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Sobolev Inequality on Manifolds With Asymptotically
Nonnegative Bakry-Emery Ricci Curvature”

Yuxin Dong, Hezi Lin, Lingen Lu

ABSTRACT  In this paper, inspired by [4, 9], we prove a Sobolev inequality on
manifolds with density and asymptotically nonnegative Bakry-Emery Ricci curvature.
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1 Introduction

In 2019, S. Brendle [3] proved a Sobolev inequality for submanifolds in Euclidean
space. Moreover, he obtained a sharp isoperimetric inequality for compact minimal
submanifolds in Euclidean space with codimension at most 2. In 2020, he generalized
the results in [3] to the case of manifolds with nonnegative curvature ([4]). Recently,
we extended [4] to manifolds with asymptotically nonnegative curvature ([6]). In 2021,
F. Johne [9] generalized the results of [4] to the case of manifolds with density and non-
negative Bakry—Emery Ricci curvature. In this note, we establish a Sobolev inequality in
manifolds with density and asymptotically nonnegative Bakry—Emery Ricci curvature.

Let (M, g, wdvol,) be a smooth complete noncompact n-dimensional Riemannian
manifold with density, where w is a smooth positive density function on M and dvol,
is the Riemannian volume measure with respect to the metric g. As a generalization of
Ricci curvature, the Bakry-Emery Ricci curvature 2] of (M, g,w dvol,) is defined by

1
Ric” = Ric — D*(logw) — aDlogw@)Dlogw, (1.1)

where Ric denotes the Ricci curvature of M, D is the Levi-Civita connection with respect
to the metric g and a > 0. If the density function w is constant, the Bakry—Emery Ricci
curvature Ric}, reduces to the Ricci curvature.

Suppose A : [0, 4+00) — [0, +00) is a nonnegative and nonincreasing continuous func-
tion satisfying

+o0
by = / sA(s) ds < 400, (1.2)
0
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which implies
+o00
by = / A(s) ds < +o0. (1.3)
0

A complete noncompact Riemannian manifold (M, g, w dvol,) with density of dimension
n is said to have asymptotically nonnegative Bakry-Emery Ricci curvature if
there exists a base point o € M such that

Ricy(q) > —(n+a —1) A(d(o,q)), Vg€ M, (1.4)

where d is the distance function of M. In particular, A = 0 in (1.4) corresponds to the
case treated in [9)].
Suppose h : [0,T) — R is the unique solution of the initial value problem

{h"<t> = A(t)h(t),

h(0) = 0, K'(0) (1.5)

1.
By the theory of ordinary differential equations [16], the solution exists for all time, i.e.
T = co. We remark that h reduces to the radius function, if A = 0. Similar to the work
of F. Johne [9], we define the a-asymptotic volume ratio V, of (M, g, w dvol,) by

Is (o) W
V, = i s ,
r—1>£noo (n+ ) fO hrte=1(t) dt

(1.6)

where o is the base point and B,.(0) denotes the geodesic ball of radius 7, i.e. B.(0) =
{g € M :d(o,q) <r}. In Theorem 2.2, we will show a comparison theorem for weighted
volumes, to be more precise we will show

fBT(o) w
(n+a) [ hrte=1(t) dt

is a nonincreasing function for r € (0, +00), so V, is well defined.

By combining the ABP-method in [4, 9] with some comparison theorems for ordinary
differential equations, we establish a Sobolev inequality for a compact domain in mani-
folds with density, under the asymptotically nonnegative Bakry—Emery Ricci curvature
as follows.

Theorem 1.1. Let (M, g,wdvol,) be a smooth complete noncompact n-dimensional
Riemannian manifold of smooth density w > 0 and asymptotically nonnegative Bakry-
Emery Ricci curvature with respect to a base point o € M. Let § be a compact domain
in M with boundary OS2, and f be a positive smooth function on §2. Then

/ wf+/w\Df|+2bl<n+O‘_1>/wf

a0 Q !
L 14Dy \ 5 nan)
n+a et

> (n+a)Vd (62T0b1+b0) (/wa ) ) ’
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where 1o = max{d(o,z)|x € Q}, V, is the a-asymptotic volume ratio of M given by
(1.6), bo, by are defined in (1.2) and (1.3), respectively.

Taking f = 1 in Theorem 1.1, we obtain an isoperimetric inequality:

Corollary 1.2. Let (M, g, wdvol,) be a smooth complete noncompact n-dimensional
Riemannian manifold of smooth density w > 0 and asymptotically nonnegative Bakry-
Emery Ricci curvature with respect to a base point o € M. Then

nt+a—1

(100 S e nhacl
/mwz<(n—i—a)va+ (ﬁ) " —2(n—|—a—1)b1(/ﬂw)+>(/ﬂw) o

where 1o = max{d(o,z)|x € Q}, V, is the a-asymptotic volume ratio of M given by
(1.6), bo, by are defined in (1.2) and (1.3).

When w = 1,bp = by = a = 0, Corollary 1.2 was first given by V. Agostiniani,
M. Fogagnolo, and L. Mazziari [1] in dimension 3 and obtained by S. Brendle [4] for
any dimension. In recent years, the study of the isoperimetric problem in manifolds
with density attracts much attention, see [15, 11, 5, 7]. For more about manifolds with
density, we refer the reader to [12, 13] and references therein.

2 Preliminaries

In this section, we give a proof of the Bishop-Gromov volume comparison theorem for
complete noncompact Riemannian manifold with density and asymptotically nonnega-
tive Bakry—Emery Ricci curvature.

The following lemma is an almost verbatim combination of Lemma 2.1 and Corollary
2.2 in [14]. We should point out, however, that it deals with a different initial value case
than [14].

Lemma 2.1. Let G be a continuous nonnegative function on [0,+00) and let g, be
solutions to the following problems

Jd+9* <G, te(0,+x), W= G, 1€ (0, 400),
8 . B S (2.1)
g(t):?JrO(l), ast— 0", ¥(0) =0,¢'(0) =1,

where 0 < B < 1. Then we have

/
9L on (0,40).



Proof. Observe that the initial conditions imply ¢ > 0. Then the Fundamental Theorem
of Calculus implies ¢ () >t and ¢'(t) > 1. Let ¢(t) = tBelola=5) dr 5 0 for t € (0, +00).
Similar to the proof of Lemma 2.1 and Corollary 2.2 in [14], it is easy to show that

gb/

g = ga gb” S ngv
o(t) =tP(1+0(1)), ast — 0T, (22)
i 200, '
t—0t+ 1
Jim (¢ @/) —¢y') = lim (96 — ¢¢f) =0
Using (2.1) and (2.2), we conclude that
(¢ = ') = ¢"Y — p" < G(t)pd — G(t)yp =0
and
&'y —Y'¢ <0 on (0,+00).
Thus,
AP
g= - < @/) n (0,400).
U

The proof of the following theorem is a close adaption of Theorem A.1 in F. Johne
[9].
Theorem 2.2. Let (M, g,wdvoly) be a smooth complete noncompact n-dimensional

Riemannian manifold of smooth density w > 0 and asymptotically nonnegative Bakery-
Emery Ricci curvature with respect to a base point o € M. Then the function

IBT (o)

= d
" it ) [Tt dt

1S NONINCTeasing.

Proof. Fix the base point o € M and r > 0, let D, = M \ cut(o) be the domain of the
normal geodesic coordinates centered at o. We define B,.(0) = {¢ € M : d(o,q) < r}
and its boundary by S,(0) = 9B,(0). Denote the second fundamental form of the
hypersurface S,.(0) N D, by B and the mean curvature of the geodesic sphere with an
inward pointing normal vector by H.

Let y(t) := exp,(tv),t € [0,r] be a normal geodesic such that v(t) € S;(0) N D,. We
consider the variation set of hypersurfaces that have a constant distance from N. By
(1.6) in [10], it is easy to know that

d

%H = —|B]* - Ric(v/,v), te€(0,r),
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provided 7(t) € S;(0) N D,. By the definition of Bakry-Emery Ricci curvature (1.1), we
deduce that

LIH 1 (Dlogw, )]

dt

1
= ——(Dlogw,7)* = Ric7(v,7') = [B[*

1 1
<~ - Dlogw, 7)) ~ Riel(7,7)
1 n—1 Q 2

———— (H+ (Dlogw,~))* - (- H — (Dlogw, 7)) — Rick (v,

e — [+ (Dlogw, 7)) anta—TD\n=1 (Dlogw,) icy (V)
S — =7 (H + (Dlogw,7))* = Ricy(7/, 7). (2.3)

Set go = o= [H+(Dlogw, )], t € (0,7). Using lim tH(t) = n—1 and the smoothness
t—0
of the density w, by (1.4) and (2.3), we can find

g +g. <X te(0,r),

n—1
Note that 0 < ni;il <1, from (1.5) and Lemma 2.1, it follows
h/
<
Jo = 7’

that is,
h/
% .

By the first variation formula for the manifold with density, we obtain

(L= i) =)
— w) =— w) = (H + (v, Dlogw))w
dt \ Js, (o) dt \ Js, (o), S¢(0)\Ds

' '
g(n+a—1)—/ w:(n—i—a—l)—/ w,
h’ St(o)ﬁDo h St(O)

where v is the unit outward vector field along S;(0) N D,. This implies that

H +(D(logw),7) < (n+a —1)

. Js,o) W

t
hn+a—1 (t)

is a nonincreasing function. Following Lemma 2.2 in [17], we derive that

/ o / st o gy s / et gy,
By (0) 0 0

thrafl — thrafl(T)



which implies

YU S U
dr fO hrta=1 ¢ (IO hnta—1 dt) thrafl(T) fO hnta=1 ¢t

This proves the assertion. O

3 Proof of Theorem 1.1

Let (M, g, wdvol,) be a complete noncompact n-dimensional Riemannian manifold
with smooth density w > 0 and asymptotically nonnegative Bakry—Emery Ricci curva-
ture with respect to a base point 0 € M. Let {2 be a compact and connected domain in
M with smooth boundary 02, and f be a smooth positive function on €.

We only need to prove Theorem 1.1 in the case that 2 is connected. By scaling, we
may assume that

/mwf+/ﬂw|Df|+2(n+a—1)61/9wf:(n+a)/ﬂwf%. (3.1)

Due to (3.1) and the connectedness of 2, we can find a solution to the following Neumann
problem

div(wfDu) = (n+ a)wfnizil —w|Df| —2(n+a—1)bjwf  in €,
(3.2)
(Du,v) =1, on OS2,

where v is the outward unit normal vector field of 0€2. By standard elliptic regularity
theory (see Theorem 6.31 in [8]), we know that u € C%7 for each 0 < v < 1.
Following the notions in [4], we define

U:={xeQ\oQ: |Du(x) <1}.
For any r > 0, we denote A, by
(zeU:rulz) + %d(az, exp, (rDu(#)))2 > ru(z) + %r2|Du(a‘:)|2,Vaz c
and the transport map @, : 2 — M by
.. (z) = exp,(rDu(x)), VreQ.

Using the regularity of the solution u of the Neumann problem, we know that the
transport map is of class C17,0 < vy < 1.
We obtain the following lemma similar to Lemma 2.1 in [4].
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Lemma 3.1. Assume that x € U. Then we have
wAu + (Dw, Du) + 2(n+ a — 1)byw < (n + a)wfﬁ_

Proof. Using the Cauchy-Schwarz inequality and the property that |Du| < 1 for z € U,
we get

—(Df, Du) < |Df].
In terms of (3.2), we derive that

n+ao

f(wAu+ (Dw, Du) +2(n+ a — 1)hyw) = (n + a)w frte=1 —w(|Df| + (Df, Du))

n+ao

< (n+ a)wfrte-T1,

This proves the assertion. O

The proofs of the following three lemmas are identical to those of Lemmas 2.2-2.4 in
[4] without any change for the case of asymptotically nonnegative Bakry-Emery Ricci
curvature. So we omit them here.

Lemma 3.2 (cf. S. Brendle, Lemma 2.2 in [4]). The set
{ge M :d(z,q) <r,VzeQ}
is contained in ®,.(A,).

Lemma 3.3 (cf. S. Brendle, Lemma 2.3 in [4]). Assume that & € A,, and let ¥(t) :
exp;(tDu(x)) for allt € [0,7]. If Z is a smooth vector field along 7 satisfying Z(r) =
then

0,
(D")(20).20)+ [ (DZOF = R0, 20).5'0).2() di 0.

where R is the Riemannian curvature tensor of M.

Lemma 3.4 (cf. S. Brendle, Lemma 2.2 in [4]). Assume that & € A,, and let ¥(t) :=
exp;(tDu(x)) for all t € [0,7]. Moreover, let {ei,...,e,} be an orthonormal basis of
T: M. Suppose that W is a Jacobi field along 7 satisfying

(DWW (0), e5) = (D*u)(W(0),¢;), 1<j<n.
If W(r) =0 for some T € (0,7), then W vanishes identically.

We now give the proof of Theorem 1.1. The strategy of the proof follows the work of
S. Brendle [4] closely.



Proof of Theorem 1.1. Foranyr > 0and z € A,, let {ey,...,e,} be an orthonormal
basis of the tangent space Tz M. Choose the geodesic normal coordinates (z?,...,z")
around z, such that ;% = e; at z. Let 5(¢) := exp;(tDu(z)) for all t € [0,r]. For
1 <i <n,let E;(t) be the parallel transport of e; along 7. For 1 <i < n, let X;(t) be
the Jacobi field along 4 with the initial conditions of X;(0) = e; and

(DiXi(0), ¢5) = (D*u)(ese), 1<j<n
Let P(t) = (P;(t)) be a matrix defined by
Byj(t) = (Xi(1), B5(1)), 1 <45 <n.

It follows from Lemma 3.4 that X (¢),---, X, (¢) are linearly independent for each ¢ €
(0,7), which implies that the matrix P(t) is invertible for each ¢ € (0,7). It is obvious
that det P(t) > 0 if ¢ is sufficiently small. Therefore, | det D®;(z)| = det P(t) > 0, for
t €10,7). Let S(t) = (5;;(t)) be a matrix defined by

Sii(t) = R(Y'(t), Ei(t),5' (), E;(t), 1<4,j<n,

where R denotes the Riemannian curvature tensor of M. By the Jacobi equation, we

obtain
P”(t) - _P<t)5<t>7 te [O7T]7

(3.3)
P;j(0) = 8, P;(0) = (D*u)(es, ;).
Let Q(t) = P(t)"'P'(t),t € (0,7), which is symmetric showed by S. Brendle [4]. By
(3.3), a simple computation yields
d
20U = ~5(1) - Q1)
Recalling that
1
Ric® := Ric — D*(logw) — —Dlogw ® D logw,
a

we follow the computation by F. Johne [9] to derive that

@ 162Q + (Dlogw, 7))

dt
1
= ——(Dlogw,7)* = Ricg(7,7) - tr[Q”]
1 1
< ——[rQ)* = ~(Dlogw,¥)* = Ricg (7,7
= (Q + (Dlogw, 7))~ —"— (%@ — (Dlogw, 7))~ Rict(+.7)
n—+ o ’ Oé(n + Oé) n ) « )
1
< — t D1 ¥))? = Ric” (¥, 7).
< g 0@ + (Dlogw, 7))" — Ricy (¥, 7)



Set g = nJ%a[trQ +(D(logw),7'(t))]. The assumption of asymptotic nonnegative Bakry-

Emery Ricci curvature gives

g+ ¢ < Du(@) A0, (1), (34)

where o is the base point. By the triangle inequality, we get

d(o,7(t)) = |d(o,7) — d(z,7(t))| = |d(0,Z) — t| Du(z)]|. (3.5)
Set nt o1
Mt) = 2 Du(@) A (d(0,7) — HDu(a) ).

Since A is a nonincreasing function, it follows from (3.3), (3.4) and (3.5) that

g'(t)+g(t)* < As(t), te(0,7),

9(0) = ——[Au(z) + (D(logw) (&), Du(x))].

n—+ o«

¢" < As(t)g, te(0,r),

(3.6)
¢(0) =1,¢'(0) = g(0).
Set 11,19 be solutions of the following problems
=N, te€(0,7), 5 = Na(t)y, t€(0,7),
(3.7)
¥1(0) = 0,97(0) = 1, P2(0) = 1,5(0) = 0.

By the assumption of (1.2), one knows that [~ Az(t) dt < oco. Similar to the proof of
Lemma 2.6 in [6], we have

Py oo 1 n+a—1 B 1
Y20 < i S S - .
¢1(T) < Az(t) dt+T <2 T a b1|Du(x)|+T (3.8)
Noting that |Du(z)| < 1, then
Uy n+a-—1 1
— <2——b - 3.9
RGO EE e (39



By Lemma 2.13 in [14] and (3.7), we derive that

t
1< ef()s TAz(7) dr ds < tefoooTAi(T) dr
wlt) < /0 - (3.10)

+a—1 roo _ ta—1
= te"nia Jo~ vA(ld(o,z)—v]) dv < tennia (2T061+bo)’

where 79 = max{d(o, z)|z € Q}.
Letting ©(t) = 12(t) + g(0)1(¢), using (3.6), (3.7) and Lemma 2.5 in [6], we obtain

@ + (Dlogw,7)] = % < % vt € (0,7).
Consequently,
4 oglu(3(0) det P(0] = 0Q(D) + (Dlogu(1(0), /(D) < (n+ ). (3.11)

Through (3.11), we can get
w(®,(7))] det DB,(7)] = w(®,(7)) det (1)

< w(@) (¥a(t) + ——[Au(®) + {Dlogw(@), Du(@Na(t))

n—+u«

for all ¢ € [0,7]. This implies

Pa(r)
Yi(r)

for any 7 € A,. Using (3.9), (3.10) and Lemma 3.1, it follows that

w(@,(@)| det D, (7)] < w(@) (240 +9(0) " pre)

w(®,(7))| det D, (z)|
(n+a— 1 1

%y + 1+ [Au(#) + (Dllogw) (@), Du(@)])

< (7
< w(@) n -+«

n+a (n+a—1)(2robi+bo)

- r e(

n+a
< w(j) (% + fﬁ (i‘)) 7“""'“6(""‘04—1)(27’01914-190)

for any z € A,. Moreover, by (1.5), we obtain h(t) > ¢ and

(e o]

lim A'(t) =1+ h(s)A(s) ds > 1+ /OO sA(s) ds =1+ by. (3.13)

t—o00 0
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Combining Lemma 3.2, (3.12) with the formula for change of variables in multiple inte-
grals, we conclude that

/ w dvol,(z)
{geM:d(z,q)<r for all zeQ}

S/A | det DP,.(Z)|w(P,(Z)) dvoly(T) (3.14)
< [ (G pem@) e e @) dl, (o).
A, T

Let r > rg, the triangle inequality implies that

B,_,(0) C{ge M :d(x,q) <rforal x € Q} C B,,,(0). (3.15)
Using rlgrolo fororz(]z)?:: - ldtdt = Tﬁ_{go % by the L’Hospital’s rule, and combining

(1.6), (3.15) with Lemma 2.7 in [6], we have
B ] h(?“ _ TO)nJrafl
Va o Va rli)n;.lo h( )n+a—1

w dvol, r=ro n+a—1
. Ji, o Jo " h() dt
r—00 n_|_& fO 0 h )n+a Lt f h n+a Lt

< lim f{quid(qukr for all zeQ} W dvoly

T (nta) [Tkt dr

B 7 L Mt 0 X
= () [y R d fy h(Dmert dt
h(r + ro)n-i-oz—l

=Va rli)ngo h(r)nta=t
- Vom
which implies that
_ w dvol
Vo— I f{qu.d(:v,q)<r for all zeQ} 9 (316)

s (nta) [] h(t)rret dt

Dividing both side of (3.14) by (n + «) [, h(t)"™*dt and letting r — oo, using (3.13)

11



and (3.16), one can find that

Tn—l—oz

v, <6(n+a—1)(2mb1+bo)/w % lim 7
> o f r—00 (n+ CY) fO h(t)n+a_1 dt

_ _nda 1
— e(nJra 1)(2rob1+bo) U)f"*o‘*l lim
o 00 h’(t)"+a—1
2rob1-+bo

e n+a—1 nto
< ( ) /wf”“”-
1+ by Q

Under our scaling assumption (3.1), we obtain

/"mwf+/ﬂw|Df|+(”+o‘_1)251/wa=(n+a)/ﬂwfm

1 ]_ + bo n:zgl n+ao ":;_?:;l
n+ao - v nto—
> ke () T (fur ) T
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