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3 Groupoids and skeletal categories

form a pretorsion theory in Cat
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York University in Toronto

Abstract

We describe a pretorsion theory in the category Cat of small cat-
egories: the torsion objects are the groupoids, while the torsion-free
objects are the skeletal categories, i.e., those categories in which ev-
ery isomorphism is an automorphism. We infer these results from
two unexpected properties of coequalizers in Cat that identify pairs of
objects: they are faithful and reflect isomorphisms.

1 Introduction

A pretorsion theory in a category C consists of two classes of objects, respec-
tively called the torsion and torsion-free objects, together with axioms which
mirror those for a torsion theory in an abelian category. The objects which
are both torsion and torsion-free are called trivial. When C has a zero object
which is taken to be the only trivial object, we recover the classical notion.

∗Partially supported by Ministero dell’Istruzione, dell’Università e della Ricerca (Pro-
getto di ricerca di rilevante interesse nazionale “Categories, Algebras: Ring-Theoretical
and Homological Approaches (CARTHA)).

†This work was supported by the Fonds de la Recherche Scientifique - FNRS under
Grant CDR no. J.0080.23

‡The fourth author acknowledges partial financial assistance by Natural Sciences and
Engineering Council of Canada under the Discovery Grants Program, no. 501260.

1

http://arxiv.org/abs/2207.08487v2


Hence, in direct generalization of its abelian origins, the current setting is
applicable in an arbitrary category, even in the absence of a zero object.

The original example of a torsion theory is, of course, that in the category
of abelian groups, with the usual notions of torsion group and torsion-free
group. Tens of papers have been devoted to torsion theories in various non-
abelian contexts, including [9, 11, 31, 22, 19, 10, 30, 12, 23]. For a first easy
example of a pretorsion theory, consider the category PreOrd of preordered
sets. Choosing the equivalence relations as torsion objects and the partial
orders as torsion-free objects, one obtains a pretorsion theory on PreOrd (see
[14]) with the discrete objects as trivial ones. This fact has been generalized
to the category PreOrd(C) of preordered objects in a Barr-exact category C
(see [16, 5, 6]). Other examples of pretorsion theories have been studied in
[15, 7, 17, 34, 20].

A preordered set may be seen as a small category with at most one arrow
between any two objects. On the other hand, given a small category C, one
gets a preorder on its set of objects by declaring A ≤ B when there is at
least one morphism from A to B. In [34], a small category is called “torsion”
or “torsion free” when it is the case for the corresponding preordered set of
its objects; it is proved that this yields a pretorsion theory on Cat.

In the present paper, we adopt a totally different approach, based on the
structure of the category of arrows, not just on the existence of arrows. In
our pretorsion theory on Cat, a small category C is

torsion when C is a groupoid, i.e., when every morphism in C is an isomor-
phism;

torsion-free when C is a skeletal category, i.e., when every isomorphism in
C is an automorphism (see [26]).

Of course, when the category C is just a preordered set, we recapture the
situation studied in [14]. This was also the case for the pretorsion theory
studied in [34].

The results in the present paper rely heavily on a careful study of some
particular coequalizers in Cat: the coequalizers of pairs of functors defined
on a discrete category. Such coequalizers have properties that are atypical
for a quotient functor, the most striking ones being their faithfulness and the
reflection of isomorphisms. Establishing these properties is quite cumbersome
and reduces to so-called “word problems” on formal chains of arrows in the
quotient graph used to construct the coequalizer. The work of John Isbell on
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Dominions (1968, see [24]) and the Diplomarbeit of Reinhard Börger (1977,
see [8]) provided us with the necessary tools for handling these problems.

We conclude the paper with showing the existence of the so-called Z-

kernels and Z-cokernels in Cat, that is, kernels and cokernels defined rela-
tively to the ideal of trivial morphisms: those morphisms factoring through
a trivial object. Thanks to the results in [7] it then follows that there is a
stable category naturally associated with this pretorsion theory, that satisfies
an interesting universal property.

2 Pretorsion theories

Let us recall that an ideal Z in a category C is a class of arrows such that
for every arrow f ∈ Z, one has fu ∈ Z and vf ∈ Z, for all arrows u,
v composable with f [13]. When C has a zero object, the zero morphisms
constitute an ideal.

Given an ideal Z in a category C, an arrow k is the Z-kernel of an arrow
f when fk ∈ Z and, if fm ∈ Z for some arrow m, then m factors uniquely
through k. The uniqueness condition forces k to be a monomorphism. When
Z is the ideal of zero morphisms, we recapture the usual notion of kernel.
There is of course a dual notion of Z-cokernel. A pair of composable mor-
phisms

K k
qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq A
q

qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq Q

is a short Z-exact sequence when k is the Z-kernel of q and q is the Z-cokernel
of k.

The following definition was introduced in [14] and then thoroughly in-
vestigated in [15]:

Definition 2.1 A pretorsion theory in a category C consists of a pair (T ,F)
of classes of objects, both of them closed under isomorphisms, whose elements

are the torsion and the torsion-free objects of the pretorsion theory, respec-

tively. The objects in T ∩ F are called trivial, and the ideal Z of trivial
morphisms is that of those arrows factoring through a trivial object.

These data must satisfy the following two axioms:

PT1 every arrow f : A qq
qqq
qqq
qqq
qqq
qq
qq

qqqqqqqqqqqqqqqqqq B with A ∈ T and B ∈ F is trivial;

PT2 for every object A ∈ C, there exists a short Z-exact sequence

K k
qq
qqq
qqq
qqq
qqq
qq
qq

qqqqqqqqqqqqqqqqqq A
q

qq
qqq
qqq
qqq
qqq
qq
qq

qqqqqqqqqqqqqqqqqq Q
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with K ∈ T and Q ∈ F .

3 Some coequalizers in Cat revisited

Let us first exhibit a result borrowed from J. Isbell (see [24]) and R. Börger
(see [8]).

Definition 3.1 (Def. 4.3 in [8]) Let B be a small category. Let M be the

free monoid on the set of arrows of B. An element of M – that is, an arbitrary

finite sequence of arrows in B – is reduced when

• the sequence does not contain any pair of consecutive arrows which turn

out to be composable in B;

• the sequence does not contain any identity morphism of B.

Let us clarify that, when speaking of a a pair of consecutive composable

arrows in a sequence, we always refer to a sequence (f1, . . . , fn) and an index
i < n such that the codomain of fi is equal to the domain of fi+1. To avoid
any confusion with the (standard) direction in which we write arrows, for
clarity we shall sometimes write the composite fi+1fi in the reverse order, as
fi⊲fi+1, so that the shorter sequence in which the pair (fi, fi+1) is replaced
by the composite of the two arrows, may then be written as

(f1, · · · , fi−1, fi⊲fi+1, fi+2, · · · , fn).

The unit element of M is of course the empty sequence, which we denote
by (). By a congruence on the monoid M is meant an equivalence relation
on M such that x ∼ y implies xz ∼ yz and zx ∼ zy for all z.

Proposition 3.2 (Statement 1.1 in [24], Satz 4.4 in [8])
Under the conditions of Definition 3.1, consider the smallest congruence S

on M such that

•

(

(u, v), u⊲v
)

∈ S for every pair (u, v) of composable morphisms in B;

•

(

idB, ()
)

∈ S for every object B ∈ B.

Then every element of M is S-equivalent to a unique reduced element.
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Proof In 1968, after referring to the work of Mersch (see [27]), Isbell states
as item 1.1 of his paper [24] a result which is essentially our Proposition 3.2;
however, the proof is only sketched: it makes explicit the representation in
terms of reduced chains, leaving off any details of a proof. Isbell simply says
that these are analogous to those for free groups (see [1] and [33]).

In Satz 4.4 of his 1977 Diplomarbeit [8], Börger presents a long and care-
fully written proof, with all technical details. Since this work has never been
published, we took the liberty of making a scan of it available, together with
a detailed sketch of his proof: see the appendix to this paper. �

Let us now switch to coequalizers in Cat. Their construction has been
described by many authors, with varying levels of detail: see for example
Section 5.1 in [4], Section 4 in [3], Section 11 in [29], and so on. All of them
use the notion of congruence on a category G, that is: an equivalence relation
on each hom-set G(X, Y ) such that f ∼ g implies fh ∼ gh and kf ∼ kg for
all arrows h, k composable with f .

Given a pair (F,G) of functors between small categories

A
F

qq
qqq
qqq
qqq
qq
qqq
qq

qqqqqqqqqqqqqqqqqq

qq
qqq
qqq
qqq
qq
qqq
qq

qqqqqqqqqqqqqqqqqq

G
B

Q
qq
qqq
qqq
qqq
qqq
qq
qq

qqqqqqqqqqqqqqqqqq Q

their coequalizer Q can thus be obtained in the following way.

• As far as objects are concerned, Ob(Q) is the quotient of Ob(B) by
the equivalence relation generated by F (A) ∼ G(A), for every object
A ∈ A.

• First one constructs a graph G0 on this quotient set of objects, by
putting every arrow f : A qq

qqq
qqq
qqq
qqq
qq
qq

qqqqqqqqqqqqqqqqqq B in B as an arrow from [A] to [B] in G0.

• Next one considers the category G having the same objects as G0; its
arrows are the non-empty finite chains of “composable” morphisms
of G0 (in the sense that the G0-codomain of a G0-morphism is the G0-
domain of the next one), together with an empty chain from each object
of G0 to itself; the composition is just concatenation.

• The coequalizer Q is the quotient of G by the congruence generated by:

Q1 when two consecutive morphisms in a G0-chain are composable in
B, the chain is equivalent to the one obtained when replacing the
corresponding pair by its composite in B;
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Q2 when an identity morphism appears in a G0-chain, the chain is
equivalent to the one obtained when dropping that identity;

Q3 when a morphism of the form F (f) appears in a G0-chain, the chain
is equivalent to the one obtained when replacing F (f) by G(f).

The following result is then an immediate consequence of the Isbell-Börger
result presented above.

Proposition 3.3 With the notation above, let us assume that the category

A is discrete. Given an arrow in the coequalizer Q, there then exists a unique

reduced arrow in G representing it.

Proof A non-identity arrow in Q is represented by a triple (A, ξ, B) where,
with the notation of Definition 3.1, ξ ∈ M is a sequence of consecutive arrows
in G0, the first one having A as domain in B, and the last one having B as
codomain in B. An identity arrow in Q is represented by a triple

(

B, (), B
)

,
where () is the empty sequence and B is an object of B.

Since A is discrete, condition Q2 above indicates at once that condition
Q3 can be omitted, because the only possible values for f in Q3 are identities.
Thus the congruence defining Q from G is constructed using only conditions
Q1 and Q2, just as the congruence on M in Proposition 3.2. Therefore, the
result follows at once from Proposition 3.2. �

Let us now infer various interesting consequences from this last proposi-
tion.

Proposition 3.4 The coequalizer of two functors defined on a discrete cat-

egory is faithful.

Proof With the notation above, let f, g : A qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq

qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq B be two non-identity mor-
phisms in B such thatQ(f) = Q(g). Then (f) and (g) are reduced morphisms
in G representing the same arrow of Q, thus they are equal by Proposition
3.3.

Next, if f = idB and g : B qq
qqq
qqq
qqq
qqq
qq
qq

qqqqqqqqqqqqqqqqqq B, with Q(f) = Q(g), g must be an
identity, otherwise we would again have two reduced morphisms () and (g)
of G representing the same morphism of Q. �

Lemma 3.5 Consider the coequalizer Q of two functors F,G : A qq
qqq
qqq
qqq
qq
qqq
qq

qqqqqqqqqqqqqqqqqq

qq
qqq
qqq
qqq
qq
qqq
qq

qqqqqqqqqqqqqqqqqq B de-

fined on a discrete category A. With the notation above, a morphism in Q is

an isomorphism if, and only if, its reduced form in G is empty or composed

of isomorphisms in B.
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Proof By 3.3, consider the reduced form of a non-identity isomorphism

(f1, . . . , fn), fi : Ai
qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq Bi, Q(Bi) = Q(Ai+1), Bi 6= Ai+1,

in Q and the reduced form of its inverse

(g1, . . . , gm), gi : Ci
qq
qqq
qqq
qqq
qqq
qq
qq

qqqqqqqqqqqqqqqqqq Di, Q(Di) = Q(Ci+1), Di 6= Ci+1;

thus, in particular, Q(A1) = Q(Dm) and Q(C1) = Q(Bn). The sequence

(f1, . . . , fn, g1, . . . gm)

must therefore be equivalent to the empty sequence. If Bn 6= C1, this last
sequence is reduced and equivalent to the empty sequence, which is impos-
sible by the uniqueness condition in Proposition 3.3. Thus Bn = C1 and we
can shorten the sequence to

(f1, . . . , fn−1, fn⊲g1, g2, . . . gm).

But the domain of fn⊲g1 is An 6= Bn−1, and the codomain of fn⊲g1 isD1 6= C2.
So, if fn⊲g1 is not an identity, the shortened sequence is reduced, which
contradicts again the fact that it is equivalent to the empty sequence. Thus
fn⊲g1 is an identity in A and, in particular, An = D1. Next, looking at the
other composite

(g1, · · · , gm, f1, . . . , fn)

which must also be an identity morphism in Q, we conclude that g1 is a
monomorphism in Q and fn is an epimorphism in Q. But by Proposition 3.4
the functor Q is faithful, thus in particular it reflects monomorphisms and
epimorphisms. Therefore g1 is a monomorphism in B and fn is an epimor-
phism in B. And since fn⊲g1 is an identity in B, g1 is both a retraction and
a monomorphism while fn is both a section and an epimorphism; they are
thus inverse isomorphisms.

So, one can further shorten the situation and obtain the sequence

(f1, . . . , fn−1, g2, . . . gm).

One repeats inductively the same process as above, up to the moment when
we have used all the components of one of the two original reduced sequences.
In this way we end up, let us say, with

(f1, . . . , fk)
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(the case of any remaining gis is, of course, analogous). But if not empty,
this sequence is reduced, since the sequence (f1, . . . , fn) was reduced, and
it must therefore be equivalent to the empty sequence. This is impossible,
again by the uniqueness condition in Proposition 3.3. Thus, we in fact ended
up with an empty sequence.

This concludes the proof of one of the two stated implications; the other
one is obvious. �

Proposition 3.6 The coequalizer of two functors defined on a discrete cat-

egory reflects isomorphisms.

Proof With the same notation as above, let f be a morphism in B such
that Q(f) is an isomorphism. If f is an identity, there is nothing to prove.
Otherwise, the morphism (f) of G is in reduced form and, by assumption, an
isomorphism in Q. By Lemma 3.5, f is an isomorphism in B. �

4 The pretorsion theory in Cat

The following result extends, to small categories, the pretorsion theory stud-
ied in [14] in the case of preordered sets, i.e., of those categories having at
most one arrow between any two objects. We shall denote by Grpd, SkCat and
SkGrpd the (full) subcategories of Cat whose objects are groupoids, skeletal
categories and skeletal groupoids, respectively.

Theorem 4.1 The pair (Grpd, SkCat) is a pretorsion theory in Cat.

Proof The trivial objects are thus those categories in which all arrows are
automorphisms, i.e. the skeletal groupoids. We shall write Iso(C) for the
groupoid of isomorphisms of a small category C and Aut(C) for the groupoid
of its automorphisms. Aut(C) is thus a trivial category, in the sense of Defini-
tion 2.1. So, a functor F : A qq

qqq
qqq
qqq
qqq
qq
qq

qqqqqqqqqqqqqqqqqq B is trivial when it factors through Aut(B).
In particular every functor F : G qq

qqq
qqq
qqq
qq
qqq
qq

qqqqqqqqqqqqqqqqqq C from a groupoid G to a torsion-free
category C is trivial. This takes care of axiom PT1.

Consider now an arbitrary small category C; it contains the groupoid
Iso(C). We form the following coequalizer in Cat:

∐

σ iso

1
d0

qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq

qq
qqq
qqq
qqq
qq
qqq
qq

qqqqqqqqqqqqqqqqqq

d1
C

Q
qq
qqq
qqq
qqq
qq
qqq
qq

qqqqqqqqqqqqqqqqqq Q
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where the left-hand category is a copower of the terminal category 1, indexed
by the set of all isomorphisms of C. This is of course a discrete category.
The functors d0 and d1 are those which, on the component indexed by an
isomorphism σ, map the unique object of 1 respectively to the domain and
codomain of σ. On one hand, all the isomorphisms of C are thus mapped by Q

to automorphisms in Q. On the other hand, by Lemma 3.5, an isomorphism
in Q is an identity or a composite of images of isomorphisms in C. It is
therefore a composite of automorphisms in Q and, thus, an automorphism
in Q. Consequently, Q is skeletal.

It remains to to be proved that we have obtained a short Z-exact sequence
(i, Q):

X
♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣
qq
qqq
qqq
qqq
qqq
qqq
q

qq
qqq
qqq
qqq
qqq
qqq
q

❅
❅

❅
❅❅qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

G

Iso(C) qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq

i
C qq

qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq

qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq

Q
Q

❅
❅
❅
❅❅qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

H

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣
qq
qqq
qqq
qqq
qqq
qq
qq

qq
qqq
qqq
qqq
qqq
qq
qq

Y

Consider first a functor G : X qq
qqq
qqq
qqq
qq
qqq
qq

qqqqqqqqqqqqqqqqqq C such that QG is trivial. This means
that, for every arrow x ∈ X , G(x) is mapped by Q to an automorphism
and, thus, an isomorphism. But by Proposition 3.6, every G(x) is then an
isomorphism in C and, thus, G factors through Iso(C). That factorization
is unique since i is an inclusion functor. On the other hand, if H : C qq

qqq
qqq
qqq
qqq
qq
qq

qqqqqqqqqqqqqqqqqq Y
is such that Hi is trivial, then every isomorphism of C is mapped by H to
an automorphism, thus its domain and its codomain are identified by H .
This proves that Hd0 = Hd1, and we get the expected unique factorization
through the coequalizer Q of (d0, d1). �

To the best of our knowledge, the following consequence of Theorem 4.1
has not yet been stated in the literature.

Corollary 4.2 The full subcategory SkCat of skeletal categories is reflective

in the category Cat of small categories.

Proof In a category C provided with a pretorsion theory, the full subcategory
of torsion objects is coreflective and that of torsion-free objects is reflective
(see [15]). �
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Remark 4.3 Comparison with the notion of skeleton.

Applying a strong (potentially class-based) version of the axiom of choice
one easily sees that every category C is equivalent to a skeletal full subcate-
gory S of C (see [28]), called its skeleton (see [26]). It is important to note
that, in the notation of the proof of Theorem 4.1, such a skeleton S (uniquely
determined only up to equivalence) is by no means the Z-cokernel Q and,
thus, the skeletal reflection of C, as given (without the use of any choice
principle) by Corollary 4.2. For example, consider the category C with two
objects, the identities on these, and a unique isomorphism (f, f−1) between
the two objects. Both candidates for a skeleton of C are isomorphic to the
terminal category 1. However, in the Z-cokernel Q as in Theorem 4.1 with
its single object and its identity morphism, there are also all the powers fn,
(f−1)n. It is thus the monoid (Z,+), viewed as a one-object category. �

Remark 4.4 An “internalization” of Theorem 4.1.

The construction of the pretorsion theory on preordered sets (see [14])
may easily be carried over to the case of preordered objects in a Barr-exact
category (see [16]), because it refers only to finite limits and coequalizers of
kernel pairs (see Barr’s metatheorem [2]). The case of the pretorsion the-
ory in Theorem 4.1 is strikingly different, because the arguments that we
have developed – and in particular Börger’s result in the Appendix – are
highly set theoretical and cannot be carried out as such in a quite arbitrary
category. In most classical algebraic categories (such as the categories of
groups, Lie algebras, rings, modules, etc.) the internal categories are always
groupoids. This is actually the case in any Mal’tsev variety [32], thus inter-
nalizing Theorem 4.1 to this context is equivalent to proving that the cate-
gory SkGrpd(C) of internal skeletal groupoids – i.e. those whose domain and
codomain morphisms are equal – is epireflective in the category Grpd(C) of
internal groupoids. Now, when C is a Mal’tsev variety, the category Grpd(C)
is again a Mal’tsev variety, since it is a subvariety of the variety of reflex-
ive graphs in C (see Corollary 2.4 in [21]). It is then easy to see that the
subcategory SkGrpd(C) of skeletal groupoids in C is a subvariety of Grpd(C).
Indeed, the subcategory SkGrpd(C) is determined by the additional identity
expressing the fact that the (unary) operations induced by the domain and
codomain morphisms have to be equal. By the Birkhoff theorem SkGrpd(C)
is then a subvariety and, in particular, it is epireflective in Grpd(C).
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5 The existence of Z-kernels and Z-cokernels

Let us now prove the existence of all Z-kernels and Z-cokernels in Cat, with
respect to the ideal Z of trivial morphisms determined by the subcategory
SkGrpd of skeletal groupoids, as in Theorem 4.1.

Proposition 5.1 Let F : A → B be a functor in Cat. Its Z-kernel is given

by the functor k in the following pullback

K qq
qqq
qqq
qqq
qqq
qq
qq

qqqqqqqqqqqqqqqqqq Aut(B)

k

qq
qqq
qqq
qqq
qqq
qq
qq

qq
qqq
qqq
qqq
qqq
qq
qq

qq
qqq
qqq
qqq
qqq
qqq
q

qq
qqq
qqq
qqq
qqq
qqq
q

qq
qqq
qqq
qqq
qqq
qq
qq

qq
qqq
qqq
qqq
qqq
qq
qq

qq
qqq
qqq
qqq
qqq
qqq
q

qq
qqq
qqq
qqq
qqq
qqq
q

A qq
qqq
qqq
qqq
qqq
qq
qq

qqqqqqqqqqqqqqqqqq

F
B

Proof Given G : X qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq A, the functor FG is trivial precisely when it factors
through Aut(B), thus through the pullback. �

The case of Z-cokernels is more involved. Inspired by considerations in
[22], we prove first:

Lemma 5.2 The Z-cokernel of the identity functor on a small category A
exists and can be constructed in the following way:

• consider first the category of fractions inverting all the arrows of A

p : A qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq G = A
[

Ar(A)−1
]

;

• consider next the canonical short Z-exact sequence of G:

K k
qq
qqq
qqq
qqq
qqq
qq
qq

qqqqqqqqqqqqqqqqqq G
q

qq
qqq
qqq
qqq
qqq
qq
qq

qqqqqqqqqqqqqqqqqq Q.

Then k is isomorphic to the identity on G while the composite

A
p

qq
qqq
qqq
qqq
qqq
qq
qq

qqqqqqqqqqqqqqqqqq G
q

qq
qqq
qqq
qqq
qqq
qq
qq

qqqqqqqqqqqqqqqqqq Q

is the Z-cokernel of F .
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Proof The construction of the Z-exact sequence in Theorem 4.1 shows
at once that the Z-kernel part of the sequence is the identity on G. But by
construction ofQ, all the (iso)morphisms of G are mapped to automorphisms,
so that qp must be trivial.

Next, given a functor G : A qq
qqq
qqq
qqq
qq
qqq
qq

qqqqqqqqqqqqqqqqqq X such that G = G ◦ idA is trivial, G
inverts all the arrows of A and thus factors uniquely as a functor H through
the groupoid G of fractions.

A A qq
qqq
qqq
qqq
qqq
qq
qq

qqqqqqqqqqqqqqqqqq

p
G qq

qqq
qqq
qqq
qqq
qq
qq

qqqqqqqqqqqqqqqqqq

q
Q

❍❍❍❍❍❍❍❍❍❍❍qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

G

❅
❅
❅
❅
❅qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

H

qq
qqq
qqq
qqq
qq
qqq
qq

qq
qqq
qqq
qqq
qq
qqq
qq

L

X

ButH = H◦idG is trivial because G and thus H map all morphisms of A, and
thus also their inverses in G, to automorphisms in X . Therefore H factors
uniquely as a functor L through the Z-cokernel q of idG . The uniqueness is
obvious since both p and q are epimorphisms. �

Proposition 5.3 The Z-cokernel of an arbitrary functor F : A → B in Cat

exists and is given by the pushout of the Z-cokernel of idA along F .

Proof This can easily be verified directly. With the notation above consider
the pushout

A A qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq

F
B

qp

qq
qqq
qqq
qqq
qq
qqq
qq

qq
qqq
qqq
qqq
qq
qqq
qq

qq
qqq
qqq
qqq
qqq
qq
qq

qq
qqq
qqq
qqq
qqq
qq
qq

qq
qqq
qqq
qqq
qq
qqq
qq

qq
qqq
qqq
qqq
qq
qqq
qq

qq
qqq
qqq
qqq
qqq
qq
qq

qq
qqq
qqq
qqq
qqq
qq
qq

U

Q qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq

V
C

where U is an epimorphism, since so is qp; this takes already care of the
uniqueness condition. If a functor W : B qq

qqq
qqq
qqq
qq
qqq
qq

qqqqqqqqqqqqqqqqqq Y is such that WF = WF idA is
trivial, then WF factors uniquely through the Z-cokernel qp of idA and thus
further through the pushout. �
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Remark 5.4 The argument used in the proof of Proposition 5.3 is a special
instance of a known result. Indeed, from Proposition 5.1 and Lemma 5.2,
it follows that Cat is a multipointed category (in the sense of Grandis and
Janelidze [22, Section 1.3])) with respect to the full subcategory SkGrpd of
skeletal groupoids. Accordingly, Proposition 5.3 is then a consequence of
their Proposition 1.3. It is worth noting that the notion of torsion theory
in multipointed categories, as defined in [22], is a particular instance of the
notion of pretorsion theory [14, 15]. In particular, in the “multipointed con-
text”, the subcategory of trivial objects is required to be both epireflective
and monocoreflective in the ambient category [22, Section 1.5]. This is the
case for the pretorsion theory (Grpd, SkCat) studied in this paper, but not in
general. Indeed, some examples of pretorsion theories that are not torsion
theories in a multipointed category can be found in [15, Remark 7.3].

Corollary 5.5 The constructions of the Z-kernels and Z-cokernels of the

identity morphisms given in Proposition 5.1 and Lemma 5.2 define the mono-

coreflection and the epireflection, respectively, of Cat to SkGrpd.

Proof This follows from Remark 5.4 and [22, Section 1.5]. �

Remark 5.6 It is possible to construct the “universal coproduct-preserving
stable category” associated with the pretorsion theory described in Theo-
rem 4.1. Indeed, this fact has been observed in Section 6 of [7].

6 Appendix: Sketch of the proof of 3.2

This appendix presents a sketch of the proof of Proposition 3.2, which appears
as Statement 1.1 in [24] and whose full proof can be found under Satz 4.4 in
[8].

Proposition 6.1 Let B be a small category and M the free monoid on the set

Ar(B) of arrows of B. An element of M , that is a finite sequence of elements

of Ar(B), is reduced when it does not contain any identity morphism of B,
nor any consecutive pair of arrows which are composable in B.
Consider the smallest congruence on M identifying a sequence containing

an identity with the sequence obtained when dropping that identity, and a

sequence containing a pair of consecutive composable morphisms in B with

the sequence where this pair is replaced by the corresponding composite.

Then every element of M is equivalent to a unique reduced element.

13



Proof As a matter of convention, let us use Latin letters for the arrows of
B and Greek letters for arbitrary elements of M . The existence of a reduced
element obtained from α ∈ M , in the way indicated above, is obvious. The
point is to prove the uniqueness.

An element of M is a finite sequence α of elements of Ar(B); we shall
often consider its length L(α) ∈ N . We shall also write R ⊆ M for the set
of reduced elements of M .

The first step of the proof is to observe, by induction on the length of β,
that the following formulae define inductively a mapping

Φ: Ar(B)× R qq
qqq
qqq
qqq
qqq
qq
qq

qqqqqqqqqqqqqqqqqq R,

where Φ(a, β) is such that

1. Φ(a, β) = Φ(ab, ν) when β = bν, with ν ∈ R, while b ∈ Ar(B) is
composable with a in B;

2. Φ(a, β) = β when a is an identity arrow in B and Case 1 does not
apply;

3. Φ(a, β) = aβ otherwise.

The second step of the proof is, again by induction on the length of ν, to
define a binary operation

⋆ : M ×R qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq R

such that, when writing () for the empty sequence (the unit of M), one has

() ⋆ ν = ν, aβ ⋆ ν = Φ(a, β ⋆ ν).

One considers then the equivalence relation S on M defined by

S = {(α, β) | ∀ν ∈ R α ⋆ ν = β ⋆ ν}

and proves, by induction on the length of α, that

α ⋆ (β ⋆ ν) = αβ ⋆ ν, α, β ∈ M, ν ∈ R.

This equality, together with the fact that γ ⋆ ν ∈ R holds for every γ ∈ R,
proves that S is a congruence on M . The equality implies also, via a new
induction on the length of ν as appearing in the definition of S, that

(

(a, b), ab
)

∈ S,
(

idB, ()
)

∈ S, for all a, b composable in B, B ∈ B.

14



By yet another induction on the length of ν, one observes that ν ⋆ () = ν

holds for every ν ∈ R. Then, given α ∈ M and ν, η ∈ R, by definition of S,
we obtain the implication

(α, ν) ∈ S and (α, η) ∈ S =⇒ ν = ν ⋆ () = η ⋆ () = η.

This proves the uniqueness condition in the statement. �
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