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Real-Variable Characterizations and Their Applications of
Matrix-Weighted Triebel-Lizorkin Spaces

Qi Wang, Dachun Yang* and Yangyang Zhang

Abstract Leta € R, g € (0,00], p € (0,00), and W be an A,(R", C")-matrix weight. In this
article, the authors characterize the matrix-weighted Triebel-Lizorkin space F »1(W) via the
Peetre maximal function, the Lusin area function, and the Littlewood—Paley g’-function. As
applications, the authors establish the boundedness of Fourier multipliers on matrix-weighted
Triebel-Lizorkin spaces under the generalized Hérmander condition. The main novelty of
these results exists in that their proofs need to fully use both the doubling property of ma-
trix weights and the reducing operator associated to matrix weights, which are essentially
different from those proofs of the corresponding cases of classical Triebel-Lizorkin spaces
that strongly depend on the Fefferman—Stein vector-valued maximal inequality on Lebesgue
spaces.

1 Introduction

Lizorkin [21, 22] and Triebel [36] independently started to investigate Triebel-Lizorkin spaces
Fla,’q(R”) from 1970s. Furthermore, we mention the contributions [25, 26, 27] of Peetre who
extended the range of the admissible parameters p and g to values less than one. We refer the
reader to [37, 38, 39, 31, 32] for more studies of these function spaces and their history.

On the other hand, the real-variable theory of both function spaces and the boundedness of
operators related to matrix weights on R” has received increasing interest in recent years. In 1997,
to solve some significative problems related to the multivariate random stationary process and
the Toeplitz operators (see, for instance, [35]), Treil and Volberg [34] introduced the Mucken-
houpt A,(R", C"™)-matrix weights and generalized the Hunt—-Muckenhoupt—-Wheeden theorem to
the vector-valued case, while Nazarov and Treil [23] introduced Muckenhoupt A ,(R", C™)-matrix
weights for any p € (1, 00) (see also Definition 2.5 below for its definition), and obtained the
boundedness of the Hilbert transform on the matrix-weighted Lebesgue space L”(W), which was
proved again by Volberg [41] via a new approach involving the classical Littlewood—Paley theory.
In 2016, Cruz-Uribe et al. [9] applied the theory of A, matrix weights on R" to study degenerate
Sobolev spaces. See also, for instance, [5, 7, 8, 10] for more studies on matrix-weighted function
spaces and their applications. Later, Frazier and Roudenko [15] introduced the matrix-weighted
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homogeneous Triebel-Lizorkin space F g’q(W) via the discrete Littlewood—Paley g-function with
a € R, p e (0,00), and g € (0, 0] (see also Definition 2.18 below for its definition). For any
given p € (1, ), Frazier and Roudenko [15] proved that L?(W) = F g,z(W) and, for any k € N,
Flk,’z(W) coincides with the matrix-weighted Sobolev space Lf (W). Frazier and Roudenko [15]

also showed that a vector-valued function f belongs to F ;f’q(W) if and only if its ¢p—transform co-
efficients belong to the sequence space f;’ “/(W). As an application of the above results, Frazier and
Roudenko [15] obtained the boundedness of Calderén—Zygmund operators on F ;f’q(W). However,
no other real-variable characterizations of these Triebel-Lizorkin spaces are known so far. The
main purpose of this article is try to fill this gap.

Leta € R, p € (0,0), g € (0,00], and W be an A,(R", C")-matrix weight. In this article, we
first consider other real-variable characterizations of F’ g’q(W), including its characterizations via
the Peetre maximal function, the Lusin area function, and the Littlewood-Paley g’ —function, re-
spectively, in Theorems 3.1, 3.11, and 3.14 below. We should point out that the main strategy used
in [40, 24] to establish these real-variable characterizations of classical Triebel-Lizorkin spaces is
based on a technique of the application of the Fefferman—Stein vector-valued maximal inequality.
However, since the matrix-weighted Fefferman—Stein vector-valued maximal inequality is still un-
known so far, it follows that the approach used in [40, 24] is no longer feasible for matrix-weighted
Triebel-Lizorkin spaces. To overcome these obstacles, we borrow some ideas from [15] and intro-
duce both the Peetre maximal function and the Littlewood-Paley function quasi-norms in terms of
reducing operators associated to W [see (3.8) and (3.35) below]. Then the problem can be reduced
to study the equivalence between the quasi-norms of Triebel-Lizorkin spaces in terms of reducing
operators of W in Definition 2.20 below and the corresponding Peetre maximal function or the
corresponding Littlewood-Paley g -function quasi-norm, respectively, in (3.8) and (3.35) below,
which allows us to use the Fefferman—Stein vector-valued maximal inequality in L”(R") to solve
the problem. As an application of the Littlewood—Paley characterization of F g’q(W), we obtain, in
Theorem 4.8 below, the boundedness of Fourier multipliers on F g’q(W) under the assumption of
the Héormander condition [see (4.1) below].

To be precise, the remainder of this article is organized as follows.

In Section 2, we first recall some concepts concerning the matrix weight W, the A,(R",C™)-
matrix weight condition, and the reducing operator of W. Then we recall some known properties
and also give some new properties of both A,(R", C")-matrix weights and reducing operators of
matrix weights, which play a key role in the proof of the whole article.

In Section 3, we establish some real-variable characterizations of F ;f’q(W). We first characterize
the matrix-weighted Triebel-Lizorkin space Fg’q(W) for any @ € R, p € (0,), g € (0, o], and
W e A,(R",C™") in terms of the Peetre maximal function (see Theorem 3.1 below). By introducing
the Peetre maximal function with the reducing operator relating to the matrix weight, we obtain
both the Lusin area function and the Littlewood-Paley g’-function characterizations of matrix-
weighted Triebel-Lizorkin spaces (see Theorems 3.11 and 3.14 below).

In Section 4, we prove the boundedness of Fourier multipliers on F Z’q(W) (see Theorem 4.8
below) under the assumption of the Hérmander condition [see (4.1) below for its definition], which
is an application of the Littlewood—Paley characterization of Fg’q(W) with @ € R, p € (0, 0),
q € (0,00], and W being an A ,(R", C")-matrix weight.

Finally, we make some conventions on notation. We use the symbol f < g to denote that there
exists a positive constant C such that f < Cg. The symbol f ~ g is used as an abbreviation of
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fsg<sf.Iff<Cgandg = horg < h, wethen write f < g ~ hor f < g < h, rather than
fSg=horf<g<h LetN:={1,2,...},Zy :=NU{0}, and Z} := (Z,)". For any multi-index
Y=, ..., ¥n) € ZY and any x 1= (X1,...,Xx,) € R let |yl i= y1 4+ -+ + yp, X7 1= x{'---x%”,

and 07 = (3—‘;1)7’l ---(%)W. For any index p € [1, 0], we use p’ to denote its conjugate index,
namely, % + # = 1. In addition, for any measurable set /' C R", we denote by 1 its characteristic
function. We use the notation (f, g) to denote a pairing which is linear in f and g; when this pairing
is between a distribution f and a test function g, then (f, g) = f(g). We also use the notation (¥, ¥)
to denote the inner product of X,y € C™. For any f € L}OC (R™) and any measurable set £ C R", let

1
Jif(x)dx.—ﬁ‘f;f(x)dx.

For any s € R, we use the symbol |s]| to denote the largest integer not greater than s. For any
measurable function g and any x € R”, let g(x) := g(—x). For any x € R" and r € (0, ), let
B(x,r) :={y € R" : |x —y| < r} be the ball with center x and radius r. Furthermore, for any
a € (0, 00) and any ball B := B(xp, rg) in R" with xg € R" and rp € (0, ), let aB := B(xp,arp).
We also use 0 to denote the origin of R”.

Let S(R") be the space of all Schwartz functions on R”, equipped with the classical topology
determined by a well-known countable family of norms, and S’(R") its fopological dual space
[namely, the set of all continuous linear functionals on S(R")], equipped with the weak *-topology.
Following Triebel, we let

SR := {ap € S(R™ : f @(x)x”dx = 0 for all multi-indices y € Zﬁ}

and consider S (R") as a subspace of S(R"), including its topology. Use S. (R") to denote the
topological dual space of S (R"), namely, the set of all continuous linear functionals on S (R").
We also equip S, (R") with the weak =-topology. Let P(R") be the set of all polynomials on R".

It is well known that S, (R") = S'(R")/P(R") as topological spaces; see, for instance, [18, 30].

2 Matrix-Weighted Triebel-Lizorkin Spaces F',;/(W)

In this section, we present some basic definitions and results of matrix-weighted Triebel—
Lizorkin spaces via two subsections. In Subsection 2.1, we recall the concepts of the matrix
weight, the A,(R", C")-matrix weight, and their properties. In Subsection 2.2, we present both the
definition and also some basic properties of matrix-weighted Triebel-Lizorkin spaces.

2.1 A,(R",C™)-Matrix Weights

In this section, we recall the concepts of the matrix weight, the matrix A,(R", C") condition,
and the reducing operator of W. Furthermore, we present their basic properties. We begin with
recalling the concept of the matrix weight (see, for instance, [29, 34]). In what follows, for any
2 =(,...,zn) €CM let|q = (27;1 |zj|2)1/2, where T denotes the transpose of the row vector.

Definition 2.1. Let m € N. An m X m complex-valued matrix A is said to be nonnegative definite
if, for any 7 € C"\{0}, (AZ,2) = 0. An mxm complex-valued matrix A is said to be positive definite
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if, for any Z € C™ \ {0}, (AZ,2) > 0. The set of all nonnegative definite m X m complex-valued
matrices is denoted by M,,(C). Furthermore, the operator norm of a matrix A is defined by setting

lAZ]

lA]l := P =
zeom o) 1

Definition 2.2. Let m € Nand W : R" — M,,(C) satisfy that every entry of W is a measurable
function. The map W is called a matrix weight from R" to M,,,(C) if W(x) is invertible for almost
every x € R".

The following definition is a part of [19, Definition 1.2].

Definition 2.3. Let m € N and A be a positive definite mxm complex-valued matrix satisfying that
there exists an invertible m X m complex-valued matrix P and a diagonal matrix diag(4y,...,A;),
with {1y, ..., 4,,} C Ry, such that A = Pdiag (4, .. ., A,)P~L. Then, for any a € R, let

A® := Pdiag (19,...,A%)P7",

Remark 2.4. Let A be a positive definite m X m complex-valued matrix in Definition 2.3. By [20,
Theorem 4.1.5], we find that the decomposition of A in Definition 2.3 exists. Furthermore, from
[19, Problem 1.1] (see also [20, p.407]), we deduce that, for any a € (0, ), A% in Definition 2.3
is independent of the choice of the invertible m X m complex-valued matrix P and the diagonal
matrix diag(4y, ..., d,) with {1;,...,4,,} c C.

In what follows, let @ := {all cubes Q C R"}, here and thereafter, a cube means its edges
parallel to the coordinate axis with a finite and positive edge length which is not necessary to be
open. The following definition is just [28, Definition 3.2] and [14, p. 1226, (1.1)].

Definition 2.5. Let m € N and p € (0,00). An A,(R",C")-matrix weight W, denoted by W €
A,(R",C™), is a matrix weight from R" to M,,(C) satisfying that, when p € (1, c0),
1 1 p plp’
sup — [— f ||W1/p(x)W_1/p(y)|| dy dx < oo,
0@ 10l Jo 1101 Jo
where || - || denotes the operator norm of a matrix and, when p € (0, 1],

1
sup ess sup — f HWl/p(x)W_l/p(y)Hp dx < oo.
0eQ yeQ |Q| 0

Remark 2.6. When p € [1,00) and m = 1, the A,(R", C")-matrix weight in Definition 2.5 coin-
cides with the classical A,(R")-weight (see Definition 2.8 below for its definition).

The following result about the matrix weight is just [29, Corollary 3.3].

Lemma 2.7. Let W be a matrix weight from R" to M,,(C), p € (1,00), and p’ := p/(p — 1). Then
the following statements are equivalent:

(i) WeA,R",CM;
(i) WP'/P e Ay @R, CM).



REAL-VARIABLE CHARACTERIZATIONS AND THEIR APPLICATIONS OF MATRIX-WEIGHTED TRIEBEL—LIZORKIN SPACES 5

Now, we recall the concept of the classical A,(R")-weight (see, for instance, [17]).

Definition 2.8. An A,(R")-weight w, with p € [1,00), is a locally integrable and nonnegative
function on R" satisfying that, when p € (1, o),

1 1 1 p-l
— dx||— =) 0o
ZQB[IQI Lw(x) x] [|Q| fQ{w(X)} x] =

and, when p =1,

1 _
et J, el ] <
Define A(R") := U pe(1,00) Ap(R™).

From both [16, Corollary 2.2] and [14, Lemma 2.1], we deduce the following lemma; we omit
the details here.

Lemma 2.9. Let p € (0,00), W € A,(R",C™), and wy(x) := (wl/ P(x)V?P for any x € R" and any
given y € C™. Then, for any given j € C" \ {0}, wy € A|(R") if p € (0, 1], and wy € A,(R") if
p € (1,00).

If p € (1, ), the following corollary is just [16, Corollary 2.3]. For the convenience of the
reader, we present some details of its proof.

Corollary 2.10. Let p € (0,00) and W € A,(R",C™). Then |[W'/P|P € A\(R™) if p € (0,1], and
IWP|IP € A,(R™) if p € (1, ).

Proof. By [29, Lemma 3.2], we conclude that, for any given p € (0, o) and for any x € R”,

m
[wireoll ~ 3 wireoel”.
i=1

where {¢], ..., €y} is the standard unit basis of C”. Then, by Lemma 2.9, we conclude that, for
any i € {1, ..., m}, IWYP&IP is an A|(R")-weight if p € (0, 1], and [W'/P&}|P is an A ,(R")-weight
if p € (1, 00), therefore, their finite sum is as well. This finishes the proof of Corollary 2.10. ]

The following definition comes from [14, p. 1230].

Definition 2.11. Let p € (0, o). A non-zero matrix weight W is called a doubling matrix weight
of order p if there exists a positive constant C such that, for any cube Q c R" and any 7 € C",

2.1) f (W'r(nd” ax < € f (Wr(0d" dx,
20 0

where 20 denotes the cube concentric with Q and having twice the edge length of Q. Let
B :=min{B € (0,00) : (2.1) holds with C = 2°}.

Then 8 is called the doubling exponent of the doubling matrix weight W of order p. For simplicity,
such a g is also called the doubling exponent of W.
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The following lemma can be found in [15, Lemma 2.2].

Lemma 2.12. Let p € (0,00) and W € A,(R",C™). Then W is a doubling matrix weight of order
D

Remark 2.13. It is easy to see that, if we replace any cube Q with any ball B ¢ R" in Definitions
2.5 and 2.11, then Lemmas 2.7 and 2.12 still hold true.

In what follows, for any j € Z and k := (ki, ...,k,) € Z", let Qj = [, 27 ki ki + 1),
D:={Qj:j€ZkeZ", and

(2.2) Dj = {ij tke Zn}.

Definition 2.14. Let m € N, p € (0, ), and W be a matrix weight from R” to M,,,(C). A sequence
{A(QW)}QGD of positive definite m X m matrices is called a sequence of reducing operators of order
p for W if there exist positive constants Cy and C, such that, for any 7€ C" and Q € D,

1 Y
Ci |A(QW)ZIS[@ fQ (WP od"” dx

p
<Gy |A(QW)Z| .

For simplicity, the sequence {A(QW)}Qez) of reducing operators of order p for W is denoted by
{Ap}oep.

Remark 2.15. Let m € N. From [16, Proposition 1.2] and [14, p. 1237], we deduce that, for any
p € (0, 00) and any matrix weight W from R” to M,,(C), a sequence of reducing operators of order
p for W in Definition 2.14 exists.

The following lemmas are respectively a part of [15, Lemmas 3.2 and 3.3].

Lemma 2.16. Let p € (1,00), p’ := p/(p = 1), W € A,(R",C™), and {Ag}pep be a sequence
of reducing operators of order p for W. Then there exists a 5(W) € (0, 00) such that, for any
n€(0,p" +o(W)), |

sup — f HAQW_””(X)HU dx < oo.

0ep 101 Jo
Lemma 2.17. Let p € (0,1], W € A,(R",C™), and {Ap}gep be a sequence of reducing operators
of order p for W. Then

sup ess sup ”AQW_UP(X)H < o0,
QeD  xeQ

2.2 Matrix-Weighted Triebel-Lizorkin Spaces

In this section, we begin with recalling the concepts of both matrix-weighted Triebel-Lizorkin
spaces and sequence matrix-weighted Triebel-Lizorkin spaces. Then we prove the rationality of
Definitions 2.18 and 2.20.

In what follows, for any m € N, let

(SR = {f = (fi. ... f)| : foranyie{l, ..., m), fi € SLRMY.



REAL-VARIABLE CHARACTERIZATIONS AND THEIR APPLICATIONS OF MATRIX-WEIGHTED TRIEBEL—LIZORKIN SPACES 7

For any f:z (fi, oe» fm)T € [SLLRM]" and ¢ € S (R"), let
g fi=(pxfi, @ fu)

and ¢;(-) := 2/p(2/-) with j € Z. For any ¢ € S(R"), adenotes its Fourier transform which is
defined by setting, for any & € R”,

#(&) = )2 \[R ) d(x)e™ dx.

For any f € S'(R"), fis defined by setting, for any ¢ € S(R"), (]7: @) := {f,p); also, for any
f € S(R™) [resp., S'(R™)], ¥ denotes its inverse Fourier transform,

V) = Qo2 fR ,, F(x)e™ dx

[resp., (fY, ) := {f,¢") for any ¢ € S(R")]. For any ¢ € S(R"), supp := {x € R" : ¢(x) # 0}
and, for any f € S’(R"),

supp f := N{closed set K C R" : {f, ¢) = 0if p € S(R")and supp ¢ C R"\ K},
which can be found in [17, Definition 2.3.16].

Definition 2.18. Let m € N, @ € R, p € (0,00), g € (0,0], W be a matrix weight from R" to
M,,(C), and ¢ € S(R™). Furthermore, assume that

(T1) for any x € R"\ {0}, there exists an / € Z such that 2(2lx) £ 0,
(T2) suppy C {x € R" : |x| < xr} is bounded away from the origin.

Then the matrix-weighted Triebel-Lizorkin space F g:g(W) is defined by setting

Fyiw) = {f € [SL®RMH]™ ”ﬂ ) OO}’

where

g =
FpipW) ‘

1/q
T D o
JEZ

with suitable modification made when g = co.

LP(R™)

Remark 2.19. (i) Observe that, if p(x) > O for any {x € R" : € < |x| < & — b}, where
be (0,7 —1]and € € (0, (r — b)/2), then ¢ automatically satisfies that, for any x € R" \ {0},
there exists an £ € Z such that g(2‘x) # 0 and hence, in this case, the assumption (T1) in
Definition 2.18 is superfluous; see [42, Lemma 3.18 and Remark 3.19] for the details.

(i) Let @« € R, p € (0,00), and g € (0, c0] be the same as in Definition 2.18. If m = 1 and
¢ € S(R") satisfies both

2.3) suppp C{E€eR" 1 1/2 <€ <2}
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and

2.4) @)= c>0

when 3/5 < |£] < 5/3 with ¢ being a positive constant independent of &, then Fg,’g(W) in
Definition 2.18 is independent of the choice of ¢ and it coincides with the weighted Triebel—
Lizorkin space F g’q(a)). For more details on weighted Triebel-Lizorkin spaces, we refer the
reader to [2, 4, 46].

(iii) Leta € R, p € (0, ), and ¢g € (0, o] be the same as in Definition 2.18. If m = 1, W =1,
and ¢ € S(R") satisfies both (2.3) and (2.4), then F g:z(W) in Definition 2.18 is independent
of the choice of ¢ (see, for instance, [13, Remark 2.6]) and it coincides with the Triebel—
Lizorkin space F},? in [13, p. 46].

Definition 2.20. Let m € N, @ € R, p € (0,0), g € (0, 0], {Ap}pep be a sequence of m X m
nonnegative definite matrices, and ¢ € S(R") satisfy both (T1) and (T2) of Definition 2.18. The
{Ap}-Triebel-Lizorkin space F q({AQ}) is defined by setting

“4({Ag)) = {f € [SL®M]™ ”ﬂ F(Ag) Oo}’
where

‘ 1/q

|71

“liAgh)

PIPIEL

JEZ Q€D

LP(R™)

with suitable modification made when g = co.

Remark 2.21. Let m € N, @ € R, p € (0,00), g € (0,00], and {Ap}pep be a sequence of
nonnegative definite matrices in Definition 2.20. If m = 1, Ap = 1 for any Q € D, and ¢ € S(R")
satisfies both (2.3) and (2.4), then F ;fjg {A}) in Definition 2.20 is independent of the choice of ¢
(see, for instance, [13, Remark 2.6]) and it coincides with the Triebel-Lizorkin space Fl(f’q in [13,
p. 46].

To prove the rationality of Definitions 2.18 and 2.20, we first recall some classical results (Lem-
mas 2.22, 2.23, and 2.24), which are just [42, Lemma 3.18], [44, Lemma 2.1] (see also [12, Lemma
2.1]), and [43, Lemma 2.1], respectively.

Lemma 2.22. Let ¢ be a Schwartz function satisfying that, for any x € R" \ {0}, there exists an
[ € Z such that <p(2’x) # 0. Then there exists a ¢ € S(R") such that l// € CZ(R™) with its support
away from origin, gotﬁ >0, and

(2.5) > e u T =1
JEZ
for any x € R™" \ {0}.

In what follows, for any Q € D, let £(Q) denote its edge length and x¢ its lower left corner.



REAL-VARIABLE CHARACTERIZATIONS AND THEIR APPLICATIONS OF MATRIX-WEIGHTED TRIEBEL—LIZORKIN SPACES 9

Lemma 2.23. Let ¢ and  be the Schwartz functions such that supp @, supp J C{xeR":|x| <n)}
are bounded away from the origin and, furthermore, for any x € R" \ {0},

> e p T = 1.

JEZ
Then, for any f € S, (R™),

F=2.27" % g fQIow- - 27k

JjezZ kezn
converges in S, (R").

Lemma 2.24. Let ¢ and  be the Schwartz functions satisfying (2.5) and that both supp @, supp g’b\
are compact and bounded away from the origin. Then, for any f € So(R"),

(2.6) =) @iepixf

JEZ
holds true in S,(R"™). Moreover, for any f € S, (R"), (2.6) also holds true in S’ (R").

Lemma 2.25. Let @ € R, p € (0,00), g € (0,00], W € A,(R",C™), {A(QW)}QGD be a sequence of
reducing operators of order p for W, and ¢, € S(R") satisfy both (T1) and (T2) of Definition
2.18. Then, for any f € [S.,(RM]",

I

17000 ~ 17

S
where the positive equivalence constants are independent of f.

Fydow) - Hﬂ

g
FpyW)

and

FridAgh’

Proof. Let ¢ and ¢ be the same as in Definitions 2.18 and 2.20. By Lemma 2.22, we find that
there exist y,n € S(R") satisfying y,77 € CZ(R") with their supports away from the origin and
(2.5) via ¢ and ¢ replaced, respectively, by ¢ and y or by ¢ and 7. Using this and Lemma 2.23,
and repeating the proof of [15, Theorems 1.1 and 2.3], we then finish the proof of Lemma 2.25. O

For simplicity, the matrix-weighted Triebel-Lizorkin space is denoted by F g’q(W) and the {Ap}-
Triebel-Lizorkin space is denoted by F g’q({AQ}). By a proof similar to that used in [15, Theorem
1.1], we conclude the following lemma; we omit the details here.

Lemma 2.26. Letm € N, a € R, p € (0,00), g € (0,00], W € A,(R",C"), {Ap}gep be a sequence
of reducing operators of order p for W, and ¢ € S(R") satisfy both (T1) and (T2) of Definition
2.18. Then, for any f € [S.,(RM]",

- -
Ay ~ A9 agy

where the positive equivalence constants are independent of f.
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3 Real-Variable Characterizations of F), /(W)

In this section, we characterize the spaces F g’q(W) via the Peetre maximal function, the Lusin
area function, and the Littlewood-Paley g’ —function.

Now, with a modification of the classical Peetre-type maximal function in [26], we introduce
the concept of the following matrix-weighted Peetre-type maximal function. Let p € (0,00), m € N,
W e A,(R",C"), ¢ € Su(R"), and fe [S,(R™)]™. For any given j € Z and a € (0, o), and for
any x € R”, let

1/ LA
oD (7)™ (@ 1= sup LN = DO,

yern (1 +2/]x = ype
Theorem 3.1. Leta € R, p € (0,0), g € (0,00], W € A,(R",C™), and

a € (n/ min{l, p, q} + B/p, ),

where B is the doubling exponent of W. Assume that ¢ € S(R") satisfies both (T1) and (T2) of
Definition 2.18. Then f € Fg’q(W) if and only if f € [S,,(RM]™ and ||f]|* < oo, where

Eylw)
1/q
* ; (W.p)]4
— Jjoq | ( *
Eytowy {Z 2 [(‘fo)a ] }
JEZ
with usual modification made when g = co. Moreover, for any f e[S (RDH]™",

(33) 05, ~ 17

., . . . =4
where the positive equivalence constants are independent of f.

I

LP(R™)

*

Ew)’

Remark 3.2. (i) Theorem 3.1 when m = 1 is a part of [3, Theorem 3.1].

(i) Theorem 3.1 when m = 1 and W = 1 is a part of [26, Theorem 3.1] which is the Peetre
maximal function characterization of Triebel-Lizorkin spaces.

To show Theorem 3.1, we first recall the definitions of both strongly doubling and weakly
doubling matrices, which can be found in [15, Definition 2.1].

Definition 3.3. Let {Ap}pep be a sequence of positive definite matrices, 5 € (0, o), and p € (0, c0).
The sequence {Ag}oep is said to be strongly doubling of order (B, p) if there exists a positive
constant C such that, for any Q, P € D,

iy @) (el o —xrl
(3.4) ||AQAP H < Cmax{[g(Q)] , [K(P)] }[1 + maxi{P) Q)| -

The sequence {Ag}oep is said to be weakly doubling of order r € (0, o) if there exists a positive
constant C such that, for any k, £ € Z" and j € Z,

(3.5) ”AijAéi[“ <CU+lk=ay,

where Q. =[], 27k, ki + 1) for any je Zand k := (ky, ..., k) € Z".



REAL-VARIABLE CHARACTERIZATIONS AND THEIR APPLICATIONS OF MATRIX-WEIGHTED TRIEBEL—LIZORKIN SPACES 11

Remark 3.4. In Definition 3.3, a strongly doubling sequence of order (3, p) satisfying (3.4) is also
weakly doubling of order r := S/p satisfying (3.5) because, when £(P) = £(Q), (3.5) coincides
with (3.4).

The following lemma explains the connection between the doubling weight W and the doubling
sequence {Ap}oep, wWhich can be deduced from [15, Lemma 2.2], Lemma 2.12, and Remark 3.4;
we omit the details.

Lemma 3.5. Let p € (0,00), W € A,(R",C"), and {Ap}oecp be a sequence of reducing operators

of order p for W. Then {Ag}gep is weakly doubling of order g, where 3 is the doubling exponent
of W.

The following lemma is just [15, (2.8)].

Lemma 3.6. Let ¢ € S(R") satisfy (T2) of Definition 2.18. Suppose that {Ag}gep is a weakly
doubling sequence of order r € (0, 00) of positive definite matrices. Then, for any given A € (0, 1]
and R € (0, ), there exists a positive constant C, depending on both A and R, such that, for any
J€Z keZ" and f € [S.(R)]™,

sup |Aij (‘pj * fj (x)|A
x€Q jk

<C Z (1 + [k = £))"AR=") pin f

5 |A
Ao, s+ fls)| ds,
tezn Qje

where Qi := T[], 27 ki, ki + 1) for any j € Z and k := (ky, ..., k,) € Z".

Recall that the Hardy—Littlewood maximal operator M is defined by setting, for any locally
integrable function f and any x € R”,

1
(3.6) M(f)(x) := sup — j; || dy = sup Ji )l dy,

XEB |B| xeB

where the supremum is taken over all the balls B of R” containing x. Denote by the symbol .Z (R")
the set of all the complex-valued measurable functions on R".

Lemma 3.7. Let M be the maximal operator in (3.6) and n > n. Then there exists a positive
constant C such that, for any j € Z and h € .# (R"),

Z Z(l + 1k — €|)—"2f"f

Ih(s)ldlejk < CM(h).
kezZn tezn it

Proof. Observe that, for any given j € Z and any x € R”, it is easy to see that there exists a unique
ky € Z" such that x € Q. Using this, we find that, for any x € R",

> Z(1+|k—£|)—ﬂzf"fgl

kezZm ez J

- 2(1 + [k — €|)"72f”f |h(s)lds

=7 Qje

|h(s)ldslg; (x)
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=Y (ke f hlds+ >y

{CezZm: |b—k,|<1} meN {¢eZn: 2m=1<|—f,|<2m)

DN TS YRD YR sl IO T

(CeZn: |t—k,|<1} Y %0t meN {gezn: 2m=1<|f—k|<2m)

~ f |h(s)|ds + Z 2_'m7f |h(s)|ds
Uleezn: 1e-kei<1y Qe Qje

meN U{/eznz om=1jr—f|<2m)

Z pmnymn f Ih(s)|ds < M(h)(x),

meZ,

where B, for any m € Z, is the smallest ball containing both x and Uyzezn: 1—¢,1<om Qje. This
finishes the proof of Lemma 3.7. O

Now, we recall the definition of the space L”(£7), which can be found in [37, p. 14].

Definition 3.8. Let p € (0, oo] and ¢g € (0, co]. Then the space LP(£?) is defined by setting

< oo} s
LP(£9)
1/p
Lp((,,) = {f [Z |fj(x)|ﬂ dx}

JEZ

LP(£9) = {{fj}jez c AR : ||{f/}

JEZ
where
||{f] } JEZ

with suitable modifications made when p = oo or g = oco.

The following lemma is just [15, Corollary 3.8].

Lemma 3.9. Let p € (0,0), g € (0,00], W € A,(R",C™), and {Ag}gep be a sequence of reducing
operators of order p for W. Forany j€Z, x e R", and f € L\ (R"), let

loc

v = ) [Wr@ag | 1o

QeD '

and

e = | f ot

QeD;

Then there exists a positive constant C such that, for any sequence { f}} jcz of measurable functions

on R",
[ (5}l = €05 () e

The following lemma is the famous Fefferman—Stein vector-valued maximal inequality, see
[11, Theorem 1].

Lr(eay
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Lemma 3.10. Ler p € (1,0) and g € (1, ). Then there exists a positive constant C such that, for
any sequence {f;}jez C M (R"),

(S| o

1/q
zbﬂ ,

JEZ

JEZ LP(R")

where M is the same as in (3.6).

Proof of Theorem 3.1. Let all the symbols be the same as in the present theorem. Then, by the
definition of (¢’ AW 0 (3.1), we find that

W (e 1) < (e
which implies that, for any f €[S, (R,
||f1 FyA(w) S ||f1

Thus, to show Theorem 3.1, it remains to prove that, for any f € [SLERH™,

s =

FyA (W)

*

Fiw)

I

Ew)

Let {Ap}gen be a sequence of reducing operators of order p for W. For any f € [SLMRMH]™, let

*
Fol(Ag)

s

’

o 1/q
T Y 20 Aot = HION ]

i o
L7 e (L4271

LP(R™)

where, for any j € Z, D; is the same as in (2.2). To prove (3.7), we first show that, for any
felSu@™,

I

) f
Fyl({Agh

Indeed, by Lemma 3.5, a geometrical observation that 1 + 2/|]x —y| ~ 1 + |k — s| for any x € Q ik
and y € Qj;, Lemma 3.6, and the fact that 1 + |k — £] < (1 + |k — s|)(1 + |s — £]) for any k, s, € € Z",
we obtain, for any given A € (0, 1] and for any j € Z, k € Z", fe [SLAR™M]™, and x € O,

Fo((Ag)

o Ao N
yern (1 +2i]x = y)ed
A0, ()% HOIA
sup sup - -
SEZ" yeQjs (I +2/]x =y«
o,Ag! IMAg, (¢ + A
sup sup

SE€ZM yeQj,s (1 +2/]x — y|)ed

(3.10)

IA



14 Q1 WaNG, DACHUN YANG AND YANGYANG ZHANG

(1 + Ik = sD*"|Ag, (¢; * HOIA
< sup sup - i
S€Z" yeQjq (I +27]x = yDe

~ sup (1 + [k — s)" (1 + |k — s~ sup |AQ,Y(¢J *f3(y)|

SEZN YeQjs
. A
Ssup (14 lk=s)™ ) (110 = s ® D2 f g, (i + )@ dz
SEZ" fom Qje

< > (k= ey e on fQ A0, (¢ f) <z)|A dz,
e

ez

where r := g and, in the last step, we used the fact that (1 + [k— s|)(1 + € —s|) = (1 + |k —¢£]) for any
k,€,s € Z" and the fact that a € [r, 00), and chose an R € [a, ). Let A € (0, 1] satisfy g/A > 1.
Using this, (3.10), and the disjointness of the cubes Q j for any k € Z", we further find that

A P % 1
[2]0 | Q(soj_ f”)(y3|1Q(.)]
&\ e a2

Agy () % /) A r”‘
ij(')

= ) 2/ .
LT A+ 2 )

q/A
3 lz Z (1 + |k — g~4en 2 »fQ,-z |2jaAij (901' * JF) (Z)|A dZIij(')] -

kezn tezZ"

From a € (W + r, 00), it follows that min{1, p, g}(a — r) > n and hence we can choose an

A € (0, 1] such that A(a—r)>n, p/A>1,and g/A > 1. Thus, by Lemma 3.7 and the Fefferman—
Stein vector-valued maximal inequality, we conclude that, for any f € [SLRMH™,

’ Aote;= Ao, 1"
. s

{Z 2 |2 e (|y) lgl}
jez gep; L Y Y LP(R™)

R Alq /A
oo |

<z *M[z &

jez | \oeD;
<[,

which implies that (3.9) holds true for any f € [S.,(R™)]™. Now, for any f € [SLRMH]™, let

Aote; = Ao |
lz Z 2/% gup s Q%—_yl }

£ T e (L4 20—

LPIARM)

(yq({A

3.11) Hﬂ

Y 11 ( { A ‘
LP(RM)

From (3.9) and Lemma 2.26, we infer that, for any f e [SL(RDH]™,

”ﬂ ‘“’({AQ}) Hﬂ Fi(Agh NHﬂ

Fyiow)
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By this, to complete the proof of (3.7), we still need to prove that, for any f € [SLMERMH]™,

* Kk
(3.12) ”ﬂ Eyiowy ™ ”fl Fyl(Agh ™~ ”ﬂ
We first show the first inequality of (3.12). For any j € Z and x € R", let

WP (g * PO
. — nJx
N Ty P

Ag(e; * NI
. . a/n J—
G0 = QeZD, e ilelQ yern (1 +2J]z = y)? fol:

(YKI({AQ

and

i) = Y WAy 100,

QEDJ'
It is obvious that, for any j € Z and x € R”,

IWP()AG Ag(e; * AW
- IQ(X
(1 +2/]x = y)*

Ao(@; * PO
—gzﬁ;—ﬁgg()<ﬁﬁﬁﬁﬂ

(3.13) hi(x)= ) 27 sup

0eD; yeR?

< 372 [wreoag!|| sup

53, yern (1 +
Notice that k; is a constant on any given cube Q € D, which implies that
(3.14) Ej(kj) = k;j,

where E; is the same as in Lemma 3.9. Then, by (3.2), (3.13), Lemma 3.9, (3.14), and (3.11), we
have, for any f €[S (RMH]™,

(3.15) || ﬂ

F29(W) ||{h]}j€Z Lp(e9) H{%EJ (k )}jGZ

s ||{Ef (5)} ez

which is just the first inequality of (3.12). Next, we prove the second inequality of (3.12). Indeed,
using a geometrical observation, we find that 1 + 2/|x —y| ~ 1 + |s — k| ~ 1 + 2/|z — y| for any
x,z € Qj and y € Q. From this, we deduce that, for any a € (0,00), j € Z, k € Z", and x € Qj,

Ag, (@ * A Ag, (@ * A
sup s ~ sup - ,
oo L+ 2=y yemn (1 +20x—y)*

Lr(t9)

I
Lo(t0) /

Fyi(Agh’

~ |k
LP(£9) || M jez

which implies that, for any ]7 € [SLERH™,

(3.16) Hﬂ ;‘;‘I(MQ}) h “ﬂ ;,,

o ((Aoh)

Thus, both (3.15) and (3.16) imply (3.12), and hence (3.3) holds true for any f e [S(RMH™,
which completes the proof of Theorem 3.1. O
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We now establish the Lusin-area function characterization of matrix-weighted Triebel-Lizorkin
spaces.

Theorem 3.11. Leta € R, p € (0,00), g € (0,00], and W € A,(R",C™). Assume that ¢ € S(R")
satisfies both (T1) and (T2) of Definition 2.18. Then f € Fj(f’q(W) if and only if f e[S, (RMH™
with || f_ﬂD < oo, where

Fpiw)
m] .
, = 2/ JC
Hﬂ Fpw) HLZZ B(.27)

with usual modification made when g = co. Moreover, for any f_) e[S (RDH]™",

Fy(w) - ||f1

where the positive equivalence constants are independent of f_)

1/q

W) (g5 + F) )| dy

LP(R™)

m]

(3.17) ||ﬂ

g
F2(w)

Proof. Let all the symbols be the same as in the present theorem. We now claim that, for any

£ e [SL®™, .
||f1 FA(w) - ||f1

if a is sufficiently large. Then, by Theorem 3.1, we conclude that the present theorem holds true.
First, we prove that, when a € (0, o), then, for any f € [S’ (R™)]™,

s < 1

Fy(w)

[m]

s
A w)

*

(3.18) ||ﬂ

Fyiwy

By the change of variables, the fact that 1 + 2/|y| ~ 1 for any y € B(0,27/), and (3.1), we conclude
that, for any given g € (0, o) and a € (0, c0), and for any j € Z and x € R",

1/ . q
Ji(x,z—j) W) (QDJ fj (y)| dy

Ji(o,zf)

|W1/P(x)(g0j * ﬁ(x +y)le W) g
) ye;(légfj) (1 + 27[y|)a4 N [(‘pjf)a (x)] ,

W) (s f) e+ )

WP (x) (goj s f) (x+ y)|q dy < sup
yeB(0,27)

which implies that (3.18) holds true.
Next, we show that, for any f €[S (RMH]™,

oo < 1

FXIw)

[m]

(3.19) || ﬂ

W)

if a is sufficiently large. Using (3.12), to prove (3.19), we only need to show that, for any f €
[S/OO(RH)]"‘!’

*

g < 1]
FyidAgh f

[m]

(3.20) || ﬂ

W)
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if a is sufficiently large. For any given A € (0, 1] satisfying that g/A > 1 and p/A > 1, we choose
an a € (0, o) sufficiently large such that A(a—r) > n, where r := % and S is the doubling exponent
of W. Then, by (3.10), the change of variables, the fact that, for any z € Q;, and s € B(0, 270,
72— 5 € Qju+e) for some 1 := (11,...,1,) € Z" satistying |f|o, := max{ty : d € {l,...,n}} <1, and
Lemma 3.5, we conclude that, for any j € Z, k € Z", and x € Q,

 Mautos NI
yerr (1 4+ 27[x —y|)ad

~ D U= e ’)2f”f

tezr B©.27))

< D+ e gy Aan o

ez
f f Ao, (g7 ) (s + 2| deds
{teZ" o<1} ¥ BO027) JQjisr

< D+ e gy Aan o

ez

{tEZ" |t|m<1 L_]([’-H‘) fB(OZ J)

< D+ = gy o

tezn
Lﬂm Ji(o 2-7)

Now, we prove (3.20) by considering two cases on p.
Case 1) p € (0, 1]. In this case, noticing that 1¢,,., = 2.gep,(1010,.,), We then have

. A
(3.22) f 20 f AQyi (07 fj(s+z)| dsdz
Qjt+n) B(0,277)
o 271
() QeD; B(0,277)

= f gi(2)dz,
()

(3.21)

L. |AQ,-c (5% /) (z)|A dzds

Ag, (6% ) (s + z)| dsdz

AQ/([H) j* f) (s+ Z)| dsdz.

{teZ": |t <1}

5 A
Angj*f(s+z)| dslp(z)dz

where, for any z € R”,

8@ = ) 2j“f Agg;* fls+ 2 dsto@).

QGD] B(O,Z’/)

For any given x € Q i, let By := B(xy ¢, «,¢,1) be the smallest ball containing both x and the dyadic
cube Qj+p. Then ryp; ~ 2771 + |k — £ —1). Since |t| < 1, it follows that

(3.23) Fees ~ 2701 + [k = €)).



18 Q1 WANG, DACHUN YANG AND YANGYANG ZHANG

Using this and (3.22), we obtain, for any x € Q j,

(3.24) f DJ f
Qi+ B(0,27/)

< j; gj(@dz < 271 + [k - )" M(gj)(x).

AQj(€+r) (‘Pj * f) (s+ Z)|A dsdz

By both (3.21) and (3.24), we conclude that, for any x € R",

o Ao+ HK

(3.25) P :
Ry (1 +2/|x — y|)ea

Qe
< DA+ k= MM () £ M(g,)(),

ez

1p(x)

where, in the last step, we used the assumption A(a — r) > 2n. From (3.25), we further deduce
that, for any x € R”,

Ao(e; * )

2/% su
yern (1 +27]x — y])

(3.26)

1o(x )l < [Mgp]™

QEDJ'

By (3.26), the Fefferman—Stein vector-valued maximal inequality together with p/A > 1 and
q/A > 1, the Holder inequality, and Lemma 2.17, we find that, for any f € [SLMERMH]™,

T e

JEZ

1/A

LPIA(RM)

2.,

JEZ QEDj

%% f

| JEZ Q€D; B(0,27)

%% f

| JEZ Q€D; B(0,27)

I

A

) B /A /q
Ao = fl+2) dz] 1o

LP(R™)

1/q

A

- q
Ao« fl+ 2 deg

LP(R™)

7N

1/q
|AQW—1/P(,)”‘I|W1/17(,)¢]. * f(- +z)|q leQ]

LP(R™)
o

Ew)

Thus, (3.20) holds true when p € (0, 1].
Case 2) p € (1, 00). In this case, from (3.21), the Holder inequality, and Lemma 2.16, we infer
that, for any x € Q j,

A0, (¢j % I

(3.27) :
yern (1 +2/]x — y[)e4
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spask-ara 5[ Mool
Qj(€+r)

ez {teZ": t|ln <1}

<
B(0,277)
. . Al
N S (T e
Qje+n)

ez {teZ: |t| <1}

Lj(f+t) {ﬁ(O,Z‘j)

: A
< 3+ k- gy e o)
tez"

< 2 e
ez <1y (¥ Qicern 1V BO.27)

For any given x € R", let B, := B(xksy rkes) be the same as in Case 1). Notice that, for any
M > n,

Wl/P(Z) (goj * fj (s+ Z)|A dsdz]

p-A

, p-A
4

X Wl/P(Z) (% *fj (s +z)|A ds}pl__A dz

pA

W'P(2) (¢, * f) <s+z)|A ds]”'_'A dz} .

sup Z(l +lk—€)™ = sup Z (L+lk—e)™ = Z(l +1e)™ < 1.
keZ" pezn keZ" | Zpezn tezn

By this, (3.27), (3.23), the Holder inequality, and the disjointness of Qj for any k € Z", we
conclude that, for any x € R”,

(3.28) Z “w Ag; (p; * f)(y)|‘11 "
| kezn yeﬂgﬂ (I+ 2j|x -y Qi

. A
) [Z D+ e = ey o)
keZ LeZ"

/ e
1p a7 sl
x W@ (g ) s+ ds| dzf 1,0
B, LJB(0,277)
—A(a—r)+ @ A
4> D). +lk=a

kezZn ez

M f
B(0,2-/)

< {M[[JE WP (¢ *f) ( +z)|A dz]m}(X)}
B(0,2-/)

p/fA 61/A

’

Wl/p(.) (¢j * f) -+ z)|A dz]m] (x)] 1, (%)

X

(' =Ayq
7
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q/A
(p'-A)n
X ]

sup (1 + [k — o) AT
kez? lezn

(£

where, in the last step, we chose a sufficiently large a € (0, c0) such that A(a — r)

/_
, (P’ -A)q

W) (g% F) ¢+ 2 dz]_] <x)} ,

/
“A
—(pp—,)">n.

Noticing that Z (Z;A) = A+({4_A)p > 1, choose A € (0, 1) sufficiently small, and hence (p;% > 1
and g/A > 1. From this, (3.28), the Fefferman—Stein vector-valued maximal inequality, and the

Holder inequality, we deduce that, for any f € [SLERH]™,

|7

*

Fy(Agh
. W-Ag %
. A )| Y
<8 2 Im [f Wl/l’(.)(gpj*f”)(.+z)| dz]
ez B(0,2))

LP(R™)
Ap/
W'-Aq\ T-Ayq
Ap’

q

. L 1
) Z M[[Ji(o,z—j) 2]an/p(')(¢j*fj('+z)| dz] ]]

JEZ
P —A)
L A R™)
0 A 194 a
< szqf Wl/P(x)(¢j*fj(-+Z)| dz]
P | JB(0,2-7)
LP(R™)
) 1/q
: q
< szq JE Wl/P(x)(¢j*fj(-+Z)| dz]
P |JB(0,2-7)
LP(RM)

[m]

-1

Thus, (3.20) holds true when p € (0, o).

Combining both Cases 1) and 2), we conclude that (3.20) holds true. From (3.19), (3.12), and
Theorem 3.1, we infer that (3.17) holds true for any f e [SL(RM]™, which then completes the
proof of Theorem 3.11. O

Fyiowy

Remark 3.12. Theorem 3.11 when m = 1 and W = 1 is just [37, Theorem 2.12.1] which is the
Lusin-area function characterization of Triebel-Lizorkin spaces.

In what follows, we establish the g’,— function characterization of F Z’q(W). First, we give the
following technical lemma.

Lemma 3.13. Let ¢ € S(R") with supp ¢ being bounded and away from the origin. Then, for any
[ eSLRM, p= feC(R")NS'(R") and supp(yp * f)" C supp .
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Proof. Since supp ¢ is bounded and away from the origin, then we deduce that, for any ¢ € S(R"),
supp@g’b\) C supp ¢ is bounded and away from the origin, which implies that

(3.29) @ W € Sw(RY).

By an argument similar to that used in the proof of [17, Proposition 2.3.4(b)], we find that, if
f € S..(R"), then there exists a positive constant C and k, £ € Z, such that, for any ¢ € So,(R"),

LON<C > pul®),

{k, veZli: |ul<k, V<L)

where

(3.30) Pu$) := sup X0 ¢(x)].

xeR?

From this, f € S (R"), and (3.29), we infer that there exist k, £ € Z, such that, for any ¢ € S(R"),

Ke = foudl = Kf, @ =)l

< Z Py,v(a * 1)
{p, vEZL: lul<k,IvI<C}

< > swp f D =y ok - )] Bl dy
{,vezZ i<k <) YR VR gy

N ()}
{u, veZiy: jul<k,|vI<L}

where, in the last inequality, the implicit positive constant depends on ¢, which implies that ¢ = f €
S’(R™). By this, we conclude that, for any y € S(R") with suppy c (R" \ supp¢),

(0" 2) =l £7) = (L7 = (£.G0)") =0

which implies that supp(¢ = f)* C suppe. Then, from [17, Theorem 2.3.21], we deduce that
pxf€ Lioc (R™), which completes the proof of Lemma 3.13. O

Theorem 3.14. Let @ € R, p € (0,00), g € (0,00], W € A,(R",C™), and A € (gt + 5, 0),

where B is the doubling exponent of W. Assume that ¢ € S(R") satisfies both (T1) and (T2) of

Definition 2.18. Then f € Fyy /(W) if and only if f € [SL(R]" and || fll4.q oy < 00, where
4

- 1/q
* o WP ;= q
(3.31) 1, = S 2702 WO« POI
R (lv= we (1420 iy
! LP(R™)

with usual modification made when q = co. Moreover, for any f € [SLMERMH],

FyAw) - ||f1

where the positive equivalence constants are independent of f

&

(3.32) || ﬂ

Fyiw)’
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Proof. Let all the symbols be the same as in the present theorem. First, we prove that, for any

Fe[SLE®RM™,

(3.33) “ﬂ Faawy ||f1

Indeed, by an observatlon that, for any x € R” and y € B(x,27/), 1 + 2/|x —y| ~ 1, we conclude
that, for any x € R" and f e [SL(RDH]™,

Ji(x,Zf )

1/ s ) . 1/ Sk )
i f W ”(x).(% Hy dy < 2" f W ”(x).(% Hm p
B2y (L +2/x -yt re (1 +2/|x —yptna

Fyiw)

WP (g = ) )| dy

>

which implies that || fﬂﬂ.m S ﬁ |*., .. From this and Theorem 3.11, we infer that (3.33) holds
F39(w) F39(w)

true. Thus, to complete the proof of Theorem 3.14, it remains to show that, for any f e[S, (RH]™,

Fytowy ™ ”ﬂ

Let {Ap}oepn be a sequence of reducing operators of order p for W. For any f € [SLL(RH]™, let

5 1/q
s lAg(pj = I
. - pjaqyin g / dvl .
Fﬁf’(AQ}) {Z Z re (1 +2J]z — ypAra e
LP(RY)

(3.34) || ﬂ

Eiwy

(3.35) || ﬂ

j€Z QeD; ZEQ

To prove (3.34), we first show that, for any f €[S (RMH]™,

Eyiowy ™~ ||f1

Indeed, for any given p € (0, 00) and g € (0, o], and for any x € R" and j € Z, let

(3.36) || ﬂ

m]({AQ

yi = ) WAy [ 1000,

QeD;

1/p % DI 1/q
hj(x) := djayinlq [f 14 (X).(SDJ H J l ,
no (1 +21|x—y|)/1nq

and

- 1/q
A o q
fi(x) = Z IQI_“/”2’”/‘1[ gf Aolp; * NI dyl 1p(x).

— )4
& o (1+ 2l =)™

It is obvious that, for any j € Z and x € R”,

(337  hix)=

2](!21n/q [f |W1/p(x)AélAQ(‘Pj * f_))()’)|q
Qel)] .

/q
(1+ 2/fx — y)ya dy‘ 1o
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l Ag(e; * AN

q
< D, loremarawireoag| R41+mm—ﬂvw'4 o

QeD;

Z |Q|—a/n 2Jnlq HWl/p(x)A H

[SO)

< v fi(x).

l j‘mdw*ﬁ@w
Rn

q
dy| 1p(x)
(1+ 20— )™ l ¢

Notice that f; is a constant on any given Q € D;, which implies that E;(f;) = f;, where E; is the
same as in Lemma 3.9. By this, (3.31), (3.37), Lemma 3.9, and (3.35), we conclude that, for any
f e [SL®RI™,

|71

”{y’ Ej(f) }162 Lo(£9)

v~ 171

Fylw) H{h }Jez L(£49)

<) 151

Thus, (3.36) holds true for any f €[S (RH]™.
Next, we prove that, for any f € [SLRMH™,

< Wiy
FY(Agh) 4 FI(w)

Let A € (0,0) and j € Z. Then we claim that, for any z € R" and A € (0, g],

wq({A

(3.38) ||ﬂ

3.39 sup —————— < -
(335 S T+ 2w o T+ 2=yt @

N - 1/A
mdw*ﬁwn<kﬂ mdw*ﬁwwdl

Then we prove (3.39) by considering the following two cases on A.

Case 1) A € (0, 1]. In this case, using the assumption that ¢ satisfies (T2) of Definition 2.18,
we can then easily prove that there exists a ¢ € S(R") such that supp W is bounded away from the
origin and ’aﬁ\ = 1 on supp ¢. By this and Lemma 3.13, we find that

(3.40) ixf=wixpi*f

on R". From this and the estimate that

(3.41) (1+2z =)' <1+ 2z =)' A + 2/ - yI)

for any j € Z and z, v,y € R", we deduce that, for any given A € (0, min{1, g}] and for any z € R",
Aol * AV

vz (1 +27)z = v
&AAQ@]%ﬁUﬂ”wQKv—WN@f
= (1 +2J|z = vyt
. Ag(p; = HO2MPQRIw = yIL + 2|y — yh¥
< sup dy
veRn Jrn (1+ 2]z = yh»

(3.42)
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<yﬁf Ao(e; + O
>0 e 02— @

1-A ey A
\fzmM@ﬁ*”@'d

Ao(e; * AV
(1+ 2 — A

(1 +2/|z = v])n

~

veR"

When a € (n/ min{1, p, g} + B/ p, =), by fe Fg’q(W), (3.9), and Lemma 2.26, we find that

{ES 2jc,sup|Ag(¢y=r<f)(v)|lg} e,
JEZ

&b e (L4271

which implies that sup, pn % < oo almost everywhere on R”. Using this, we find that

there exists a measurable set /' C R" satisfying that |[F| = 0 and, for any x € R" \ F,

Ag(e; * A

3.43 .
(3.43) S T+ 27— e

Then, for any e € F, there exists an x, € R” \ F such that 2/|x, — ¢| < 1/2. From this, we deduce
that

mdw*ﬁw»<s Ag(e; * H)I
verr (1 +27]e = v)* = yern (1 + 2J|x, — v — 2J]x, — e])@
Ag(ej * PV

< sup -
vern (1/2 +2/|x, = vI)

which, combined with (3.43), implies that

. Ag(@j * PV
vern (1+27] - =y

onR"if A € (min{},p’q} + r’%, 00). By this and (3.42), we conclude that (3.39) holds true for A € (0, 1].

Case 2) A € (1, 00). In this case, from (3.40), (3.41), the Holder inequality, and the change of
variables, we infer that, for any given A € (1, ¢] and for any z € R",

Ag(e; * V)
sup —————
verr (1 + 2i]z = v) ¥

foulAo(e; = A2 = y))dy
< sup -
veRn (1+ 27z — v
Ag(e; * AT (v = I + 27y — y)¥

Si%fl (I + 27z =y 2

i [ Aoty = Ao r“

wr (1+ 27z -y @

1/A7
X sup {[2f'" f 2/ (v = ) (1 + 27|y =y dy] }
Rn

veR”
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> 1/A
N lzjn [Ag(p; * FOD* p

o (1+ 20z —ypia @

which implies that (3.39) holds true for g € (1, c0).
Thus, (3.39) holds true for any A € (0, ¢]. Using (3.39), we obtain, for any given A € (0, ¢] and
any z € R,

(3.44)

~ |Ag(p; * D
2" :
L£u1+mm—ﬂﬂwdy

veR”

<2mf‘maw*ﬁwwdq“
ST Je T 20 —ypma P

Md%*ﬁ@NQ%?ﬁf Ao(e; * A
(1+ 20— W)™ o (14 20z —yhnd

Notice that, for any k,u € Z", j€ Z,z € Qj,, and y € Qj,
(3.45) (1+20z=y) ~ 1+ lk—ul.

Since 4 € (1/ min{1, p, g} + 5/(np), o), then it follows that there exists an A € (0, min{l, p, g})
such that A[A— %] > 1. By this, (3.45), (3.44), Lemma 3.5, the disjointness of Q, for any u € Z",
and Lemma 3.7, we conclude that, for any x € R",

Z Z jaqy jn sup |AQ(‘Pj = ) dle(x)

jEZ QEDJ' ZEQ R (1 + 2']|Z - yl)/lnq

_ ; - q/A

. A, AL 1272 A 0 (@) * HIA

sy sl Y [ | 10,0
JEZ uezn 2€0ju kezn ¥ Qi (I+2/]z=yl)

i} q/A
3 DIDICETE A PN OR IO ) dylg,xx)}
ik

JEZ LueZ kezZ"

3 3 (et el o]

QD j

From this, A € (0, min{p, g}), the Fefferman—Stein vector-valued maximal inequality, and Lemma
2.26, we deduce that, for any f € [S, (R™)]",

q/A\ V4
||ﬂ Fagn S {Z M[Z HszAQsoj*ﬂlQ]A] }

Jez Q0eD; Lr(r?)

1/A

. [M[Z [|zjaAQ<pj* fllQ]A]LZ

0eD; LPlIA(galAy
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<

which implies that (3.38) holds true. By both (3.36) and (3.38), we obtain (3.34). Using (3.34)
and (3.33), we find that (3.32) holds true for any f € [S/,(R™)]™, which completes the proof of
Theorem 3.14. |

FyiAg)) HfHF‘;-‘I(W)’

Remark 3.15. (i) Theorem 3.14 when m = 1, W = 1 and ¢ € (0, o) is a part of [6, Theorem
3.2] which is the g’-function characterization of Triebel-Lizorkin spaces F Z’q(R").

(ii) Let p € (0,00), g € (0,00), W € A,(R",C™), and S be the doubling exponent of W. We
should point out that the range of A in Theorem 3.14 does not coincide with the one in [6,

Theorem 3.2], namely, (m, 00). It is still unclear whether or not Theorem 3.14 still

1 1 B
T+ np].

holds true when A € (m, Ly

4 Fourier Multiplier

In this section, we study the mapping property on F g’q(W) for a class of Fourier multipliers,
which was originally introduced by Cho [6].

First, we denote by the symbol C(R" \ {0}) the space of all continuous functions on R" \ {0} and
recall the definition of the space C/(R" \ {0}). For any ¢ € N, let

CIRM N\ {0} := {f € CR"\{0}) : 8“f e CR"\{0}), Vo € Z" and |o] < ¢} .

For a given ¢ € N and a given s € R, assume that m € C/(R" \ {0}) satisfies that, for any o € Z"
and |o| < ¢,

(4.1) sup [R—"””Z'“' f |(3“Tm(§)|2 dé| < Ay < 0.
Re(0,00) R<|¢|<2R

Remark 4.1. When s = 0 and ¢ € N, (4.1) is known as the Hormander condition (see, for instance,
[33, p. 263]). Typical examples are given by the kernels of the Riesz transforms R, where

(ROF)E) = —il&a/IENF(E)

for any ¢ = (¢1,...,&) € R"\ {0}, f € SR"),andd € {1, ..., n}. Whens # Oand £ € N, a
typical example satisfying (4.1) is given by m(¢) := |£]7* for any £ € R" \ {0}.

Let K be a compact set of R”. Then f:: (fi, ..., )T € [SRM]" or fe [S'(R™M]™ is said to
have compact support set K, denoted by supp f c K, if,foranyd € {1, ..., m}, supp f; C K. From
[17, Theorem 2.3.21], it follows that, for any f € [S'(R")]" with supp f c K, f € [L! (R™]".
The following lemma is a part of [1, Corollary 6.13].

Lemma 4.2. Let K be a compact subset of R" and W € A,(R",C"). If p € (0,1) and N €
B/p+n,00)NZs, orifpe(l,00)and N € (B/p, ) NZ,, where 8 is the doubling exponent of W,
then there exists a positive constant C such that, for any ]F e [S'R™)]™ with supp ]F Cc K,

> 1/
4.2) sup L CU |(W1/Pf”) (x)|p dx] "
R’l

vere (1 + 12V
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Moreover, if supp f C {x € R" : |x| < 2/}, where j € Z., then, for any N as above, there exists a
positive constant C such that

) jnlp f U A ol ]
4.3) sup ey < C4 5 (W f”)(x)| dx| .

Lemma 4.3. Let £ € N and m € CE(R" \ {0}) be the same as in (4.1) with s € R. Then m € S'(R).
Proof. Bym € C{(R™\ {0}), we conclude that, for any ¢ € S(R"),

4 I:= f m(x)e (o) dx
R?
=3[ e [
jez, YV <<t i<l

< Puo(e) f Lx)lzv dx + max{|lm(x)|: 0 < |x] < 1}
| i Jaicsait (141D

< Puo(p) Z f |m(-j§)l dx + max{|m(x)| : 0 < |x| < 1},
| jez, J2/<li<2i*! 2]

where u € Z!! with |u| < N, N can be chosen as any positive integer, and p, o(¢) is the same
as in (3.30). Notice that, if —n + 25 € [0, o), then 2/CN*D < 277429 for any j, N € Z,; if
—n + 25 € (—00,0), by choosing an N € (n — 2s + 1, 00), we then have 2/-N+D < 271429 for any
J,N € Z,. From this, (4.4), and (4.1), we deduce that, for any ¢ € S(R"),

1< pno(@)| )27 f

[m(0)27N*D dx + max{{m(x)| : 0 < |x| < 1}]

= 2<|xl<2/*!
< prolg)| D 277272 f m(0)|dx + max{jm(x)] : 0 < |x < 1)
| JEZ+ 2J<|x|<2/+1
< pvo@) | Y 2740 + max{lm()] : 0 < x| < 1} ~ pyo(e),
| jEZ+
which implies that m € S’(R"). This finishes the proof of Lemma 4.3. 0

Let £ € N and m € C(R" \ {0}) be the same as in (4.1) with s € R. By Lemma 4.3, we can
define the Fourier multiplier T, by setting, for any f € [So(R™)]™,

A >
(4.5) (Tnf) =mf.
Furthermore, let K be the distribution whose Fourier transform is m.
Then we show that, via a suitable way, T}, can be defined on the space F g’q(W). To this end, let

@, € S(R") satisfy both (T2) of Definition 2.18 and (2.5). For any fe Fz’q(W) and ¢ € S (R"),
let

(4.6) (Tufr9) =) Fr@jsu; g KO),

JEZ
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where ¢ = ¢(—-). It is obvious that, when f € [Se(R™)]™, then both T, f in (4.5) and T,, f in (4.6)
coincide in [S., (R™)]". The following result shows that the right-hand side of (4.6) converges and
T,.f in (4.6) is well defined for any f € Fj(f’q(W).

Lemma 44. Let @ € R, p € (0,), ¢ € (0,00, W € A,(R",C"), and f € FYUW). Let
¢ € (B/p+n/min{l, p} + 3, ), where j3 is the doubling exponent of W, and let m € CLHR™\ {0}) be
the same as in (4.1) with s € R. Then T,, in (4.6) is independent of the choice of the pair (¢, ¥) of
Schwartz functions satisfying both (T2) of Definition 2.18 and (2.5). Moreover, T, f e[S, (RH]™
and T, f in (4.6) is well defined.

To show Lemma 4.4, we need the following lemmas, which are just [6, Lemma 4.1(i)] and [43,
Lemma 2.2], respectively.

Lemma 4.5. Let ¢y € S(R") satisfy that ;ﬁ\ has compact support away from the origin. Let A €
(0,0), £ € (A+n/2, ), and m be the same as in (4.1) with s € R. Let K be the distribution whose
Fourier transform is m. Then there exists a positive constant C such that, for any j € Z,

f,, (1+27)" (K <)) @] dz < c277.

Lemma 4.6. For any given M € N, there exists a positive constant C such that, for any ¢, €
So@®), j, L € Z, and x € R",

2= min{j,(}M

. —|t—jiM
|"0J * ll/f(x)| < C”"DHSMH ”l//”SMH 2 (2~ min{j.f} 4 |x|)n+M’

where, for any ¢ € S (R"),

lells,, == sup sup [07()| (1 + ]y M0,
{yeZ!: ly|<M} xeR"

Proof of Lemma 4.4. Let ¢ and  be a pair of Schwartz functions satisfying both (T2) of Definition
2.18 and (2.5). Let ¢* and ¥* be another pair of Schwartz functions satisfying both (T2) of
Definition 2.18 and (2.5). By this, Lemma 2.24, and ¢ € S,(R"), we find that

(4.7) $=> gl ylrd in Se®.

tez,

Since ¢ and ¢* satisfy (T2) of Definition 2.18, it follows that there exists an L € N such that, for
any |[j — 1 > L,

4.8) @j* (p;‘ =0.

Let a, p, g, W, and m be the same as in this lemma. Let f eF Z’q(W). To prove
D Frgirw;xdxKO)
JEZ
converges, where K is the distribution whose Fourier transform is m, we first show that

DN Frgyewegl vyl « ¢« K@)

JEZ tel
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converges. To this end, by both (4.3) of Lemma 4.2 and Definition 2.18, we find that, for any
N € Z, satisfying Lemma 4.2 and for any f € F' g’q(W) and j € Z,,

i < FOL i f
“ R 2y < :
1

From this, go}.* * ¢; = (¢* *Y*); € Su(R"), Lemma 4.6, and the estimate that

» 1/p
WP ()= ) ) dx}

< 2Jin/p=)

Fyiw)

1+ 271 < (1 + 27) (1 + 271z = 1)

for any j € Z and y, z € R”, and Lemma 4.5 with £ > N + n/2, we infer that

S|P ey vt w5 KO)

J=0

(—Z)| |(90* * ¢*)j T EL2E: K(Z)| dz
7=0

SZZ’(Z”/” “)”f ‘“’(W)fnfn 1+2’Iz|

|(<p ) 9z =y« K@) dydz

' —a- 1 +2/)zhN
2J@n/p—a=M) f ( K o
Hf ;:q(W) n JRrn (1 + |Z y|)n+M |¢] * (y)| ydaz

(1 +27yhY
F;f"’(w)f [vj = KO)| dydz

e (1 + |z = yymM=N

N

2j(N+2n/p—a'—M) f_-

12\

Mo 1M 1M T X

~
Il
(=)

2j(N+2n/p—a'—M) f_-

[ e 2i) oy k]
EX9W) Jgn /

f

where the implicit positive constants depend on ¥*, ¢*, and ¢, and where M € N is chosen to be
sufficiently large such that M > max{N, N + 2n/p — s — a}. On the other hand, by (4.9), Lemma
4.6, and the estimate that 1+2/z] < (1+2/|y[)(1 +2/|z—y|) for any j € Z and y, z € R", and Lemma
4.5, we find that

2j(N+2n/p—af—M—s)

N

FA (W) - Hﬂ

Fyiw)’

i |f—)*<ﬁj*¢’j*"0;*¢’;*$*l((0)|

j——oo

Zf|f*wj Z)||<p #y*) Gy K@) dz
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-1
< .;m 2JN-0) ﬂ o f n f n (1+2/ IZI)N

|(90 ) gz =)+ K@) dydz

< Z 2j(—N—a+n+M) ||f1 f (1 + 2j|Z|)N
=1 F00) Jon Jan (U4 21 =y

f f (1 +27ypN
aq(W) " . (1 + 2]|Z _y|)n+M—N

f (1+271)" |y = KO dy
F2IwW) /

ﬂFZ"’(W) - Hﬂ

where the implicit positive constants depend on ¥*, ¢*, and ¢, and where M € N is chosen to be
sufficiently large such that M > max{N, s + @ + N}. From an argument similar to that used in the
above two estimations, we deduce that

ij « K(y)| dydz

< Z J(=N-a+n+M) ||f

Jj=—

|¢,j « K(y)| dydz

- Sl

Jj=—00

< Z 9 J(-N-a+M-s)

Jj=—00

W)

J+L
(4.10) N | F ey uyegt wut w6 KO)| < oo,

JeZ t=j-L

By (4.10) and (4.8) with |j — ¢| > L, we conclude that
S Py vy n it 2wt 550 KO
JEZ tel
J+L

:Z Z |]?*€0j*‘/’j*§0;(*‘//;*5*1((0)|<OO'

JE€Z t=j-L
Using (4.2) of Lemma 4.2, Definition 2.18, Lemma 4.6, the estimate that
1+ 2 < (1+271) (1+2'1x - y)

for any x,y € R" and r € Z, and Lemma 4.5, we find that, for any fixed j € Z,

Zf |f*90j*‘/’J( x)(% w Y *¢*K (x)| dx

teZ

< I,

.‘,,q(W)Z f (1+ )™ f i+ g = )| [ + KO dydx
P R”? R”

27+ 2N
Fy o [Z f o (L+ |x — y|)”+R| + K(y)| dydx

< I,



REAL-VARIABLE CHARACTERIZATIONS AND THEIR APPLICATIONS OF MATRIX-WEIGHTED TRIEBEL—LIZORKIN SPACES 31

2R+ )Y
" Z f” fﬂ (1 +2t|x_y|)n+R |”0t *K(Y)| dydx

[=—00

—tR N
(1 +1x])
Faam, [Z f v g (1 +lx - y|)”+R| * K()| dydx
2t(n+R—N)(1 +2’|x|)N
" Z f " f (L4 2= y|yR et * K(y)| dydx
f=—o00
N 2RA+ )Y,

S ML KO)| dyd

HﬂFZ"’(W) [; fRn g (1 + |x — yyr+R-N [oi * KG)| dydx

-1
1 2t N
+ Z 2R f (1+2DbD |of = K| dy dx]

n Jrn (14 2f|x — y|)yr+R-N

—IR t\N
(1+2'h)
£ lz f . (1 TN I KO dydx

{\N
1n+R-N) (1 +2°yD) .
’ Z > fn fn (1 + 2!|x — y|)yr*tR-N |‘Pt *K(y)| dy dx

[=—00

[, [Zz—’R f (1+2)" o = KO dy

. Z (R N)f (1+2i)" | « K| dy

[=—00

[, [Zz—f’* f (1+20)" | = K| dy

+ Z 1R~ N>f 1+2’|y|) lof * K| dy

. [Z . Z RN~ o‘ I7
0

where the implicit positive constants depend on j, @, p, and n, and where R € N is chosen to be
sufficiently large such that R > max{N, —s, N + s} with N the same as in (4.9). From this and
(4.7), we deduce that

<

< I,

Eyiowy’

Froj*;*¢*KO)
Fx @ pj(—0¢ * K(x)dx

3

N

frejsi(—x) (K, H(x — -)> dx

n

I
S—5— 5

Fr@xw(-x) Z (K.gf sy glx =) dx

te’Z

n
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=20 | e w0 (Koo g7+ gl =) dx

teZ

= > Frgirwir @« uf +§x K().

teZ

By this and (4.8), we find that

D FrgirwjxdxKO) =Y N Frgpngxpf vyl s KO),
JEZ JEZ teZ
which, together with (4.7), K € S'(R") c S/, (R"), and Lemma 2.24, further implies that
D frgi g KO)
JjEZ

S S et et e gseuy B KO)

7
=ééfwf*w:w,*(-x>(1<,¢jw,-*?5<-—x>) dx
:;Z: Rnf*wt**%*(—@é(lcwj*wj*&-—x))dx
= ZZ: N Feef v uf (-0 (K@ - 1) dx
::ZZJFW;W;*?J*K(O).

Thus, T,, f in (4.6) is independent of the choice of the pair (¢, ¥) satisfying both (T2) of Definition
2.18 and (2.5). Moreover, the above argument also implies that 7, f €[S, (R™)]™ is well defined,
which completes the proof of Lemma 4.4. O

Lemma 4.7. Let p € (0,00) and W € A,(R",C™). Assume that ¢, € S(R") satisfy both (T1)
and (T2) of Definition 2.18 and (2.5). Let 1 € (8/p + n/ min{1, p}, c0), where B is the doubling
exponent of W, and let € € (1 + n/2,00) and m € CUR™ \ {0}) be the same as in (4.1) with s € R.
Let ¢ := ¢ = and T, be the same as in (4.6). Then there exists a positive constant C such that,
for any fe Fg’q(W) and x € R",

) WY+ PO
1/ ) Ky J
|W P(x) (T f ¢,)(x)| <C27/ yseulg (1+2ix—ypt ~

Proof. Let all the symbols be the same as in the present lemma. Let K be the distribution whose
Fourier transform is m, ¢ = ¢ *, and f € F g’q(W). We first show that, for any j € Z,

Fr@ix+K e [SLERHI™.

Indeed, by (4.9), the estimate that 1+ 2/|x—y| < (1 +2/|x|)(1 +2/|y|) for any x,y € R", and Lemma
4.5, we conclude that, for any y € S, (R"),

|<f* pjxj*K, 7>|
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IA

[ [ Veeie=vllo« kool et avas

R® JR?

] - f n f (1 2= 1) e K)ol dy dx
Aoy [ [ (020" (142700 o KOO 0l s

A

A

S P (T
9wy Jon

s |7 PN+2m,0(Y),

EFyAw)

where the implicit positive constants depend on @ € R, j € Z, and s € R, and where N is the
same as in (4.9) and py+25,0 1S the same as in (3.30), which implies that the above claim holds true.
Using this claim and Lemma 2.24, we find that

Zf*soj*lﬁj*K*w*W

(eZ
converges in [S (R™)]™. From (4.6) and Lemmas 4.4 and 2.24, we deduce that, for any f €
FSUW), T f € [SL(RM]™ and, for any i € Sw(R™),
(4.11) (Tf * ¢ju1) = (Twfon % 6)
= Zf*w*%*ﬁ*%*%*ﬂ@

(eZ

:Z<f_)*90£*¢£*90j*‘ﬁj*K,77>

(eZ

=<Zf*<ﬂe*l//£*<ﬂj*l//j*lﬂf7>

teZ
:<f*¢j*¢j*K,n>.

Let y € S(R") satisfy bothy = 1 on supp$ and suppy C{x € R" : 0 < |x| < x}. Forany j € Z
and x € R", let y;(x) := 2/y(2/x). Then, by (4.11) with y € Se,(R™), [17, Theorem 2.3.21], and
¢ = @+ with supp ¢ C {x € R" : |x|] < xr}, we find that
Touf * $j(0) = T f % ¢ % 7j(0) = fxpjx g% K x7(0)
= fx i * K(x)

for any x € R”. From this and Lemma 4.5, we infer that, for any x € R",
(WP () (T f 5 87) ()

IWP(x) (@) * fHx =)l
= Jan (1 + 27y
<2 sup WP+ )

sern (142 =y

(1+27)" |(K ) (y)| dy

This finishes the proof of Lemma 4.7. O
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Theorem 4.8. Leta € R, p € (0,00), g € (0,00, and W € A,(R",C"). Let € € (zrimmr+5+4, 0)

and m € CE(R"\{0}) be the same as in (4.1) with s € R, where B is the doubling exponent of W. Let
T, be the same as in (4.6). Then there exists a positive constant C such that, for any f € F Z’q(W),

[y = €7

Proof. Let ¢, ¢, and ¢ be the same as in the present lemma. Since ¢ = ¢ * i, it follows that ¢
satisfies both (T1) and (T2) of Definition 2.18. Using this, Definition 2.18, Lemmas 2.26 and 4.7,
and Theorem 3.1, we find that

q :
Fytw)

1
[ z el (1, 5 ) ‘
| JEZ Lp(Rn
Up( o
s b |W1 ()2(;0, . f)iy)l
| jeZ YyER" ( + | ) _yl) @)
- ﬂ Ew)’
which completes the proof of Theorem 4.8. O

Remark 4.9. Theorem 4.8 when m = 1 and W = 1 is a part of [45, Theorem 1.5(i)].
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