L?-norm ||u” — u?"|| and convergent order of schemes (6.1))
and ([Z7) with 8 = 1.9, respectively. Here o denotes the Laplace convolution.

Scheme o m N =50 N =100 N =200 N =400 N =800

-0.2  6.4420e-05 1.2431e-05 2.6710e-06  6.1586e-07  1.4766e-07

0.3 2.3735 2.2185 2.1167 2.0603
-0.8  1.6132e-03  4.2435e-04  1.0992e-04  2.8213e-05  7.2033e-06
1.9266 1.9487 1.9621 1.9696
ID1-BDF2 -0.2 2.8145e-04 6.7873e-05 1.6649e-05 4.1218e-06  1.0253e-06
0.7 2.0520 2.0274 2.0141 2.0072
' -0.8  6.3566e-04 1.7068e-04  4.4407e-05 1.1358e-05  2.8782e-06
1.8969 1.9425 1.9671 1.9805

of course the limit does not exist, and so Hadamard suggested simply to ignore the
unbounded contribution. In this case, we can similar provide

3
ID3 — BDF2 Method : 9°V™ — AV™ = 92 (%"Av + G”) , G = J%g(x,1),

which also recovers the high-order accuracy even for the hypersingul source term, see

Table[6.4)

7. Conclusions. Fractional PDEs model naturally imply a less smooth or low
regularity source function ¢* o f(x,t) in the right-hand side, which is likely to result
in a severe order reduction in most existing time-stepping schemes. To fill in this gap,
we provides a new idea to obtain the second-order time-stepping schemes for subd-
iffusion, called IDk-BDF2 method. The detailed theoretical analysis and numerical
verifications are presented. In the future studies, we will try to adapt the idea to
higher order schemes and the nonlinear fractional models [12].
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Table 6.4: The discrete L?-norm |[u’ — u?Y|| and convergent order with 5 = 0,
« = 0.7. Here o denotes the dot product.

Scheme n N =250 N =100 N =200 N =400 N =800
ID2-BDF2 -1.8 1.7275e-02 8.1527e¢-03  3.6909e-03  1.6393e-03  7.2110e-04
1.0834 1.1433 1.1709 1.1848
ID3-BDF2 -1.8  7.7995e-03  1.8929e-03  4.6855e-04  9.5882e-05  2.2325e-05
2.0428 2.0143 2.2889 2.1026
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