
THE IMMERSION-MINIMAL INFINITELY EDGE-CONNECTED GRAPH

PAUL KNAPPE AND JAN KURKOFKA

Abstract. We show that there is a unique immersion-minimal infinitely edge-connected graph: every such
graph contains the halved Farey graph, which is itself infinitely edge-connected, as an immersion minor.

By contrast, any minimal list of infinitely edge-connected graphs represented in all such graphs as
topological minors must be uncountable.

1. Introduction

The Farey graph, shown in Figure 1 and surveyed in [1, 3], plays a role in a number of mathematical fields
ranging from group theory and number theory to geometry and dynamics [1]. Curiously, graph theory has
not been among these until very recently, when it was shown in [7] that the Farey graph plays a central role
in graph theory too:

Theorem 1.1. The Farey graph is one of two infinitely edge-connected graphs such that every infinitely
edge-connected graph contains at least one of the two as a minor.

Figure 1. The Farey graph

Naturally, this result raises the question of whether there exist similar infinitely edge-connected graphs
for graph relations other than the minor relation which determine infinite edge-connectivity by forming
minimal lists in this way. In this paper, we address two graph relations that harmonise particularly well
with edge-connectivity: the topological minor relation and the immersion relation.

A weak immersion of a graph H in a graph G is a map α with domain V (H) ⊔ E(H) that embeds V (H)
into V (G) and sends every edge uv ∈ H to an α(u)–α(v) path in G which is edge-disjoint from every other
such path. The map α is a strong immersion of H in G if additionally all paths α(e) for e ∈ E(H) have no
internal vertices in α[V (H)]. The vertices of G that lie in the image α[V (H)] are the branch vertices of this
immersion.

We say that H is strongly immersed in G, or that H is a strong immersion minor of G, if there is a
strong immersion of H in G. Similarly, we define weakly immersed and weak immersion minor. Robertson
and Seymour showed that the weak immersion relation well-quasi-orders the finite graphs, just like the
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Figure 2. The halved Farey graph Figure 3. A generalised halved Farey graph

minor relation, and they believe that so does the strong immersion relation [8, §1]. In this paper, we will
focus on strong immersions. For brevity, we will often refer to strong immersions simply as immersions.

Any infinitely edge-connected graphs that form a minimal list as discussed earlier must be countable,
because in every infinitely edge-connected graph we can greedily find a countable infinitely edge-connected
subgraph. The countable graphs, however, are not known to be well-quasi-ordered by the minor relation
or either of the immersion relations. It is therefore not clear that any immersion-minimal set of infinitely
edge-connected graphs must be finite, nor even that such a minimal set exists.

A greedy argument shows that every infinitely edge-connected graph contains the countably infinite
complete graph by weak immersion. So for weak immersion we have a minimal list formed by this graph
alone. But this is no longer true if we replace ‘weak immersion’ with ‘immersion’. Indeed, we show that
the countably infinite complete graph is not immersed in the Farey graph (Theorem 4.1 (i)). Then, does
every infinitely edge-connected graph contain the Farey graph by immersion? Perhaps surprisingly, the
answer is no: the Farey graph is not an immersion minor of the halved Farey graph shown in Figure 2
(Theorem 4.1 (ii)), although the halved Farey graph is infinitely edge-connected. As our main result we
show that the halved Farey graph is immersed in every infinitely edge-connected graph, and hence forms
the desired list for immersion, again all by itself. Two graphs that are immersed in each other are called
immersion-equivalent.

Theorem 1. Up to immersion equivalence, the halved Farey graph is the unique infinitely edge-connected
graph that is immersed in every infinitely edge-connected graph.

Neither the minor relation nor the immersion relation is stronger than the other. Therefore, Theorem 1.1
and Theorem 1 do not obviously imply each other. The topological minor relation, however, is stronger than
both the minor relation and the immersion relation. This raises the question of whether the two theorems
can be unified by finding a short list of topological-minor-minimal infinitely edge-connected graphs. Our
second result, Theorem 2 below, shows that this is impossible. Hence, Theorem 1.1 and Theorem 1 are best
possible in this sense.

Let G be a class of graphs and ⩽ a relation on G. We say that a class H ⊆ G is typical for G with regard
to ⩽ if for every graph G ∈ G there exists a graph H ∈ H with H ⩽ G. The relation of ‘being typical for’
with regard to ⩽ is transitive on the subclasses of G. We recall that in every infinitely edge-connected graph
we can greedily find a countable infinitely edge-connected subgraph. Combining this with the fact that
every countable graph is isomorphic to a subgraph of Kℵ0 , and using the transitivity of the ‘being typical
for’-relation, we find that the class of infinitely edge-connected graphs includes typical sets of graphs with
regard to the topological minor relation that are no larger than the continuum. However, we show that
none of these typical sets is countable, let alone finite. Recall that a graph is outerplanar if it has a drawing
in which every vertex lies on the unit circle and every edge is contained in the unit disc. Indeed:



THE IMMERSION-MINIMAL INFINITELY EDGE-CONNECTED GRAPH 3

Theorem 2. Every set of graphs that is typical for the infinitely edge-connected graphs with regard to the
topological minor relation, or even just for the outerplanar ones, is uncountable.

Our proof of Theorem 2 builds on a construction of generalised halved Farey graphs. An instance of a
generalised halved Farey graph is shown in Figure 3.

This paper is organised as follows. In Section 2 we introduce the tools and terminology that we need.
In Section 3 we define the generalised halved Farey graphs and prove Theorem 2. In Section 4 we prove
Theorem 1.

2. Tools and terminology

We use the notation of Diestel’s book [2]. Recall that a non-trivial path P is an A-path for a set A of
vertices if P has its endvertices but no inner vertex in A. Given a graph H, we call P an H-path if P is
non-trivial and meets H exactly in its endvertices. An H-path is a V (H)-path; the converse is true unless
the V (H)-path has just one edge and this edge is in H. We write G[X] for the subgraph of G induced by
the vertex set X. Given a path P that contains two vertices u and v, we write uPv for the subpath of P

from u to v.
Whenever an x–y path P is introduced, we denote by ⩽P the linear order on its vertices given by the

way that P directed from x to y traverses them. For a partial order L = (L,⩽L) and a subset M of L, we
write L↾M for the partial order obtained from L by restricting it to M .

2.1. Farey graph. The Farey graph F is the graph on Q∪ {∞} in which two rational numbers a/b and c/d

in lowest terms (allowing also ∞ = (±1)/0) form an edge if and only if det
(

a c
b d

)
= ±1, cf. [1]. In this

paper we do not distinguish between the Farey graph and the graphs that are isomorphic to it. For our
graph-theoretic proofs it will be more convenient to work with the following purely combinatorial definition
of the Farey graph that is indicated in [1] and [3].

The halved Farey graph F̆0 of order 0 is a K2 with its sole edge coloured blue. Inductively, the halved
Farey graph F̆n+1 of order n + 1 is the edge-coloured graph that is obtained from F̆n by adding a new
vertex ve for every blue edge e ∈ F̆n, joining every ve precisely to the endvertices of e by two blue edges, and
recolouring all the edges of F̆n+1 belonging to F̆n black. The halved Farey graph F̆ :=

⋃
n∈N F̆n is the union

of all these F̆n without their edge-colourings (cf. Figure 2), and the Farey graph is the union F = G1 ∪ G2

of two copies G1, G2 of the halved Farey graph such that G1 ∩ G2 = F̆0 (cf. Figure 1).
The (halved) Farey graph and infinite edge-connectivity have been studied and used in [4–7].

2.2. Grain lines. Suppose that x and y are two vertices in a graph G such that no finite set of edges
separates x and y in G. Then we greedily find a sequence (Pn : n ∈ N) of infinitely many pairwise edge-
disjoint x–y paths in G. Since these paths are only edge-disjoint, they can meet in vertices other than x

and y. Let us say that two x–y paths are order-compatible if they traverse their common vertices in the same
order. Is it always possible to choose the paths Pn so that they are pairwise order-compatible? Perhaps
surprisingly, the answer is no: in [6], a countable planar graph is constructed that is infinitely edge-connected,
but which does not contain infinitely many edge-disjoint pairwise order-compatible paths between any two
of its vertices.

Fortunately, not all is lost. While we cannot always choose the paths Pn so that they are pairwise order-
compatible, we can always choose them so that they satisfy a slightly weaker form of order-compatibility
which is still strong enough for our purpose. Roughly speaking, we will be able to choose the paths Pn so
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that they induce a linear order on their limit. This limit will be the set of all vertices that eventually appear
on all paths Pn. If two vertices u and v are in the limit, there will be a first path Pn which contains both u

and v. The x–y path Pn linearly orders its vertex set from x to y; in particular, it orders u and v. This
order on u and v might disagree with a later path that is not order-compatible with Pn. However, we shall
achieve that all later paths will order u and v in the same way, and we will use this ordering of u and v

in our limit instead of the ordering induced by Pn. This informal idea has been formalised as ‘grain lines’
in [5], whose definition we recall now.

An x–y grain line between two distinct vertices x and y is an ordered pair (L, P) where L = (L,⩽L)
is a linear order with min⩽L

L = x and max⩽L
L = y, and P = (Pn : n ∈ N) is a sequence of pairwise

edge-disjoint x–y paths Pn such that the following conditions are satisfied:
(GL1) L = {v : {n ∈ N : v ∈ V (Pn)} is a final segment of N};
(GL2) if a vertex of a path Pn is not contained in L, then it is not a vertex of any other path Pm;
(GL3) for every n ⩾ 1, the linear order ⩽Pn given by Pn and ⩽L induce the same linear order on the

vertex set L<n, where we set L<n := L ∩
⋃

m<n V (Pm).

Example 2.1. The halved Farey graph defines a grain line, as follows. Let x and y be the two vertices
of F̆0. For every n ∈ N, let Pn be the blue Hamilton path of F̆n, and let us view each Pn as an x–y path
in F̆ . Then letting L := V (F̆ ), ⩽L:=

⋃
n∈N ⩽Pn

and P := (Pn : n ∈ N) results in an x–y grain line.

Lemma 2.2. Let x and y be any two distinct vertices of a graph G, and let Q be any set of infinitely many
pairwise edge-disjoint x–y paths in G. Then there exists an x–y grain line (L, P) in G such that all the
paths in P are in Q.

Proof. The proof of [5, Theorem 5.4] shows this. □

Whenever a grain line is introduced as (L, P), we tacitly assume that L = (L,⩽L) and P = (Pn : n ∈ N).
We write

⋃
P :=

⋃
n∈N Pn for the graph defined by the grain line (L, P). A P-segment is a subpath uPdv

of some path Pd in P with d ⩾ 1, if u and v are in L<d and v is the successor of u in L↾L<d. We follow
the convention that P0 also is a P-segment. We refer to d as the P-depth of the P-segment uPdv, and the
P-depth of P0 is 0.

Example 2.3. Every P-segment of a grain line has at least one edge. It is possible for P-segments to have
only one edge: for example, if all paths Pn ∈ P are internally disjoint, and all paths have two edges except
one path which has exactly one edge.

We introduce the concept of depth in a sequence P of paths. The path Pd is the path in P-depth d. For
every d ∈ N, we abbreviate the sequence (Pn : n ⩾ d) of paths in depth at least d as P⩾d. Similarly, we
define P>d, P⩽d and P<d. The P-depth of a vertex v ∈

⋃
P is defined as min {n : v ∈ V (Pn)}. The P-depth

of an edge e ∈
⋃

P is min {n : e ∈ E(Pn)}. The depth of a vertex or an edge of
⋃

P in P is its P-depth.
Let (L, P) be a grain line. We remark that L<d is the set of vertices in L whose depth is less than d

in P, and the depth of an edge in P is at least the depth of its endvertices in P. For two vertices u, v ∈ L

with u <L v, we write uPv for the subsequence (uPnv : n > d) where d is the maximum of the depths of u

and v in P.
The following structural properties have been introduced in [5]. A grain line (L, P) is wild if L is

order-isomorphic to Q ∩ [0, 1]. It is wildly presented if, for every n ⩾ 1, whenever u <L v are elements
of L<n then an internal vertex of uPnv is in the interval (u, v)L.
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3. Typical sets with regard to the topological minor relation

In this section, we show the following generalisation of Theorem 2. Missing definitions follow.

Theorem 3.1. For every countable set of infinitely edge-connected graphs, there exists an outerplanar
infinitely edge-connected graph that contains none of them as a topological minor. Moreover, there is such a
graph which is a generalised halved Farey graph.

A generalised halved Farey graph of order 0 is a non-trivial path with its edges coloured blue. Inductively,
a generalised halved Farey graph of order n + 1 is an edge-coloured graph that is obtained from a generalised
Farey graph Gn of order n by adding, for every blue edge e = uv ∈ Gn, a blue-coloured u–v path Pe of
length at least two, which is internally disjoint from Gn and every other Pe′ , and recolouring all the edges
of Gn black in Gn+1. Let (Gn : n ∈ N) be any sequence obtained by this construction. Then the union
of all these Gn without their edge-colourings is a generalised halved Farey graph. We remark that every
generalised halved Farey graph is outerplanar.

Just like the halved Farey graph in Example 2.1, we may interpret a generalised halved Farey graph as a
grain line. This grain line then satisfies the following stronger versions of (GL2) and (GL3):
(GL2’) L =

⋃
n∈N V (Pn);

(GL3’) ⩽L =
⋃

n∈N ⩽Pn
.

It is immediate to see that the converse is also true:

Lemma 3.2. A graph G is a generalised halved Farey graph if and only if G is defined by a grain line (L, P)
which satisfies (GL2’) and (GL3’). □

The generalised halved Farey graphs which we will construct in the proof of Theorem 3.1 are of the
following type. Let ℓ : N → N be a function such that ℓ(0) ⩾ 1 and, for every n ⩾ 1, ℓ(n) ⩾ 2. Then ℓ induces
an (up to isomorphism) unique grain line (L, P)(ℓ) which satisfies (GL2’), (GL3’) and, for every n ∈ N,
every P-segment in P-depth n is a path of length ℓ(n). The generalised halved Farey graph F̆ (ℓ) induced
by ℓ is the graph defined by (L, P)(ℓ). Note that by Lemma 3.2, F̆ (ℓ) is a generalised halved Farey graph.

Example 3.3. The halved Farey graph is the generalised halved Farey graph induced by ℓ with ℓ(0) := 1
and ℓ(n) := 2 for all natural numbers n ⩾ 1. The generalised halved Farey graph shown in Figure 3 is
induced by the function ℓ : N → N which maps n to n + 1.

To prove Theorem 3.1, we need two lemmas about grain lines, which are motivated by the proof of
Theorem 3.1. So we prove Theorem 3.1 first, giving the statements of the two lemmas where we need them,
and then proceed to prove the two lemmas afterwards.

Proof of Theorem 3.1. We have to show that, for every countable set H of infinitely edge-connected graphs,
there exists an outerplanar infinitely edge-connected graph G which contains no subdivision of a graph in H.
For this, let H be any countable set of infinitely edge-connected graphs. By applying Lemma 2.2 in each
graph in H, we find a countably infinite set {(M(i), Q(i)) : i ∈ N} of grain lines such that every graph in H
contains one of these. For every k ∈ N, we let ℓ(k) be one greater than the maximum of the lengths of the
paths Q

(i)
j with 0 ⩽ i, j ⩽ 2k. We remark that ℓ(0) ⩾ 1 and ℓ(1) ⩾ 2, and that the function ℓ is increasing

(though not necessarily strictly so).
Let (L, P) := (L, P)(ℓ) be the grain line induced by ℓ, and let G := F̆ (ℓ) be the generalised halved Farey

graph induced by ℓ. In particular, (L, P) satisfies (GL2’) and (GL3’), and G is outerplanar and infinitely
edge-connected. We claim that G contains no subdivision of a graph in H.
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Indeed, suppose for a contradiction that some graph H in H is a topological minor of G. Then there
is a natural number i such that

⋃
Q(i) is a topological minor of G. In Section 3.1, we will see the crucial

fact that if a generalised halved Farey graph contains a grain line as a topological minor, then it actually
contains the grain line as a subgraph (up to some finite error):

Key Lemma 3.4. Let (M, Q) be a grain line such that a subdivision of
⋃

Q is contained in a generalised
halved Farey graph. Then there exists a number d such that no edge of

⋃
Q⩾d is subdivided.

Hence, by Key Lemma 3.4, there is a number d such that (M, Q(i)
⩾d) is a grain line in G. In Section 3.2,

we will see that while we ‘dive deeper’ into the grain line (M, Q(i)
⩾d), we ‘dive’ with at least the same speed

into the grain line (L, P):

Key Lemma 3.5. Let (M, Q) be a grain line in the graph
⋃

P ′ defined by a grain line (L′, P ′) satisfying
(GL2’) and (GL3’). Then there are a natural number q, a strictly increasing sequence (pk : k ∈ N) of
natural numbers and a sequence of nested intervals ([uk, vk]M : k ∈ N) of M such that, for every k ∈ N, the
path uk+1P ′

pk
vk+1 is a P ′-segment and a subpath of ukQq+kvk.

Thus, by Key Lemma 3.5 applied to (L′, P ′) := (L, P), there is a natural number q ⩾ d, a strictly
increasing sequence (pk : k ∈ N) of natural numbers and a sequence of nested intervals ([uk, vk]M(i) : k ∈ N)
of M(i) such that, for every k ∈ N, the path ukQ

(i)
q+kvk contains a P-segment uk+1Ppk

vk+1. In particular,
by the definition of (L, P), the path Q

(i)
q+k has length at least ℓ(pk) ⩾ ℓ(p0 + k) ⩾ ℓ(k) for every k ∈ N.

For k = max
{

q,
⌈

i
2
⌉}

, we have i ⩽ 2 ·
⌈

i
2
⌉
⩽ 2k and q + k ⩽ 2k. Thus, by the definition of ℓ(k), the

path Q
(i)
q+k is at least one longer than itself, a contradiction. □

Proof of Theorem 2. Theorem 3.1 implies Theorem 2. □

So to complete the proof of Theorem 3.1, it is left to show Key Lemma 3.4 and Key Lemma 3.5. We will
prove them in Section 3.1 and in Section 3.2, respectively.

3.1. Proof of Key Lemma 3.4. A grain line (L, P) is well-structured if, for every P-segment uPdv,
we have the inclusion V (uPdv) ∩ L ⊆ [u, v]L. We say that a grain line (L, P) is free if

⋃
P is infinitely

edge-connected. Obviously, the following assertions are equivalent:

(1) (L, P) is free; (2) L = V (
⋃

P); (3) no vertex of
⋃

P has degree two.

We remark but will not use that free and well-structured grain lines are wild.
The grain line that defines the halved Farey graph in Example 2.1, for instance, is both free and

well-structured. More general examples which may be helpful to have in mind while thinking about free
and well-structured grain lines are grain lines which satisfy (GL2’) and (GL3’). In fact, the graphs which
we constructed in the proof of Theorem 3.1 are also defined by such a grain line, i.e., they are generalised
halved Farey graphs by Lemma 3.2. We remark that these are not only wild but also wildly presented.

A crucial property of any well-structured grain line is that the deletion of any internal vertex destroys
the infinite edge-connectivity between its startvertex and endvertex (see Figure 4):

Lemma 3.6. Let (L, P) be a well-structured grain line and let u <L v <L w be three vertices in L. Then the
vertex v together with the set F of all the finitely many edges in P-depth at most the P-depth of v separate u

and w in
⋃

P. That is, v together with F separates all vertices in [x, v)L from all vertices in (v, y]L, where x

and y are the minimum and maximum of L, respectively.
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u

v

w

Figure 4. A generalised halved Farey graph in which its vertex v together with the edges
(red) in depth at most the depth of v separate u and w.

Proof. Let d be the depth of v in P. Since (L, P) is well-structured, we have for every path Pn with n > d

the two inclusions

V (xPnv − v) ∩ L ⊆ [x, v)L and V (vPny − v) ∩ L ⊆ (v, y]L.

Hence, every [x, v)L–(v, y]L path in
⋃

P which avoids v has to contain at least one of the finitely many
edges in depth at most d in P. □

It follows that every well-structured grain line (L, P) imposes the order of L on every grain line in
⋃

P:

Lemma 3.7. Let (M, Q) be a grain line in the graph
⋃

P defined by a grain line (L, P). If (L, P) is
well-structured, then M is an interval of L and ⩽M is either the linear order on M induced by ⩽L or the
reverse of it.

Proof. First, we note that M is a subset of L: By (GL2), any vertex of
⋃

P which is not in L has degree
two; but every vertex of M has infinite degree in

⋃
Q ⊆

⋃
P by (GL1). We claim that it suffices to show

the following assertion (∗).

For every three vertices u, w ∈ M and v ∈ L with u ⩽L v ⩽L w, the vertex v is contained in M and
the vertex v lies in between u and w with respect to ⩽M .

(∗)

Let x and y be the endvertices of (M, Q) named so that x <L y. First, let us deduce M = [x, y]L from (∗).
By possibly reversing ⩽M , we may assume without loss of generality that also x <M y. For the forward
inclusion M ⊆ [x, y]L, let v ̸= x, y be any element of M . We show x <L v and v <L y separately. To
see that x <L v, we suppose for a contradiction that v <L x. Then we apply Lemma 3.6 to the grain
line (L, P) and v <L x <L y to find a finite set Fx of edges of

⋃
P such that x together with Fx separates v

from y in the graph
⋃

P. But vQy is an infinite system of pairwise edge-disjoint v–y paths that avoid x

(since x <M v), contradicting that Fx is finite. Hence we have x <L v. An analogue argument shows v <L y.
Hence, v ∈ [x, y]L. Applying (∗) to x and y and each v ∈ [x, y]L yields the backward inclusion M ⊇ [x, y]L.
Second, we verify that ⩽M and ⩽L agree on M . For every two vertices u, v in M with u ⩽L v, it follows
from M ⊆ [x, y]L that x ⩽L u ⩽L v and, since x ⩽M v, we obtain from (∗) that x ⩽M u ⩽M v.

Now suppose for a contradiction that (∗) does not hold, i.e., suppose that there are three vertices u, w ∈ M

and v ∈ L with u ⩽L v ⩽L w such that v does not lie between u and w with respect to ⩽M . Thus,
u <L v <L w. Then the sequence (uQnw : n > d) with d larger than the Q-depths of u, v and w is an
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infinite system of pairwise edge-disjoint u–w paths in
⋃

P which avoid v, contradicting Lemma 3.6 applied
to the grain line (L, P) and u <L v <L w. □

Next, we show that if (L, P) is not only well-structured but also free, then (L, P) also imposes its freedom
on every grain line in

⋃
P (up to some finite and hence negligible error).

Lemma 3.8. Let (M, Q) be a grain line in the graph
⋃

P defined by a grain line (L, P). If (L, P) is free
and well-structured, then only finitely many vertices of

⋃
Q lie outside of M . In particular, there is a

number d such that (M, Q⩾d) is free.

Proof. Let U be the set of all vertices of
⋃

Q that lie outside of M . Since (L, P) is free, we have L = V (
⋃

P),
so U ∪ M ⊆ L. By Lemma 3.7, there exist x, y ∈ L with x <L y such that [x, y]L = M , and we may assume
without loss of generality that ⩽M is induced by ⩽L (possibly after reversing ⩽M ). Hence U is included
in [a, x)L ∪ (y, b]L, where a and b denote the minimum and maximum of L, respectively.

Let us suppose for a contradiction that U is infinite. Without loss of generality, the intersection of U

with [a, x)L is infinite. Since there are only finitely many vertices of
⋃

Q at Q-depth d for each d ∈ N, there
exists an infinite subset U ′ ⊆ U such that every two distinct vertices in U ′ have distinct Q-depths. Hence
the paths uQd(u)y with u ∈ U ′, where d(u) denotes the Q-depth of u, are pairwise edge-disjoint. Since x is
the minimum of M and since all u are distinct from x by definition of U , all these paths avoid x. But by
Lemma 3.6 applied to u <L x <L y, the vertex x together with some finitely many edges separates u and y

in
⋃

P, a contradiction. □

Since subdividing vertices have degree two, we conclude from Lemma 3.8 that if a free and well-structured
grain line (L, P) contains another grain line as a topological minor, then (L, P) actually contains it as a
subgraph (again up to some finite and hence negligible error):

Lemma 3.9. Let (L, P) and (M, Q) be grain lines such that
⋃

P contains a subdivision of
⋃

Q. If (L, P)
is free and well-structured, then there is a number d such that (M, Q⩾d) is a grain line in

⋃
P. □

Proof of Key Lemma 3.4. Since a generalised halved Farey graph is defined by a free and well-structured
grain line, this follows directly from Lemma 3.9. □

3.2. Proof of Key Lemma 3.5. We need the following three lemmas.

Lemma 3.10. Let (L, P) be a grain line and P a path in
⋃

P. If P contains at least one edge in P-depth
greater than the P-depth of its endvertices, then it already contains a P-segment in depth equal to the
maximum of the P-depths of the edges of P .

Proof. Let d be the maximum of the depths of the edges of P in P. Let uPv be a subpath of P that
is a (

⋃
P<d)-path; this subpath exists because an edge of P has P-depth d and the endvertices of P

are contained in
⋃

P<d by assumption. It follows directly from the choice of uPv that all of its edges
have P-depth at least d, and hence uPv actually is a subpath of Pd. So both u and v lie in L by (GL1),
and thus in L<d. Hence, uPv is the desired P-segment. □

Lemma 3.11. Let (L, P) be a grain line and let P be a u–v path in
⋃

P containing an edge e = ww′ such
that u ⩽L w <L w′ ⩽L v and such that the P-depth d of e is greater than the maximum of the P-depths
of u and v. Let Q be the subpath of P which contains e and is a (

⋃
P<d)-path. If (L, P) is well-structured,

then V (Q) ∩ L ⊆ [u, v]L.
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Proof. We denote the minimum and maximum of L by a and b, respectively. It suffices to show that Q

avoids both [a, u)L and (v, b]L. By symmetry, it suffices to show that Q avoids [a, u)L. Let F denote the set
of edges of

⋃
P<d. By Lemma 3.6, the vertex u separates [a, u)L from (u, b]L in the graph (

⋃
P) − F . The

path Q contains the vertex w′ ∈ (u, b]L; it avoids F because Q is a (
⋃

P<d)-path; and it does not contain u

as an internal vertex because Q is a subpath of the u–v path P . Therefore, Q avoids [a, u)L. □

Lemma 3.12. Let (M, Q) be a grain line in the graph
⋃

P defined by a free, well-structured and wildly
presented grain line (L, P). Then there are a natural number q, a strictly increasing sequence (pk : k ∈ N)
of natural numbers and a sequence of nested intervals ([uk, vk]M : k ∈ N) of M such that, for every k ∈ N,
the path uk+1Ppk

vk+1 is a P-segment and it is a subpath of ukQq+kvk.

Proof. By Lemma 3.8, we may assume by choosing q large enough that, without loss of generality, (M, Q)
is free. Let u0, v0 ∈

⋃
P be the two vertices for which (M, Q) is a u0–v0 grain line. By Lemma 3.7

and possibly interchanging u0 and v0, we may assume without loss of generality that ⩽L and ⩽M agree
on M ⊆ L = V (

⋃
P). Moreover, the lemma also ensures that M is an interval of L. Let p be the maximum

of the P-depths of u0 and v0. Since there are only finitely many edges in P-depth at most p, we can pick q

large enough so that Qq contains an edge of
⋃

P in P-depth greater than p. Then by Lemma 3.10, there is
a number p0 > p such that Qq contains a P-segment u1Pp0v1. Since (M, Q) is free, u1 and v1 are in M .
Thus, [u1, v1]M ⊆ [u0, v0]M because u0 and v0 are the minimum and maximum of M.

Since (L, P) is wildly presented, there is an internal vertex w1 of u1Pp0v1 which is contained in (u1, v1)L.
Since (M, Q) is free and ⩽L and ⩽M agree on M , the vertex w1 is contained in M and w1 ∈ (u1, v1)M. Thus
by (GL1), Qq+1 contains all three vertices u1, v1, w1 and, by (GL3), w1 is an internal vertex of u1Qq+1v1.
Since u1Pp0v1 is a P-segment, the P-depth of the internal vertex w1 of u1Pp0v1 is p0. Since Qq already
contains the two edges of Pp0 that are incident with w1, and since w1 lies on no path Pp with p < p0,
the path u1Qq+1v1 contains an edge eq+1 incident with w1 in P-depth at least p0 + 1. Let Q′

q+1 be the
subpath of u1Qq+1v1 which contains eq+1 and is a (

⋃
P⩽p0)-path. By Lemma 3.10, Q′

q+1 ⊆ u1Qq+1v1

contains a P-segment u2Pp1v2 with p1 > p0. By Lemma 3.11 and since (L, P) is free, V (Q′
q+1) ⊆ [u1, v1]M.

Since u2Pp1v2 is a subpath of Q′
q+1, we have [u2, v2]M ⊆ [u1, v1]M.

Next, we repeat the previous step where we replace u1Pp0v1, q and p0 with u2Pp1v2, q + 1 and p1, and
iterate in this way to conclude the proof. □

Proof of Key Lemma 3.5. Since a grain line which satisfies (GL2’) and (GL3’) is free, well-structured and
wildly presented, this follows directly from Lemma 3.12. □

3.3. Excluding k-bounded Farey graph minors. In [5], it was shown that the Farey graph is uniquely
determined by its connectivity, as follows. A Π-graph is an infinitely edge-connected graph such that no two
of its vertices are linked by infinitely many pairwise internally disjoint paths. A κ-bounded minor, for a
cardinal κ, is a minor with branch sets of size less than κ. A Π-graph is κ-typical if it occurs as a κ-bounded
minor in every Π-graph. Note that any two κ-typical Π-graphs are κ-bounded minors of each other; we call
such graphs κ-boundedly minor-equivalent.

Theorem 3.13. [5] Up to ℵ0-bounded minor-equivalence, the Farey graph is the unique ℵ0-typical Π-graph.

A referee of [5] asked whether ℵ0 is best possible for the above theorem; that is, can ℵ0 be replaced
in Theorem 3.13 with some κ < ℵ0 so that the theorem’s statement remains true? Using generalised halved
Farey graphs, we can show that the answer is in the negative:
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Lemma 3.14. For every k ∈ N there exists a Π-graph that does not contain the Farey graph as a k-bounded
minor and that is a generalised halved Farey graph.

Proof. Let k ∈ N be given. On the one hand, as the Farey graph contains a triangle, every graph that
contains the Farey graph as a k-bounded minor must contain a cycle of length at most 3k. On the other
hand, every generalised halved Farey graph clearly is a Π-graph. So it suffices to find a generalised halved
Farey graph of girth at least 3k + 1. For example, we could take F̆ (ℓ) for ℓ : N → N given by ℓ(0) := 1
and ℓ(n) := 3k when n ⩾ 1. □

4. Typical graph with regard to the immersion relation

In this section, we prove Theorem 1: we show that the halved Farey graph is immersed in every infinitely
edge-connected graph. Before we do this, however, we take a step back to verify that the other two
obvious candidates, namely Kℵ0 and the Farey graph, are not immersed in every infinitely edge-connected
graph. For readers who are familiar with [7], we remark that the second infinitely edge-connected graph
mentioned in Theorem 1.1 is immersion-equivalent to Kℵ0 ; in particular, it is not immersed in every infinitely
edge-connected graph either.

Theorem 4.1.
(i) Kℵ0 is not immersed in the Farey graph.
(ii) Neither Kℵ0 nor the Farey graph is immersed in the halved Farey graph.

Proof. (i): Suppose for a contradiction that there is an immersion of Kℵ0 in the Farey graph F . Let U be
the set of branch vertices of this immersion. By the definition of the Farey graph, we may write F as the
union of two halved Farey graphs which intersect in the Farey graph of order 0. Hence, the two linear orders
on the vertex sets of these two halved Farey graphs introduced in Example 2.1 induce a cyclic order on the
vertex set of F . Now, there are two branch vertices u, v ∈ U such that the open intervals (u, v) and (v, u)
with respect to this cyclic order intersect U non-emptily. Since Kℵ0 is infinitely edge-connected even after
deleting the two vertices u and v, the immersion yields infinitely many edges between (u, v) and (v, u) in F .
This contradicts the fact that, by the construction of F , there are only finitely many of these.

(ii): Since the halved Farey graph F̆ is a subgraph of the Farey graph, Kℵ0 cannot be immersed in F̆

by (i). Suppose for a contradiction that there is an immersion of the Farey graph F in the halved Farey
graph F̆ . Let U be the set of branch vertices of this immersion. Let x, y be the two vertices in the halved
Farey graph of order 0 in the halved Farey graph F̆ . There is a branch vertex w ∈ U such that the two
intervals [x, w) and (w, y] with respect to the linear order on V (F̆ ) introduced in Example 2.1 intersect U

non-emptily. Since the Farey graph F is infinitely edge-connected even after deleting the single vertex w,
the immersion yields infinitely many edges between [x, w) and (w, y] in F̆ . This contradicts the fact that,
by the construction of F̆ , there are only finitely many of those. □

Now we tend to the proof of Theorem 1.

4.1. Overview of the proof of Theorem 1. Our aim for the remainder of this paper is to show that
every infinitely edge-connected graph contains the halved Farey graph as an immersion minor. For this, it
obviously suffices to consider only infinitely edge-connected graphs with no Kℵ0 -immersion-minors.

As our first step, we will transfer the notion of cutvertices from vertex-connectivity to infinite edge-
connectivity by introducing ‘compound-cutvertices’, and we will introduce what could be considered an
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analogue of the block-cutvertex theorem for compound-cutvertices and blocks of infinite edge-connectivity
(Key Lemma 4.5). Unlike the tree-structure of a graph imposed by its cutvertices, the structure imposed by
its compound-cutvertices will be tree-like but not in general a tree-decomposition. Indeed, the tree-like
structure that we will obtain from the compound-cutvertices of a graph can exhibit (ω + 1)-chains, and for
some graphs like the halved Farey graph, their tree-like structure can even be order-isomorphic to Q.

As our second step, we will show that an infinitely edge-connected graph contains the halved Farey graph
as an immersion minor if the tree-like structure given by its compound-cutvertices is ‘wild’ in that it exhibits
an interval which is order-isomorphic to Q (Key Lemma 4.10).

So as our third and final step, we will deal with the case in which the tree-like structure given by the
compound-cutvertices is not wild. Roughly, we will employ the compound-cutvertices to find infinitely
many infinitely edge-connected subgraphs which are almost vertex-disjoint and which have no compound-
cutvertices themselves. Then we will choose an arbitrary vertex in each subgraph that lies in no other of
these subgraphs, and we will link the chosen vertices up with paths to obtain a Kℵ0 -immersion-minor. As
this contradicts our initial assumption that no Kℵ0 -immersion-minor is present, the proof will be concluded.

4.2. Compound separations. Recall that a separation of a set V is a set {A, B} such that A ∪ B = V .
We call A and B the sides of this separation. The separation is proper if A ∖ B and B ∖ A are non-empty.
Now let G be any infinite graph. A compound-separation of G is a proper separation {A, B} of V (G) such
that the separator A ∩ B is finite and G has only finitely many edges between A ∖ B and B ∖ A. Then
the cardinality of the separator A ∩ B is the order of the compound-separation {A, B}. If the separator
of a compound-separation {A, B} is a singleton {u}, then we also refer to the vertex u as the separator
of {A, B}, and we say that {A, B} is unitary. A vertex u is a compound-cutvertex of G if there exists a
compound-separation of G with separator u. A compound-separation {A, B} of G separates two vertices u, v

of G if u is contained in A∖B and v is contained in B∖A, or vice versa. It separates u and v minimally if no
compound-separation {C, D} with C ∩D ⊊ A∩B separates u and v in G. For example, if {A, B} is a unitary
compound-separation of an infinitely edge-connected graph with u ∈ A ∖ B and v ∈ B ∖ A, then {A, B}
minimally separates u and v in that graph. We say that two vertices u and v of G are k-compound-connected
in G for a natural number k if no compound-separation of G of order less than k separates u and v. If every
two vertices of G are k-compound-connected, then G itself is k-compound-connected.

If an infinite graph G is k-compound-connected for every k ∈ N, then G is infinitely vertex-connected; in
particular, we greedily find Kℵ0 as a topological minor in G, so the halved Farey graph is immersed in G:

Observation 4.2. Let G be an infinite graph. If the halved Farey graph is not immersed in G, then there
is a pair of vertices of G which is separated by some compound-separation of G. □

Every minimally separating compound-separation of an infinitely edge-connected graph G can be used to
split G into two infinitely edge-connected subgraphs:

Key Lemma 4.3. Let G be an infinitely edge-connected graph and {A, B} a compound-separation of G

that minimally separates two vertices of G. Then G[A] and G[B] are infinitely edge-connected.

We prepare the proof of Key Lemma 4.3 with the following lemma:

Lemma 4.4. Let G be an infinitely edge-connected graph and {A, B} a compound-separation of G that
minimally separates two vertices u, v ∈ G. If u ∈ A, then there is a system of pairwise edge-disjoint u–(A∩B)
paths in G[A] such that, for every vertex w ∈ A ∩ B, infinitely many of these paths end in w.
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Proof. It suffices to find for every vertex w ∈ A ∩ B a system P of infinitely many pairwise edge-disjoint u–
w paths in G[A] which are internally disjoint from A ∩ B. For this, let w ∈ A ∩ B be any vertex.
Set S := (A ∩ B) ∖ {w} and H := G − S. Any finite cut E(C, D) of H which separates u and v induces
a compound-separation {C ∪ S, D ∪ S} of G with separator S ⊊ A ∩ B which separates u and v. Since
the latter does not exist by assumption, u and v cannot be separated by finitely many edges in H. Hence,
there are infinitely many pairwise edge-disjoint u–v paths in G that avoid S. Since {A, B} is a compound-
separation that separates u and v, all but finitely many of these paths have to meet w. Thus, the u–w

subpaths of these paths form the desired path system. □

Proof of Key Lemma 4.3. By symmetry, it is enough to prove that G[A] is infinitely edge-connected. Let u

and v be two vertices of G which are minimally separated by a compound-separation {A, B}, named so
that u ∈ A ∖ B. To show that G[A] is infinitely edge-connected, it suffices to find infinitely many pairwise
edge-disjoint u–a paths in G[A] for every vertex a ∈ A other than u. For this, let any such vertex a be
given. Since G is infinitely edge-connected, there is an infinite system Q′ of pairwise edge-disjoint a–v paths
in G. As {A, B} is a compound-separation of G, it follows from the pigeonhole principle that there is a
vertex w ∈ A ∩ B for which there are infinitely many paths in Q′ whose first vertex in B is w. We denote
the system of the a–w subpaths of these paths by Q. Note that all paths in Q are included in G[A]. By
Lemma 4.4, there is an infinite system P of pairwise edge-disjoint u–w paths in G[A]. Since Q and P both
consist of paths in G[A], we can greedily combine these two path systems to obtain infinitely many pairwise
edge-disjoint u–a paths in G[A]. Thus, G[A] is infinitely edge-connected. □

4.3. Faithful nested sets of unitary compound-separations. In this section, we prove the following key
lemma which could be viewed as an analogue of the block-cutvertex theorem for infinite edge-connectivity.
Missing definitions follow.

Key Lemma 4.5. Let G be an infinitely edge-connected graph. If Kℵ0 is not immersed in G, then there is
a nested set of unitary compound-separations of G which is faithful to G.

First, we make this statement precise. Let G be an infinitely edge-connected graph. For a separa-
tion {A, B} of a set V , we recall that the ordered pairs (A, B) and (B, A) are its orientations, and (A, B)
and (B, A) are oriented separations of V . For two oriented separations (A, B) and (C, D), we have
that (A, B) ⩽ (C, D) if A ⊆ C and B ⊇ D. Two separations are nested if they have comparable orien-
tations. Moreover, a set of separations is nested if every two separations in it are nested. By choosing
precisely one orientation of each unoriented separation in a set S of unoriented separations, we obtain an
orientation σ of S. The orientation σ is a star of separations if for every two distinct (A, B), (C, D) ∈ σ we
have (A, B) ⩽ (D, C).

Let w be a compound-cutvertex of G. A nested set N of unitary compound-separations of G is faithful
to w in G if

– the separators of all separations in N are equal to w,
– there is some orientation of N which is a star of separations,
– and for every pair of vertices which are separated by some compound-separation with separator w

there is some compound-separation in N separating them.

A nested set N of unitary compound-separations of G is faithful to G if for every compound-cutvertex w

of G the subset Nw of N containing all compound-separations of N with separator w is faithful to w in G.
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If we can find for each compound-cutvertex w of G a nested set of compound-separations of G which is
faithful to w in G, then we can combine these to obtain a nested set which is faithful to G:

Lemma 4.6. Let G be an infinitely edge-connected graph. If {A, B} and {C, D} are two unitary compound-
separations of G with distinct separators u and v, respectively, such that u ∈ C and v ∈ B, then (A, B) ⩽
(C, D) and, in particular, {A, B} and {C, D} are nested.

Proof. The induced subgraph G[D] shares with B at least the vertex v by assumption, but it does not
contain the vertex u because u is contained in C ∖ {v} = V (G)∖D. Since G[D] is infinitely edge-connected
by Key Lemma 4.3 and {A, B} is a compound-separation with separator u, it follows that G[D] is included
in G[B] − u. By symmetry, G[A] is included in G[C] − v. Hence (A, B) ⩽ (C, D). □

Hence to find a nested set of compound-separations which is faithful to G, it suffices to find for every
compound-cutvertex w of G a nested set of compound-separations which is faithful to w in G.

The edge-blocks of a graph G are the classes of the equivalence relation ‘not separable by finitely many
edges’ on the vertex set of G. So a vertex w of G is a compound-cutvertex if and only if G − w is not
infinitely edge-connected, if and only if G − w has at least two edge-blocks.

Lemma 4.7. Let G be an infinitely edge-connected graph and w be a compound-cutvertex of G. If G − w

has only finitely many edge-blocks, then there is a nested set Nw which is faithful to w in G.

Proof. Every edge-block X of G−w induces the separation {X ∪ {w}, V (G) ∖ X} of V (G) with separator w,
and the set Nw containing all of these separations is nested. Moreover, if we orient the separation induced
by an edge-block X of G − w as (X ∪ {w}, V (G) ∖ X), then the orientation of Nw containing all of these
oriented separations is a star of separations. Since every two vertices of G that are separated by some
compound-separation with separator w are contained in distinct edge-blocks of G − w, it is enough to show
that every separation in Nw is a compound-separation. For this, let X be an edge-block of G − w. Then X

sends only finitely many edges to each other edge-block of G − w. Since G − w has only finitely many
edge-blocks, only finitely many edges run between X and G − w − X. Hence {X ∪ {w}, V (G) ∖ X} is a
compound-separation. □

For the proof of Key Lemma 4.5, we only need one more ingredient:

Lemma 4.8. Let G be an infinitely edge-connected graph and X a finite set of vertices of G. Then the
following assertions are complementary:

(i) There is an immersion of Kℵ0 in G with at most one branch vertex in every edge-block of G − X;
(ii) G − X has only finitely many edge-blocks.

To prove Lemma 4.8, we need the following tool, and the notion of tree-cut decompositions by Wollan [9].
Recall that a near-partition of a set V is a family of pairwise disjoint subsets Xξ ⊆ V , possibly empty, such
that

⋃
ξ Xξ = V . Let G be a graph, T a tree, and let X = (Xt)t∈T be a family of vertex sets Xt ⊆ V (G)

indexed by the nodes t of T . The pair (T, X ) is called a tree-cut decomposition of G if X is a near-partition
of V (G). The vertex sets Xt are the parts of the tree-cut decomposition (T, X ). We say that (T, X ) is
a tree-cut decomposition into these parts. Whenever a tree-cut decomposition is introduced as (T, X ),
we tacitly assume that X = (Xt)t∈T . If (T, X ) is a tree-cut decomposition, then we associate with every
edge t1t2 ∈ T its adhesion set EG(

⋃
t∈T1

Xt ,
⋃

t∈T2
Xt ) where T1 and T2 are the two components of T − t1t2

with t1 ∈ T1 and t2 ∈ T2. A tree-cut decomposition has finite adhesion if all its adhesion sets are finite.
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Theorem 4.9 ( [7, Theorem 5.1] ). Every connected graph has a tree-cut decomposition of finite adhesion
into its edge-blocks.

We remark that, since edge-blocks are non-empty, the parts of the tree-cut decomposition in Theorem 4.9
form a partition of the vertex set. Hence, every adhesion set of this tree-cut decomposition is a cut.

Proof of Lemma 4.8. Assertions (i) and (ii) clearly exclude each other, so it suffices to prove ¬(ii)→(i).
We assume that G − X has infinitely many edge-blocks. Then we find an infinite set {Un : n ∈ N} of

subsets of V (G)∖X such that all {Un ∪ X, V (G)∖Un} are compound-separations of G (with separator X),
as follows. By Theorem 4.9, G − X admits a tree-cut decomposition (T, X ) of finite adhesion into its
edge-blocks. By König’s Infinity Lemma (see e.g. [2, Lemma 8.1.2]), the tree T contains a vertex of infinite
degree or a ray. If t0, t1, . . . are infinitely many neighbours of some vertex t ∈ T , then for every n ∈ N we
let Un be the side of the finite cut of G−X induced by the edge tnt ∈ T that does not include Xt. Otherwise,
we find a ray t0t1 . . . in T . We denote the finite cut of G − X induced by the edge tntn+1 ∈ T by {An, Bn}
so that An includes Xtn

. We set U0 := A0 and, for every natural number n ⩾ 1, we let Un := An ∩ Bn−1.
It is straightforward to see that the resulting partition {Un : n ∈ N} is as desired in either case.

For every n ∈ N, we fix a vertex un ∈ Un and an infinite system Pn of pairwise edge-disjoint un–X paths
in G. Since {Un ∪ X, V (G) ∖ Un} is a compound-separation of G, all but finitely many of these paths are
contained in G[Un ∪ X]; thus, we may assume without loss of generality that all of them are contained
in G[Un ∪ X]. By the pigeonhole principle, there is a vertex x in the finite vertex set X such that there is
an infinite set M of natural numbers n for which infinitely many of the paths in Pn end in x. Now we find
an immersion of Kℵ0 in G with {un : n ∈ M} as its set of branch vertices as follows: we greedily connect
every two branch vertices ui and uj with a path that avoids all other branch vertices and the already chosen
finitely many edges using the path systems Pi and Pj . □

Proof of Key Lemma 4.5. Let G be an infinitely edge-connected graph and suppose that Kℵ0 is not immersed
in G. For every compound-cutvertex w of G, the graph G − w has only finitely many edge-blocks by
Lemma 4.8, and so there is a nested set Nw which is faithful to w in G by Lemma 4.7. The union N of all
the sets Nw is nested by Lemma 4.6, and N is faithful to G by construction. We remark that, if G has no
compound-cutvertex, then N = ∅ is faithful to G. □

4.4. Finding the halved Farey graph in wild structures. Our next aim is to prove this:

Key Lemma 4.10. Let G be an infinitely edge-connected graph and S a set of oriented unitary compound-
separations with pairwise distinct separators. If (S,⩽) is order-isomorphic to Q, then the halved Farey graph
is immersed in G. □

We have split the proof into two halves which are represented by the following two lemmas:

Lemma 4.11. The halved Farey graph is immersed in any graph that is defined by a wildly presented
grain line.

Proof. Let (L, P) be a wildly presented grain line. We define the set U of branch vertices as follows. First,
let U0 := {x, y}, where x and y are the two endvertices of the grain line. Assume that we have already
chosen U0, . . . , Un for some natural number n such that for every m ∈ {1, . . . , n}

– all vertices in Um ∖ Um−1 are in P-depth m, and
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– for every u ∈ Um−1 with successor u′ in L ↾Um−1, there is precisely one v ∈ Um such that u <L

v <L u′.

We order Un according to ⩽L as u0 <L u1 <L · · · <L uℓ. Now we obtain Un+1 from Un by adding exactly
one vertex vk ∈ L for every k ∈ {1, . . . , ℓ} such that vk is an internal vertex of the subpath uk−1Pn+1uk

and uk−1 <L vk <L uk: Let u′
k be the ⩽L-minimal vertex in L in P-depth at most n with uk−1 <L u′

k ⩽L uk.
Since (L, P) is wildly presented, there is an internal vertex vk of uk−1Pn+1u′

k with uk−1 <L vk <L u′
k. In

particular, vk <L uk and, by the choice of u′
k, the vertex vk is in P-depth n + 1.

Then we set U :=
⋃

n∈N Un. By construction we have that, for every n ∈ N, the path Pn induces the
same linear order on Un as ⩽L and, since U ∖ Un consists only of vertices in P-depth greater than n, the
path Pn is also disjoint from U ∖ Un. Thus, we have found an immersion of the halved Farey graph in

⋃
P

with U as its set of branch vertices. □

Lemma 4.12. Let G be an infinitely edge-connected graph. Let S be a set of oriented unitary compound-
separations of G with pairwise distinct separators. If (S,⩽) is order-isomorphic to Q ∩ [0, 1], then there
exists a wildly presented grain line (L, P) such that

⋃
P is immersed in G.

Proof. For every oriented unitary compound-separation s in S, let vs be the separator of s. Put L :=
{vs : s ∈ S}. The linear order on S induces the linear order ⩽L on L that is defined by letting vs ⩽L vt

whenever s ⩽ t. Then L := (L,⩽L) is order-isomorphic to (S,⩽), and in particular to Q ∩ [0, 1].
Let x and y be the minimal and maximal element of L, respectively. Since G is infinitely edge-connected,

there is an infinite system P ′′ of pairwise edge-disjoint x–y paths in G. By Lemma 2.2, we find an x–y

grain line (L′, P ′) in G such that every path in P ′ is also contained in P ′′. By the definition of x and y,
we have that, for every oriented compound-separation s = (A, B) ∈ S, the vertices x and y are contained
in A and B, respectively. Thus, only finitely many paths in P ′′ avoid vs. Moreover, if s and t are two
oriented compound-separations in S with s ⩽ t, then, for all but finitely many x–y paths P in P ′′, the
vertex vs comes before vt on P . Hence, L ⊆ L′ and ⩽L agrees with ⩽L′ on L. Since L is order-isomorphic
to Q ∩ [0, 1], we may additionally assume, by passing to a subsequence of P ′, that for every n ⩾ 1 and every
two vertices u and v in L ∩ L′

<n with u <L v, there is an internal vertex w of uP ′
nv which is contained in L

and satisfies u <L w <L v. Let us denote this property by (∗).
For every n ∈ N, let Pn be the path obtained from P ′

n ∈ P ′ by replacing each L-path Q ⊆ P ′
n that has

an internal vertex with an edge e(Q) that joins the ends of Q (this edge need not be an edge in G). By (∗),
the paths in P := (Pn)n∈N are pairwise edge-disjoint, and (L, P) is a widly presented grain line. Moreover,⋃

P is immersed in
⋃

P ′: we take the identity on the vertices and edges, except that we map every edge of
the form e(Q) to the path Q. □

Proof of Key Lemma 4.10. This follows directly from Lemma 4.11 and Lemma 4.12. □

4.5. Decomposing along compound-separations. The following key lemma is the final ingredient for
the proof of Theorem 1:

Key Lemma 4.13. Let G be an infinitely edge-connected graph. Then at least one of the following is true:

(i) The halved Farey graph is immersed in G;
(ii) G is 2-compound-connected;
(iii) there is a unitary compound-separation {A, B} of G such that G[B] is 2-compound-connected.
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Proof. Let us assume that (i) does not hold; in particular, Kℵ0 is not immersed in G. Thus, by Key
Lemma 4.5, there is a nested set N of unitary compound-separations of G which is faithful to G.

Let N be the set consisting of all orientations of the compound-separations in N , equipped with the
usual order ⩽ of oriented separations. Note that we may assume that N is non-empty: otherwise, G

is 2-compound-connected, and thus (ii) holds.
We claim that if (N,⩽) has no maximal or minimal element, then (iii) holds. So suppose that (A, B)

is maximal in (N,⩽), say (the other case is analogous). Then G[B] is infinitely edge-connected by Key
Lemma 4.3. Now if we assume for a contradiction that G[B] is not 2-compound-connected, then there is
a unitary compound-separation {C, D} of G[B] that separates some two vertices u and v of G[B]. After
renaming the sides of {C, D}, we may assume that C contains the separator w of (A, B). Then {A ∪ C, D}
is a unitary compound-separation of G which still separates u and v. However, no compound-separation
in N separates u and v, since u and v lie in B and (A, B) is maximal in (N,⩽). Hence N is not faithful
to G, a contradiction.

Therefore, we may assume that (N,⩽) has no maximal or minimal element. Hence, using Zorn’s lemma,
we find an infinite subset S′ of N such that:

– ⩽ orders S′ linearly;
– S′ is unbounded in N ;
– S′ is an interval of N : for every two r, t ∈ S′ and s ∈ N with r ⩽ s ⩽ t, we have s ∈ S′.

Let w be any vertex of G. Since N is faithful to G, it either does not contain a compound-separation
with separator w, or, if w is a compound-cutvertex of G, then there is an orientation of the set of all
compound-separations in N with separator w which is a star of separations. So it follows from (S′,⩽) being
a linear order that there are at most two oriented compound-separations in S′ with separator w. Moreover,
if there are two such separations s1 < s2, then the separator of any oriented compound-separation t

with s1 < t < s2 is a subset of {w}, thus equal to {w}, so s2 is the successor of s1 in (S′,⩽). Let S be
a subset of S′ obtained by deleting exactly one element of every pair of oriented compound-separations
in S′ with the same separator. Thus, the separators of the oriented compound-separations in S are pairwise
distinct.

Let R be the set of all elements of S that have a successor in (S,⩽). We claim that R is infinite. To see
this, let us assume for a contradiction that R is finite. Then (S ∖ R,⩽) is an infinite set equipped with a
dense linear order. So we can greedily find a subset of S ∖ R which is ordered by ⩽ like Q, and apply Key
Lemma 4.10 to obtain a halved Farey graph immersed in G, contradicting our assumption that (i) fails.
Thus, R is infinite.

By passing to a subset of R, we may assume without loss of generality that (R,⩽) is order-isomorphic
to ω or to the inverse of ω. In the following, we will assume that (R,⩽) is order-isomorphic to ω, as the
other case is analogous. Let s0 < s2 < s4 < . . . be an enumeration of R. For every n ∈ N, let s2n+1 be the
successor of s2n in S. Moreover, for every n ∈ N we let (An, Bn) := sn, denote the separator of sn by vn,
and we let V0 := A0 as well as Vn+1 := Bn ∩ An+1.

We claim that, for every natural number n ⩾ 1,

(1) either vn−1 and vn are equal or G[Vn] is infinitely edge-connected, and
(2) if n is odd then vn−1 and vn are distinct and 2-compound-connected in G[Vn].

Let n ⩾ 1 be any natural number. If vn−1 and vn are distinct, then applying Key Lemma 4.3 twice
yields that G[Vn] is infinitely edge-connected. Thus, (1) holds. Now we additionally assume that n is
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odd. Then sn is the successor of sn−1 in S; in particular, sn−1 and sn are distinct. Thus, since the
separators of the oriented compound-separations in S are pairwise distinct, vn−1 and vn are distinct. We
claim that there is no unitary compound-separation of G[Vn] that separates vn−1 and vn. Indeed, suppose
for a contradiction that there is a unitary compound-separation {A, B} of G[Vn] with separator w such
that vn−1 ∈ A ∖ B and vn ∈ B ∖ A. Then {An−1 ∪ A, B ∪ Bn} is a unitary compound-separation of G

which separates vn−1 and vn. Since N is faithful to G, there is a compound-separation s with the same
separator w in N which separates vn−1 from vn, and by Lemma 4.6 we have that sn−1 < s < sn after
suitably orienting s. As S′ is an interval of N , we have s ∈ S′. By the construction of S, there is a unique
oriented compound-separation t ∈ S with separator w. Since we have sn−1 < s < sn and since w is distinct
from the separators vn−1 and vn of sn−1 and sn, Lemma 4.6 implies sn−1 < t < sn. This contradicts the
fact that sn is the successor of sn−1 in S. So (2) holds.

To conclude the proof, we construct an immersion of Kℵ0 in G, as follows. For every even natural
number n ⩾ 1, if vn−1 is distinct from vn then we pick an infinite system Pn of infinitely many pairwise
edge-disjoint vn−1–vn paths in G[Vn], which exists by (1). For every odd natural number n ⩾ 1, we pick an
arbitrary vertex un in Vn ∖ {vn−1, vn} and—using that G[Vn] is 2-compound-connected by (2)—we greedily
pick an infinite system Pn of pairwise edge-disjoint vn−1–vn paths in G[Vn] such that infinitely many of
these contain un and infinitely many do not. Note that a vertex un can only lie on paths in Pn and not
on paths in any other Pm. Let U := {un : n ∈ 2N + 1}. Finally, we greedily connect every two distinct
vertices ui, uj ∈ U with a path avoiding all other un and the already used finitely many edges by suitably
concatenating paths from the sets Pm with m ⩾ 1. This yields an immersion of Kℵ0 in G with U as its set
of branch vertices, and thus (i) holds. □

4.6. The halved Farey graph is everywhere. Finally, we are ready to prove Theorem 1:

Proof of Theorem 1. Let G be any infinitely edge-connected graph, and let us assume for a contradiction
that the halved Farey graph is not immersed in G. We will recursively construct infinitely edge-connected
subgraphs G0, G1, . . . and H0, H1, . . . of G such that, for every n ∈ N,

(i) {G0, . . . , Gn} ∪ {Hn} is a set of pairwise edge-disjoint subgraphs of G,
(ii) if n ⩾ 1 then {V (Gn), V (Hn)} is a compound-separation of Hn−1 with V (Gn) ∩ V (Hn) ̸= ∅, and
(iii) the intersection graph of {V (Gm) : m ⩽ n} is connected.

Later, we will continue working with the graphs Gn, while the graphs Hn only serve as ‘reservoirs’ during
the construction of these two sequences, which we explain next.

To get started, suppose that n = 0, so we have to define G0 and H0. By Observation 4.2, there is a
compound-separation {A0, B0} of G that separates two vertices of G minimally. By Key Lemma 4.3, G[A0]
and G[B0] are infinitely edge-connected. Hence, G0 := G[A0] and H0 := G[B0] − EG(A0 ∩ B0) are the
desired subgraphs, where EG(A0 ∩ B0) denotes the set of all the finitely many edges of G that run between
the vertices in A0 ∩ B0.

Suppose next that n ⩾ 1 and that we have already chosen G0, . . . , Gn−1 and H0, . . . , Hn−1. By
Observation 4.2, there is a compound-separation {An, Bn} of Hn−1 that separates two vertices of Hn−1

minimally. Since the intersection V (Gn−1) ∩ V (Hn−1) is nonempty by (ii) for n − 1, we can rename
the sides of {An, Bn} so that An meets V (Gn−1). By Key Lemma 4.3, both Hn−1[An] and Hn−1[Bn]
are infinitely edge-connected. Hence Gn := Hn−1[An] and Hn := Hn−1[Bn] − EHn−1(An ∩ Bn) also
are infinitely edge-connected. (i) holds by construction. Since Hn−1 is infinitely edge-connected, the
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intersection An ∩ Bn is nonempty, so (ii) holds. Finally, (iii) holds because we named the sides of {An, Bn}
so that An meets V (Gn−1).

In the next step, we will obtain from the sequence (Gn)n∈N of infinitely edge-connected graphs a countably
infinite collection U of pairwise edge-disjoint infinitely edge-connected subgraphs of G such that

(1) infinitely many graphs in U are 2-compound-connected,
(2) each graph in U has a vertex that is contained in no other member of U , and
(3) the intersection graph of U is connected.

We construct U from the empty set by adding one or two graphs for each n ∈ N, as follows. Given n, we
apply Key Lemma 4.13 to Gn, which tells us that Gn is 2-compound-connected or that there is a unitary
compound-separation {X, Y } of Gn such that Gn[Y ] is 2-compound-connected (as the halved Farey graph
is not immersed in Gn ⊆ G by assumption). In the former case, we add Gn to U . In the latter case, we
add Gn[X] − EGn(X ∩ Y ) and Gn[Y ] to U .

The 2-compound-connected graphs in U are infinitely edge-connected by definition, and the graphs of the
form Gn[X] − EGn

(X ∩ Y ) are infinitely edge-connected by Key Lemma 4.3. While properties (1) and (3)
follow immediately from the above construction and (iii), property (2) follows from (ii): For every n ∈ N,
(ii) implies that only finitely many vertices of Gn occur in any later Gm with m > n. Hence every Gn has
only finitely many vertices that occur in any Gm with m ̸= n. Thus, every graph in U shares only finitely
many vertices with other members of U . As the graphs in U are infinite, (2) follows.

To obtain a contradiction, we construct an immersion of Kℵ0 in G, as follows. In each 2-compound-
connected graph in U we select one vertex that lies in no other member of U , which is possible by (2). In
total, ℵ0 vertices are select in this way, by (1). The selected vertices will be the branch vertices of the
immersion. Now (1) and (3) combined with the infinite edge-connectivity of the members of U allow us to
greedily connect every two branch vertices with a path that avoids all other branch vertices and the finitely
many edges used by the previously chosen paths. □
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