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Abstract

A nonisothermal phase field system of Cahn–Hilliard type is introduced and ana-
lyzed mathematically. The system constitutes an extension of the classical Caginalp
model for nonisothermal phase transitions with a conserved order parameter. It cou-
ples a Cahn–Hilliard type equation with source term for the order parameter with
the universal balance law of internal energy. In place of the standard Fourier form,
the constitutive law of the heat flux is assumed in the form given by the theory
developed by Green and Naghdi, which accounts for a possible thermal memory of
the evolution. This has the consequence that the balance law of internal energy
becomes a second-order in time equation for the thermal displacement or freezing
index, that is, a primitive with respect to time of the temperature. Another par-
ticular feature of our system is the presence of the source term in the equation for
the order parameter, which entails additional mathematical difficulties because the
mass conservation of the order parameter is lost. We provide several mathematical
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results under general assumptions on the source term and the double-well nonlinear-
ity governing the evolution: existence and continuous dependence results are shown
for weak and strong solutions to the corresponding initial-boundary value problem.

Keywords: Non-isothermal Cahn–Hilliard equation, thermal memory, well-posedness,
Cahn–Hilliard equation with source term, Cahn–Hilliard–Oono equation.

AMS (MOS) Subject Classification: 35K55, 35K51.

1 Introduction

A common assumption in phase segregation processes of binary mixtures is to postulate
that the mixture under investigation undergoes the phase separation at a constant tem-
perature. However, in numerous applications the evolution does not take place under
isothermal conditions. The first contribution aiming at including temperature effects in
the theory of phase separation is due to Caginalp [7–9]. It was motivated by the Ste-
fan problem for the evolution of the interface in a solid-liquid phase transition and in a
Hele–Shaw type flow between two fluids with different viscosities.

Another typical assumption in the context of the Cahn–Hilliard equation is the mass
conservation property that arises as a direct consequence of the standard no-flux boundary
condition prescribed for the chemical potential associated with the phase field variable.
While this condition is very natural for the engineering applications that Cahn and Hilliard
had in mind originally (see [10]), the recent employment of the Cahn–Hilliard equation
to describe other phenomena driven by phase segregation demands the incorporation
of an external source term S in the model that reflects the fact that the system may
not be isolated and the loss or production of mass is possible. Without claiming to be
exhaustive, let us mention that numerous liquid-liquid phase segregation problems arise
in cell biology [16] and in tumor growth models [20]. For this reason, we also included
the presence of a source term in our investigation.

The standard isothermal Cahn–Hilliard system has been extensively studied in the
past decades: see, e.g., [28] and the references therein. On the other hand, the mathe-
matical understanding of nonisothermal Cahn–Hilliard systems is, thirty years after the
seminal works by Alt and Pawlow (see [1, 3] and, in particular, [2]) and twenty years
after the groundbreaking work [17] by Gajewski for the nonlocal case, still far from being
complete. Before presenting our system, let us discuss some recent literature. Concern-
ing some analytic results of the aforementioned system by Caginalp, we mention the
related contibutions [11, 12, 27]. Next, employing micro-force balance theory, Miranville
and Schimperna proposed a further derivation in [29], and the well-posedness of a related
system has been addressed in [26]. Moreover, we point out the recent contribution [15]
by De Anna et al., where two new thermodynamically consistent models related to non-
isothermal Cahn–Hilliard systems have been derived. Finally, we refer to [18,19] for some
mathematical results on a relaxed version of the above systems endowed with dynamic
boundary conditions.

Motivated by the aforementioned remarks, we aim at analyzing a nonisothermal Cahn–
Hilliard type system with source term in this paper. To this end, let Ω ⊂ R

3 be the spatial
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domain where the evolution takes place, and T > 0 a given final time. We then consider
the following initial-boundary value problem:

∂tϕ−∆µ+ γϕ = f in Q := Ω× (0, T ), (1.1)

µ = −∆ϕ + F ′(ϕ) + a− b∂tw in Q, (1.2)

∂2tw −∆(κ1∂tw + κ2w) + λ∂tϕ = g in Q, (1.3)

∂nϕ = 0, ∂nµ = 0, ∂n(κ1∂tw + κ2w) = 0 on Σ := ∂Ω × (0, T ), (1.4)

ϕ|t=0 = ϕ0, w|t=0 = w0, ∂tw|t=0 = w1 in Ω. (1.5)

In the above system several positive physical constants carrying physical dimensions have,
for convenience, been taken equal to unity, while keeping their physical dimensions. This
has no bearing on the mathematical analysis on which we focus here. The unknowns
have the following meaning: ϕ is a normalized difference between the volume fractions
of pure phases in the binary mixture (the dimensionless order parameter of the phase
transformation, which should attain its values in the interval [−1, 1]), and µ corresponds
to the chemical potential ; the unknown w stands for the so-called thermal displacement,
which in the mathematical literature of free boundary problems is also termed freezing

index or Baiocchi transform. It is directly connected to the temperature ϑ (which in the
case of the Caginalp model is actually a temperature difference) through the relation

w(·, t) = w0 +

∫ t

0

ϑ(·, s) ds, t ∈ [0, T ]. (1.6)

Moreover, κ1 and κ2 in (1.3) stand for prescribed positive coefficients related to the
heat flux; γ is a positive physical constant related to the intensity of the mass absorp-
tion/production of the source, where the source term in (1.1) is f−γϕ as explained below;
λ stands for the latent heat of the phase transformation; a, b are physical constants; g is a
distributed heat source. Besides, the symbol ∂n represents the outward normal derivative
on Γ := ∂Ω, while ϕ0, w0, and w1 indicate some given initial values. Finally, F ′ stands
for the (generalized) derivative of a double-well shaped nonlinearity. Prototypical and
important examples for F are the so-called classical regular potential and the logarithmic

double-well potential, which are the functions given by

Freg(r) :=
1

4
(r2 − 1)2 , r ∈ R, (1.7)

Flog(r) :=

{
(1 + r) ln(1 + r) + (1− r) ln(1− r)− c1r

2 if |r| ≤ 1,
+∞ otherwise,

(1.8)

with the convention 0 ln(0) := limrց0 r ln(r) = 0. In (1.8), c1 > 1 so that Flog is noncon-
vex. Another example is the double obstacle potential , where, with c2 > 0,

F2obs(r) := −c2r
2 if |r| ≤ 1 and F2obs(r) := +∞ if |r| > 1. (1.9)

Singular potentials like (1.8) and (1.9) are difficult to handle from the mathematical
viewpoint, but have the great advantage that if a solution exists, then it automatically
inherits the property of being physically meaningful, that is, ϕ ∈ [−1, 1]. In general, this
cannot be guaranteed for regular potentials like the quartic (1.7), which, in this sense,
provides just an approximation of the more physical choices. In cases like (1.9), one
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has to split F into a nondifferentiable convex part β̂ (the indicator function of [−1, 1] in
the present example) and a smooth (usually quadratic) perturbation π̂. Accordingly, the
second equation (1.2) has then to be understood as the differential inclusion

µ ∈ −∆ϕ + ∂β̂(ϕ) + π̂′(ϕ) + a− b∂tw,

or, equivalently, with the help of a selection ξ, as the identity

µ = −∆ϕ + ξ + π(ϕ) + a− b∂tw with ξ ∈ ∂β̂(ϕ).

The above system is a formal extension of the Cahn–Hilliard system introduced by
Caginalp in [8] (see also the derivation in [6, Ex. 4.4.2, (4.44), (4.46)]); it corresponds to
the Allen–Cahn counterpart analyzed recently in [14]. The main differences between our
system and the one originally introduced in [8] are the following:

• In [8], we have a = λ (the specific latent heat).

• In [8], the heat flux is assumed in the standard Fourier form q = −κ1∇ϑ, while we we
follow the works by Green and Naghdi [23–25] and Podio-Guidugli [32] (see also [34]) and
postulate that

q = −κ1∇(∂tw)− κ2∇w where κi > 0, i = 1, 2. (1.10)

Note that this assumption accounts for a possible previous thermal history of the phe-
nomenon. We also observe that the no-flux condition q ·n = 0 then gives rise to the third
boundary condition in (1.4).

• The third – and main – difference is that (1.1)–(1.2) comprises a Cahn–Hilliard system
with a source term S := f − γϕ, which is independent of temperature.

The presence of S radically changes the behavior of the Cahn–Hilliard equation since
the mass conservation property is no longer fulfilled. In fact, due to the no-flux boundary
condition for µ in (1.4), a formal consideration, i.e., testing (1.1) by 1/|Ω|, readily reveals
that the mass balance law of the order parameter ϕ is ruled by

d

dt

( 1

|Ω|

∫

Ω

ϕ(t)
)
=

1

|Ω|

∫

Ω

S(t) for a.a. t ∈ (0, T ).

In this direction, we highlight that, especially when working with singular potential like
(1.9), the control of the mean value of ϕ plays a crucial role in the mathematical analysis of
Cahn–Hilliard-type systems. Besides, in the case when f is a positive constant such that
f ∈ (−γ, γ), the equations (1.1)–(1.2) correspond to the so-called Cahn–Hilliard–Oono
system, see, e.g., [22] and [13].

Finally, let us mention that the differential structure with respect to w in equation
(1.3) is sometimes also referred to as the strongly damped wave equation (see, e.g., [31]
and the references therein).

Let us conclude this section by presenting an outline of the paper. In the following
section, we state the main results and list the corresponding assumptions. Then, from
Section 3 onward, we start proving the mentioned results. In particular, Section 3 is
devoted to showing some continuous dependence results enjoyed by the system (1.1)–
(1.5). In Section 4, we then introduce and solve a preparatory approximating problem
that will allow us to prove in Section 5 the existence of weak solutions, as well as some
regularity results.
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2 Statement of the problem and main results

Throughout the paper, Ω indicates a bounded and connected open subset of R3 (the lower
dimensional cases can be treated in the same way) with smooth boundary Γ := ∂Ω. In
the following, |Ω| and n denote the Lebesgue measure of Ω and the outward unit normal
vector field on Γ, respectively. Given a final time T > 0, we set

Qt := Ω× (0, t) for t ∈ (0, T ] and Q := QT . (2.1)

Given a Banach space X , we denote its norm by ‖ · ‖X, with the exceptions of Lp spaces
on Ω and Q, whose norms are denoted by ‖ · ‖p for 1 ≤ p ≤ ∞ (if no confusion can
arise), and of the space H introduced below. For brevity, we use the same symbol for the
norm in a space and in any power thereof. Furthermore, for Banach spaces X and Y ,
we notice that the linear space X ∩ Y becomes a Banach space when equipped with its
natural graph norm

‖v‖X∩Y := ‖v‖X + ‖v‖Y , v ∈ X ∩ Y.

Then, we introduce the shorthands

H := L2(Ω), V := H1(Ω), and W := {v ∈ H2(Ω) : ∂nv = 0 on Γ}, (2.2)

and endow these spaces with their natural norms. For simplicity, we write ‖ · ‖ instead
of ‖ · ‖H. Moreover, we denote by ( · , · ) and 〈 · , · 〉 the standard inner product of H and
the duality pairing between the dual space V ∗ of V and V itself, respectively. We identify
H with a subspace of V ∗ in the usual way, i.e., in order that

〈u, v〉 = (u, v) for every u ∈ H and v ∈ V .

This makes (V,H, V ∗) a Hilbert triplet. We notice that all of the embeddings

W →֒ V →֒ H →֒ V ∗

are dense and compact. Next, we define the generalized mean value v of a generic element
v ∈ V ∗ by setting

v :=
1

|Ω|
〈v, 1〉 , (2.3)

where we have written 1 for the constant function that takes the value 1 in Ω. It is clear
that v reduces to the usual mean value if v ∈ H . The same notation v is employed also
if v is a time-dependent function.

Let us come to the structural assumptions we make for our analysis. First,

γ, a, b, κ1, κ2 and λ are positive constants. (2.4)

Next, in order to allow for general double-well potentials in (1.2), we assume that

F : R → (0,+∞] admits the decomposition F = β̂ + π̂, where (2.5)

β̂ : R → [0,+∞] is convex, l.s.c., and fulfills β̂(0) = 0, (2.6)

π̂ ∈ C1(R), and its derivative is Lipschitz continuous. (2.7)
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Moreover, we set
β := ∂β̂ and π := π̂′, (2.8)

where ∂ denotes the subdifferential operator, and notice that β : R → 2R is maximal
monotone with corresponding domain D(β) and that 0 ∈ β(0). We observe that all of
the examples (1.7)–(1.9) of potentials introduced before do satisfy the conditions required
above. Of course, in the case of nonregular potentials like the double obstacle (1.9), the
second equation (1.2) has to be intended as the differential inclusion

µ ∈ −∆ϕ+ β(ϕ) + π(ϕ) + a− b∂tw,

or, equivalently, with the help of a selection ξ ∈ β(ϕ) a.e. in Q, as the identity

µ = −∆ϕ + ξ + π(ϕ) + a− b∂tw.

As for the data, we assume that

f ∈ L∞(Q) and g ∈ L2(0, T ;H), (2.9)

ϕ0 ∈ W, w0 ∈ V and w1 ∈ H . (2.10)

However, we also need some compatibility conditions between the data f and ϕ0 and
the domain of β. These are in fact already expected, as we are dealing with possible
singular potentials and a mass source. In particular, let us repeat that the contribution
S := f −γϕ in (1.1) plays the role of a (phase-dependent) mass source/sink in the model.
Indeed, by formally testing (1.1) by 1/|Ω|, and using (1.4), we infer that the mass balance
law of the system reads

d

dt

( 1

|Ω|

∫

Ω

ϕ(t)
)
=

1

|Ω|

∫

Ω

S(t) for a.a. t ∈ (0, T ).

Therefore, it is natural to expect to have some compatibility conditions between the
structure of the source term S, thus on the constant γ and the function f , and the
possibly singular potential β. Namely, setting

ρ :=
‖f‖∞
γ

, (2.11)

and noting that ϕ0 ∈ C0(Ω) by (2.10), we require that all of the quatities

min
x∈Ω

ϕ0(x), max
x∈Ω

ϕ0(x), −ρ− (ϕ0)
− , ρ+ (ϕ0)

+

belong to the interior of D(β), (2.12)

where ( · )− and ( · )+ denote the negative and positive part functions, respectively.

Remark 2.1. The assumptions on f and ϕ0 can be weakened slightly. However, in doing
so, we would have to replace (2.11)–(2.12) by more complicated compatibility conditions.
Moreover, when regularizing our problem as we are going to do in the forthcoming Sec-
tion 4, we would have to regularize ϕ0 as well. This would lead to estimates depending
on the regularization parameter, so that further uniform estimates had to be performed.
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At this point, we can rigorously state our notion of (weak) solution to the aforemen-
tioned problem under study. A weak solution to the system (1.1)–(1.5) is a quadruplet
(ϕ, µ, ξ, w) enjoying the regularity properties

ϕ ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ), (2.13)

µ ∈ L2(0, T ;V ), (2.14)

ξ ∈ L2(0, T ;H), (2.15)

w ∈ H2(0, T ;V ∗) ∩W 1,∞(0, T ;H) ∩H1(0, T ;V ), (2.16)

and satisfying

〈∂tϕ, v〉+

∫

Ω

∇µ · ∇v + γ

∫

Ω

ϕv =

∫

Ω

fv

for every v ∈ V and a.e. in (0, T ) , (2.17)

µ = −∆ϕ+ ξ + π(ϕ) + a− b∂tw and ξ ∈ β(ϕ) a.e. in Q , (2.18)

〈∂2tw, v〉+

∫

Ω

∇(κ1∂tw + κ2w) · ∇v + λ

∫

Ω

∂tϕ v =

∫

Ω

gv

for every v ∈ V and a.e. in (0, T ) , (2.19)

ϕ|t=0 = ϕ0, w|t=0 = w0, and ∂tw|t=0 = w1 . (2.20)

The present paper is devoted to the study of the well-posedness of the above problem
and of the regularity of its solutions. Our first result is an existence theorem.

Theorem 2.2. Assume (2.4)–(2.8) on the structure of the system and (2.9)–(2.12) on

the data. Then, problem (2.17)–(2.20) has at least one solution (ϕ, µ, ξ, w) satisfying

(2.13)–(2.16) and

ϕ ∈ L2(0, T ;W 2,6(Ω)) and ξ ∈ L2(0, T ;L6(Ω)) , (2.21)

as well as the estimate

‖ϕ‖H1(0,T ;V ∗)∩L∞(0,T ;V )∩L2(0,T ;W 2,6(Ω)) + ‖µ‖L2(0,T ;V ) + ‖ξ‖L2(0,T ;L6(Ω))

+ ‖w‖H2(0,T ;V ∗)∩W 1,∞(0,T ;H)∩H1(0,T ;V ) ≤ K1 , (2.22)

with a positive constant K1 that depends only on the structure of the system, Ω, T , and
upper bounds for the norms of the data and the quantities related to assumptions (2.9)–
(2.12).

Uniqueness cannot be expected, in general, as it usually occurs in Cahn–Hilliard type
problems with nonregular potentials. However, we have the result stated below, which
ensures continuous dependence on f and g for the components ϕ and w of every solution
with fixed initial data. In the statement, we use the following notation for convolution
products with 1:

(1 ∗ v)(t) :=

∫ t

0

v(s) ds for v ∈ L1(0, T ;H) and t ∈ [0, T ]. (2.23)
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Theorem 2.3. Under the assumptions (2.4)–(2.8) on the structure of the system and

(2.10)–(2.12) on the initial data, let fi and gi, i = 1, 2, satisfy (2.9), and let (ϕi, µi, ξi, wi)
be any two corresponding solutions of problem (2.17)–(2.20) with the regularity (2.13)–
(2.16). Then, the estimate

‖ϕ1 − ϕ2‖L∞(0,T ;V ∗)∩L2(0,T ;V ) + ‖w1 − w2‖H1(0,T ;H)∩L∞(0,T ;V )

≤ K2

(
‖f1 − f2‖L2(0,T ;V ∗)∩L1(Q) + ‖f1 − f2‖

1/2
L1(Q) + ‖1 ∗ (g1 − g2)‖L2(0,T ;H)

)
(2.24)

holds true with a positive constant K2 that depends only on the structure of the system,

Ω, T , and an upper bound for the norms of ξ1 and ξ2 in L1(Q).

Partial uniqueness in general and full uniqueness if β is single valued trivially follow,
as stated below.

Corollary 2.4. Assume (2.4)–(2.8) on the structure of the system and (2.9)–(2.12) on

the data. Then, the components ϕ and w of any solution in the sense of Theorem 2.2 are

uniquely determined. Furthermore, if β is single valued, then even the components µ and

ξ are uniquely determined and the solution is unique.

Under proper regularity assumption on β and on the data, there exists a more regular
solution. We notice that all of the examples (1.7)–(1.9) of potentials still satisfy the
stronger conditions required below.

Theorem 2.5. In addition to the assumptions of Theorem 2.2, let the following conditions

be fulfilled:

the restriction of β to the interior of D(β) is a single-valued C1-function, (2.25)

f ∈ H1(0, T ;V ∗), ϕ0 ∈ H3(Ω), and w1 ∈ V. (2.26)

Then the problem (2.17)–(2.20) admits at least one solution (ϕ, µ, ξ, w) that enjoys the

further regularity

ϕ ∈ H1(0, T ;V ) ∩ L∞(0, T ;W 2,6(Ω)), µ ∈ L∞(0, T ;V ),

ξ ∈ L∞(0, T ;L6(Ω)), w ∈ H2(0, T ;H) ∩W 1,∞(0, T ;V ), (2.27)

and satisfies the estimate

‖ϕ‖H1(0,T ;V )∩L∞(0,T ;W 2,6(Ω)) + ‖µ‖L∞(0,T ;V ) + ‖ξ‖L∞(0,T ;L6(Ω))

+ ‖w‖H2(0,T ;H)∩W 1,∞(0,T ;V ) ≤ K3 , (2.28)

with a positive constant K3 that depends only on the structure of the system, Ω, T , and
upper bounds of the norms of the data and the quantities related to assumptions (2.9)–
(2.12) and (2.26).

Remark 2.6. Notice that (2.19) says that u := κ1∂tw + κ2w satisfies

∫

Ω

∇u · ∇v =

∫

Ω

hv for every v ∈ V and a.e. in (0, T ),
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where h := g − λ∂tϕ − ∂2tw. In particular, if (ϕ, µ, ξ, w) is a solution in the sense of
Theorem 2.5, then h belongs to L2(0, T ;H), and the elliptic regularity theory yields that

u ∈ L2(0, T ;W ) and ‖u‖L2(0,T ;W ) ≤ CΩ

(
‖u‖L2(0,T ;V ) + ‖h‖L2(0,T ;H)

)
,

where CΩ depends only on Ω. Thus, the same norm can be estimated by a constant
which is proportional to K3. By solving κ1∂tw + κ2w = u for w, we obtain that w ∈
H1(0, T ;H2(Ω)) or w ∈ H1(0, T ;W ), provided that w0 ∈ H2(Ω) or w0 ∈ W , respectively.

In the next sections, when proving our results, we widely use Hölder’s inequality, as
well as the Young, Poincaré, Sobolev and compactness inequalities recalled below:

ab ≤ δa2 +
1

4δ
b2 for every a, b ∈ R and δ > 0. (2.29)

‖v‖V ≤ CΩ

(
‖∇v‖+ |v|

)
for every v ∈ V . (2.30)

‖v‖p ≤ CΩ ‖v‖V for every v ∈ V and p ∈ [1, 6]. (2.31)

‖v‖p ≤ δ ‖∇v‖+ CΩ,p,δ ‖v‖∗ for every v ∈ V , p ∈ [1, 6) and δ > 0. (2.32)

Here, CΩ is a constant that depends only on Ω, while CΩ,p,δ depends on p and δ, in
addition. Moreover, the symbol ‖ · ‖∗ denotes the norm in V ∗ defined by the forthcoming
formula (2.35). The last two inequalities are related to the (three-dimensional) embedding
V →֒ Lp(Ω) which holds for p ∈ [1, 6] and is compact if p < 6.

Finally, we take advantage of a tool that is commonly used in the study of problems
related to the Cahn–Hilliard type equations: consider, for ψ ∈ V ∗, the problem of finding

u ∈ V such that

∫

Ω

∇u · ∇v = 〈ψ, v〉 for every v ∈ V . (2.33)

Obviously, if ψ ∈ H , then this problem is just the usual homogeneous Neumann problem
for the Poisson equation −∆u = ψ. Now, since Ω is connected, for ψ ∈ V ∗, (2.33) is
solvable if and only if ψ has zero mean value. Moreover, if this condition is satisfied, then
there exists a unique solution possessing zero mean value. This entails that the operator

N : dom(N) := {ψ ∈ V ∗ : ψ = 0} → {u ∈ V : u = 0}, given by the rule

ψ 7→ the unique solution u to (2.33) satisfying u = 0, (2.34)

is well defined and yields an isomorphism between the above spaces. Besides, it follows
that the formula

‖ψ‖2∗ := ‖∇N(ψ − ψ)‖2 + |ψ|2 for ψ ∈ V ∗ (2.35)

defines a Hilbert norm in V ∗ that is equivalent to the standard dual norm. From the
above definitions one trivially derives that

∫

Ω

∇Nψ · ∇v = 〈ψ, v〉 for every ψ ∈ dom(N) and v ∈ V , (2.36)

〈ψ,Nζ〉 = 〈ζ,Nψ〉 for every ψ, ζ ∈ dom(N), (2.37)
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〈ψ,Nψ〉 =

∫

Ω

|∇Nψ|2 = ‖ψ‖2∗ for every ψ ∈ dom(N). (2.38)

Moreover, it turns out that

∫ t

0

〈∂tv(s),Nv(s)〉 ds =

∫ t

0

〈v(s),N(∂tv(s))〉 ds =
1

2
‖v(t)‖2∗ −

1

2
‖v(0)‖2∗ (2.39)

for every t ∈ [0, T ] and every v ∈ H1(0, T ;V ∗) satisfying v = 0 a.e. in (0, T ).

We conclude this section by stating a general rule concerning the constants that appear
in the estimates to be performed in the following. The small-case symbol c stands for a
generic constant whose actual value may change from line to line, and even within the same
line, and depends only on Ω, the shape of the nonlinearities, and the constants and the
norms of the functions involved in the assumptions of the statements. In particular, the
values of c do not depend on the parameters ε > 0 and n ∈ N that will be introduced in
the next sections. A small-case symbol with a subscript like cδ indicates that the constant
may depend on the parameter δ, in addition. On the contrary, we mark precise constants
that we can refer to by using different symbols (see, e.g., (2.31)).

3 Continuous dependence

This section is devoted to the proof of Theorem 2.3. Let fi and gi, i = 1, 2, satisfy (2.9),
and let (ϕi, µi, ξi, wi) be any two corresponding solutions as in the statement. We set,
for convenience, ϕ := ϕ1 − ϕ2, and define µ, ξ, w, f and g analogously. We first make
some preliminary observations. Recalling (2.13) (see (2.2) for the definition of W ) and
testing (2.17) by 1/|Ω|, we find that

d

dt
ϕ(t) + γ ϕ(t) = f(t) for a.a. t ∈ (0, T ). (3.1)

Then, on the one hand, by multiplying this equality by
∫
Ω
v, we deduce that

∫

Ω

∂tϕv + γ

∫

Ω

ϕv =

∫

Ω

fv for every v ∈ V and a.e. in (0, T ) . (3.2)

On the other hand, by (formally) multiplying (3.1) by sign(ϕ), where sign : R → R is the
sign function defined by sign(r) := r/|r| if r 6= 0 and sign(0) = 0, we infer that

|ϕ(t)|+ γ

∫ t

0

|ϕ(s)| ds ≤

∫ t

0

|f(s)| ds ,

whence

sup
t∈(0,T )

|ϕ(t)| ≤

∫ T

0

|f(s)| ds ≤
1

|Ω|
‖f‖L1(Q) . (3.3)

We now start the proof of the theorem. We use the properties (2.34)–(2.39) of the
operator N and recall the notation (2.23) for convolution products with 1. We write
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equation (2.17) for both solutions and take the difference, obtaining an equality from
which we subtract (3.2) to arrive at the identity

〈∂t(ϕ− ϕ), v〉+

∫

Ω

∇µ · ∇v + γ

∫

Ω

(ϕ− ϕ)v =

∫

Ω

(f − f)v

for every v ∈ V and a.e. in (0, T ). Since (ϕ−ϕ)(t) has zero mean value for every t ∈ [0, T ],
we are allowed to test the above equation by N(ϕ− ϕ). Integration with respect to time
then leads to, for every t ∈ [0, T ],

1

2
‖(ϕ− ϕ)(t)‖2∗ +

∫

Qt

µ(ϕ− ϕ) + γ

∫ t

0

‖ϕ− ϕ‖2∗ =

∫

Qt

(f − f)N(ϕ− ϕ). (3.4)

Next, we write (2.18) for both solutions, multiply the difference by −(ϕ−ϕ), and integrate
over Qt, finding that

∫

Qt

|∇ϕ|2 +

∫

Qt

ξ ϕ−

∫

Qt

µ(ϕ− ϕ)− b

∫

Qt

∂twϕ

=

∫

Qt

ξ ϕ−

∫

Qt

(
π(ϕ1)− π(ϕ2)

)
(ϕ− ϕ)− b

∫

Qt

∂twϕ . (3.5)

Finally, we write (2.19) for both solutions and take the convolution with 1. Then, we test
the difference of the corresponding equalities by (b/λ)∂tw to obtain that

b

λ

∫

Qt

|∂tw|
2 +

bκ1
2λ

∫

Ω

|∇w(t)|2 + b

∫

Qt

ϕ∂tw

= −
bκ2
λ

∫

Qt

∇(1 ∗ w) · ∇∂tw +
b

λ

∫

Qt

(1 ∗ g)∂tw . (3.6)

At this point, we add (3.4)–(3.6) to each other and notice that some cancellations occur.
Moreover, β is monotone, and thus all of the remaining terms on the left-hand side are
nonnegative. We treat those on the right-hand side individually. First, we have that

∫

Qt

(f − f)N(ϕ− ϕ) ≤ c

∫ t

0

‖(f − f)(s)‖∗ ‖N(ϕ− ϕ)(s)‖V ds

≤ c

∫ t

0

‖(f − f)(s)‖∗ ‖(ϕ− ϕ)(s)‖∗ ds

≤

∫ t

0

‖(ϕ− ϕ)(s)‖2∗ ds+ c ‖f − f‖2L2(0,T ;V ∗) ≤

∫ t

0

‖(ϕ− ϕ)(s)‖2∗ ds+ c ‖f‖2L2(0,T ;V ∗) ,

where we have used the trivial inequalities ‖v‖∗ ≤ c |v| ≤ c ‖v‖∗, which hold for every
v ∈ V ∗.

Next, we fix a constant M such that ‖ξi‖L1(Q) ≤M for i = 1, 2. Then, recalling (3.3),
we have that

∫

Qt

ξ ϕ ≤

∫

Qt

(
|ξ1|+ |ξ2|

)
|ϕ| ≤ 2M sup

s∈(0,t)

|ϕ(s)| ≤
2M

|Ω|
‖f‖L1(Q) .
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Also, in view of the Lipschitz continuity of π, the obvious inequality ‖v‖ ≤ ‖v‖ for v ∈ H ,
and the compactness inequality (2.32), we find that

−

∫

Qt

(
π(ϕ1)− π(ϕ2)

)
(ϕ− ϕ) ≤ c

∫

Qt

|ϕ|2 ≤
1

2

∫

Qt

|∇ϕ|2 + c

∫ t

0

‖ϕ(s)‖2∗ ds .

Moreover, by Young’s inequality and arguing as above, we have that

−b

∫

Qt

∂twϕ ≤
b

4λ

∫

Qt

|∂tw|
2 + c

∫

Qt

|ϕ|2 ≤
b

4λ

∫

Qt

|∂tw|
2 + c ‖f‖2L1(Q) ,

on account of (3.3). We deal with the next integral using integration by parts to infer
that

−
bκ2
λ

∫

Qt

∇(1 ∗ w) · ∇∂tw =
bκ2
λ

∫

Qt

|∇w|2 −
bκ2
λ

∫

Ω

∇(1 ∗ w)(t) · ∇w(t)

≤ c

∫

Qt

|∇w|2 +
bκ1
4λ

∫

Ω

|∇w(t)|2 + c

∫

Ω

|∇(1 ∗ w)(t)|2 .

In addition, it is clear that

∫

Ω

|∇(1 ∗ w)(t)|2 =

∫

Ω

∣∣∣
∫ t

0

∇w(s) ds
∣∣∣
2

≤

∫

Ω

t

∫ t

0

|∇w(s)|2 ds ≤ T

∫

Qt

|∇w|2 .

Finally, we note that

b

λ

∫

Qt

(1 ∗ g)∂tw ≤
b

4λ

∫

Qt

|∂tw|
2 + c

∫

Qt

|1 ∗ g|2 .

Upon collecting (3.4)–(3.6) and the inequalities shown above, we obtain that

1

2
‖(ϕ− ϕ)(t)‖2∗ +

1

2

∫

Qt

|∇ϕ|2 +
b

2λ

∫

Qt

|∂tw|
2 +

bκ1
4λ

∫

Ω

|∇w(t)|2

≤ c
(
‖f‖2L2(0,T ;V ∗)∩L1(Q) + ‖f‖L1(Q) + ‖1 ∗ g‖2L2(0,T ;H)

)

+c
(∫ t

0

‖ϕ(s)‖2∗ ds+

∫

Qt

|∇w|2
)
,

where c has the dependence required for the constant K2 in the statement of the theorem.
On the other hand, (3.3) implies that

‖ϕ(t)‖∗ ≤ ‖(ϕ− ϕ)(t)‖∗ + c |ϕ(t)| ≤ ‖(ϕ− ϕ)(t)‖∗ + c ‖f‖L1(Q) for a.a. t ∈ (0, T ).

By combining this with the previous inequality, we are in a position to apply Gronwall’s
lemma and obtain the desired estimate (2.24), which concludes the proof.

4 Approximation

In this section, we introduce and solve a proper approximating problem depending on the
parameter ε ∈ (0, 1). First of all, we replace the functional β̂ and the maximal monotone
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graph β by their Moreau–Yosida regularizations β̂ε and βε, respectively (see, e.g., [5, pp. 28
and 39]). We recall that

0 ≤ β̂ε(r) =

∫ r

0

βε(s) ds ≤ β̂(r) for every r ∈ R , (4.1)

βε is monotone and Lipschitz continuous with βε(0) = 0 , (4.2)

|βε(r)| ≤ |β◦(r)| for every r ∈ D(β) , (4.3)

where β◦(r) denotes the element of the section β(r) having minimum modulus. The
approximating problem to be considered consists in finding a triplet (ϕε, µε, wε) satisfying
the regularity properties

ϕε ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ∩W 2,6(Ω)) , (4.4)

µε ∈ L2(0, T ;V ) , (4.5)

wε ∈ H2(0, T ;V ∗) ∩W 1,∞(0, T ;H) ∩H1(0, T ;V ) , (4.6)

and solving the following system of variational identities or equations and initial condi-
tions:

〈∂tϕε, v〉+

∫

Ω

∇µε · ∇v + γ

∫

Ω

ϕεv =

∫

Ω

fv

for every v ∈ V and a.e. in (0, T ) , (4.7)

µε = −∆ϕε + βε(ϕε) + π(ϕε) + a− b∂twε a.e. in Q , (4.8)

〈∂2twε, v〉+

∫

Ω

∇(κ1∂twε + κ2wε) · ∇v + λ

∫

Ω

∂tϕε v =

∫

Ω

gv

for every v ∈ V and a.e. in (0, T ) , (4.9)

ϕε|t=0 = ϕ0, wε|t=0 = w0 and ∂twε|t=0 = w1 . (4.10)

We remark that here we obviously do not need to consider any selection ξ as βε is
regular and single valued. Here is our basic result.

Theorem 4.1. Let the assumptions of Theorem 2.2 be in force. Then problem (4.7)–
(4.10) has, for every ε ∈ (0, 1), a unique solution (ϕε, µε, wε) satisfying the regularity

properties expressed in (4.4)–(4.6).

The rest of this section is devoted to the proof of the above theorem. Clearly, unique-
ness is a consequence of Theorem 2.3, since βε satisfies all the assumptions postulated for
β in (2.5)–(2.7), and it is single valued, in addition (cf. Corollary 2.4).

To prove the existence of a solution, we start from a Faedo–Galerkin scheme. To this
end, we introduce the nondecreasing (ordered) sequence {λj} of eigenvalues and the corre-
sponding complete orthonormal sequence {ej} of eigenfunctions of the eigenvalue problem
for the Laplace operator with homogeneous Neumann boundary conditions. Namely, we
have that

−∆ej = λjej in Ω and ∂nej = 0 on Γ for j = 1, 2, . . . , (4.11)∫

Ω

eiej = δij for every i and j, (4.12)
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with the standard Kronecker symbols δij . Moreover, we set

Vn := span{ej : 1 ≤ j ≤ n} for n = 1, 2, . . . (4.13)

and recall that the union of these spaces is dense in both V and H . Notice that all of the
eigenfunctions are smooth since Ω is smooth. Furthermore, as Ω is connected, we have
that λ1 = 0 < λ2, and V1 is the subspace of constant functions.

The discrete problem consists then in finding a triplet (ϕn, µn, wn) of functions satis-
fying

ϕn ∈ H1(0, T ;Vn) , µn ∈ L2(0, T ;Vn) and wn ∈ H2(0, T ;Vn) , (4.14)

and solving the discrete problem∫

Ω

∂tϕn v +

∫

Ω

∇µn · ∇v + γ

∫

Ω

ϕnv =

∫

Ω

fv

for every v ∈ Vn and a.e. in (0, T ) , (4.15)∫

Ω

µnv =

∫

Ω

∇ϕn · ∇v +

∫

Ω

βε(ϕn)v +

∫

Ω

(π(ϕn) + a− b∂twn)v

for every v ∈ Vn and a.e. in (0, T ) , (4.16)∫

Ω

∂2twn v +

∫

Ω

∇(κ1∂twn + κ2wn) · ∇v + λ

∫

Ω

∂tϕn v =

∫

Ω

gv

for every v ∈ Vn and a.e. in (0, T ) , (4.17)∫

Ω

ϕn(0) v =

∫

Ω

ϕ0 v,

∫

Ω

wn(0) v =

∫

Ω

w0 v, and

∫

Ω

∂twn(0) v =

∫

Ω

w1 v,

for every v ∈ Vn. (4.18)

Here, for an arbitrary function v : Q→ R, we employ an abuse of notation by writing v(0)
in place of v|t=0(·) and we understood it as a function of x ∈ Ω, that is, v(0) : x 7→ v(x, 0).
This will be repeatedly used from now on to simplify the presentation. The strategy of
the proof can be schematized as follows. First, we show that the above problem has a
unique solution. Then, we perform a number of a priori estimates that allow us to pass to
the limit as n tends to infinity. In this way, we identify a limit triple (ϕε, µε, wε), which
then is shown to be a solution to the problem (4.7)–(4.10) enjoying the desired regularity
properties.

Solution to the discrete problem. We represent the unknowns in terms of the basis
of the space Vn. Namely, we have for a.a. t ∈ (0, T ) that

ϕn(t) =

n∑

j=1

ϕnj(t)ej , µn(t) =

n∑

j=1

µnj(t)ej , and wn(t) =

n∑

j=1

wnj(t)ej ,

for some functions ϕnj ∈ H1(0, T ), µnj ∈ L2(0, T ) and wnj ∈ H2(0, T ). Moreover, we
introduce the R

n-valued functions defined a.e. in (0, T ) by

ϕ̂n := (ϕnj)
n
j=1 , µ̂n := (µnj)

n
j=1 , and ŵn := (wnj)

n
j=1 .

In terms of these true unknowns the equations (4.15)–(4.17) take the form

ϕ̂
′
n +Aµ̂n + γϕ̂n = f̂ , (4.19)

µ̂n = Aϕ̂n +Fε(ϕ̂n)− bŵ′
n , (4.20)

ŵ
′′
n +A(κ1ŵ

′
n + κ2ŵn) + λϕ̂′

n = ĝ , (4.21)



Cahn–Hilliard system with source term and thermal memory 15

where the matrix A = (Aij)
n
i,j=1 and the vectors f̂ = (fi)

n
i=1 and ĝ = (gi)

n
i=1 are given by

Aij :=

∫

Ω

∇ej · ∇ei , fi :=

∫

Ω

fei , and gi :=

∫

Ω

gei , for i, j = 1, . . . , n,

while Fε : R
n → R

n is the function whose i-th component (i = 1, . . . , n) is given by

R
n ∋ r = (r1, . . . , rn) 7→

∫

Ω

(βε + π)
( n∑

j=1

rjej

)
ei + a

∫

Ω

ei .

Clearly, f̂ and ĝ are L2 functions and Fε is Lipschitz continuous. Moreover, the initial
conditions (4.18) provide initial conditions for the vectors ϕ̂n, ŵn and ŵ

′
n. We first

eliminate ϕ̂
′
n from (4.21) by exploiting (4.19) and then eliminate every occurrence of µ̂n

by means of (4.20). In this way, we obtain a well-posed Cauchy problem for the pair
(ϕ̂n, ŵn) coupled with the chemical potential equation (4.20), and it is clear that the new
problem is equivalent to the previous one. Hence, we find a unique solution with the
regularity

ϕ̂n ∈ H1(0, T ;Rn), ŵn ∈ H2(0, T ;Rn), and µ̂n ∈ L2(0, T ;Rn),

so that the discrete problem has a unique solution, as claimed.

Before we start estimating, we remark a consequence of the compatibility assumptions
in (2.12). We choose some δ0 > 0 such that both the quantities −ρ − (ϕ0)

− − δ0 and
ρ + (ϕ0)

+ + δ0 belong to the interior of D(β). Then, for some C0 > 0, we have the
inequality

βε(r)(r − r0) ≥ δ0|βε(r)| − C0

for every r ∈ R, r0 ∈ [−ρ− (ϕ0)
−, ρ+ (ϕ0)

+] and ε ∈ (0, 1). (4.22)

This is a generalization of [30, Appendix, Prop. A.1]. The detailed proof given in [21,
p. 908] with a fixed r0 also works in the present case with only minor changes.

Our first estimate prepares the way to apply the above inequality.

A preliminary estimate. We recall that Vn ⊃ V1 and that V1 is the subspace of
constant functions. Hence, we can test (4.15) by 1/|Ω| to obtain that

ϕn
′(t) + γ ϕn(t) = f(t) for a.a. t ∈ (0, T ), (4.23)

whence immediately

ϕn(t) = ϕ0 e
−γt +

∫ t

0

e−γ(t−s)f(s) ds for every t ∈ [0, T ],

and a simple calculation shows that (cf. (2.11))

−ρ− (ϕ0)
− ≤ ϕn(t) ≤ ρ+ (ϕ0)

+ for every t ∈ [0, T ]. (4.24)

Before continuing, it is worth making some observations on projections which are
collected in the following remark.
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Remark 4.2. Let Pn : H → Vn be the H-orthogonal projection operator. We list some
inequalities that hold true for every n ∈ N, as well as convergence properties as n tends
to infinity. For every v ∈ H , we clearly have that

‖Pnv‖ ≤ ‖v‖, and Pnv → v strongly in H.

Assume now that v ∈ V . Then it is easy to see that also

Pnv ∈ V, ‖∇Pnv‖ ≤ ‖∇v‖, and ‖Pnv‖V ≤ ‖v‖V .

For a detailed proof, see, e.g., [13, Rem. 4.2]. In particular, we deduce that

Pnv → v strongly in V , for every v ∈ V .

Next, assume that v ∈ W . Then, we have that

v =

∞∑

j=1

(v, ej)ej and −∆v =

∞∑

j=1

(v, ej)λjej .

We deduce that ∆Pnv = Pn∆v, and we can apply the above inequalities and convergence
properties to ∆v as well in order to recover further information on Pnv. We obtain, with
a constant CΩ that depends only on Ω, that

‖Pnv‖H2(Ω) ≤ CΩ‖v‖H2(Ω) for every v ∈ W ,

‖Pnv‖H3(Ω) ≤ CΩ‖v‖H3(Ω) for every v ∈ H3(Ω) ∩W ,

Pnv → v strongly in H2(Ω) for every v ∈ W ,

Pnv → v strongly in H3(Ω) for every v ∈ H3(Ω) ∩W.

Notice that all this can be applied to the initial values of the discrete solution as they are
projections on Vn. Now, we consider time-dependent functions. A simple combination
of the above properties with the Lebesgue dominated convergence theorem shows the
following: if we assume that v ∈ L2(0, T ;H) or v ∈ L2(0, T ;V ) and define vn by setting
vn(t) := Pn(v(t)) for a.a. t ∈ (0, T ), then

vn → v strongly in L2(0, T ;H) or L2(0, T ;V ), respectively.

At this point, we can start estimating, and we recall that the symbol c stands for
possibly different constants independent of ε and n according to our general rule regarding
constants stated at the end of Section 2. We repeatedly owe to the properties (2.34)–(2.39)
related to the operator N without further reference.

First uniform estimate. We first observe that Nv ∈ Vn for every v ∈ Vn satisfying
v = 0. Indeed, both v and w := Nv can be expressed in terms of the eigenfunctions ej ,
and we have that

∞∑

j=1

λj(w, ej) ej = −∆w = v =
n∑

j=2

(v, ej) ej .

Hence, (w, ej) = 0 for every j > n (since λj > 0 for j > 1), i.e., w ∈ Vn. Once this
is established, we take the difference between (4.15) written for a generic v ∈ Vn and
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(4.23) multiplied by
∫
Ω
v, write the resulting equality at the time s ∈ (0, T ) and test it by

N(ϕn − ϕn)(s). Then, by integrating over (0, t) ⊂ (0, T ), we obtain that

1

2
‖ϕn(t)− ϕn(t)‖

2
∗ +

∫

Qt

µn(ϕn − ϕn) + γ

∫ t

0

‖ϕn(s)− ϕn(s)‖
2
∗ ds

=
1

2
‖ϕn(0)− ϕn(0)‖

2
∗ +

∫

Qt

(f − f)N(ϕn − ϕn). (4.25)

At the same time, we test (4.16), written at the time s, by −(ϕn(s)−ϕn(s)) and integrate
over (0, t). It results that

∫

Qt

|∇ϕn|
2 +

∫

Qt

βε(ϕn)(ϕn − ϕn)−

∫

Qt

µn(ϕn − ϕn)

= −

∫

Qt

(
a+ π(ϕn)

)
(ϕn − ϕn) + b

∫

Qt

∂twn(ϕn − ϕn). (4.26)

Finally, we take the convolution between (4.17) and 1 (see (2.23)) and test the resulting
equality by ∂twn. After time integration, we obtain that

∫

Qt

(∂twn − ∂twn(0))∂twn +
κ1
2

∫

Ω

|∇(wn(t)− wn(0))|
2

= −κ2

∫

Qt

∇(1 ∗ wn) · ∇∂twn − λ

∫

Qt

(ϕn − ϕn(0))∂twn +

∫

Qt

(1 ∗ g)∂twn . (4.27)

At this point, we add (4.25)–(4.27) to each other and notice that a cancellation occurs.
After rearranging, we deduce that

1

2
‖ϕn(t)− ϕn(t)‖

2
∗ + γ

∫ t

0

‖ϕn(s)− ϕn(s)‖
2
∗ ds+

∫

Qt

|∇ϕn|
2 +

∫

Qt

βε(ϕn)(ϕn − ϕn)

+

∫

Qt

|∂twn|
2 +

κ1
2

∫

Ω

|∇(wn(t)− wn(0))|
2

=
1

2
‖ϕn(0)− ϕn(0)‖

2
∗ +

∫

Qt

(f − f)N(ϕn − ϕn)

−

∫

Qt

(
π(ϕn)− π(ϕn)

)
(ϕn − ϕn)−

∫

Qt

(
a+ π(ϕn)

)
(ϕn − ϕn)

+ b

∫

Qt

∂twn(ϕn − ϕn) +

∫

Qt

∂twn(0)∂twn − κ2

∫

Qt

∇(1 ∗ wn) · ∇∂twn

− λ

∫

Qt

(ϕn − ϕn)∂twn − λ

∫

Qt

(ϕn − ϕn(0))∂twn +

∫

Qt

(1 ∗ g)∂twn =:

10∑

i=1

Ii . (4.28)

The integral involving βε can be estimated from below by combining (4.22) and (4.24) as
follows: ∫

Qt

βε(ϕn)(ϕn − ϕn) ≥ δ0

∫

Qt

|βε(ϕn)| − c .

All of the other terms on the left-hand side are nonnegative. For those on the right-hand
side, we perform separate estimates.
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Since the embedding H →֒ V ∗ is continuous, the first term I1 is uniformly bounded
by the assumption (2.10) on ϕ0, Remark 4.2, and estimate (4.24). Next, we have that

I2 =

∫

Qt

(f − f)N(ϕn − ϕn) ≤ c ‖f‖2L2(0,T ;V ∗) + c

∫ t

0

‖N(ϕn − ϕn)(s)‖
2
V ds

≤ c

∫ t

0

‖(ϕn − ϕn)(s)‖
2
∗ ds+ c .

Owing to Young’s inequality, the Lipschitz continuity of π, and (4.24) once more, we have,
for every δ > 0,

I3 + I4 + I5 + I8 ≤
1

4

∫

Qt

|∂twn|
2 + c

∫

Qt

|ϕn − ϕn|
2 + c

≤
1

4

∫

Qt

|∂twn|
2 + δ

∫

Qt

|∇ϕn|
2 + cδ

∫ t

0

‖ϕn(s)− ϕn(s)‖
2
∗ ds ,

where in the second line we also used the compactness inequality (2.32). Next, arguing
similarly, we obtain that

I6 + I9 + I10 ≤
1

4

∫

Qt

|∂twn|
2 + c

∫

Qt

(
|∂twn(0)|

2 + |ϕn − ϕn(0)|
2 + |1 ∗ g|2

)

≤
1

4

∫

Qt

|∂twn|
2 + c ,

thanks to (4.24) and to our assumptions on the initial data w1 and ϕ0 (by applying
Remark 4.2) and on g. The last term to be estimated is first treated by an integration by
parts. Finally, by also using Young’s inequality and the estimate for ∇wn(0) obtained by
applying Remark 4.2, we have, for every δ > 0, that

I7 = −κ2

∫

Qt

∇(1 ∗ wn) · ∇∂twn

= κ2

∫

Qt

|∇wn|
2 − κ2

∫

Ω

∇(1 ∗ wn)(t) · ∇wn(t)

≤ c

∫

Qt

|∇(wn − wn(0))|
2 + δ

∫

Ω

|∇(wn(t)− wn(0))|
2 + cδ

∫

Ω

|∇(1 ∗ wn)(t)|
2 + c .

On the other hand, we also have that
∫

Ω

|∇(1 ∗ wn)(t)|
2 =

∫

Ω

∣∣∣
∫ t

0

∇wn(s) ds
∣∣∣
2

≤ c

∫

Qt

|∇wn|
2 ≤ c

∫

Qt

|∇(wn − wn(0))|
2 + c .

At this point, we recall (4.28) and all the above estimates, choose δ small enough, and
apply Gronwall’s lemma. We obtain that

‖ϕn − ϕn‖L∞(0,T ;V ∗)∩L2(0,T ;V ) + ‖βε(ϕn)‖L1(Q)

+ ‖∂twn‖L2(0,T ;H) + ‖∇(wn − wn(0))‖L∞(0,T ;H) ≤ c ,

whence immediately

‖ϕn‖L∞(0,T ;V ∗)∩L2(0,T ;V ) + ‖βε(ϕn)‖L1(Q) + ‖wn‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c . (4.29)
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Consequence. By testing (4.16) by 1/|Ω|, and owing to (4.29), we infer that

‖µn‖L1(0,T ) ≤ c . (4.30)

Second uniform estimate. We test the equations (4.15), (4.16), and (4.17), by µn,
−∂tϕn, and (b/λ)∂twn, respectively, sum up and notice that the terms involving the prod-
ucts ∂tϕn µn and ∂twn∂tϕn cancel each other. Then, we integrate in time and rearrange
to obtain that∫

Qt

|∇µn|
2 +

1

2

∫

Ω

|∇ϕn(t)|
2 +

∫

Ω

β̂ε(ϕn(t))

+
b

2λ

∫

Ω

|∂twn(t)|
2 +

κ1b

λ

∫

Qt

|∇∂twn|
2 +

κ1b

2λ

∫

Ω

|∇wn(t)|
2

=
1

2

∫

Ω

|∇ϕn(0)|
2 +

∫

Ω

β̂ε(ϕn(0)) +
b

2λ

∫

Ω

|∂twn(0)|
2 +

κ1b

2λ

∫

Ω

|∇wn(0)|
2

−γ

∫

Qt

ϕnµn +

∫

Qt

fµn −

∫

Ω

π̂(ϕn(t)) +

∫

Ω

π̂(ϕn(0))

− a

∫

Ω

(ϕn(t)− ϕn(0)) +
b

λ

∫

Qt

g∂twn , (4.31)

where all of the terms on the left-hand side are nonnegative. Moreover, as before, we can
recall Remark 4.2 in order to estimate the terms involving the initial data, and just the one
containing β̂ε needs further comments. Since ϕ0 belongs to W by (2.10), ϕn(0) converges
to ϕ0 strongly in W , hence uniformly. On the other hand, by the quoted assumption,
minϕ0 and maxϕ0 belong to the interior of D(β). Thus, for some n0 and every n ≥ n0,
all of the values of ϕn(0) belong to a compact interval I contained in the interior of D(β).
By also recalling (4.1), we thus may conclude that

∫

Ω

β̂ε(ϕn(0)) ≤

∫

Ω

β̂(ϕn(0)) ≤ max
r∈I

β̂(r) = c .

It is understood that n ≥ n0 from now on, which is no restriction since we aim at letting
n tend to infinity eventually. Let us come to the other terms on the right-hand side. The
last one can be dealt with employing Young’s inequality (and then Gronwall’s lemma),
and the integral that precedes it has already been estimated, since it is a multiple of the
mean value. Moreover, since π̂ grows at most quadratically by condition (2.7), we can
infer from the compactness inequality (2.32) and (4.29) that

∫

Ω

π̂(ϕn(t)) ≤ c

∫

Ω

|ϕn(t)|
2 + c

≤
1

4

∫

Ω

|∇ϕn(t)|
2 + c ‖ϕn(t)‖

2
∗ + c ≤

1

4

∫

Ω

|∇ϕn(t)|
2 + c .

The other integrals that need some treatment are those containing µn. We have that
∫

Qt

(f − γϕn)µn =

∫

Qt

(f − γϕn)(µn − µn) +

∫

Qt

(f − γϕn)µn

≤ ‖f − γϕn‖L2(0,t;H) ‖µn − µn‖L2(0,t;H) + ‖f − γϕ‖L∞(0,T ;V ∗) ‖µn‖L1(0,T ;V )

≤ c ‖∇µn‖L2(0,t;H) + c ‖µn‖L1(0,T ) ≤
1

2

∫

Qt

|∇µn|
2 + c ,
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where we have used the Poincaré inequality (2.30), our assumptions on f (see (2.9)),
(4.29), and (4.30). By coming back to (4.31), collecting the above estimates and observa-
tions, and applying the Gronwall lemma, we conclude that

‖∇µn‖L2(0,T ;H) + ‖ϕn‖L∞(0,T ;V ) + ‖β̂ε(ϕn)‖L∞(0,T ;L1(Ω))

+ ‖wn‖W 1,∞(0,T ;H)∩H1(0,T ;V ) ≤ c . (4.32)

Third uniform estimate. Next, recalling that every constant is allowed as a test
function, we test (4.16) by ϕn(t) − ϕn(t) and rearrange. Omitting the time variable for
brevity, we have a.e. in (0, T ) that

∫

Ω

|∇ϕn|
2 +

∫

Ω

βε(ϕn)(ϕn − ϕn)

=

∫

Ω

µn(ϕn − ϕn)−

∫

Ω

π(ϕn)(ϕn − ϕn)− a

∫

Ω

(ϕn − ϕn)

+ b

∫

Ω

∂twn(ϕn − ϕn). (4.33)

In view of (4.24) and of our assumption (2.12), we can bound the integral involving βε
from below using (4.22):

∫

Ω

βε(ϕn)(ϕn − ϕn) ≥ δ0

∫

Ω

|βε(ϕn)| − c .

As for the right-hand side, the first term needs some treatment. Thanks to Poincaré’s
inequality (2.30) and to (4.32), we have that

∫

Ω

µn(ϕn − ϕn) =

∫

Ω

(µn − µn)(ϕn − ϕn) ≤ c ‖∇µn‖ ‖ϕn − ϕn‖ ≤ c ‖∇µn‖ .

The sum of the other terms is bounded from above by

c
(
‖ϕn‖

2 + |ϕn|
2 + ‖∂twn‖

2
)
+ c .

Combining (4.33), the inequalities just derived, and the previous estimates, we see that the
function t 7→

∫
Ω
|βε(ϕn(t))| is bounded from above by an L2(0, T ) function independently

of both n and ε, that is, it holds

‖βε(ϕn)‖L2(0,T ;L1(Ω)) ≤ c , (4.34)

whence we trivially derive an estimate in L2(0, T ) for the mean value of βε(ϕn). Then,
from (4.16), we can estimate the L2(0, T ) norm of µn. This, (4.32), and the use of the
Poincaré inequality once more, imply that

‖µn‖L2(0,T ;V ) ≤ c . (4.35)

Fourth uniform estimate. We recall Remark 4.2 and use the notations introduced
there. We fix some v ∈ L2(0, T ;V ) and define vn ∈ L2(0, T ;Vn) by setting vn(t) = Pn(v(t))
for a.a. t ∈ (0, T ). Then, we test (4.15) by vn, and integrate over time to obtain that

∫

Q

∂tϕn vn = −

∫

Q

∇µn · ∇vn +

∫

Q

(f − γϕn)vn ≤ c‖vn‖L2(0,T ;V ) ≤ c‖v‖L2(0,T ;V ).
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On the other hand, we have that
∫

Q

∂tϕn vn =

∫

Q

∂tϕn v ,

since ∂tϕn is Vn-valued. Thus, we readily conclude that

‖∂tϕn‖L2(0,T ;V ∗) ≤ c . (4.36)

Fifth uniform estimate. Thanks to (4.36), the same argument, applied to equa-
tion (4.17) for wn, yields that

‖∂2twn‖L2(0,T ;V ∗) ≤ c . (4.37)

Passage to the limit. At this point, we can pass to the limit as n → ∞. Indeed, by
recalling (4.29), (4.32) and (4.35)–(4.37), and applying well-known weak, weak star, and
strong compactness results (for the latter see, e.g., [33, Sect. 8, Cor. 4]), we deduce that
there exists a triple (ϕε, µε, wε) such that

ϕn → ϕε weakly star in H1(0, T ;V ∗) ∩ L∞(0, T ;V )

and strongly in C0([0, T ];H) , (4.38)

µn → µε weakly in L2(0, T ;V ) , (4.39)

wn → wε weakly star in H2(0, T ;V ∗) ∩W 1,∞(0, T ;H) ∩H1(0, T ;V )

and strongly in H1(0, T ;H) ∩ C1([0, T ];V ∗) , (4.40)

as n tends to infinity (at least for a subsequence which is not relabeled). Moreover, since
βε and π are Lipschitz continuous, we also have that

βε(ϕn) → βε(ϕε) and π(ϕn) → π(ϕε) strongly in C0([0, T ];H). (4.41)

We claim that this triple is a (weak) solution to problem (4.7)–(4.10). Since ϕn(0), wn(0)
and ∂twn(0) are the H projections of ϕ0, w0 and w1, they strongly converge in H to ϕ0,
w0 and w1, respectively. On the other hand, they converge to ϕε(0), wε(0) and ∂twε(0),
respectively, strongly (at least) in V ∗, thanks to (4.38) and (4.40). Hence, the initial
conditions (4.10) are satisfied. Now, we show that the variational equations (4.7)–(4.9) are
satisfied as well. We recall Remark 4.2, fix any v ∈ L2(0, T ;V ), define vn ∈ L2(0, T ;Vn) by
setting vn(t) := Pn(v(t)) for a.a. t ∈ (0, T ), and observe that vn converges to v strongly in
L2(0, T ;V ). Next, we test each of the equations (4.15)–(4.17) by vn and integrate in time
over (0, T ). At this point, on account of the convergence properties proved or mentioned,
it is straightforward to pass to the limit as n → ∞ in the equalities we obtain. The
resulting equalities are the same equations with (ϕε, µε, wε) in place of (ϕn, µn, wn), i.e.,
the time-integrated versions of (4.15)–(4.17) with arbitrary time-dependent test functions
v ∈ L2(0, T ;V ), which are equivalent to (4.15)–(4.17) themselves.

Conclusion of the proof. It remains to establish the stronger regularity requirements
stated in (2.21). To this end, we see that, a.e. in (0, T ), ϕε(t) is a solution u ∈ V to the
nonlinear elliptic problem

∫

Ω

∇u · ∇v +

∫

Ω

βε(u)v =

∫

Ω

hv for every v ∈ V , (4.42)
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where h is the value of µε − π(ϕε) − a + b∂twε evaluated at t in our case. On the other
hand, every solution u to problem (4.42) satisfies the estimate

‖βε(u)‖6 ≤ ‖h‖6 , (4.43)

whenever h ∈ L6(Ω). To show that (4.43) actually holds true, we can formally choose
v = (βε(u))

5 in (4.42) (to be more rigorous, we should use a suitable truncation). Next,
we apply the generalized Young inequality with conjugate exponents 6 and 6/5 to the
resulting right-hand side and rearrange. Then, (4.43) plainly follows. Moreover, by elliptic
regularity, we infer that

u ∈ W 2,6(Ω) ∩W and ‖u‖W 2,6(Ω) ≤ CΩ

(
‖u‖+ ‖h‖6) , (4.44)

with a constant CΩ that depends only on Ω. Then we apply (4.43) with u = ϕε(t), square
and integrate in time to deduce that

‖βε(ϕε)‖
2
L2(0,T ;L6(Ω)) ≤ ‖µε − π(ϕε)− a+ b∂twε‖

2
L2(0,T ;L6(Ω)) .

Since the right-hand side of this inequality is uniformly bounded owing to our previous
estimates and the continuous embedding V →֒ L6(Ω), we conclude that

βε(ϕε) ∈ L2(0, T ;L6(Ω)) and ‖βε(ϕε)‖L2(0,T ;L6(Ω)) ≤ c . (4.45)

Similarly, by applying (4.44), we also have that

ϕε ∈ L2(0, T ;W 2,6(Ω)) and ‖ϕε‖L2(0,T ;W 2,6(Ω)) ≤ c . (4.46)

5 Existence and regularity

This final part of the paper is devoted to prove the existence and regularity results stated
in Theorems 2.2 and 2.5.

5.1 Proof of Theorem 2.2

To proceed rigorously, let us consider the discrete problem (4.15)–(4.18) analyzed in the
previous section. By the lower semicontinuity of norms, it is clear that the bounds (4.29),
(4.32), and (4.35)–(4.37), proved for the discrete solution (ϕn, µn, wn) are conserved with
the same constants in the limit as n→ ∞. By also accounting for (4.45)–(4.46), we thus
have that

‖ϕε‖H1(0,T ;V ∗)∩L∞(0,T ;V )∩L2(0,T ;W 2,6(Ω)) + ‖µε‖L2(0,T ;V )

+‖βε(ϕε)‖L2(0,T ;L6(Ω)) + ‖wε‖H2(0,T ;V ∗)∩W 1,∞(0,T ;H)∩H1(0,T ;V ) ≤ c , (5.1)

and we recall that, according to our general rule, the constant c in the above line has the
same dependence as the constant K1 of the statement. In particular, it is independent of



Cahn–Hilliard system with source term and thermal memory 23

ε. From (5.1) and the compactness results already mentioned, we have that

ϕε → ϕ weakly star in H1(0, T ;V ∗) ∩ L∞(0, T ;V )

and strongly in C0([0, T ];H) , (5.2)

µε → µ weakly in L2(0, T ;V ) , (5.3)

βε(ϕε) → ξ weakly in L2(0, T ;L6(Ω)) , (5.4)

wε → w weakly star in H2(0, T ;V ∗) ∩W 1,∞(0, T ;H) ∩H1(0, T ;V )

and strongly in H1(0, T ;H) ∩ C1([0, T ];V ∗) , (5.5)

for some quadruplet (ϕ, µ, ξ, w) as ε tends to zero (at least for a not relabeled subse-
quence). Notice that this quadruplet satisfies the estimate (2.22) by the lower semicon-
tinuity of norms. We now prove that it is a solution to problem (2.17)–(2.20). Clearly,
the initial conditions (2.20) are fulfilled. Moreover, by the maximal monotonicity of β
it is a standard matter to realize that the condition ξ ∈ β(ϕ) that appears in (2.18)
is satisfied as well. Indeed, it suffices to combine the strong convergence of ϕε, the
weak convergence of βε(ϕε), and a well-known property of the Yosida approximation (see,
e.g., [4, Prop. 2.2, p. 38]). Finally, as in the previous proof, it is straightforward to pass
to the limit in the time-integrated versions of the equations (4.7)–(4.9) in order to obtain
the time-integrated versions of the equations (2.17)–(2.19) with arbitrary time-dependent
test functions v ∈ L2(0, T ;V ), which are equivalent to (2.17)–(2.19) themselves. This
completes the proof.

5.2 Proof of Theorem 2.5

Following the line of arguments of the proof of Theorem 2.2, we use the estimates al-
ready established for the discrete solution (ϕn, µn, wn) and the approximating solution
(ϕε, µε, wε) and perform further estimates. So, we want to show that

‖ϕn‖H1(0,T ;V ) + ‖µn‖L∞(0,T ;V ) + ‖wn‖H2(0,T ;H)∩W 1,∞(0,T ;V ) ≤ c , (5.6)

at least for sufficiently large n ∈ N, as well as

‖βε(ϕε)‖L∞(0,T ;L6(Ω)) ≤ c and ‖ϕε‖L∞(0,T ;W 2,6(Ω)) ≤ c , (5.7)

with a constant c that has the same dependence as the constant K3 in the statement. To
prove (5.6), we first observe that the component µn of the discrete solution (ϕn, µn, wn)
is more regular than required: indeed, it is Lipschitz continuous, as follows from looking
at µ̂n in equation (4.20). Hence, we are allowed to take t = 0 in (4.16). It results that

µn(0) = Pn(−∆ϕ0 + βε(ϕn(0)) + π(ϕn(0)) + a− bw1) , (5.8)

where Pn : H → Vn is the orthogonal projection operator. Recall that µn(0) also depends
on ε, of course, despite of the used notation. It is convenient to first establish an estimate
for µn(0).

Lemma 5.1. There exist a positive constant c and a positive integer n0 such that the

inequality

‖µn(0)‖V ≤ c (5.9)

holds true for every ε ∈ (0, 1) and every n ≥ n0.
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Proof. First, we prove that
‖βε(ϕn(0))‖V ≤ c (5.10)

for every ε ∈ (0, 1), some n0 and and every n ≥ n0. By recalling (2.10) and (2.12), we
can find elements r∗ and r∗ in the interior of D(β) satisfying r∗ < 0 < r∗, r∗ < min ϕ0

and r∗ > max ϕ0. Next, since ϕ0 ∈ W , Remark 4.2 ensures that ϕn(0) converges to ϕ0

in H2(Ω) as n → ∞, thus uniformly. Therefore, there exists some n0 ∈ N such that
r∗ ≤ ϕn(0) ≤ r∗ for every n ≥ n0, so that (by (4.3))

|βε(ϕn(0))| ≤ sup
s∈[r∗,r∗]

|β(s)| in Ω, for every n ≥ n0.

In particular, the sequence {βε(ϕn(0))} is uniformly bounded in H . On the other hand,
since the restriction of β to the interior of D(β) is a C1 function by (2.25), the following
inequality holds:

|β ′
ε(r)| ≤ sup

s∈[r∗,r∗]

|β ′(s)| =: C for every r ∈ [r∗, r
∗].

For a detailed proof (with a different notation) see, e.g., [13, formula (5.2)]. Then, we
have that

‖∇βε(ϕn(0))‖ = ‖β ′
ε(ϕn(0))∇ϕn(0)‖ ≤ C ‖∇ϕ0‖ ,

so that (5.10) follows. At this point, we easily derive (5.9). By also accounting for
assumption (2.26) and Remark 4.2 once more, we have indeed

‖µn(0)‖V ≤ ‖−∆ϕ0 + βε(ϕn(0)) + π(ϕn(0)) + a− bw1‖V

≤ c
(
‖ϕ0‖H3(Ω) + ‖βε(ϕn(0))‖V + ‖ϕn(0)‖V + ‖w1‖V + 1

)
≤ c .

Let us now continue with the proof. It is understood that n ≥ n0 (given by the lemma)
from now on. In order to make the argument more transparent, it is convenient to prepare
an auxiliary estimate depending on a positive parameter M whose value will be chosen
later on.

Auxiliary estimate. We repeat part of the argument used to arrive at (4.34), but this
time we avoid time integration. We account for (4.24) in order to apply (4.22) once more.
We test (4.16) a.e. in (0, T ) by M(ϕn − ϕn). Then, we invoke the Poincaré inequality
(2.30) and the Young inequality (2.29) with δ = (8MCΩ)

−1. By also taking advantage
of (4.32), we find (a.e. in (0, T )) that

δ0M |Ω||βε(ϕn)| ≤ δ0M

∫

Ω

|βε(ϕn)| ≤M
(∫

Ω

βε(ϕn)(ϕn − ϕn) + C0|Ω|
)

≤M

∫

Ω

(µn − µn)(ϕn − ϕn)−M

∫

Ω

π(ϕn)(ϕn − ϕn)

−M

∫

Ω

(a− b∂twn)(ϕn − ϕn) + cM

≤
1

8

∫

Ω

|∇µn|
2 + cM

(
‖ϕn‖

2 + ‖∂twn‖
2 + |ϕn|

2 + 1
)

≤
1

8

∫

Ω

|∇µn|
2 + cM ,
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with the positive constant C0 arising from (4.22). Since (4.16) and the already known
estimates for ϕn and ∂twn imply that

|µn| ≤ |βε(ϕn)|+ c a.e. in (0, T ),

we deduce that

δ0M |Ω||µn(t)| ≤
1

8

∫

Ω

|∇µn(t)|
2 + cM for a.a. t ∈ (0, T ). (5.11)

Sixth uniform estimate. By virtue of the already proved regularity of µn, we can
now take ∂tµn as a test function in (4.15) and, at the same time, we can differentiate
(4.16) with respect to time and then test the resulting equality by −∂tϕn. We do this and
also test (4.17) by (b/λ)∂2twn. Then, we sum up and notice that four terms cancel each
other. Finally, we integrate with respect to time and add (5.11) to the resulting equality.
Collecting the terms, we obtain that

1

2

∫

Ω

|∇µn(t)|
2 +

∫

Qt

|∇∂tϕn|
2 +

∫

Qt

β ′
ε(ϕn)|∂tϕn|

2

+
b

λ

∫

Qt

|∂2twn|
2 +

bκ1
2λ

∫

Ω

|∇∂twn(t)|
2 + δ0M |Ω||µn(t)|

≤
1

2

∫

Ω

|∇µn(0)|
2 +

∫

Qt

(f − γϕn)∂tµn −

∫

Qt

π′(ϕn)|∂tϕn|
2

+
bκ1
2λ

∫

Ω

|∇∂twn(0)|
2 −

bκ2
λ

∫

Qt

∇wn · ∇∂
2
twn +

b

λ

∫

Qt

g ∂2twn

+
1

8

∫

Ω

|∇µn(t)|
2 + cM , (5.12)

where all of the terms on the left-hand side are nonnegative. The first term on the right-
hand side is estimated by the above lemma. The other term involving an initial value is
bounded by the V -norm of w1. As for the first volume term on the right-hand side, we
integrate by parts in time and have that

∫

Qt

(f − γϕn)∂tµn

= −

∫

Qt

(∂tf − γ∂tϕn)µn +

∫

Ω

(f − γϕn)(t)µn(t)−

∫

Ω

(f − γϕn)(0)µn(0).

The volume integral on the right is estimated by ‖∂tf − γ∂tϕn‖L2(0,T ;V ∗) ‖µn‖L2(0,T ;V ),
which is bounded on account of (2.26), (4.35) and (4.36). The last term is easily treated
once again with the help of the lemma. The remaining term is dealt with by using the
Young and Poincaré inequalities:

∫

Ω

(f − γϕn)(t)µn(t) =

∫

Ω

(f − γϕn)(t)(µn − µn)(t) +

∫

Ω

(f − γϕn)(t)µn(t)

≤
1

8

∫

Ω

|∇µn(t)|
2 + c ‖f − γϕn‖

2
L∞(0,T ;H) + C∗ |µn(t)|

≤
1

8

∫

Ω

|∇µn(t)|
2 + C∗ |µn(t)|+ c , (5.13)



26 Colli – Gilardi – Signori – Sprekels

where we have used the special symbol C∗ to mark the constant in front of |µn(t)| for
future reference. Notice that C∗ is a multiple of an upper bound for the norm of ‖f−γϕn‖
in L∞(0, T ;V ∗), which is known by (2.26) and (4.29). Next, it turns out that

−

∫

Qt

π′(ϕn)|∂tϕn|
2 ≤

1

2

∫

Qt

|∇∂tϕn|
2 + c‖∂tϕn‖

2
L2(0,T ;V ∗) ≤

1

2

∫

Qt

|∇∂tϕn|
2 + c ,

thanks to the Lipschitz continuity of π, the compactness inequality (2.32), and (4.36).

It remains to estimate the volume integrals involving wn that appear on the right-
hand side of (5.12). The last one is trivially treated via Young’s inequality. The other
can be dealt with as follows, using integration by parts, (4.32), the Young inequality, and
Remark 4.2. Indeed, we have that

−
bκ2
λ

∫

Qt

∇wn · ∇∂
2
twn

=
bκ2
λ

∫

Qt

|∇∂twn|
2 −

bκ2
λ

∫

Ω

∇wn(t) · ∇∂twn(t) +
bκ2
λ

∫

Ω

∇wn(0) · ∇∂twn(0)

≤ c ‖wn‖
2
H1(0,T ;V ) +

bκ1
4λ

∫

Ω

|∇∂twn(t)|
2 + c ‖wn‖

2
L∞(0,T ;V ) + c ‖w0‖V ‖w1‖V

≤
bκ1
4λ

∫

Ω

|∇∂twn(t)|
2 + c .

At this point, we can easily conclude. Indeed, if we choose M in order that δ0M |Ω| =
C∗ + 1, and collect (5.12) and all the above estimates, then we obtain

‖ϕn‖H1(0,T ;V ) + ‖µn‖L∞(0,T ;V ) + ‖wn‖H2(0,T ;H)∩W 1,∞(0,T ;V ) ≤ c (5.14)

with a constant c that has the same dependence on the structure and the data as required,
since even M has this property.

Conclusion of the proof. We are then left with checking (5.7). To this end, it suffices
to come back to the nonlinear elliptic problem (4.42) and the corresponding estimates
(4.43)–(4.44) and to argue as we did to prove (4.45)–(4.46), in this case avoiding time
integration.

At this point, we can easily conclude. As the discrete solution (ϕn, µn, wn) converges
as n → ∞ to the solution (ϕε, µε, wε) to the approximating problem, it is clear that the
analogue of (5.6) for (ϕε, µε, wε) holds true with the same constant, by the semicontinuity
of norms. We conclude that the convergence properties (5.2)–(5.5) can be improved on
account of the estimate just mentioned and (5.7). On the other hand, the previous proof
ensures that the limiting quadruplet (ϕ, µ, ξ, w) is a solution to problem (2.17)–(2.20), and
the estimates proved for the approximating solution are conserved in the limit. Therefore,
the proof of Theorem 2.5 is complete.
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[15] F. De Anna, C. Liu, A. Schlömerkemper, J. Sulzbach, Temperature dependent extensions of the
Cahn–Hilliard equation, preprint arXiv:2112.14665 [math.AP] (2021), pp. 1-34.

[16] E. Dolgi, What lava lamps and vinaigrette can teach us about cell biology, Nature 555 (2018),
300-302.

[17] H. Gajewski, On a nonlocal model of non-isothermal phase separation, Adv. Math. Sci. Appl. 12
(2002), 569-586.

[18] C. Gal, Global well-posedness for the non-isothermal Cahn–Hilliard equation with dynamic boundary
conditions, Adv. Differential Equations 12 (2007), 1241-1274.

[19] C. Gal, Well-posedness and long time behavior of the non-isothermal viscous Cahn–Hilliard equation
with dynamic boundary conditions, Dyn. Partial Differ. Equ. 5 (2008), 39-67.

http://arxiv.org/abs/2112.14665


28 Colli – Gilardi – Signori – Sprekels

[20] H. Garcke, K.F. Lam, E. Sitka, V. Styles, A Cahn–Hilliard–Darcy model for tumour growth with
chemotaxis and active transport, Math. Models Methods Appl. Sci. 26 (2016), 1095-1148.

[21] G. Gilardi, A. Miranville, G. Schimperna, On the Cahn–Hilliard equation with irregular potentials
and dynamic boundary conditions, Commun. Pure Appl. Anal. 8 (2009), 881-912.

[22] A. Giorgini, M. Grasselli, A. Miranville, The Cahn–Hilliard–Oono equation with singular potential.
Math. Models Methods Appl. Sci. 27 (2017), 2485-2510.

[23] A. E. Green, P. M. Naghdi, A re-examination of the basic postulates of thermomechanics, Proc.
Roy. Soc. London Ser. A 432 (1991), 171-194.

[24] A. E. Green, P. M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal Stresses 15
(1992), 253-264.

[25] A. E. Green, P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elasticity 31 (1993),
189-208.

[26] A. Marveggio, G. Schimperna, On a non-isothermal Cahn-Hilliard model based on a microforce
balance, J. Differential Equations 274 (2021), 924-970.

[27] A. Miranville, On the conserved phase-field model, J. Math. Anal. Appl. 400 (2013), 143-152.

[28] A. Miranville, “The Cahn–Hilliard equation: recent advances and applications”, Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, 2019.

[29] A. Miranville, G. Schimperna, Nonisothermal phase separation based on a microforce balance, Dis-
crete Contin. Dyn. Syst. Ser. B 5 (2005), 753-768.

[30] A. Miranville, S. Zelik, Robust exponential attractors for Cahn–Hilliard type equations with singular
potentials, Math. Methods Appl. Sci. 27 (2004), 545-582.

[31] V. Pata, M. Squassina, On the strongly damped wave equation, Comm. Math. Phys. 253 (2005),
511-533.

[32] P. Podio-Guidugli, A virtual power format for thermomechanics, Contin. Mech. Thermodyn. 20
(2009), 479-487.

[33] J. Simon, Compact sets in the space Lp(0, T ;B), Ann. Mat. Pura Appl. (4) 146 (1987), 65-96.

[34] S. Bargmann, A. Favata, P. Podio-Guidugli, A revised exposition of the Green–Naghdi theory of
heat propagation, J. Elasticity 114 (2014), 143-154.


	Introduction
	Statement of the problem and main results
	Continuous dependence
	Approximation
	Existence and regularity
	Proof of Theorem 2.2
	Proof of Theorem 2.5


