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Real-Variable Characterizations and Their Applications of

Matrix-Weighted Triebel–Lizorkin Spaces

Qi Wang, Dachun Yang* and Yangyang Zhang

Abstract Let α ∈ R, q ∈ (0,∞], p ∈ (0,∞), and W be an Ap(Rn,Cm)-matrix weight. In this

article, the authors characterize the matrix-weighted Triebel–Lizorkin space Ḟ
α,q
p (W) via the

Peetre maximal function, the Lusin area function, and the Littlewood–Paley g∗λ-function. As

applications, the authors establish the boundedness of Fourier multipliers on matrix-weighted

Triebel–Lizorkin spaces under the generalized Hörmander condition. The main novelty of

these results exists in that their proofs need to fully use both the doubling property of ma-

trix weights and the reducing operator associated to matrix weights, which are essentially

different from those proofs of the corresponding cases of classical Triebel–Lizorkin spaces

that strongly depend on the Fefferman–Stein vector-valued maximal inequality on Lebesgue

spaces.

1 Introduction

Lizorkin [21, 22] and Triebel [36] independently started to investigate Triebel–Lizorkin spaces

F
α,q
p (Rn) from 1970s. Furthermore, we mention the contributions [25, 26, 27] of Peetre who

extended the range of the admissible parameters p and q to values less than one. We refer the

reader to [37, 38, 39, 31, 32] for more studies of these function spaces and their history.

On the other hand, the real-variable theory of both function spaces and the boundedness of

operators related to matrix weights on Rn has received increasing interest in recent years. In 1997,

to solve some significative problems related to the multivariate random stationary process and

the Toeplitz operators (see, for instance, [35]), Treil and Volberg [34] introduced the Mucken-

houpt A2(Rn,Cm)-matrix weights and generalized the Hunt–Muckenhoupt–Wheeden theorem to

the vector-valued case, while Nazarov and Treil [23] introduced Muckenhoupt Ap(Rn,Cm)-matrix

weights for any p ∈ (1,∞) (see also Definition 2.5 below for its definition), and obtained the

boundedness of the Hilbert transform on the matrix-weighted Lebesgue space Lp(W), which was

proved again by Volberg [41] via a new approach involving the classical Littlewood–Paley theory.

In 2016, Cruz-Uribe et al. [9] applied the theory of Ap matrix weights on Rn to study degenerate

Sobolev spaces. See also, for instance, [5, 7, 8, 10] for more studies on matrix-weighted function

spaces and their applications. Later, Frazier and Roudenko [15] introduced the matrix-weighted

2020 Mathematics Subject Classification. Primary 46E35; Secondary 42B25, 42B15, 42B35.

Key words and phrases. matrix weight, Triebel–Lizorkin space, Peetre maximal function, Littlewood–Paley function,

Fourier multiplier.

This project is partially supported by the National Key Research and Development Program of China (Grant No.

2020YFA0712900) and the National Natural Science Foundation of China (Grant Nos. 11971058 and 12071197).
*Corresponding author, E-mail: dcyang@bnu.edu.cn/July 18, 2022/Final version.

1

http://arxiv.org/abs/2207.08474v1


2 QiWang, Dachun Yang and Yangyang Zhang

homogeneous Triebel–Lizorkin space Ḟ
α,q
p (W) via the discrete Littlewood–Paley g-function with

α ∈ R, p ∈ (0,∞), and q ∈ (0,∞] (see also Definition 2.18 below for its definition). For any

given p ∈ (1,∞), Frazier and Roudenko [15] proved that Lp(W) = Ḟ
0,2
p (W) and, for any k ∈ N,

F
k,2
p (W) coincides with the matrix-weighted Sobolev space L

p

k
(W). Frazier and Roudenko [15]

also showed that a vector-valued function ~f belongs to Ḟ
α,q
p (W) if and only if its ϕ−transform co-

efficients belong to the sequence space ḟ
α,q
p (W). As an application of the above results, Frazier and

Roudenko [15] obtained the boundedness of Calderón–Zygmund operators on Ḟ
α,q
p (W). However,

no other real-variable characterizations of these Triebel–Lizorkin spaces are known so far. The

main purpose of this article is try to fill this gap.

Let α ∈ R, p ∈ (0,∞), q ∈ (0,∞], and W be an Ap(Rn,Cm)-matrix weight. In this article, we

first consider other real-variable characterizations of Ḟ
α,q
p (W), including its characterizations via

the Peetre maximal function, the Lusin area function, and the Littlewood–Paley g∗λ−function, re-

spectively, in Theorems 3.1, 3.11, and 3.14 below. We should point out that the main strategy used

in [40, 24] to establish these real-variable characterizations of classical Triebel–Lizorkin spaces is

based on a technique of the application of the Fefferman–Stein vector-valued maximal inequality.

However, since the matrix-weighted Fefferman–Stein vector-valued maximal inequality is still un-

known so far, it follows that the approach used in [40, 24] is no longer feasible for matrix-weighted

Triebel–Lizorkin spaces. To overcome these obstacles, we borrow some ideas from [15] and intro-

duce both the Peetre maximal function and the Littlewood–Paley function quasi-norms in terms of

reducing operators associated to W [see (3.8) and (3.35) below]. Then the problem can be reduced

to study the equivalence between the quasi-norms of Triebel–Lizorkin spaces in terms of reducing

operators of W in Definition 2.20 below and the corresponding Peetre maximal function or the

corresponding Littlewood–Paley g∗λ-function quasi-norm, respectively, in (3.8) and (3.35) below,

which allows us to use the Fefferman–Stein vector-valued maximal inequality in Lp(Rn) to solve

the problem. As an application of the Littlewood–Paley characterization of Ḟ
α,q
p (W), we obtain, in

Theorem 4.8 below, the boundedness of Fourier multipliers on Ḟ
α,q
p (W) under the assumption of

the Hörmander condition [see (4.1) below].

To be precise, the remainder of this article is organized as follows.

In Section 2, we first recall some concepts concerning the matrix weight W , the Ap(Rn,Cm)-

matrix weight condition, and the reducing operator of W . Then we recall some known properties

and also give some new properties of both Ap(Rn,Cm)-matrix weights and reducing operators of

matrix weights, which play a key role in the proof of the whole article.

In Section 3, we establish some real-variable characterizations of Ḟ
α,q
p (W). We first characterize

the matrix-weighted Triebel–Lizorkin space Ḟ
α,q
p (W) for any α ∈ R, p ∈ (0,∞), q ∈ (0,∞], and

W ∈ Ap(Rn,Cm) in terms of the Peetre maximal function (see Theorem 3.1 below). By introducing

the Peetre maximal function with the reducing operator relating to the matrix weight, we obtain

both the Lusin area function and the Littlewood–Paley g∗λ-function characterizations of matrix-

weighted Triebel–Lizorkin spaces (see Theorems 3.11 and 3.14 below).

In Section 4, we prove the boundedness of Fourier multipliers on Ḟ
α,q
p (W) (see Theorem 4.8

below) under the assumption of the Hörmander condition [see (4.1) below for its definition], which

is an application of the Littlewood–Paley characterization of Ḟ
α,q
p (W) with α ∈ R, p ∈ (0,∞),

q ∈ (0,∞], and W being an Ap(Rn,Cm)-matrix weight.

Finally, we make some conventions on notation. We use the symbol f . g to denote that there

exists a positive constant C such that f ≤ Cg. The symbol f ∼ g is used as an abbreviation of
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f . g . f . If f ≤ Cg and g = h or g ≤ h, we then write f . g ∼ h or f . g . h, rather than

f . g = h or f . g ≤ h. Let N := {1, 2, . . . }, Z+ := N∪ {0}, and Zn
+ := (Z+)n. For any multi-index

γ := (γ1, . . . , γn) ∈ Zn
+ and any x := (x1, . . . , xn) ∈ Rn, let |γ| := γ1 + · · · + γn, xγ := x

γ1

1
· · · x

γn
n ,

and ∂γ := ( ∂
∂x1

)γ1 · · · ( ∂
∂xn

)γn . For any index p ∈ [1,∞], we use p′ to denote its conjugate index,

namely, 1
p
+ 1

p′
= 1. In addition, for any measurable set F ⊂ Rn, we denote by 1F its characteristic

function. We use the notation 〈 f , g〉 to denote a pairing which is linear in f and g; when this pairing

is between a distribution f and a test function g, then 〈 f , g〉 = f (g). We also use the notation (~x, ~y)

to denote the inner product of ~x, ~y ∈ Cm. For any f ∈ L1
loc

(Rn) and any measurable set E ⊂ Rn, let

?
E

f (x) dx :=
1

|E|

∫

E

f (x) dx.

For any s ∈ R, we use the symbol ⌊s⌋ to denote the largest integer not greater than s. For any

measurable function g and any x ∈ Rn, let g̃(x) := g(−x). For any x ∈ Rn and r ∈ (0,∞), let

B(x, r) := {y ∈ Rn : |x − y| < r} be the ball with center x and radius r. Furthermore, for any

a ∈ (0,∞) and any ball B := B(xB, rB) in Rn with xB ∈ R
n and rB ∈ (0,∞), let aB := B(xB, arB).

We also use 0 to denote the origin of Rn.

Let S(Rn) be the space of all Schwartz functions on Rn, equipped with the classical topology

determined by a well-known countable family of norms, and S′(Rn) its topological dual space

[namely, the set of all continuous linear functionals on S(Rn)], equipped with the weak ∗-topology.

Following Triebel, we let

S∞(Rn) :=

{
ϕ ∈ S(Rn) :

∫

Rn

ϕ(x)xγdx = 0 for all multi-indices γ ∈ Zn
+

}

and consider S∞(Rn) as a subspace of S(Rn), including its topology. Use S′∞(Rn) to denote the

topological dual space of S∞(Rn), namely, the set of all continuous linear functionals on S∞(Rn).

We also equip S′∞(Rn) with the weak ∗-topology. Let P(Rn) be the set of all polynomials on Rn.

It is well known that S′∞(Rn) = S′(Rn)/P(Rn) as topological spaces; see, for instance, [18, 30].

2 Matrix-Weighted Triebel–Lizorkin Spaces Ḟ
α,q
p (W)

In this section, we present some basic definitions and results of matrix-weighted Triebel–

Lizorkin spaces via two subsections. In Subsection 2.1, we recall the concepts of the matrix

weight, the Ap(Rn,Cm)-matrix weight, and their properties. In Subsection 2.2, we present both the

definition and also some basic properties of matrix-weighted Triebel–Lizorkin spaces.

2.1 Ap(Rn,Cm)-Matrix Weights

In this section, we recall the concepts of the matrix weight, the matrix Ap(Rn,Cm) condition,

and the reducing operator of W . Furthermore, we present their basic properties. We begin with

recalling the concept of the matrix weight (see, for instance, [29, 34]). In what follows, for any

~z := (z1, . . . , zm)T ∈ Cm, let |~z| := (
∑m

j=1 |z j|
2)1/2, where T denotes the transpose of the row vector.

Definition 2.1. Let m ∈ N. An m × m complex-valued matrix A is said to be nonnegative definite

if, for any~z ∈ Cm\{0}, (A~z,~z) ≥ 0. An m×m complex-valued matrix A is said to be positive definite
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if, for any ~z ∈ Cm \ {0}, (A~z,~z) > 0. The set of all nonnegative definite m × m complex-valued

matrices is denoted by Mm(C). Furthermore, the operator norm of a matrix A is defined by setting

‖A‖ := sup
~z∈Cm\{0}

|A~z|

|~z|
.

Definition 2.2. Let m ∈ N and W : Rn → Mm(C) satisfy that every entry of W is a measurable

function. The map W is called a matrix weight from Rn to Mm(C) if W(x) is invertible for almost

every x ∈ Rn.

The following definition is a part of [19, Definition 1.2].

Definition 2.3. Let m ∈ N and A be a positive definite m×m complex-valued matrix satisfying that

there exists an invertible m×m complex-valued matrix P and a diagonal matrix diag (λ1, . . . , λm),

with {λ1, . . . , λm} ⊂ R+, such that A = P diag (λ1, . . . , λm)P−1. Then, for any α ∈ R, let

Aα := P diag (λα1 , . . . , λ
α
m)P−1.

Remark 2.4. Let A be a positive definite m ×m complex-valued matrix in Definition 2.3. By [20,

Theorem 4.1.5], we find that the decomposition of A in Definition 2.3 exists. Furthermore, from

[19, Problem 1.1] (see also [20, p. 407]), we deduce that, for any α ∈ (0,∞), Aα in Definition 2.3

is independent of the choice of the invertible m × m complex-valued matrix P and the diagonal

matrix diag(λ1, . . . , λm) with {λ1, . . . , λm} ⊂ C.

In what follows, let Q := {all cubes Q ⊂ Rn}, here and thereafter, a cube means its edges

parallel to the coordinate axis with a finite and positive edge length which is not necessary to be

open. The following definition is just [28, Definition 3.2] and [14, p. 1226, (1.1)].

Definition 2.5. Let m ∈ N and p ∈ (0,∞). An Ap(Rn,Cm)-matrix weight W , denoted by W ∈

Ap(Rn,Cm), is a matrix weight from Rn to Mm(C) satisfying that, when p ∈ (1,∞),

sup
Q∈Q

1

|Q|

∫

Q

[
1

|Q|

∫

Q

∥∥∥W1/p(x)W−1/p(y)
∥∥∥p′

dy

]p/p′

dx < ∞,

where ‖ · ‖ denotes the operator norm of a matrix and, when p ∈ (0, 1],

sup
Q∈Q

ess sup
y∈Q

1

|Q|

∫

Q

∥∥∥W1/p(x)W−1/p(y)
∥∥∥p

dx < ∞.

Remark 2.6. When p ∈ [1,∞) and m = 1, the Ap(Rn,Cm)-matrix weight in Definition 2.5 coin-

cides with the classical Ap(Rn)-weight (see Definition 2.8 below for its definition).

The following result about the matrix weight is just [29, Corollary 3.3].

Lemma 2.7. Let W be a matrix weight from Rn to Mm(C), p ∈ (1,∞), and p′ := p/(p − 1). Then

the following statements are equivalent:

(i) W ∈ Ap(Rn,Cm);

(ii) W−p′/p ∈ Ap′(R
n,Cm).
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Now, we recall the concept of the classical Ap(Rn)-weight (see, for instance, [17]).

Definition 2.8. An Ap(Rn)-weight ω, with p ∈ [1,∞), is a locally integrable and nonnegative

function on Rn satisfying that, when p ∈ (1,∞),

sup
Q∈Q

[
1

|Q|

∫

Q

ω(x) dx

] [
1

|Q|

∫

Q

{ω(x)}
1

1−p dx

]p−1

< ∞

and, when p = 1,

sup
Q∈Q

1

|Q|

∫

Q

ω(x) dx
[∥∥∥ω−1

∥∥∥
L∞(Q)

]
< ∞.

Define A∞(Rn) :=
⋃

p∈[1,∞) Ap(Rn).

From both [16, Corollary 2.2] and [14, Lemma 2.1], we deduce the following lemma; we omit

the details here.

Lemma 2.9. Let p ∈ (0,∞), W ∈ Ap(Rn,Cm), and w~y(x) := |W1/p(x)~y|p for any x ∈ Rn and any

given ~y ∈ Cm. Then, for any given ~y ∈ Cm \ {0}, w~y ∈ A1(Rn) if p ∈ (0, 1], and w~y ∈ Ap(Rn) if

p ∈ (1,∞).

If p ∈ (1,∞), the following corollary is just [16, Corollary 2.3]. For the convenience of the

reader, we present some details of its proof.

Corollary 2.10. Let p ∈ (0,∞) and W ∈ Ap(Rn,Cm). Then ‖W1/p‖p ∈ A1(Rn) if p ∈ (0, 1], and

‖W1/p‖p ∈ Ap(Rn) if p ∈ (1,∞).

Proof. By [29, Lemma 3.2], we conclude that, for any given p ∈ (0,∞) and for any x ∈ Rn,

∥∥∥W1/p(x)
∥∥∥p
∼

m∑

i=1

∣∣∣W1/p(x)~ei

∣∣∣p ,

where {~e1, . . . , ~em} is the standard unit basis of Cm. Then, by Lemma 2.9, we conclude that, for

any i ∈ {1, . . . , m}, |W1/p~ei|
p is an A1(Rn)-weight if p ∈ (0, 1], and |W1/p~ei|

p is an Ap(Rn)-weight

if p ∈ (1,∞), therefore, their finite sum is as well. This finishes the proof of Corollary 2.10. �

The following definition comes from [14, p. 1230].

Definition 2.11. Let p ∈ (0,∞). A non-zero matrix weight W is called a doubling matrix weight

of order p if there exists a positive constant C such that, for any cube Q ⊂ Rn and any ~z ∈ Cm,

(2.1)

∫

2Q

∣∣∣W1/p(x)~z
∣∣∣p dx ≤ C

∫

Q

∣∣∣W1/p(x)~z
∣∣∣p dx,

where 2Q denotes the cube concentric with Q and having twice the edge length of Q. Let

β := min
{
β ∈ (0,∞) : (2.1) holds with C = 2β

}
.

Then β is called the doubling exponent of the doubling matrix weight W of order p. For simplicity,

such a β is also called the doubling exponent of W .
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The following lemma can be found in [15, Lemma 2.2].

Lemma 2.12. Let p ∈ (0,∞) and W ∈ Ap(Rn,Cm). Then W is a doubling matrix weight of order

p.

Remark 2.13. It is easy to see that, if we replace any cube Q with any ball B ⊂ Rn in Definitions

2.5 and 2.11, then Lemmas 2.7 and 2.12 still hold true.

In what follows, for any j ∈ Z and k := (k1, . . . , kn) ∈ Zn, let Q jk :=
∏n

i=1 2− j[ki, ki + 1),

D := {Q jk : j ∈ Z, k ∈ Zn}, and

(2.2) D j := {Q jk : k ∈ Zn}.

Definition 2.14. Let m ∈ N, p ∈ (0,∞), and W be a matrix weight from Rn to Mm(C). A sequence

{A
(W)

Q
}Q∈D of positive definite m × m matrices is called a sequence of reducing operators of order

p for W if there exist positive constants C1 and C2 such that, for any ~z ∈ Cm and Q ∈ D,

C1

∣∣∣∣A(W)

Q
~z
∣∣∣∣ ≤
[

1

|Q|

∫

Q

∣∣∣W1/p(x)~z
∣∣∣p dx

]1/p

≤ C2

∣∣∣∣A(W)

Q
~z
∣∣∣∣ .

For simplicity, the sequence {A
(W)
Q
}Q∈D of reducing operators of order p for W is denoted by

{AQ}Q∈D.

Remark 2.15. Let m ∈ N. From [16, Proposition 1.2] and [14, p. 1237], we deduce that, for any

p ∈ (0,∞) and any matrix weight W from Rn to Mm(C), a sequence of reducing operators of order

p for W in Definition 2.14 exists.

The following lemmas are respectively a part of [15, Lemmas 3.2 and 3.3].

Lemma 2.16. Let p ∈ (1,∞), p′ := p/(p − 1), W ∈ Ap(Rn,Cm), and {AQ}Q∈D be a sequence

of reducing operators of order p for W. Then there exists a δ(W) ∈ (0,∞) such that, for any

η ∈ (0, p′ + δ(W)),

sup
Q∈D

1

|Q|

∫

Q

∥∥∥AQW−1/p(x)
∥∥∥η dx < ∞.

Lemma 2.17. Let p ∈ (0, 1], W ∈ Ap(Rn,Cm), and {AQ}Q∈D be a sequence of reducing operators

of order p for W. Then

sup
Q∈D

ess sup
x∈Q

∥∥∥AQW−1/p(x)
∥∥∥ < ∞.

2.2 Matrix-Weighted Triebel–Lizorkin Spaces

In this section, we begin with recalling the concepts of both matrix-weighted Triebel–Lizorkin

spaces and sequence matrix-weighted Triebel–Lizorkin spaces. Then we prove the rationality of

Definitions 2.18 and 2.20.

In what follows, for any m ∈ N, let

[S′∞(Rn)]m :=
{
~f := ( f1, . . . , fm)T : for any i ∈ {1, . . . , m}, fi ∈ S

′
∞(Rn)

}
.
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For any ~f := ( f1, . . . , fm)T ∈ [S′∞(Rn)]m and ϕ ∈ S∞(Rn), let

ϕ ∗ ~f := (ϕ ∗ f1, . . . , ϕ ∗ fm)T

and ϕ j(·) := 2 jnϕ(2 j·) with j ∈ Z. For any φ ∈ S(Rn), φ̂ denotes its Fourier transform which is

defined by setting, for any ξ ∈ Rn,

φ̂(ξ) := (2π)−n/2

∫

Rn

φ(x)e−ixξ dx.

For any f ∈ S′(Rn), f̂ is defined by setting, for any ϕ ∈ S(Rn), 〈 f̂ , ϕ〉 := 〈 f , ϕ̂〉; also, for any

f ∈ S(Rn) [resp., S′(Rn)], f∨ denotes its inverse Fourier transform,

f∨(·) := (2π)n/2

∫

Rn

f̂ (x)eix· dx

[resp., 〈 f∨, ϕ〉 := 〈 f , ϕ∨〉 for any ϕ ∈ S(Rn)]. For any ϕ ∈ S(Rn), supp ϕ̂ := {x ∈ Rn : ϕ̂(x) , 0}

and, for any f ∈ S′(Rn),

supp f := ∩
{
closed set K ⊂ Rn : 〈 f , ϕ〉 = 0 if ϕ ∈ S(Rn) and supp ϕ ⊂ Rn \ K

}
,

which can be found in [17, Definition 2.3.16].

Definition 2.18. Let m ∈ N, α ∈ R, p ∈ (0,∞), q ∈ (0,∞], W be a matrix weight from Rn to

Mm(C), and ϕ ∈ S(Rn). Furthermore, assume that

(T1) for any x ∈ Rn \ {0}, there exists an l ∈ Z such that ϕ̂(2l x) , 0,

(T2) supp ϕ̂ ⊂ {x ∈ Rn : |x| < π} is bounded away from the origin.

Then the matrix-weighted Triebel–Lizorkin space Ḟ
α,q
p,ϕ(W) is defined by setting

Ḟ
α,q
p,ϕ(W) :=

{
~f ∈
[
S′∞(Rn)

]m
:
∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p,ϕ(W)

< ∞

}
,

where
∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p,ϕ(W)

:=

∥∥∥∥∥∥∥∥


∑

j∈Z

∣∣∣∣2 jαW1/p
(
ϕ j ∗ ~f

)∣∣∣∣
q



1/q
∥∥∥∥∥∥∥∥

Lp(Rn)

with suitable modification made when q = ∞.

Remark 2.19. (i) Observe that, if ϕ̂(x) > 0 for any {x ∈ Rn : ǫ ≤ |x| ≤ π − b}, where

b ∈ (0, π − 1] and ǫ ∈ (0, (π − b)/2), then ϕ automatically satisfies that, for any x ∈ Rn \ {0},

there exists an ℓ ∈ Z such that ϕ̂(2ℓx) , 0 and hence, in this case, the assumption (T1) in

Definition 2.18 is superfluous; see [42, Lemma 3.18 and Remark 3.19] for the details.

(ii) Let α ∈ R, p ∈ (0,∞), and q ∈ (0,∞] be the same as in Definition 2.18. If m = 1 and

ϕ ∈ S(Rn) satisfies both

(2.3) supp ϕ̂ ⊂ {ξ ∈ Rn : 1/2 ≤ |ξ| ≤ 2}
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and

(2.4)
∣∣∣ϕ̂(ξ)
∣∣∣ ≥ c > 0

when 3/5 ≤ |ξ| ≤ 5/3 with c being a positive constant independent of ξ, then Ḟ
α,q
p,ϕ(W) in

Definition 2.18 is independent of the choice of ϕ and it coincides with the weighted Triebel–

Lizorkin space Ḟ
α,q
p (ω). For more details on weighted Triebel–Lizorkin spaces, we refer the

reader to [2, 4, 46].

(iii) Let α ∈ R, p ∈ (0,∞), and q ∈ (0,∞] be the same as in Definition 2.18. If m = 1, W = 1,

and ϕ ∈ S(Rn) satisfies both (2.3) and (2.4), then Ḟ
α,q
p,ϕ(W) in Definition 2.18 is independent

of the choice of ϕ (see, for instance, [13, Remark 2.6]) and it coincides with the Triebel–

Lizorkin space Ḟ
α,q
p in [13, p. 46].

Definition 2.20. Let m ∈ N, α ∈ R, p ∈ (0,∞), q ∈ (0,∞], {AQ}Q∈D be a sequence of m × m

nonnegative definite matrices, and ϕ ∈ S(Rn) satisfy both (T1) and (T2) of Definition 2.18. The

{AQ}-Triebel–Lizorkin space Ḟ
α,q
p,ϕ({AQ}) is defined by setting

Ḟ
α,q
p,ϕ({AQ}) :=

{
~f ∈
[
S′∞(Rn)

]m
:
∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p,ϕ({AQ})

< ∞

}
,

where
∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p,ϕ({AQ})

:=

∥∥∥∥∥∥∥∥


∑

j∈Z

∑

Q∈D j

(
2 jα
∣∣∣∣AQϕ j ∗ ~f

∣∣∣∣ 1Q

)q


1/q
∥∥∥∥∥∥∥∥

Lp(Rn)

with suitable modification made when q = ∞.

Remark 2.21. Let m ∈ N, α ∈ R, p ∈ (0,∞), q ∈ (0,∞], and {AQ}Q∈D be a sequence of

nonnegative definite matrices in Definition 2.20. If m = 1, AQ = 1 for any Q ∈ D, and ϕ ∈ S(Rn)

satisfies both (2.3) and (2.4), then Ḟ
α,q
p,ϕ({AQ}) in Definition 2.20 is independent of the choice of ϕ

(see, for instance, [13, Remark 2.6]) and it coincides with the Triebel–Lizorkin space Ḟ
α,q
p in [13,

p. 46].

To prove the rationality of Definitions 2.18 and 2.20, we first recall some classical results (Lem-

mas 2.22, 2.23, and 2.24), which are just [42, Lemma 3.18], [44, Lemma 2.1] (see also [12, Lemma

2.1]), and [43, Lemma 2.1], respectively.

Lemma 2.22. Let ϕ be a Schwartz function satisfying that, for any x ∈ Rn \ {0}, there exists an

l ∈ Z such that ϕ̂(2lx) , 0. Then there exists a ψ ∈ S(Rn) such that ψ̂ ∈ C∞c (Rn) with its support

away from origin, ϕ̂ψ̂ ≥ 0, and

(2.5)
∑

j∈Z

ϕ̂(2− j x)ψ̂(2− j x) = 1

for any x ∈ Rn \ {0}.

In what follows, for any Q ∈ D, let ℓ(Q) denote its edge length and xQ its lower left corner.
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Lemma 2.23. Let ϕ and ψ be the Schwartz functions such that supp ϕ̂, supp ψ̂ ⊂ {x ∈ Rn : |x| < π}

are bounded away from the origin and, furthermore, for any x ∈ Rn \ {0},

∑

j∈Z

ϕ̂(2− jx)ψ̂(2− jx) = 1.

Then, for any f ∈ S′∞(Rn),

f =
∑

j∈Z

2− jn
∑

k∈Zn

ϕ j ∗ f (2− jk)ψ j(· − 2− jk)

converges in S′∞(Rn).

Lemma 2.24. Let ϕ and ψ be the Schwartz functions satisfying (2.5) and that both supp ϕ̂, supp ψ̂

are compact and bounded away from the origin. Then, for any f ∈ S∞(Rn),

(2.6) f =
∑

j∈Z

ϕ j ∗ ψ j ∗ f

holds true in S∞(Rn). Moreover, for any f ∈ S′∞(Rn), (2.6) also holds true in S′∞(Rn).

Lemma 2.25. Let α ∈ R, p ∈ (0,∞), q ∈ (0,∞], W ∈ Ap(Rn,Cm), {A
(W)
Q
}Q∈D be a sequence of

reducing operators of order p for W, and ϕ, ψ ∈ S(Rn) satisfy both (T1) and (T2) of Definition

2.18. Then, for any ~f ∈ [S′∞(Rn)]m,

∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p,ϕ(W)

∼

∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p,ψ(W)

and ∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p,ϕ({AQ})

∼

∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p,ψ({AQ})

,

where the positive equivalence constants are independent of ~f .

Proof. Let ϕ and ψ be the same as in Definitions 2.18 and 2.20. By Lemma 2.22, we find that

there exist γ, η ∈ S(Rn) satisfying γ̂, η̂ ∈ C∞c (Rn) with their supports away from the origin and

(2.5) via ϕ and ψ replaced, respectively, by ϕ and γ or by ψ and η. Using this and Lemma 2.23,

and repeating the proof of [15, Theorems 1.1 and 2.3], we then finish the proof of Lemma 2.25. �

For simplicity, the matrix-weighted Triebel–Lizorkin space is denoted by Ḟ
α,q
p (W) and the {AQ}-

Triebel–Lizorkin space is denoted by Ḟ
α,q
p ({AQ}). By a proof similar to that used in [15, Theorem

1.1], we conclude the following lemma; we omit the details here.

Lemma 2.26. Let m ∈ N, α ∈ R, p ∈ (0,∞), q ∈ (0,∞], W ∈ Ap(Rn,Cm), {AQ}Q∈D be a sequence

of reducing operators of order p for W, and ϕ ∈ S(Rn) satisfy both (T1) and (T2) of Definition

2.18. Then, for any ~f ∈ [S′∞(Rn)]m,

‖ ~f ‖Ḟα,q
p (W) ∼ ‖

~f ‖Ḟα,q
p ({AQ})

,

where the positive equivalence constants are independent of ~f .
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3 Real-Variable Characterizations of Ḟ
α,q
p (W)

In this section, we characterize the spaces Ḟ
α,q
p (W) via the Peetre maximal function, the Lusin

area function, and the Littlewood–Paley g∗λ−function.

Now, with a modification of the classical Peetre-type maximal function in [26], we introduce

the concept of the following matrix-weighted Peetre-type maximal function. Let p ∈ (0,∞), m ∈ N,

W ∈ Ap(Rn,Cm), ϕ ∈ S∞(Rn), and ~f ∈ [S′∞(Rn)]m. For any given j ∈ Z and a ∈ (0,∞), and for

any x ∈ Rn, let

(3.1)
(
ϕ∗j
~f
)(W,p)

a
(x) := sup

y∈Rn

|W1/p(x)(ϕ j ∗ ~f )(y)|

(1 + 2 j|x − y|)a
.

Theorem 3.1. Let α ∈ R, p ∈ (0,∞), q ∈ (0,∞], W ∈ Ap(Rn,Cm), and

a ∈ (n/min{1, p, q} + β/p,∞) ,

where β is the doubling exponent of W. Assume that ϕ ∈ S(Rn) satisfies both (T1) and (T2) of

Definition 2.18. Then ~f ∈ Ḟ
α,q
p (W) if and only if ~f ∈ [S′∞(Rn)]m and ‖ ~f ‖⋆

Ḟ
α,q
p (W)

< ∞, where

(3.2)
∥∥∥∥ ~f
∥∥∥∥
⋆

Ḟ
α,q
p (W)

:=

∥∥∥∥∥∥∥∥∥


∑

j∈Z

2 jαq
[(
ϕ∗j
~f
)(W,p)

a

]q


1/q
∥∥∥∥∥∥∥∥∥

Lp(Rn)

with usual modification made when q = ∞. Moreover, for any ~f ∈ [S′∞(Rn)]m,

(3.3)
∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)

∼

∥∥∥∥ ~f
∥∥∥∥
⋆

Ḟ
α,q
p (W)

,

where the positive equivalence constants are independent of ~f .

Remark 3.2. (i) Theorem 3.1 when m = 1 is a part of [3, Theorem 3.1].

(ii) Theorem 3.1 when m = 1 and W = 1 is a part of [26, Theorem 3.1] which is the Peetre

maximal function characterization of Triebel–Lizorkin spaces.

To show Theorem 3.1, we first recall the definitions of both strongly doubling and weakly

doubling matrices, which can be found in [15, Definition 2.1].

Definition 3.3. Let {AQ}Q∈D be a sequence of positive definite matrices, β ∈ (0,∞), and p ∈ (0,∞).

The sequence {AQ}Q∈D is said to be strongly doubling of order (β, p) if there exists a positive

constant C such that, for any Q, P ∈ D,

(3.4)
∥∥∥AQA−1

P

∥∥∥p
≤ C max



[
ℓ(P)

ℓ(Q)

]n
,

[
ℓ(Q)

ℓ(P)

]β−n


[
1 +

|xQ − xP|

max{ℓ(P) , ℓ(Q)}

]β
.

The sequence {AQ}Q∈D is said to be weakly doubling of order r ∈ (0,∞) if there exists a positive

constant C such that, for any k, ℓ ∈ Zn and j ∈ Z,

(3.5)
∥∥∥∥AQ jk

A−1
Q jℓ

∥∥∥∥ ≤ C (1 + |k − ℓ|)r ,

where Q jk :=
∏n

i=1 2− j[ki, ki + 1) for any j ∈ Z and k := (k1, . . . , kn) ∈ Zn.
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Remark 3.4. In Definition 3.3, a strongly doubling sequence of order (β, p) satisfying (3.4) is also

weakly doubling of order r := β/p satisfying (3.5) because, when ℓ(P) = ℓ(Q), (3.5) coincides

with (3.4).

The following lemma explains the connection between the doubling weight W and the doubling

sequence {AQ}Q∈D, which can be deduced from [15, Lemma 2.2], Lemma 2.12, and Remark 3.4;

we omit the details.

Lemma 3.5. Let p ∈ (0,∞), W ∈ Ap(Rn,Cm), and {AQ}Q∈D be a sequence of reducing operators

of order p for W. Then {AQ}Q∈D is weakly doubling of order
β
p
, where β is the doubling exponent

of W.

The following lemma is just [15, (2.8)].

Lemma 3.6. Let ϕ ∈ S(Rn) satisfy (T2) of Definition 2.18. Suppose that {AQ}Q∈D is a weakly

doubling sequence of order r ∈ (0,∞) of positive definite matrices. Then, for any given A ∈ (0, 1]

and R ∈ (0,∞), there exists a positive constant C, depending on both A and R, such that, for any

j ∈ Z, k ∈ Zn, and ~f ∈ [S′∞(Rn)]m,

sup
x∈Q jk

∣∣∣∣AQ jk

(
ϕ j ∗ ~f

)
(x)
∣∣∣∣
A

≤ C
∑

ℓ∈Zn

(1 + |k − ℓ|)−A(R−r) 2 jn

∫

Q jℓ

∣∣∣∣AQ jℓ
ϕ j ∗ ~f (s)

∣∣∣∣
A

ds,

where Q jk :=
∏n

i=1 2− j[ki, ki + 1) for any j ∈ Z and k := (k1, . . . , kn) ∈ Zn.

Recall that the Hardy–Littlewood maximal operator M is defined by setting, for any locally

integrable function f and any x ∈ Rn,

(3.6) M( f )(x) := sup
x∈B

1

|B|

∫

B

| f (y)| dy = sup
x∈B

?
B

| f (y)| dy,

where the supremum is taken over all the balls B of Rn containing x. Denote by the symbol M (Rn)

the set of all the complex-valued measurable functions on Rn.

Lemma 3.7. Let M be the maximal operator in (3.6) and η > n. Then there exists a positive

constant C such that, for any j ∈ Z and h ∈M (Rn),

∑

k∈Zn

∑

ℓ∈Zn

(1 + |k − ℓ|)−η2 jn

∫

Q jℓ

|h(s)| ds1Q jk
≤ CM(h).

Proof. Observe that, for any given j ∈ Z and any x ∈ Rn, it is easy to see that there exists a unique

kx ∈ Z
n such that x ∈ Q jkx

. Using this, we find that, for any x ∈ Rn,

∑

k∈Zn

∑

ℓ∈Zn

(1 + |k − ℓ|)−η2 jn

∫

Q jℓ

|h(s)| ds1Q jk
(x)

=
∑

ℓ∈Zn

(1 + |kx − ℓ|)
−η2 jn

∫

Q jℓ

|h(s)| ds
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=
∑

{ℓ∈Zn: |ℓ−kx |≤1}

(1 + |kx − ℓ|)
−η2 jn

∫

Q jℓ

|h(s)| ds +
∑

m∈N

∑

{ℓ∈Zn: 2m−1<|ℓ−kx |≤2m}

· · ·

.

∑

{ℓ∈Zn: |ℓ−kx |≤1}

∫

Q jℓ

|h(s)| ds +
∑

m∈N

∑

{ℓ∈Zn: 2m−1<|ℓ−kx |≤2m}

2−mη

∫

Q jℓ

|h(s)| ds

∼

∫
⋃
{ℓ∈Zn: |ℓ−kx |≤1} Q jℓ

|h(s)| ds +
∑

m∈N

2−mη

∫
⋃
{ℓ∈Zn: 2m−1<|ℓ−kx |≤2m}

Q jℓ

|h(s)| ds

.

∑

m∈Z+

2−mη2mn

?
Bm

|h(s)| ds .M(h)(x),

where Bm for any m ∈ Z+ is the smallest ball containing both x and
⋃
{ℓ∈Zn: |ℓ−kx |≤2m} Q jℓ. This

finishes the proof of Lemma 3.7. �

Now, we recall the definition of the space Lp(ℓq), which can be found in [37, p. 14].

Definition 3.8. Let p ∈ (0,∞] and q ∈ (0,∞]. Then the space Lp(ℓq) is defined by setting

Lp(ℓq) :=

{
{ f j} j∈Z ⊂M (Rn) :

∥∥∥∥
{
f j

}
j∈Z

∥∥∥∥
Lp(ℓq)

< ∞

}
,

where

∥∥∥∥
{
f j

}
j∈Z

∥∥∥∥
Lp(ℓq)

:=



∫

Rn


∑

j∈Z

∣∣∣ f j(x)
∣∣∣q


p/q

dx



1/p

with suitable modifications made when p = ∞ or q = ∞.

The following lemma is just [15, Corollary 3.8].

Lemma 3.9. Let p ∈ (0,∞), q ∈ (0,∞], W ∈ Ap(Rn,Cm), and {AQ}Q∈D be a sequence of reducing

operators of order p for W. For any j ∈ Z, x ∈ Rn, and f ∈ L1
loc

(Rn), let

γ j(x) :=
∑

Q∈D j

∥∥∥W1/p(x)A−1
Q

∥∥∥ 1Q(x)

and

E j( f ) :=
∑

Q∈D j

[?
Q

f (y) dy

]
1Q.

Then there exists a positive constant C such that, for any sequence { f j} j∈Z of measurable functions

on Rn, ∥∥∥∥
{
γ jE j

(
f j

)}
j∈Z

∥∥∥∥
Lp(ℓq)

≤ C
∥∥∥∥
{
E j

(
f j

)}
j∈Z

∥∥∥∥
Lp(ℓq)

.

The following lemma is the famous Fefferman–Stein vector-valued maximal inequality, see

[11, Theorem 1].
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Lemma 3.10. Let p ∈ (1,∞) and q ∈ (1,∞]. Then there exists a positive constant C such that, for

any sequence { f j} j∈Z ⊂M (Rn),

∥∥∥∥∥∥∥∥∥


∑

j∈Z

[
M
(

f j

)]q


1/q
∥∥∥∥∥∥∥∥∥

Lp(Rn)

≤ C

∥∥∥∥∥∥∥∥


∑

j∈Z

∣∣∣ f j

∣∣∣q


1/q
∥∥∥∥∥∥∥∥

Lp(Rn)

,

whereM is the same as in (3.6).

Proof of Theorem 3.1. Let all the symbols be the same as in the present theorem. Then, by the

definition of (ϕ∗
j
~f )

(W,p)
a in (3.1), we find that

W1/p
(
ϕ j ∗ ~f

)
≤
(
ϕ∗j
~f
)(W,p)

a
,

which implies that, for any ~f ∈ [S′∞(Rn)]m,

∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)

.

∥∥∥∥ ~f
∥∥∥∥
⋆

Ḟ
α,q
p (W)

.

Thus, to show Theorem 3.1, it remains to prove that, for any ~f ∈ [S′∞(Rn)]m,

(3.7)
∥∥∥∥ ~f
∥∥∥∥
⋆

Ḟ
α,q
p (W)

.

∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)

.

Let {AQ}Q∈D be a sequence of reducing operators of order p for W . For any ~f ∈ [S′∞(Rn)]m, let

(3.8)
∥∥∥∥ ~f
∥∥∥∥
⋆

Ḟ
α,q
p ({AQ})

:=

∥∥∥∥∥∥∥∥


∑

j∈Z

∑

Q∈D j

2 jαq sup
y∈Rn

|AQ(ϕ j ∗ ~f )(y)|q

(1 + 2 j| · −y|)aq
1Q



1/q
∥∥∥∥∥∥∥∥

Lp(Rn)

,

where, for any j ∈ Z, D j is the same as in (2.2). To prove (3.7), we first show that, for any

~f ∈ [S′∞(Rn)]m,

(3.9)
∥∥∥∥ ~f
∥∥∥∥
⋆

Ḟ
α,q
p ({AQ})

.

∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p ({AQ})

.

Indeed, by Lemma 3.5, a geometrical observation that 1 + 2 j|x − y| ∼ 1 + |k − s| for any x ∈ Q jk

and y ∈ Q js, Lemma 3.6, and the fact that 1 + |k − ℓ| ≤ (1 + |k − s|)(1 + |s − ℓ|) for any k, s, ℓ ∈ Zn,

we obtain, for any given A ∈ (0, 1] and for any j ∈ Z, k ∈ Zn, ~f ∈ [S′∞(Rn)]m, and x ∈ Q jk,

sup
y∈Rn

|AQ jk
(ϕ j ∗ ~f )(y)|A

(1 + 2 j|x − y|)aA
(3.10)

= sup
s∈Zn

sup
y∈Q js

|AQ jk
(ϕ j ∗ ~f )(y)|A

(1 + 2 j|x − y|)aA

≤ sup
s∈Zn

sup
y∈Q js

‖AQ jk
A−1

Q js
‖A|AQ js

(ϕ j ∗ ~f )(y)|A

(1 + 2 j|x − y|)aA
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. sup
s∈Zn

sup
y∈Q js

(1 + |k − s|)Ar|AQ js
(ϕ j ∗ ~f )(y)|A

(1 + 2 j|x − y|)aA

∼ sup
s∈Zn

(1 + |k − s|)Ar (1 + |k − s|)−aA sup
y∈Q js

∣∣∣∣AQ js
(ϕ j ∗ ~f )(y)

∣∣∣∣
A

. sup
s∈Zn

∑

ℓ∈Zn

(1 + |k − s|)−A(a−r) (1 + |ℓ − s|)−A(R−r) 2 jn

∫

Q jℓ

∣∣∣∣AQ jℓ

(
ϕ j ∗ ~f

)
(z)
∣∣∣∣
A

dz

.

∑

ℓ∈Zn

(1 + |k − ℓ|)−A(a−r) 2 jn

∫

Q jℓ

∣∣∣∣AQ jℓ

(
ϕ j ∗ ~f

)
(z)
∣∣∣∣
A

dz,

where r :=
β
p

and, in the last step, we used the fact that (1+ |k− s|)(1+ |ℓ− s|) ≥ (1+ |k− ℓ|) for any

k, ℓ, s ∈ Zn and the fact that a ∈ [r,∞), and chose an R ∈ [a,∞). Let A ∈ (0, 1] satisfy q/A > 1.

Using this, (3.10), and the disjointness of the cubes Q jk for any k ∈ Zn, we further find that

∑

Q∈D j

2
jα sup

y∈Rn

|AQ

(
ϕ j ∗ ~f

)
(y)|

(1 + 2 j| · −y|)a
1Q(·)



q

=
∑

k∈Zn

2 jαq

sup
y∈Rn

|AQ jk

(
ϕ j ∗ ~f

)
(y)|A

(1 + 2 j | · −y|)aA
1Q jk

(·)



q/A

.


∑

k∈Zn

∑

ℓ∈Zn

(1 + |k − ℓ|)−A(a−r) 2 jn

∫

Q jℓ

∣∣∣∣2 jαAQ jℓ

(
ϕ j ∗ ~f

)
(z)
∣∣∣∣
A

dz1Q jk
(·)


q/A

.

From a ∈ ( n
min{1,p,q}

+ r,∞), it follows that min{1, p, q}(a − r) > n and hence we can choose an

A ∈ (0, 1] such that A(a − r) > n, p/A > 1, and q/A > 1. Thus, by Lemma 3.7 and the Fefferman–

Stein vector-valued maximal inequality, we conclude that, for any ~f ∈ [S′∞(Rn)]m,

∥∥∥∥∥∥∥∥∥


∑

j∈Z

∑

Q∈D j

2 jα sup
y∈Rn

|AQ(ϕ j ∗ ~f )(y)|

(1 + 2 j| · −y|)a
1Q


q


1/q
∥∥∥∥∥∥∥∥∥

Lp(Rn)

.

∥∥∥∥∥∥∥∥∥


∑

j∈Z

M

∑

Q∈D j

[
2 jα
∣∣∣∣AQ

(
ϕ j ∗ ~f

)∣∣∣∣ 1Q

]A




q/A

A/q
∥∥∥∥∥∥∥∥∥

1/A

Lp/A(Rn)

.

∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p ({AQ})

,

which implies that (3.9) holds true for any ~f ∈ [S′∞(Rn)]m. Now, for any ~f ∈ [S′∞(Rn)]m, let

(3.11)
∥∥∥∥ ~f
∥∥∥∥
⋆⋆

Ḟ
α,q
p ({AQ})

:=

∥∥∥∥∥∥∥∥


∑

j∈Z

∑

Q∈D j

2 jαq sup
z∈Q

sup
y∈Rn

|AQ(ϕ j ∗ ~f )(y)|q

(1 + 2 j|z − y|)aq
1Q



1/q
∥∥∥∥∥∥∥∥

Lp(Rn)

.

From (3.9) and Lemma 2.26, we infer that, for any ~f ∈ [S′∞(Rn)]m,

∥∥∥∥ ~f
∥∥∥∥
⋆

Ḟ
α,q
p ({AQ})

.

∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p ({AQ})

∼

∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)

.
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By this, to complete the proof of (3.7), we still need to prove that, for any ~f ∈ [S′∞(Rn)]m,

(3.12)
∥∥∥∥ ~f
∥∥∥∥
⋆

Ḟ
α,q
p (W)

.

∥∥∥∥ ~f
∥∥∥∥
⋆⋆

Ḟ
α,q
p ({AQ})

.

∥∥∥∥ ~f
∥∥∥∥
⋆

Ḟ
α,q
p ({AQ})

.

We first show the first inequality of (3.12). For any j ∈ Z and x ∈ Rn, let

h j(x) := 2 jα sup
y∈Rn

|W1/p(x)(ϕ j ∗ ~f )(y)|

(1 + 2 j|x − y|)a
,

k j(x) :=
∑

Q∈D j

|Q|−α/n sup
z∈Q

sup
y∈Rn

|AQ(ϕ j ∗ ~f )(y)|

(1 + 2 j |z − y|)a
1Q(x),

and

γ j(x) :=
∑

Q∈D j

∥∥∥W1/p(x)A−1
Q

∥∥∥ 1Q(x).

It is obvious that, for any j ∈ Z and x ∈ Rn,

h j(x) =
∑

Q∈D j

2 jα sup
y∈Rn

|W1/p(x)A−1
Q

AQ(ϕ j ∗ ~f )(y)|

(1 + 2 j |x − y|)a
1Q(x)(3.13)

≤
∑

Q∈D j

2 jα
∥∥∥W1/p(x)A−1

Q

∥∥∥ sup
y∈Rn

|AQ(ϕ j ∗ ~f )(y)|

(1 + 2 j|x − y|)a
1Q(x) ≤ γ j(x)k j(x).

Notice that k j is a constant on any given cube Q ∈ D j, which implies that

(3.14) E j(k j) = k j,

where E j is the same as in Lemma 3.9. Then, by (3.2), (3.13), Lemma 3.9, (3.14), and (3.11), we

have, for any ~f ∈ [S′∞(Rn)]m,

∥∥∥∥ ~f
∥∥∥∥
⋆

Ḟ
α,q
p (W)

=

∥∥∥∥
{
h j

}
j∈Z

∥∥∥∥
Lp(ℓq)

≤

∥∥∥∥
{
γ jE j

(
k j

)}
j∈Z

∥∥∥∥
Lp(ℓq)

(3.15)

.

∥∥∥∥
{
E j

(
k j

)}
j∈Z

∥∥∥∥
Lp(ℓq)

∼

∥∥∥∥
{
k j

}
j∈Z

∥∥∥∥
Lp(ℓq)

∼

∥∥∥∥ ~f
∥∥∥∥
⋆⋆

Ḟ
α,q
p ({AQ})

,

which is just the first inequality of (3.12). Next, we prove the second inequality of (3.12). Indeed,

using a geometrical observation, we find that 1 + 2 j|x − y| ∼ 1 + |s − k| ∼ 1 + 2 j|z − y| for any

x, z ∈ Q jk and y ∈ Q js. From this, we deduce that, for any a ∈ (0,∞), j ∈ Z, k ∈ Zn, and x ∈ Q jk,

sup
z∈Q jk

sup
y∈Rn

|AQ jk
(ϕ j ∗ ~f )(y)|

(1 + 2 j|z − y|)a
∼ sup

y∈Rn

|AQ jk
(ϕ j ∗ ~f )(y)|

(1 + 2 j|x − y|)a
,

which implies that, for any ~f ∈ [S′∞(Rn)]m,

(3.16)
∥∥∥∥ ~f
∥∥∥∥
⋆⋆

Ḟ
α,q
p ({AQ})

∼

∥∥∥∥ ~f
∥∥∥∥
⋆

Ḟ
α,q
p ({AQ})

.

Thus, both (3.15) and (3.16) imply (3.12), and hence (3.3) holds true for any ~f ∈ [S′∞(Rn)]m,

which completes the proof of Theorem 3.1. �
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We now establish the Lusin-area function characterization of matrix-weighted Triebel–Lizorkin

spaces.

Theorem 3.11. Let α ∈ R, p ∈ (0,∞), q ∈ (0,∞], and W ∈ Ap(Rn,Cm). Assume that ϕ ∈ S(Rn)

satisfies both (T1) and (T2) of Definition 2.18. Then ~f ∈ Ḟ
α,q
p (W) if and only if ~f ∈ [S′∞(Rn)]m

with ‖ ~f ‖�
Ḟ
α,q
p (W)

< ∞, where

∥∥∥∥ ~f
∥∥∥∥
�

Ḟ
α,q
p (W)

:=

∥∥∥∥∥∥∥∥


∑

j∈Z

2 jαq

?
B(·,2− j)

∣∣∣∣W1/p(·)
(
ϕ j ∗ ~f

)
(y)
∣∣∣∣
q

dy



1/q
∥∥∥∥∥∥∥∥

Lp(Rn)

with usual modification made when q = ∞. Moreover, for any ~f ∈ [S′∞(Rn)]m,

(3.17)
∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)

∼

∥∥∥∥ ~f
∥∥∥∥
�

Ḟ
α,q
p (W)

,

where the positive equivalence constants are independent of ~f .

Proof. Let all the symbols be the same as in the present theorem. We now claim that, for any
~f ∈ [S′∞(Rn)]m, ∥∥∥∥ ~f

∥∥∥∥
⋆

Ḟ
α,q
p (W)

∼

∥∥∥∥ ~f
∥∥∥∥
�

Ḟ
α,q
p (W)

,

if a is sufficiently large. Then, by Theorem 3.1, we conclude that the present theorem holds true.

First, we prove that, when a ∈ (0,∞), then, for any ~f ∈ [S′∞(Rn)]m,

(3.18)
∥∥∥∥ ~f
∥∥∥∥
�

Ḟ
α,q
p (W)

.

∥∥∥∥ ~f
∥∥∥∥
⋆

Ḟ
α,q
p (W)

.

By the change of variables, the fact that 1 + 2 j|y| ∼ 1 for any y ∈ B(0, 2− j), and (3.1), we conclude

that, for any given q ∈ (0,∞) and a ∈ (0,∞), and for any j ∈ Z and x ∈ Rn,

?
B(x,2− j)

∣∣∣∣W1/p(x)
(
ϕ j ∗ ~f

)
(y)
∣∣∣∣
q

dy

=

?
B(0,2− j)

∣∣∣∣W1/p(x)
(
ϕ j ∗ ~f

)
(x + y)

∣∣∣∣
q

dy . sup
y∈B(0,2− j)

∣∣∣∣W1/p(x)
(
ϕ j ∗ ~f

)
(x + y)

∣∣∣∣
q

∼ sup
y∈B(0,2− j)

|W1/p(x)(ϕ j ∗ ~f )(x + y)|q

(1 + 2 j|y|)aq
.

[(
ϕ∗j
~f
)(W,p)

a
(x)

]q
,

which implies that (3.18) holds true.

Next, we show that, for any ~f ∈ [S′∞(Rn)]m,

(3.19)
∥∥∥∥ ~f
∥∥∥∥
⋆

Ḟ
α,q
p (W)

.

∥∥∥∥ ~f
∥∥∥∥
�

Ḟ
α,q
p (W)

,

if a is sufficiently large. Using (3.12), to prove (3.19), we only need to show that, for any ~f ∈

[S′∞(Rn)]m,

(3.20)
∥∥∥∥ ~f
∥∥∥∥
⋆

Ḟ
α,q
p ({AQ})

.

∥∥∥∥ ~f
∥∥∥∥
�

Ḟ
α,q
p (W)

,
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if a is sufficiently large. For any given A ∈ (0, 1] satisfying that q/A > 1 and p/A > 1, we choose

an a ∈ (0,∞) sufficiently large such that A(a− r) > n, where r :=
β
p

and β is the doubling exponent

of W . Then, by (3.10), the change of variables, the fact that, for any z ∈ Q jℓ and s ∈ B(0, 2− j),

z − s ∈ Q j(t+ℓ) for some t := (t1, . . . , tn) ∈ Zn satisfying |t|∞ := max{td : d ∈ {1, . . . , n}} ≤ 1, and

Lemma 3.5, we conclude that, for any j ∈ Z, k ∈ Zn, and x ∈ Q jk,

sup
y∈Rn

|AQ jk
(ϕ j ∗ ~f )(y)|A

(1 + 2 j|x − y|)aA
(3.21)

∼
∑

ℓ∈Zn

(1 + |k − ℓ|)−A(a−r) 2 jn

?
B(0,2− j)

∫

Q jℓ

∣∣∣∣AQ jℓ

(
ϕ j ∗ ~f

)
(z)
∣∣∣∣
A

dz ds

.

∑

ℓ∈Zn

(1 + |k − ℓ|)−A(a−r) 2 jn

×
∑

{t∈Zn: |t|∞≤1}

?
B(0,2− j)

∫

Q j(ℓ+t)

∣∣∣∣AQ jℓ

(
ϕ j ∗ ~f

)
(s + z)

∣∣∣∣
A

dz ds

.

∑

ℓ∈Zn

(1 + |k − ℓ|)−A(a−r) 2 jn

×
∑

{t∈Zn: |t|∞≤1}

∫

Q j(ℓ+t)

?
B(0,2− j)

∣∣∣∣AQ jℓ

(
ϕ j ∗ ~f

)
(s + z)

∣∣∣∣
A

ds dz

.

∑

ℓ∈Zn

(1 + |k − ℓ|)−A(a−r) 2 jn

×
∑

{t∈Zn: |t|∞≤1}

∫

Q j(ℓ+t)

?
B(0,2− j)

∣∣∣∣AQ j(ℓ+t)

(
ϕ j ∗ ~f

)
(s + z)

∣∣∣∣
A

ds dz.

Now, we prove (3.20) by considering two cases on p.

Case 1) p ∈ (0, 1]. In this case, noticing that 1Q j(ℓ+t)
=
∑

Q∈D j
(1Q1Q j(ℓ+t)

), we then have

∫

Q j(ℓ+t)

2 jα

?
B(0,2− j)

∣∣∣∣AQ j(ℓ+t)

(
ϕ j ∗ ~f

)
(s + z)

∣∣∣∣
A

ds dz(3.22)

=

∫

Q j(ℓ+t)

∑

Q∈D j

2 jα

?
B(0,2− j)

∣∣∣∣AQϕ j ∗ ~f (s + z)
∣∣∣∣
A

ds1Q(z) dz

=

∫

Q j(ℓ+t)

g j(z) dz,

where, for any z ∈ Rn,

g j(z) :=
∑

Q∈D j

2 jα

?
B(0,2− j)

∣∣∣∣AQϕ j ∗ ~f (s + z)
∣∣∣∣
A

ds1Q(z).

For any given x ∈ Q jk, let Bx := B(xk,ℓ,t, rk,ℓ,t) be the smallest ball containing both x and the dyadic

cube Q j(ℓ+t). Then rk,ℓ,t ∼ 2− j(1 + |k − ℓ − t|). Since |t|∞ ≤ 1, it follows that

(3.23) rk,ℓ,t ∼ 2− j(1 + |k − ℓ|).



18 QiWang, Dachun Yang and Yangyang Zhang

Using this and (3.22), we obtain, for any x ∈ Q jk,

∫

Q j(ℓ+t)

2 jα

?
B(0,2− j)

∣∣∣∣AQ j(ℓ+t)

(
ϕ j ∗ ~f

)
(s + z)

∣∣∣∣
A

ds dz(3.24)

≤

∫

Bx

g j(z) dz . 2− jn(1 + |k − ℓ|)nM(g j)(x).

By both (3.21) and (3.24), we conclude that, for any x ∈ Rn,

2 jα
∑

Q∈D j

sup
y∈Rn

|AQ(ϕ j ∗ ~f )(y)|A

(1 + 2 j|x − y|)aA
1Q(x)(3.25)

.

∑

ℓ∈Zn

(1 + |k − ℓ|)−A(a−r)+nM(g j)(x) .M(g j)(x),

where, in the last step, we used the assumption A(a − r) > 2n. From (3.25), we further deduce

that, for any x ∈ Rn,

(3.26)
∑

Q∈D j

2 jα sup
y∈Rn

|AQ(ϕ j ∗ ~f )(y)|

(1 + 2 j|x − y|)a
1Q(x)


q

.

[
M(g j)(x)

]q/A
.

By (3.26), the Fefferman–Stein vector-valued maximal inequality together with p/A > 1 and

q/A > 1, the Hölder inequality, and Lemma 2.17, we find that, for any ~f ∈ [S′∞(Rn)]m,

∥∥∥∥ ~f
∥∥∥∥
⋆

Ḟ
α,q
p ({AQ})

.

∥∥∥∥∥∥∥∥∥


∑

j∈Z

[
M(g j)

]q/A


A/q
∥∥∥∥∥∥∥∥∥

1/A

Lp/A(Rn)

.

∥∥∥∥∥∥∥∥∥


∑

j∈Z

∑

Q∈D j

2 jαq

[?
B(0,2− j)

∣∣∣∣AQϕ j ∗ ~f (· + z)
∣∣∣∣
A

dz

]q/A
1Q



1/q
∥∥∥∥∥∥∥∥∥

Lp(Rn)

.

∥∥∥∥∥∥∥∥


∑

j∈Z

∑

Q∈D j

2 jαq

?
B(0,2− j)

∣∣∣∣AQϕ j ∗ ~f (· + z)
∣∣∣∣
q

dz1Q



1/q
∥∥∥∥∥∥∥∥

Lp(Rn)

.

∥∥∥∥∥∥∥∥


∑

j∈Z

∑

Q∈D j

2 jαq

?
B(0,2− j)

∥∥∥AQW−1/p(·)
∥∥∥q
∣∣∣∣W1/p(·)ϕ j ∗ ~f (· + z)

∣∣∣∣
q

dz1Q



1/q
∥∥∥∥∥∥∥∥

Lp(Rn)

.

∥∥∥∥ ~f
∥∥∥∥
�

Ḟ
α,q
p (W)

.

Thus, (3.20) holds true when p ∈ (0, 1].

Case 2) p ∈ (1,∞). In this case, from (3.21), the Hölder inequality, and Lemma 2.16, we infer

that, for any x ∈ Q jk,

sup
y∈Rn

|AQ jk
(ϕ j ∗ ~f )(y)|A

(1 + 2 j|x − y|)aA
(3.27)
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.

∑

ℓ∈Zn

(1 + |k − ℓ|)−A(a−r) 2 jn
∑

{t∈Zn: |t|∞≤1}

[ ∫

Q j(ℓ+t)

∥∥∥AQ j(ℓ+t)
W−1/p(z)

∥∥∥A

×

?
B(0,2− j)

∣∣∣∣W1/p(z)
(
ϕ j ∗ ~f

)
(s + z)

∣∣∣∣
A

ds dz

]

.

∑

ℓ∈Zn

(1 + |k − ℓ|)−A(a−r) 2 jn
∑

{t∈Zn: |t|∞≤1}




∫

Q j(ℓ+t)

∥∥∥AQ j(ℓ+t)
W−1/p(z)

∥∥∥p′

dz


A/p′

×


∫

Q j(ℓ+t)

{?
B(0,2− j)

∣∣∣∣W1/p(z)
(
ϕ j ∗ ~f

)
(s + z)

∣∣∣∣
A

ds

} p′

p′−A

dz



p′−A

p′



.

∑

ℓ∈Zn

(1 + |k − ℓ|)−A(a−r) 2
jn(1− A

p′
)

×
∑

{t∈Zn: |t|∞≤1}



∫

Q j(ℓ+t)

[?
B(0,2− j)

∣∣∣∣W1/p(z)
(
ϕ j ∗ ~f

)
(s + z)

∣∣∣∣
A

ds

] p′

p′−A

dz



p′−A

p′

.

For any given x ∈ Rn, let Bx := B(xk,ℓ,t, rk,ℓ,t) be the same as in Case 1). Notice that, for any

M > n,

sup
k∈Zn

∑

ℓ∈Zn

(1 + |k − ℓ|)−M = sup
k∈Zn

∑

k−ℓ∈Zn

(1 + |k − ℓ|)−M =
∑

ℓ∈Zn

(1 + |ℓ|)−M
. 1.

By this, (3.27), (3.23), the Hölder inequality, and the disjointness of Q jk for any k ∈ Zn, we

conclude that, for any x ∈ Rn,

∑

k∈Zn

sup
y∈Rn

|AQ jk
(ϕ j ∗ ~f )(y)|q

(1 + 2 j|x − y|)aq
1Q jk

(x)(3.28)

.


∑

k∈Zn

∑

ℓ∈Zn

(1 + |k − ℓ|)−A(a−r) 2
jn(1− A

p′
)

×



∫

Bx

[?
B(0,2− j)

∣∣∣∣W1/p(z)
(
ϕ j ∗ ~f

)
(s + z)

∣∣∣∣
A

ds

] p′

p′−A

dz



p′−A

p′

1Q jk
(x)



q/A

.


∑

k∈Zn

∑

ℓ∈Zn

(1 + |k − ℓ|)
−A(a−r)+

(p′−A)n

p′

×

M


[?
B(0,2− j)

∣∣∣∣W1/p(·)
(
ϕ j ∗ ~f

)
(· + z)

∣∣∣∣
A

dz

] p′

p′−A

 (x)



p′−A

p′

1Q jk
(x)



q/A

.


M



[?
B(0,2− j)

∣∣∣∣W1/p(·)
(
ϕ j ∗ ~f

)
(· + z)

∣∣∣∣
A

dz

] p′

p′−A

 (x)



(p′−A)q

Ap′
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×

sup
k∈Zn

∑

ℓ∈Zn

(1 + |k − ℓ|)
−A(a−r)+

(p′−A)n

p′


q/A

.


M



[?
B(0,2− j)

∣∣∣∣W1/p(·)
(
ϕ j ∗ ~f

)
(· + z)

∣∣∣∣
A

dz

] p′

p′−A

 (x)



(p′−A)q

Ap′

,

where, in the last step, we chose a sufficiently large a ∈ (0,∞) such that A(a − r) −
(p′−A)n

p′
> n.

Noticing that
p(p′−A)

Ap′
=

A+(1−A)p

A
> 1, choose A ∈ (0, 1) sufficiently small, and hence

(p′−A)q

Ap′
> 1

and q/A > 1. From this, (3.28), the Fefferman–Stein vector-valued maximal inequality, and the

Hölder inequality, we deduce that, for any ~f ∈ [S′∞(Rn)]m,

∥∥∥∥ ~f
∥∥∥∥
⋆

Ḟ
α,q
p ({AQ})

.

∥∥∥∥∥∥∥∥∥∥∥∥



∑

j∈Z

2 jαq

M


[?
B(0,2− j)

∣∣∣∣W1/p(·)
(
ϕ j ∗ ~f

)
(· + z)

∣∣∣∣
A

dz

] p′

p′−A





(p′−A)q

Ap′



1
q

∥∥∥∥∥∥∥∥∥∥∥∥
Lp(Rn)

∼

∥∥∥∥∥∥∥∥∥∥∥∥∥



∑

j∈Z

M


[?
B(0,2− j)

∣∣∣∣2 jαW1/p(·)
(
ϕ j ∗ ~f

)
(· + z)

∣∣∣∣
A

dz

] p′

p′−A





(p′−A)q

Ap′



Ap′

(p′−A)q

∥∥∥∥∥∥∥∥∥∥∥∥∥
L

p(p′−A)

p′A (Rn)

.

∥∥∥∥∥∥∥∥∥


∑

j∈Z

2 jαq

[?
B(0,2− j)

∣∣∣∣W1/p(x)
(
ϕ j ∗ ~f

)
(· + z)

∣∣∣∣
A

dz

]q/A

1/q
∥∥∥∥∥∥∥∥∥

Lp(Rn)

.

∥∥∥∥∥∥∥∥∥


∑

j∈Z

2 jαq

[?
B(0,2− j)

∣∣∣∣W1/p(x)
(
ϕ j ∗ ~f

)
(· + z)

∣∣∣∣
q

dz

]

1/q
∥∥∥∥∥∥∥∥∥

Lp(Rn)

∼

∥∥∥∥ ~f
∥∥∥∥
�

Ḟ
α,q
p (W)

.

Thus, (3.20) holds true when p ∈ (0,∞).

Combining both Cases 1) and 2), we conclude that (3.20) holds true. From (3.19), (3.12), and

Theorem 3.1, we infer that (3.17) holds true for any ~f ∈ [S′∞(Rn)]m, which then completes the

proof of Theorem 3.11. �

Remark 3.12. Theorem 3.11 when m = 1 and W = 1 is just [37, Theorem 2.12.1] which is the

Lusin-area function characterization of Triebel–Lizorkin spaces.

In what follows, we establish the g∗λ− function characterization of Ḟ
α,q
p (W). First, we give the

following technical lemma.

Lemma 3.13. Let ϕ ∈ S(Rn) with supp ϕ̂ being bounded and away from the origin. Then, for any

f ∈ S′∞(Rn), ϕ ∗ f ∈ C∞(Rn) ∩ S′(Rn) and supp(ϕ ∗ f )∧ ⊆ supp ϕ̂.
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Proof. Since supp ϕ̂ is bounded and away from the origin, then we deduce that, for any ψ ∈ S(Rn),

supp(ϕ̂ψ̂) ⊆ supp ϕ̂ is bounded and away from the origin, which implies that

(3.29) ϕ ∗ ψ ∈ S∞(Rn).

By an argument similar to that used in the proof of [17, Proposition 2.3.4(b)], we find that, if

f ∈ S′∞(Rn), then there exists a positive constant C and k, ℓ ∈ Z+ such that, for any φ ∈ S∞(Rn),

|〈 f , φ〉| ≤ C
∑

{µ, ν∈Zn
+: |µ|≤k, |ν|≤ℓ}

ρµ,ν(φ),

where

(3.30) ρµ,ν(φ) := sup
x∈Rn

|xµ∂νφ(x)|.

From this, f ∈ S′∞(Rn), and (3.29), we infer that there exist k, ℓ ∈ Z+ such that, for any ψ ∈ S(Rn),

|〈ϕ ∗ f , ψ〉| = |〈 f , ϕ̃ ∗ ψ〉|

.

∑

{µ, ν∈Zn
+: |µ|≤k,|ν|≤ℓ}

ρµ,ν(ϕ̃ ∗ ψ)

.

∑

{µ, ν∈Zn
+: |µ|≤k,|ν|≤ℓ}

sup
x∈Rn

∫

Rn

∑

|µ′|≤|µ|

|x − y||µ
′| |y||µ|−|µ

′ |
∣∣∣∂νxψ(x − y)

∣∣∣ |ϕ̃(y)| dy

.ϕ

∑

{µ, ν∈Zn
+: |µ|≤k,|ν|≤ℓ}

ρµ,ν(ψ),

where, in the last inequality, the implicit positive constant depends on ϕ, which implies that ϕ∗ f ∈

S′(Rn). By this, we conclude that, for any γ ∈ S(Rn) with supp γ ⊂ (Rn \ supp ϕ̂),

〈
(ϕ ∗ f )∧ , γ

〉
=
〈
ϕ ∗ f , γ̂

〉
=
〈

f , ϕ̃ ∗ γ̂
〉
=

〈
f ,
(̃
ϕ̂γ
)∨〉
= 0,

which implies that supp(ϕ ∗ f )∧ ⊆ supp ϕ̂. Then, from [17, Theorem 2.3.21], we deduce that

ϕ ∗ f ∈ L1
loc

(Rn), which completes the proof of Lemma 3.13. �

Theorem 3.14. Let α ∈ R, p ∈ (0,∞), q ∈ (0,∞], W ∈ Ap(Rn,Cm), and λ ∈ ( 1
min{1,p,q} +

β
np
,∞),

where β is the doubling exponent of W. Assume that ϕ ∈ S(Rn) satisfies both (T1) and (T2) of

Definition 2.18. Then ~f ∈ Ḟ
α,q
p (W) if and only if ~f ∈ [S′∞(Rn)]m and ‖ ~f ‖♣

Ḟ
α,q
p (W)

< ∞, where

(3.31)
∥∥∥∥ ~f
∥∥∥∥
♣

Ḟ
α,q
p (W)

:=

∥∥∥∥∥∥∥∥∥


∑

j∈Z

2 jαq2 jn

∫

Rn

|W1/p(·)(ϕ j ∗ ~f )(y)|q

(1 + 2 j| · −y|)λnq
dy



1/q
∥∥∥∥∥∥∥∥∥

Lp(Rn)

with usual modification made when q = ∞. Moreover, for any ~f ∈ [S′∞(Rn)]m,

(3.32)
∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)

∼

∥∥∥∥ ~f
∥∥∥∥
♣

Ḟ
α,q
p (W)

,

where the positive equivalence constants are independent of ~f .
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Proof. Let all the symbols be the same as in the present theorem. First, we prove that, for any
~f ∈ [S′∞(Rn)]m,

(3.33)
∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)

.

∥∥∥∥ ~f
∥∥∥∥
♣

Ḟ
α,q
p (W)

.

Indeed, by an observation that, for any x ∈ Rn and y ∈ B(x, 2− j), 1 + 2 j|x − y| ∼ 1, we conclude

that, for any x ∈ Rn and ~f ∈ [S′∞(Rn)]m,

?
B(x,2− j)

∣∣∣∣W1/p(x)
(
ϕ j ∗ ~f

)
(y)
∣∣∣∣
q

dy

∼ 2 jn

∫

B(x,2− j)

|W1/p(x)(ϕ j ∗ ~f )(y)|q

(1 + 2 j|x − y|)λnq
dy . 2 jn

∫

Rn

|W1/p(x)(ϕ j ∗ ~f )(y)|q

(1 + 2 j|x − y|)λnq
dy,

which implies that ‖ ~f ‖�
Ḟ
α,q
p (W)

. ‖ ~f ‖♣
Ḟ
α,q
p (W)

. From this and Theorem 3.11, we infer that (3.33) holds

true. Thus, to complete the proof of Theorem 3.14, it remains to show that, for any ~f ∈ [S′∞(Rn)]m,

(3.34)
∥∥∥∥ ~f
∥∥∥∥
♣

Ḟ
α,q
p (W)

.

∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)

.

Let {AQ}Q∈D be a sequence of reducing operators of order p for W . For any ~f ∈ [S′∞(Rn)]m, let

(3.35)
∥∥∥∥ ~f
∥∥∥∥
♣

Ḟ
α,q
p ({AQ})

:=

∥∥∥∥∥∥∥∥∥


∑

j∈Z

∑

Q∈D j

2 jαq2 jn sup
z∈Q

∫

Rn

|AQ(ϕ j ∗ ~f )(y)|q

(1 + 2 j|z − y|)λnq
dy1Q



1/q
∥∥∥∥∥∥∥∥∥

Lp(Rn)

.

To prove (3.34), we first show that, for any ~f ∈ [S′∞(Rn)]m,

(3.36)
∥∥∥∥ ~f
∥∥∥∥
♣

Ḟ
α,q
p (W)

.

∥∥∥∥ ~f
∥∥∥∥
♣

Ḟ
α,q
p ({AQ})

.

Indeed, for any given p ∈ (0,∞) and q ∈ (0,∞], and for any x ∈ Rn and j ∈ Z, let

γ j(x) :=
∑

Q∈D j

∥∥∥W1/p(x)A−1
Q

∥∥∥ 1Q(x),

h j(x) := 2 jα2 jn/q


∫

Rn

|W1/p(x)(ϕ j ∗ ~f )(y)|q

(1 + 2 j|x − y|)λnq
dy


1/q

,

and

f j(x) :=
∑

Q∈D j

|Q|−α/n 2 jn/q

sup
z∈Q

∫

Rn

|AQ(ϕ j ∗ ~f )(y)|q

(1 + 2 j|z − y|)λnq
dy


1/q

1Q(x).

It is obvious that, for any j ∈ Z and x ∈ Rn,

h j(x) =
∑

Q∈D j

2 jα2 jn/q


∫

Rn

|W1/p(x)A−1
Q

AQ(ϕ j ∗ ~f )(y)|q

(1 + 2 j |x − y|)λnq
dy



1/q

1Q(x)(3.37)
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≤
∑

Q∈D j

|Q|−α/n 2 jn/q
∥∥∥W1/p(x)A−1

Q

∥∥∥

∫

Rn

|AQ(ϕ j ∗ ~f )(y)|q

(1 + 2 j|x − y|)λnq
dy


1/q

1Q(x)

≤
∑

Q∈D j

|Q|−α/n 2 jn/q
∥∥∥W1/p(x)A−1

Q

∥∥∥
sup

z∈Q

∫

Rn

|AQ(ϕ j ∗ ~f )(y)|q

(
1 + 2 j|z − y|

)λnq
dy


1/q

1Q(x)

≤ γ j(x) f j(x).

Notice that f j is a constant on any given Q ∈ D j, which implies that E j( f j) = f j, where E j is the

same as in Lemma 3.9. By this, (3.31), (3.37), Lemma 3.9, and (3.35), we conclude that, for any
~f ∈ [S′∞(Rn)]m,

∥∥∥∥ ~f
∥∥∥∥
♣

Ḟ
α,q
p (W)

=

∥∥∥∥
{
h j

}
j∈Z

∥∥∥∥
Lp(ℓq)

≤

∥∥∥∥
{
γ jE j( f j)

}
j∈Z

∥∥∥∥
Lp(ℓq)

.

∥∥∥∥
{
E j( f j)

}
j∈Z

∥∥∥∥
Lp(ℓq)

∼

∥∥∥∥
{

f j

}
j∈Z

∥∥∥∥
Lp(ℓq)

∼

∥∥∥∥ ~f
∥∥∥∥
♣

Ḟ
α,q
p ({AQ})

.

Thus, (3.36) holds true for any ~f ∈ [S′∞(Rn)]m.

Next, we prove that, for any ~f ∈ [S′∞(Rn)]m,

(3.38)
∥∥∥∥ ~f
∥∥∥∥
♣

Ḟ
α,q
p ({AQ})

.

∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)

.

Let λ ∈ (0,∞) and j ∈ Z. Then we claim that, for any z ∈ Rn and A ∈ (0, q],

(3.39) sup
v∈Rn

|AQ(ϕ j ∗ ~f )(v)|

(1 + 2 j|z − v|)λn
.

2 jn

∫

Rn

|AQ(ϕ j ∗ ~f )(y)|A

(1 + 2 j|z − y|)λnA
dy


1/A

.

Then we prove (3.39) by considering the following two cases on A.

Case 1) A ∈ (0, 1]. In this case, using the assumption that ϕ satisfies (T2) of Definition 2.18,

we can then easily prove that there exists a ψ ∈ S(Rn) such that supp ψ̂ is bounded away from the

origin and ψ̂ = 1 on supp ϕ̂. By this and Lemma 3.13, we find that

(3.40) ϕ j ∗ ~f = ψ j ∗ ϕ j ∗ ~f

on Rn. From this and the estimate that

(3.41) (1 + 2 j|z − v|)−1 ≤ (1 + 2 j|z − y|)−1(1 + 2 j|v − y|)

for any j ∈ Z and z, v, y ∈ Rn, we deduce that, for any given A ∈ (0,min{1, q}] and for any z ∈ Rn,

sup
v∈Rn

|AQ(ϕ j ∗ ~f )(v)|

(1 + 2 j|z − v|)λn
(3.42)

≤ sup
v∈Rn

∫
Rn |AQ(ϕ j ∗ ~f )(y)2 jnψ(2 j(v − y))| dy

(1 + 2 j|z − v|)λn

≤ sup
v∈Rn

∫

Rn

|AQ(ϕ j ∗ ~f )(y)2 jnψ(2 j(v − y))|(1 + 2 j|v − y|)λn

(1 + 2 j|z − y|)λn
dy
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. 2 jn

∫

Rn

|AQ(ϕ j ∗ ~f )(y)|

(1 + 2 j|z − y|)λn
dy

. sup
v∈Rn


|AQ(ϕ j ∗ ~f )(v)|

(1 + 2 j|z − v|)λn


1−A ∫

Rn

2 jn
|AQ(ϕ j ∗ ~f )(y)|A

(1 + 2 j|z − y|)λnA
dy.

When a ∈ (n/min{1, p, q} + β/p,∞), by ~f ∈ Ḟ
α,q
p (W), (3.9), and Lemma 2.26, we find that


∑

Q∈D j

2 jα sup
v∈Rn

|AQ(ϕ j ∗ ~f )(v)|

(1 + 2 j| · −v|)a
1Q


j∈Z

∈ Lp(ℓq),

which implies that supv∈Rn
|AQ(ϕ j∗ ~f )(v)|

(1+2 j |·−v|)a < ∞ almost everywhere on Rn. Using this, we find that

there exists a measurable set F ⊂ Rn satisfying that |F| = 0 and, for any x ∈ Rn \ F,

sup
v∈Rn

|AQ(ϕ j ∗ ~f )(v)|

(1 + 2 j|x − v|)a
< ∞.(3.43)

Then, for any e ∈ F, there exists an xe ∈ R
n \ F such that 2 j|xe − e| < 1/2. From this, we deduce

that

sup
v∈Rn

|AQ(ϕ j ∗ ~f )(v)|

(1 + 2 j|e − v|)a
≤ sup

v∈Rn

|AQ(ϕ j ∗ ~f )(v)|

(1 + 2 j|xe − v| − 2 j|xe − e|)a

≤ sup
v∈Rn

|AQ(ϕ j ∗ ~f )(v)|

(1/2 + 2 j|xe − v|)a
< ∞,

which, combined with (3.43), implies that

sup
v∈Rn

|AQ(ϕ j ∗ ~f )(v)|

(1 + 2 j| · −v|)λn
< ∞

on Rn if λ ∈ ( 1
min{1,p,q}+

β
np
,∞). By this and (3.42), we conclude that (3.39) holds true for A ∈ (0, 1].

Case 2) A ∈ (1,∞). In this case, from (3.40), (3.41), the Hölder inequality, and the change of

variables, we infer that, for any given A ∈ (1, q] and for any z ∈ Rn,

sup
v∈Rn

|AQ(ϕ j ∗ ~f )(v)

(1 + 2 j|z − v|)λn

≤ sup
v∈Rn

∫
Rn |AQ(ϕ j ∗ ~f )(y)2 jnψ(2 j(v − y))| dy

(1 + 2 j|z − v|)λn

≤ sup
v∈Rn

∫

Rn

|AQ(ϕ j ∗ ~f )(y)2 jnψ(2 j(v − y))|(1 + 2 j|v − y|)λn

(1 + 2 j|z − y|)λn
dy

≤

2 jn

∫

Rn

|AQ(ϕ j ∗ ~f )(y)|)A

(1 + 2 j|z − y|)λnA
dy


1/A

× sup
v∈Rn



[
2 jn

∫

Rn

|ψ(2 j(v − y))|A
′

(1 + 2 j|v − y|)λnA′ dy

]1/A′
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∼

2 jn

∫

Rn

|AQ(ϕ j ∗ ~f (y)|)A

(1 + 2 j|z − y|)λnA
dy


1/A

,

which implies that (3.39) holds true for q ∈ (1,∞).

Thus, (3.39) holds true for any A ∈ (0, q]. Using (3.39), we obtain, for any given A ∈ (0, q] and

any z ∈ Rn,

2 jn

∫

Rn

|AQ(ϕ j ∗ ~f )(y)|q

(1 + 2 j|z − y|)λnq
dy(3.44)

≤ sup
v∈Rn


|AQ(ϕ j ∗ ~f )(v)|

(1 + 2 j|z − v|)λn


q−A

2 jn

∫

Rn

|AQ(ϕ j ∗ ~f )(y)|A

(1 + 2 j|z − y|)λnA
dy

.

2 jn

∫

Rn

|AQ(ϕ j ∗ ~f )(y)|A

(1 + 2 j|z − y|)λnA
dy


q/A

.

Notice that, for any k, u ∈ Zn, j ∈ Z, z ∈ Q ju, and y ∈ Q jk,

(3.45) (1 + 2 j|z − y|) ∼ 1 + |k − u|.

Since λ ∈ (1/min{1, p, q} + β/(np),∞), then it follows that there exists an A ∈ (0,min{1, p, q})

such that A[λ−
β

np
] > 1. By this, (3.45), (3.44), Lemma 3.5, the disjointness of Q ju for any u ∈ Zn,

and Lemma 3.7, we conclude that, for any x ∈ Rn,

∑

j∈Z

∑

Q∈D j

2 jαq2 jn sup
z∈Q

∫

Rn

|AQ(ϕ j ∗ ~f )(y)|q

(1 + 2 j|z − y|)λnq
dy1Q(x)

.

∑

j∈Z

∑

u∈Zn

sup
z∈Q ju

2
jn
∑

k∈Zn

∫

Q jk

‖AQ ju
A−1

Q jk
‖A|2 jαAQ jk

(ϕ j ∗ ~f )(y)|A

(1 + 2 j|z − y|)λnA
dy



q/A

1Q ju
(x)

.

∑

j∈Z


∑

u∈Zn

∑

k∈Zn

(1 + |k − u|)
−λnA+

βA

p 2 jn

∫

Q jk

∣∣∣∣2 jαAQ jk

(
ϕ j ∗ ~f

)
(y)
∣∣∣∣
A

dy1Q ju
(x)


q/A

.

∑

j∈Z

M

∑

Q∈D j

(∣∣∣∣2 jαAQ

(
ϕ j ∗ ~f

)∣∣∣∣ 1Q

)A
 (x)



q/A

.

From this, A ∈ (0,min{p, q}), the Fefferman–Stein vector-valued maximal inequality, and Lemma

2.26, we deduce that, for any ~f ∈ [S′∞(Rn)]m,

∥∥∥∥ ~f
∥∥∥∥
♣

Ḟ
α,q
p ({AQ})

.

∥∥∥∥∥∥∥∥∥


∑

j∈Z

M

∑

Q∈D j

[∣∣∣∣2 jαAQϕ j ∗ ~f
∣∣∣∣ 1Q

]A




q/A

1/q
∥∥∥∥∥∥∥∥∥

Lp(Rn)

∼

∥∥∥∥∥∥∥∥∥

M

∑

Q∈D j

[∣∣∣∣2 jαAQϕ j ∗ ~f
∣∣∣∣ 1Q

]A



j∈Z

∥∥∥∥∥∥∥∥∥

1/A

Lp/A(ℓq/A)
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.

∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p ({AQ})

∼

∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)

,

which implies that (3.38) holds true. By both (3.36) and (3.38), we obtain (3.34). Using (3.34)

and (3.33), we find that (3.32) holds true for any ~f ∈ [S′∞(Rn)]m, which completes the proof of

Theorem 3.14. �

Remark 3.15. (i) Theorem 3.14 when m = 1, W = 1 and q ∈ (0,∞) is a part of [6, Theorem

3.2] which is the g∗λ-function characterization of Triebel–Lizorkin spaces Ḟ
α,q
p (Rn).

(ii) Let p ∈ (0,∞), q ∈ (0,∞), W ∈ Ap(Rn,Cm), and β be the doubling exponent of W . We

should point out that the range of λ in Theorem 3.14 does not coincide with the one in [6,

Theorem 3.2], namely, ( 1
min{p,q}

,∞). It is still unclear whether or not Theorem 3.14 still

holds true when λ ∈ ( 1
min{p,q} ,

1
min{1,p,q} +

β
np

].

4 Fourier Multiplier

In this section, we study the mapping property on Ḟ
α,q
p (W) for a class of Fourier multipliers,

which was originally introduced by Cho [6].

First, we denote by the symbol C(Rn \ {0}) the space of all continuous functions on Rn \ {0} and

recall the definition of the space Cℓ(Rn \ {0}). For any ℓ ∈ N, let

Cℓ(Rn \ {0}) :=
{
f ∈ C(Rn \ {0}) : ∂σ f ∈ C(Rn \ {0}), ∀σ ∈ Zn and |σ| ≤ ℓ

}
.

For a given ℓ ∈ N and a given s ∈ R, assume that m ∈ Cℓ(Rn \ {0}) satisfies that, for any σ ∈ Zn
+

and |σ| ≤ ℓ,

(4.1) sup
R∈(0,∞)

[
R−n+2s+2|σ|

∫

R≤|ξ|<2R

∣∣∣∂σm(ξ)
∣∣∣2 dξ

]
≤ Aσ < ∞.

Remark 4.1. When s = 0 and ℓ ∈ N, (4.1) is known as the Hörmander condition (see, for instance,

[33, p. 263]). Typical examples are given by the kernels of the Riesz transforms R(d), where

̂(R(d) f
)
(ξ) := −i(ξd/|ξ|) f̂ (ξ)

for any ξ := (ξ1, . . . , ξn) ∈ Rn \ {0}, f ∈ S(Rn), and d ∈ {1, . . . , n}. When s , 0 and ℓ ∈ N, a

typical example satisfying (4.1) is given by m(ξ) := |ξ|−s for any ξ ∈ Rn \ {0}.

Let K be a compact set of Rn. Then ~f := ( f1, . . . , fm)T ∈ [S(Rn)]m or ~f ∈ [S′(Rn)]m is said to

have compact support set K, denoted by supp ~f ⊂ K, if, for any d ∈ {1, . . . , m}, supp fd ⊂ K. From

[17, Theorem 2.3.21], it follows that, for any ~f ∈ [S′(Rn)]m with supp ~̂f ⊂ K, ~f ∈ [L1
loc

(Rn)]m.

The following lemma is a part of [1, Corollary 6.13].

Lemma 4.2. Let K be a compact subset of Rn and W ∈ Ap(Rn,Cm). If p ∈ (0, 1) and N ∈

(β/p+ n,∞)∩Z+, or if p ∈ (1,∞) and N ∈ (β/p,∞)∩Z+, where β is the doubling exponent of W,

then there exists a positive constant C such that, for any ~f ∈ [S′(Rn)]m with supp ~̂f ⊂ K,

(4.2) sup
x∈Rn

| ~f (x)|

(1 + |x|)N
≤ C

[∫

Rn

∣∣∣∣
(
W1/p ~f

)
(x)
∣∣∣∣
p

dx

]1/p

.
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Moreover, if supp ~̂f ⊂ {x ∈ Rn : |x| ≤ 2 j}, where j ∈ Z+, then, for any N as above, there exists a

positive constant C such that

(4.3) sup
x∈Rn

| ~f (x)|

(1 + b|x|)N
≤ C4 jn/p

[∫

Rn

∣∣∣∣
(
W1/p ~f

)
(x)
∣∣∣∣
p

dx

]1/p

.

Lemma 4.3. Let ℓ ∈ N and m ∈ Cℓ(Rn \ {0}) be the same as in (4.1) with s ∈ R. Then m ∈ S′(Rn).

Proof. By m ∈ Cℓ(Rn \ {0}), we conclude that, for any ϕ ∈ S(Rn),

I : =

∫

Rn

|m(x)ϕ(x)| dx(4.4)

=
∑

j∈Z+

∫

2 j<|x|≤2 j+1

|m(x)ϕ(x)| dx +

∫

|x|≤1

· · ·

. ρµ,0(ϕ)


∑

j∈Z+

∫

2 j<|x|≤2 j+1

|m(x)|

(1 + |x|)N
dx +max{|m(x)| : 0 < |x| ≤ 1}



. ρµ,0(ϕ)


∑

j∈Z+

∫

2 j<|x|≤2 j+1

|m(x)|

2 jN
dx +max{|m(x)| : 0 < |x| ≤ 1}

 ,

where µ ∈ Zn
+ with |µ| ≤ N, N can be chosen as any positive integer, and ρµ,0(ϕ) is the same

as in (3.30). Notice that, if −n + 2s ∈ [0,∞), then 2 j(−N+1) ≤ 2 j(−n+2s) for any j,N ∈ Z+; if

−n + 2s ∈ (−∞, 0), by choosing an N ∈ (n − 2s + 1,∞), we then have 2 j(−N+1) ≤ 2 j(−n+2s) for any

j,N ∈ Z+. From this, (4.4), and (4.1), we deduce that, for any ϕ ∈ S(Rn),

I . ρN,0(ϕ)


∑

j∈Z+

2− j

∫

2 j<|x|≤2 j+1

|m(x)|2 j(−N+1) dx +max{|m(x)| : 0 < |x| ≤ 1}



. ρN,0(ϕ)


∑

j∈Z+

2− j2 j(−n+2s)

∫

2 j<|x|≤2 j+1

|m(x)| dx +max{|m(x)| : 0 < |x| ≤ 1}



. ρN,0(ϕ)


∑

j∈Z+

2− jA0 +max{|m(x)| : 0 < |x| ≤ 1}

 ∼ ρN,0(ϕ),

which implies that m ∈ S′(Rn). This finishes the proof of Lemma 4.3. �

Let ℓ ∈ N and m ∈ Cℓ(Rn \ {0}) be the same as in (4.1) with s ∈ R. By Lemma 4.3, we can

define the Fourier multiplier Tm by setting, for any ~f ∈ [S∞(Rn)]m,

(4.5)
(
Tm

~f
)∧

:= m ~̂f .

Furthermore, let K be the distribution whose Fourier transform is m.

Then we show that, via a suitable way, Tm can be defined on the space Ḟ
α,q
p (W). To this end, let

ϕ, ψ ∈ S(Rn) satisfy both (T2) of Definition 2.18 and (2.5). For any ~f ∈ Ḟ
α,q
p (W) and φ ∈ S∞(Rn),

let

(4.6)
〈
Tm

~f , φ
〉

:=
∑

j∈Z

~f ∗ ϕ j ∗ ψ j ∗ φ̃ ∗ K(0),
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where φ̃ = φ(−·). It is obvious that, when ~f ∈ [S∞(Rn)]m, then both Tm
~f in (4.5) and Tm

~f in (4.6)

coincide in [S′∞(Rn)]m. The following result shows that the right-hand side of (4.6) converges and

Tm
~f in (4.6) is well defined for any ~f ∈ Ḟ

α,q
p (W).

Lemma 4.4. Let α ∈ R, p ∈ (0,∞), q ∈ (0,∞], W ∈ Ap(Rn,Cm), and ~f ∈ Ḟ
α,q
p (W). Let

ℓ ∈ (β/p+n/min{1, p}+ n
2
,∞), where β is the doubling exponent of W, and let m ∈ Cℓ(Rn \ {0}) be

the same as in (4.1) with s ∈ R. Then Tm in (4.6) is independent of the choice of the pair (ϕ, ψ) of

Schwartz functions satisfying both (T2) of Definition 2.18 and (2.5). Moreover, Tm
~f ∈ [S′∞(Rn)]m

and Tm
~f in (4.6) is well defined.

To show Lemma 4.4, we need the following lemmas, which are just [6, Lemma 4.1(i)] and [43,

Lemma 2.2], respectively.

Lemma 4.5. Let ψ ∈ S(Rn) satisfy that ψ̂ has compact support away from the origin. Let λ ∈

(0,∞), ℓ ∈ (λ+ n/2,∞), and m be the same as in (4.1) with s ∈ R. Let K be the distribution whose

Fourier transform is m. Then there exists a positive constant C such that, for any j ∈ Z,

∫

Rn

(
1 + 2 j|z|

)λ ∣∣∣∣
(
K ∗ ψ j

)
(z)
∣∣∣∣ dz ≤ C2− js.

Lemma 4.6. For any given M ∈ N, there exists a positive constant C such that, for any ϕ, ψ ∈

S∞(Rn), j, ℓ ∈ Z, and x ∈ Rn,

∣∣∣ϕ j ∗ ψℓ(x)
∣∣∣ ≤ C ‖ϕ‖S M+1

‖ψ‖S M+1
2−|ℓ− j|M 2−min{ j,ℓ}M

(2−min{ j,ℓ} + |x|)n+M
,

where, for any ϕ ∈ S∞(Rn),

‖ϕ‖S M
:= sup
{γ∈Zn

+: |γ|≤M}

sup
x∈Rn

∣∣∣∂γϕ(x)
∣∣∣ (1 + |x|)n+M+|γ| .

Proof of Lemma 4.4. Let ϕ and ψ be a pair of Schwartz functions satisfying both (T2) of Definition

2.18 and (2.5). Let ϕ⋆ and ψ⋆ be another pair of Schwartz functions satisfying both (T2) of

Definition 2.18 and (2.5). By this, Lemma 2.24, and φ ∈ S∞(Rn), we find that

(4.7) φ̃ =
∑

t∈Z

ϕ⋆t ∗ ψ
⋆
t ∗ φ̃ in S∞(Rn).

Since ϕ and ϕ⋆ satisfy (T2) of Definition 2.18, it follows that there exists an L ∈ N such that, for

any | j − t| > L,

(4.8) ϕ j ∗ ϕ
⋆
t = 0.

Let α, p, q,W , and m be the same as in this lemma. Let ~f ∈ Ḟ
α,q
p (W). To prove

∑

j∈Z

~f ∗ ϕ j ∗ ψ j ∗ φ̃ ∗ K(0)

converges, where K is the distribution whose Fourier transform is m, we first show that
∑

j∈Z

∑

t∈Z

~f ∗ ϕ j ∗ ψ j ∗ ϕ
⋆
t ∗ ψ

⋆
t ∗ φ̃ ∗ K(0)
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converges. To this end, by both (4.3) of Lemma 4.2 and Definition 2.18, we find that, for any

N ∈ Z+ satisfying Lemma 4.2 and for any ~f ∈ Ḟ
α,q
p (W) and j ∈ Z+,

sup
x∈Rn

|ϕ j ∗ ~f (x)|

(1 + 2 j|x|)N
. 22 jn/p

{∫

Rn

∣∣∣∣W1/p(x)
(
ϕ j ∗ ~f

)
(x)
∣∣∣∣
p

dx

}1/p

(4.9)

. 2 j(n/p−α)
∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)

.

From this, ϕ⋆
j
∗ ψ⋆

j
= (ϕ⋆ ∗ ψ⋆) j ∈ S∞(Rn), Lemma 4.6, and the estimate that

1 + 2 j|z| ≤
(
1 + 2 j|y|

) (
1 + 2 j|z − y|

)

for any j ∈ Z and y, z ∈ Rn, and Lemma 4.5 with ℓ > N + n/2, we infer that

∞∑

j=0

∣∣∣∣ ~f ∗ ϕ j ∗ ψ j ∗ ϕ
⋆
j ∗ ψ

⋆
j ∗ φ̃ ∗ K(0)

∣∣∣∣

≤

∞∑

j=0

∫

Rn

∣∣∣∣ ~f ∗ ϕ j(−z)
∣∣∣∣
∣∣∣∣
(
ϕ⋆ ∗ ψ⋆

)
j
∗ φ̃ ∗ ψ j ∗ K(z)

∣∣∣∣ dz

.

∞∑

j=0

2 j(2n/p−α)
∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)

∫

Rn

∫

Rn

(
1 + 2 j|z|

)N

×

∣∣∣∣
(
ϕ⋆ ∗ ψ⋆

)
j
∗ φ̃(z − y)

∣∣∣∣
∣∣∣ψ j ∗ K(z)

∣∣∣ dy dz

.

∞∑

j=0

2 j(2n/p−α−M)
∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)

∫

Rn

∫

Rn

(1 + 2 j|z|)N

(1 + |z − y|)n+M

∣∣∣ψ j ∗ K(y)
∣∣∣ dy dz

.

∞∑

j=0

2 j(N+2n/p−α−M)
∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)

∫

Rn

∫

Rn

(1 + 2 j|y|)N

(1 + |z − y|)n+M−N

∣∣∣ψ j ∗ K(y)
∣∣∣ dy dz

∼

∞∑

j=0

2 j(N+2n/p−α−M)
∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)

∫

Rn

(
1 + 2 j|y|

)N ∣∣∣ψ j ∗ K(y)
∣∣∣ dy

.

∞∑

j=0

2 j(N+2n/p−α−M−s)
∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)

∼

∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)

,

where the implicit positive constants depend on ψ⋆, ϕ⋆, and φ, and where M ∈ N is chosen to be

sufficiently large such that M > max{N,N + 2n/p − s − α}. On the other hand, by (4.9), Lemma

4.6, and the estimate that 1+2 j|z| ≤ (1+2 j |y|)(1+2 j |z−y|) for any j ∈ Z and y, z ∈ Rn, and Lemma

4.5, we find that

−1∑

j=−∞

∣∣∣∣ ~f ∗ ϕ j ∗ ψ j ∗ ϕ
⋆
j ∗ ψ

⋆
j ∗ φ̃ ∗ K(0)

∣∣∣∣

≤

−1∑

j=−∞

∫

Rn

∣∣∣∣ ~f ∗ ϕ j(−z)
∣∣∣∣
∣∣∣∣
(
ϕ⋆ ∗ ψ⋆

)
j
∗ φ̃ ∗ ψ j ∗ K(z)

∣∣∣∣ dz
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.

−1∑

j=−∞

2 j(−N−α)
∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)

∫

Rn

∫

Rn

(
1 + 2 j|z|

)N

×

∣∣∣∣
(
ϕ⋆ ∗ ψ⋆

)
j
∗ φ̃(z − y)

∣∣∣∣
∣∣∣ψ j ∗ K(z)

∣∣∣ dy dz

.

−1∑

j=−∞

2 j(−N−α+n+M)
∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)

∫

Rn

∫

Rn

(1 + 2 j|z|)N

(1 + 2 j|z − y|)n+M

×
∣∣∣ψ j ∗ K(y)

∣∣∣ dy dz

.

−1∑

j=−∞

2 j(−N−α+n+M)
∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)

∫

Rn

∫

Rn

(1 + 2 j|y|)N

(1 + 2 j|z − y|)n+M−N

×
∣∣∣ψ j ∗ K(y)

∣∣∣ dy dz

∼

−1∑

j=−∞

2 j(−N−α+M)
∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)

∫

Rn

(
1 + 2 j|y|

)N ∣∣∣ψ j ∗ K(y)
∣∣∣ dy

.

−1∑

j=−∞

2 j(−N−α+M−s)
∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)

∼

∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)

,

where the implicit positive constants depend on ψ⋆, ϕ⋆, and φ, and where M ∈ N is chosen to be

sufficiently large such that M > max{N, s + α + N}. From an argument similar to that used in the

above two estimations, we deduce that

(4.10)
∑

j∈Z

j+L∑

t= j−L

∣∣∣∣ ~f ∗ ϕ j ∗ ψ j ∗ ϕ
⋆
t ∗ ψ

⋆
t ∗ φ̃ ∗ K(0)

∣∣∣∣ < ∞.

By (4.10) and (4.8) with | j − t| > L, we conclude that

∑

j∈Z

∑

t∈Z

∣∣∣∣ ~f ∗ ϕ j ∗ ψ j ∗ ϕ
⋆
t ∗ ψ

⋆
t ∗ φ̃ ∗ K(0)

∣∣∣∣

=
∑

j∈Z

j+L∑

t= j−L

∣∣∣∣ ~f ∗ ϕ j ∗ ψ j ∗ ϕ
⋆
t ∗ ψ

⋆
t ∗ φ̃ ∗ K(0)

∣∣∣∣ < ∞.

Using (4.2) of Lemma 4.2, Definition 2.18, Lemma 4.6, the estimate that

1 + 2t |x| ≤
(
1 + 2t |y|

) (
1 + 2t |x − y|

)

for any x, y ∈ Rn and t ∈ Z, and Lemma 4.5, we find that, for any fixed j ∈ Z,

∑

t∈Z

∫

Rn

∣∣∣∣ ~f ∗ ϕ j ∗ ψ j(−x)
(
ϕ⋆t ∗ ψ

⋆
t ∗ φ̃ ∗ K

)
(x)
∣∣∣∣ dx

.

∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)

∑

t∈Z

∫

Rn

(1 + |x|)N

∫

Rn

∣∣∣ψ⋆t ∗ φ̃(x − y)
∣∣∣
∣∣∣ϕ⋆t ∗ K(y)

∣∣∣ dy dx

.

∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)


∞∑

t=0

∫

Rn

∫

Rn

2−tR(1 + |x|)N

(1 + |x − y|)n+R

∣∣∣ϕ⋆t ∗ K(y)
∣∣∣ dy dx
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+

−1∑

t=−∞

∫

Rn

∫

Rn

2t(n+R)(1 + |x|)N

(1 + 2t |x − y|)n+R

∣∣∣ϕ⋆t ∗ K(y)
∣∣∣ dy dx



.

∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)


∞∑

t=0

∫

Rn

∫

Rn

2−tR(1 + |x|)N

(1 + |x − y|)n+R

∣∣∣ϕ⋆t ∗ K(y)
∣∣∣ dy dx

+

−1∑

t=−∞

∫

Rn

∫

Rn

2t(n+R−N)(1 + 2t |x|)N

(1 + 2t |x − y|)n+R

∣∣∣ϕ⋆t ∗ K(y)
∣∣∣ dy dx



.

∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)


∞∑

t=0

∫

Rn

∫

Rn

2−tR(1 + |y|)N

(1 + |x − y|)n+R−N

∣∣∣ϕ⋆t ∗ K(y)
∣∣∣ dy dx

+

−1∑

t=−∞

2t(n+R−N)

∫

Rn

∫

Rn

(1 + 2t |y|)N

(1 + 2t |x − y|)n+R−N

∣∣∣ϕ⋆t ∗ K(y)
∣∣∣ dy dx



.

∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)


∞∑

t=0

∫

Rn

∫

Rn

2−tR(1 + 2t |y|)N

(1 + |x − y|)n+R−N

∣∣∣ϕ⋆t ∗ K(y)
∣∣∣ dy dx

+

−1∑

t=−∞

2t(n+R−N)

∫

Rn

∫

Rn

(1 + 2ℓ|y|)N

(1 + 2t |x − y|)n+R−N

∣∣∣ϕ⋆t ∗ K(y)
∣∣∣ dy dx



∼

∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)


∞∑

t=0

2−tR

∫

Rn

(
1 + 2t |y|

)N ∣∣∣ϕ⋆t ∗ K(y)
∣∣∣ dy

+

−1∑

t=−∞

2t(R−N)

∫

Rn

(
1 + 2t |y|

)N ∣∣∣ϕ⋆t ∗ K(y)
∣∣∣ dy



∼

∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)


∞∑

t=0

2−tR

∫

Rn

(
1 + 2t |y|

)N ∣∣∣ϕ⋆t ∗ K(y)
∣∣∣ dy

+

−1∑

t=−∞

2t(R−N)

∫

Rn

(
1 + 2t |y|

)N ∣∣∣ϕ⋆t ∗ K(y)
∣∣∣ dy



.

∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)


∞∑

t=0

2−t(R+s) +

−1∑

t=−∞

2t(R−N−s)

 ∼
∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)

,

where the implicit positive constants depend on j, α, p, and n, and where R ∈ N is chosen to be

sufficiently large such that R > max{N, −s, N + s} with N the same as in (4.9). From this and

(4.7), we deduce that

~f ∗ ϕ j ∗ ψ j ∗ φ̃ ∗ K(0)

=

∫

Rn

~f ∗ ϕ j ∗ ψ j(−x)φ̃ ∗ K(x) dx

=

∫

Rn

~f ∗ ϕ j ∗ ψ j(−x)
〈
K, φ̃(x − ·)

〉
dx

=

∫

Rn

~f ∗ ϕ j ∗ ψ j(−x)
∑

t∈Z

〈
K, ϕ⋆t ∗ ψ

⋆
t ∗ φ̃(x − ·)

〉
dx
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=
∑

t∈Z

∫

Rn

~f ∗ ϕ j ∗ ψ j(−x)
〈
K, ϕ⋆t ∗ ψ

⋆
t ∗ φ̃(x − ·)

〉
dx

=
∑

t∈Z

~f ∗ ϕ j ∗ ψ j ∗ ϕ
⋆
t ∗ ψ

⋆
t ∗ φ̃ ∗ K(0).

By this and (4.8), we find that
∑

j∈Z

~f ∗ ϕ j ∗ ψ j ∗ φ̃ ∗ K(0) =
∑

j∈Z

∑

t∈Z

~f ∗ ϕ j ∗ ψ j ∗ ϕ
⋆
t ∗ ψ

⋆
t ∗ φ̃ ∗ K(0),

which, together with (4.7), K ∈ S′(Rn) ⊂ S′∞(Rn), and Lemma 2.24, further implies that
∑

j∈Z

~f ∗ ϕ j ∗ ψ j ∗ φ̃ ∗ K(0)

=
∑

t∈Z

∑

j∈Z

~f ∗ ϕ⋆t ∗ ψ
⋆
t ∗ ϕ j ∗ ψ j ∗ φ̃ ∗ K(0)

=
∑

t∈Z

∑

j∈Z

∫

Rn

~f ∗ ϕ⋆t ∗ ψ
⋆
t (−x)

〈
K, ϕ j ∗ ψ j ∗ φ̃(· − x)

〉
dx

=
∑

t∈Z

∫

Rn

~f ∗ ϕ⋆t ∗ ψ
⋆
t (−x)

∑

j∈Z

〈
K, ϕ j ∗ ψ j ∗ φ̃(· − x)

〉
dx

=
∑

t∈Z

∫

Rn

~f ∗ ϕ⋆t ∗ ψ
⋆
t (−x)

〈
K, φ̃(· − x)

〉
dx

=
∑

t∈Z

~f ∗ ϕ⋆t ∗ ψ
⋆
t ∗ φ̃ ∗ K(0).

Thus, Tm
~f in (4.6) is independent of the choice of the pair (ϕ, ψ) satisfying both (T2) of Definition

2.18 and (2.5). Moreover, the above argument also implies that Tm
~f ∈ [S′∞(Rn)]m is well defined,

which completes the proof of Lemma 4.4. �

Lemma 4.7. Let p ∈ (0,∞) and W ∈ Ap(Rn,Cm). Assume that ϕ, ψ ∈ S(Rn) satisfy both (T1)

and (T2) of Definition 2.18 and (2.5). Let λ ∈ (β/p + n/min{1, p},∞), where β is the doubling

exponent of W, and let ℓ ∈ (λ + n/2,∞) and m ∈ Cℓ(Rn \ {0}) be the same as in (4.1) with s ∈ R.

Let φ := ϕ ∗ ψ and Tm be the same as in (4.6). Then there exists a positive constant C such that,

for any ~f ∈ Ḟ
α,q
p (W) and x ∈ Rn,

∣∣∣∣W1/p(x)
(
Tm

~f ∗ φ j

)
(x)
∣∣∣∣ ≤ C2− js sup

y∈Rn

|W1/p(x)(ϕ j ∗ ~f )(y)|

(1 + 2 j|x − y|)λ
.

Proof. Let all the symbols be the same as in the present lemma. Let K be the distribution whose

Fourier transform is m, φ = ϕ ∗ ψ, and ~f ∈ Ḟ
α,q
p (W). We first show that, for any j ∈ Z,

~f ∗ ϕ j ∗ ψ j ∗ K ∈ [S′∞(Rn)]m.

Indeed, by (4.9), the estimate that 1+2 j|x− y| ≤ (1+2 j |x|)(1+2 j |y|) for any x, y ∈ Rn, and Lemma

4.5, we conclude that, for any γ ∈ S∞(Rn),
∣∣∣∣
〈
~f ∗ ϕ j ∗ ψ j ∗ K, γ

〉∣∣∣∣
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≤

∫

Rn

∫

Rn

∣∣∣∣ ~f ∗ ϕ j(x − y)
∣∣∣∣
∣∣∣ψ j ∗ K(y)

∣∣∣ |γ(x)| dy dx

.

∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)

∫

Rn

∫

Rn

(
1 + 2 j|x − y|

)N ∣∣∣ψ j ∗ K(y)
∣∣∣ |γ(x)| dy dx

.

∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)

∫

Rn

∫

Rn

(
1 + 2 j|x|

)N (
1 + 2 j|y|

)N ∣∣∣ψ j ∗ K(y)
∣∣∣ |γ(x)| dy dx

.

∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)

∫

Rn

(
1 + 2 j|x|

)N
|γ(x)| dx

.

∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)

ρN+2n,0(γ),

where the implicit positive constants depend on α ∈ R, j ∈ Z, and s ∈ R, and where N is the

same as in (4.9) and ρN+2n,0 is the same as in (3.30), which implies that the above claim holds true.

Using this claim and Lemma 2.24, we find that
∑

ℓ∈Z

~f ∗ ϕ j ∗ ψ j ∗ K ∗ ϕℓ ∗ ψℓ

converges in [S′∞(Rn)]m. From (4.6) and Lemmas 4.4 and 2.24, we deduce that, for any ~f ∈

Ḟ
α,q
p (W), Tm

~f ∈ [S′∞(Rn)]m and, for any η ∈ S∞(Rn),

〈Tm
~f ∗ φ j, η〉 = 〈Tm

~f , η ∗ φ̃ j〉(4.11)

=
∑

ℓ∈Z

~f ∗ ϕℓ ∗ ψℓ ∗ η̃ ∗ ϕ j ∗ ψ j ∗ K(0)

=
∑

ℓ∈Z

〈
~f ∗ ϕℓ ∗ ψℓ ∗ ϕ j ∗ ψ j ∗ K, η

〉

=

〈∑

ℓ∈Z

~f ∗ ϕℓ ∗ ψℓ ∗ ϕ j ∗ ψ j ∗ K, η

〉

=
〈
~f ∗ ϕ j ∗ ψ j ∗ K, η

〉
.

Let γ ∈ S(Rn) satisfy both γ̂ = 1 on supp φ̂ and supp γ ⊆ {x ∈ Rn : 0 < |x| < π}. For any j ∈ Z

and x ∈ Rn, let γ j(x) := 2 jnγ(2 j x). Then, by (4.11) with γ ∈ S∞(Rn), [17, Theorem 2.3.21], and

φ = ϕ ∗ ψ with supp φ̂ ⊂ {x ∈ Rn : |x| < π}, we find that

Tm
~f ∗ φ j(x) = Tm

~f ∗ φ j ∗ γ j(x) = ~f ∗ ϕ j ∗ ψ j ∗ K ∗ γ j(x)

= ~f ∗ ϕ j ∗ ψ j ∗ K(x)

for any x ∈ Rn. From this and Lemma 4.5, we infer that, for any x ∈ Rn,
∣∣∣∣W1/p(x)

(
Tm

~f ∗ φ j

)
(x)
∣∣∣∣

≤

∫

Rn

|W1/p(x)(ϕ j ∗ ~f )(x − y)|

(1 + 2 j|y|)λ

(
1 + 2 j|y|

)λ ∣∣∣∣
(
K ∗ ψ j

)
(y)
∣∣∣∣ dy

. 2− js sup
y∈Rn

|W1/p(x)(ϕ j ∗ ~f )(y)|

(1 + 2 j|x − y|)λ
.

This finishes the proof of Lemma 4.7. �
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Theorem 4.8. Let α ∈ R, p ∈ (0,∞), q ∈ (0,∞], and W ∈ Ap(Rn,Cm). Let ℓ ∈ ( n
min{1,p,q}+

β
p
+ n

2
,∞)

and m ∈ Cℓ(Rn\{0}) be the same as in (4.1) with s ∈ R, where β is the doubling exponent of W. Let

Tm be the same as in (4.6). Then there exists a positive constant C such that, for any ~f ∈ Ḟ
α,q
p (W),

∥∥∥∥Tm
~f
∥∥∥∥

Ḟ
α+s,q
p (W)

≤ C
∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)

.

Proof. Let φ, ϕ, and ψ be the same as in the present lemma. Since φ = ϕ ∗ ψ, it follows that φ

satisfies both (T1) and (T2) of Definition 2.18. Using this, Definition 2.18, Lemmas 2.26 and 4.7,

and Theorem 3.1, we find that

∥∥∥∥Tm
~f
∥∥∥∥

Ḟ
α+s,q
p (W)

=

∥∥∥∥∥∥∥∥


∑

j∈Z

∣∣∣∣2 j(α+s)W1/p
(
Tm

~f ∗ φ j

)∣∣∣∣
q



1/q
∥∥∥∥∥∥∥∥

Lp(Rn)

.

∥∥∥∥∥∥∥∥


∑

j∈Z

∣∣∣∣∣∣∣
2 jα sup

y∈Rn

|W1/p(·)(ϕ j ∗ ~f )(y)|

(1 + 2 j| · −y|)λ

∣∣∣∣∣∣∣

q


1/q
∥∥∥∥∥∥∥∥

Lp(Rn)

∼

∥∥∥∥ ~f
∥∥∥∥

Ḟ
α,q
p (W)

,

which completes the proof of Theorem 4.8. �

Remark 4.9. Theorem 4.8 when m = 1 and W = 1 is a part of [45, Theorem 1.5(i)].
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