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WHY BOOTSTRAPPING FOR J-HOLOMORPHIC CURVES

FAILS IN Ck

HANSJÖRG GEIGES, MURAT SAĞLAM, AND KAI ZEHMISCH

Abstract. We present a simple example for the failure of the Calderón–
Zygmund estimate for the ∂-operator when the Sobolev (k, p)-norms are re-
placed by the Ck-norms. This example is discussed in the context of elliptic
bootstrapping, Fredholm theory, and the regularity of J-holomorphic curves.

1. Introduction

In the theory of elliptic partial differential equations, with the Laplace equation
as the prototype, it is well known (see [4, 6], for instance) that regularity results
can be established for solutions lying in Sobolev or Hölder spaces, with the help of
Calderón–Zygmund or Schauder estimates, respectively.

In symplectic topology, moduli spaces of J-holomorphic curves are described as
solution sets of a nonlinear Cauchy–Riemann equation. Since the implicit function
theorem fails in the Fréchet space of smooth maps, one needs to work with a Banach
space of maps having lower regularity. A Calderón–Zygmund estimate for the ∂-
operator then is essential for two purposes:

(i) regularity results for J-holomorphic curves, in the sense that solutions of
the nonlinear Cauchy–Riemann equation in the Sobolev spaceW 1,p actually
turn out to be of class C∞;

(ii) existence of Ck-bounds for all k that guarantee compactness of the relevant
moduli space of J-holomorphic curves.

The Calderón–Zygmund estimate allows one to bootstrap from W k,p to W k+1,p;
smoothness and Ck-bounds (for p > 2) then follow from the Sobolev embedding
theorem and the corresponding Sobolev inequality.

Roughly speaking, the estimates say that a (weak) solution u ∈ W k,p of the
inhomogeneous Laplace equation ∆u = f is two derivatives more regular than f .
The literature abounds with examples that this statement fails in the smooth theory,
that is, from ∆u, understood in the distributional sense, of class Ck one cannot, in
general, conclude that u ∈ Ck+2. This means that a Ck-analogue of these estimates
cannot be formulated in a sensible way, because ‖u‖Ck+2 may not be defined.

However, we have not seen it emphasised that even when the correct order of dif-
ferentiability is assumed a priori, the Calderón–Zygmund (or Schauder) estimates
fail when the Sobolev (or Hölder) norms are replaced by Ck-norms. We allow that
this may be fairly apparent to the more analytically inclined.
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In this expository note we adapt an example of Sikorav [9] (where the Ck-esti-
mate cannot be formulated) to define an explicit family of solutions of the inhomoge-
neous Cauchy–Riemann equation, having the correct regularity (in the Ck-theory),
but violating the Calderón–Zygmund estimate. We also place this in the context
of the Fredholm property of the Cauchy–Riemann operator, which is essential for
showing that the relevant moduli space of J-holomorphic curves is a smooth mani-
fold.

As we shall explain, in the theory of J-holomorphic curves one often deals with
these estimates in a setting where the maps are known to be smooth. As a conse-
quence, the consideration of Sobolev norms on such maps, or the introduction of
Sobolev spaces of J-holomorphic curves, may seem to lack motivation. Our example
clarifies why one has to work with Sobolev completions.

2. The Calderón–Zygmund estimate

In this section we formulate the Calderón–Zygmund estimate for the inhomo-
geneous Cauchy–Riemann equation and briefly discuss its relevance for the boot-
strapping of J-holomorphic curves.

Let BR ⊂ C be the open disc of radius R centred at 0. We write C∞
c (BR,C

n) for

the space of compactly supported smooth maps BR → Cn, and W k+1,p
0 (BR,C

n)
for its closure in the Sobolev space of k + 1 times weakly differentiable maps of
finite Sobolev (k + 1, p)-norm. The Cauchy–Riemann operator is

∂ := ∂z :=
1

2

(

∂x + i∂y
)

.

Likewise, we are going to set ∂ := 1
2
(∂x− i∂y). For a proof of the following estimate

see [5].

Proposition 1. For any k ∈ N0 and real numbers p > 1 and R > 0, there is a

positive constant c = c(k, p, R) such that

‖u‖k+1,p ≤ c‖∂u‖k,p for all u ∈ W k+1,p
0 (BR,C

n).

Without the assumption on compact support, one needs to add the term c‖u‖k,p
on the right-hand side, as can be seen by a partition of unity argument. This is
the more common formulation of the Calderón–Zygmund estimate (and sometimes
referred to as a semi-Fredholm estimate, cf. [5]).

One first has to prove the proposition for u ∈ C∞
c (BR,C

n), the stated version

then follows by writing u ∈ W k+1,p
0 (BR,C

n) as a limit of compactly supported
smooth maps.

Remark. For p = 2, the proof of Proposition 1 simplifies considerably, see [1,
Section 4.2] or [5, Section III.1.2], but for the subsequent application of the Sobolev
embedding theorem one needs p > 2.

We are going to show by an example that there is no such uniform estimate
‖u‖Ck+1 ≤ c‖∂u‖Ck .

Proposition 2. For any k ∈ N0 there is a sequence (uν) in Ck+1
c (B1/2,C) with

‖∂uν‖Ck bounded uniformly in ν, but ‖uν‖Ck+1 → ∞ as ν → ∞.

From Proposition 1, in [5] the regularity of J-holomorphic discs (with Lagrangian
boundary condition) is established by a localisation argument and the difference
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quotient technique of Abbas and Hofer [1]. That difference quotient technique
allows one to bootstrap from W k,p to W k+1,p, but not from Ck to Ck+1, so a
Calderón–Zygmund estimate in Ck would not be of help.

A different approach to the regularity of J-holomorphic curves can be found in
[8, Section B.4]. Here the nonlinear Cauchy–Riemann equation ux + J(u)uy = 0
is reformulated as an inhomogeneous linear equation, and then one directly uses
the regularity theory for the ∂-operator. This approach would stumble at the first
hurdle in the Ck-theory by Sikorav’s example.

Much of the compactness theory of J-holomorphic curves as in [5] would go
through in the smooth theory if one had a Calderón–Zygmund estimate (for smooth
maps) in the Ck-norms. Our example shows why this hope is in vain.

3. The example

3.1. Sikorav’s example. We begin with an example of a function f : B1/2 → C

that is not of class C1, even though ∂f (in the distributional sense) is of class C0.
This is a slight modification (and correction) of an example presented by Sikorav [9],
which is closely related to the standard example illustrating the corresponding
phenomenon for the Laplace operator, see [4]. Set

(1) f(z) =

{

z log log |z|−2 for z ∈ B1/2 \ {0},

0 for z = 0.

Then

∂f = −
z

z log |z|−2
for z 6= 0.

This extends continuously (with value 0) into z = 0, and this continuous extension
is the distributional derivative ∂f on B1/2 (see the discussion in Section 4).

On the other hand, we have

∂f = log log |z|−2 −
1

log |z|−2
for z 6= 0,

which does not extend continuously into z = 0.

3.2. Proof of Proposition 2. Here is the example for the failure of the Calderón–
Zygmund estimate in the Ck-theory. Choose a smooth function ψ : R

+
0 → [0, 1]

compactly supported in [0, 1/4) and with ψ ≡ 1 on [0, 1/16]. For ν ∈ N we define
fν : B1/2 → C by

fν(z) =

{

z|z|1/ν log log |z|−2 for z ∈ B1/2 \ {0},

0 for z = 0,

and we set uν(z) = ψ(|z|2) · fν(z).
Since |z|1/ν log log |z|−2 → 0 as z → 0, the function fν is complex differentiable

in z = 0 with ∂fν(0) equal to 0, and hence differentiable with ∂fν(0) likewise equal
to 0.

Writing |z|1/ν as (zz)1/2ν we see that

∂|z|1/ν =
1

2ν
|z|

1
ν −2z for z 6= 0.
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We then compute

(2) ∂fν(z) =
1

2ν
|z|

1
ν−2z2 log log |z|−2 −

z|z|1/ν

z log |z|−2
for z 6= 0,

and

∂fν(z) = |z|1/ν log log |z|−2 +
z

z
∂fν(z) for z 6= 0.

Since both ∂fν(z) and ∂fν(z) go to 0 as z → 0, we conclude that fν (and hence
uν) is of class C

1.
The second summand in ∂fν is bounded uniformly in ν on B1/2 \ {0}. Writing

|z| = rν for z 6= 0 with 0 < r < 2−1/ν < 1, we see that the first summand in ∂fν is
likewise bounded uniformly in ν, since

(3) 0 <
1

2ν
r log log r−2ν <

1

2ν
r log r−2ν = −r log r,

which extends continuously into r = 0. Clearly, these bounds also take care of the
second summand in ∂fν .

On the other hand, the first summand of ∂fν(z) evaluated at z = 2−ν yields
1
2
log log 22ν , which goes to infinity as ν → ∞. It follows that ‖∂fν‖C0 is bounded

uniformly in ν, whereas ‖fν‖C1 goes to infinity as ν → ∞.
The same is true for the compactly supported functions uν , since ‖fν‖C0 is

bounded uniformly in ν, and

∂uν(z) = ψ′(|z|2)zfν(z) + ψ(|z|2)∂fν(z),

with a similar expression for ∂uν , which means that the limiting behaviour of ∂uν
and ∂uν equals that of ∂fν and ∂fν , respectively.

In order to get examples for the higher Ck-norms, simply start from the definition
fν(z) = zk+1|z|1/ν log log |z|−2 for z ∈ B1/2 \ {0}, for any k ∈ N0.

4. The Fredholm property of ∂

The discussion so far shows that one cannot forgo Sobolev norms for bootstrap-
ping arguments, but it still seems to leave room for the possibility to stay within
the framework of Ck-maps. In the compactness theory of J-holomorphic curves
one cannot simply work in a space of Ck-maps for some fixed k, since one typically
relies on the Arzelà–Ascoli theorem and Ck+1-bounds to guarantee convergence
in Ck. However, one might want to start with J-holomorphic curves of class C1,
interpret them as maps of class W 1,p, and then use elliptic bootstrapping (with
respect to Sobolev norms) and Sobolev embedding to show that the curves are in
fact smooth.

4.1. Calderón–Zygmund estimate and Fredholm property. As we want to
explain now, it is not possible to avoid altogether the use of Sobolev spaces of maps.
Typically, for a given geometric problem in symplectic topology, one describes a
moduli space M of J-holomorphic curves in the form

M = {u ∈ B : ∂Ju = 0},

where B is a Banach space of maps u : Σ → (M,J) from a compact Riemann surface
Σ into an almost complex manifold (M,J) (with J tamed by some symplectic
form ω), subject to (e.g. Lagrangian) boundary conditions when ∂Σ 6= ∅. The
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nonlinear Cauchy–Riemann equation ∂Ju := ux + J(u)uy = 0 describes the J-
holomorphicity of the map u.

In order to establish that M is a manifold of the expected dimension, one needs
to verify that ∂J is a Fredholm operator, so that one can apply the theorem of
Sard–Smale. By a perturbation argument it may suffice to do this for the linear
Cauchy–Riemann operator ∂. This Fredholm property, as we shall see presently,
holds for Sobolev spaces, but it is violated in the Ck-realm.

Consider a bounded linear operator T : E → F between Banach spaces with
dimkerT < ∞. Let E1 be a closed complement of kerT in E. It then follows
from the open mapping theorem, applied to T |E1

: E1 → T (E), that T has a closed
image if and only if we have an estimate ‖x‖E ≤ c‖Tx‖F for all x ∈ E1. The image
T (E) being closed is a necessary condition for cokerT to be finite, i.e. the Fredholm
property of T .

Thus, whether or not ∂ has a closed image (when regarded as an operator between
certain Banach spaces of functions) is equivalent to the existence or the failure of the
Calderón–Zygmund estimate in the corresponding norms, provided ker ∂ is finite-
dimensional in the given setting.

Here is an example how to use Proposition 2 to show the failure of the Fredholm
property in the Ck-theory of J-holomorphic discs. Write D ⊂ C for the closed unit
disc, and C1

R
(D,C) for the space of C1-maps D → C with real boundary values. We

may regard C1
c (B1/2,C) as a subspace of C1

R
(D,C), and C0

c (B1/2,C) as a subspace

of C0(D,C). Notice that the ambient spaces are Banach spaces, but the subspaces
are not closed.

Corollary 3. The operator ∂ : C1
R
(D,C) → C0(D,C) is not Fredholm.

Proof. A function in ker ∂ can be extended by Schwarz reflection in the unit circle
to a bounded holomorphic function on C, which is constant by Liouville’s theorem.
This implies ker∂ = R. Moreover, by Proposition 2, the operator ∂ violates the
Calderón–Zygmund estimate. Thus, im ∂ is not closed. �

4.2. Failure of the Fredholm property in Ck. We now want to use Sikorav’s
example to demonstrate by a specific example that the image of ∂ : C1

R
(D,C) →

C0(D,C) is not closed, and thus give a more concrete proof of Corollary 3.

Proposition 4. The weak derivative ∂(ψf) ∈ C0(D,C) — with f as in (1), and ψ

the cut-off function from Section 3.2 — is in the closure of im ∂, but not itself an
element of that image.

We first present a ‘classical’ argument using mollification, and then an alternative
approach using the sequence (fν) introduced in Section 3.2.

4.3. Proof by mollification. We begin by analysing Sikorav’s example a little
more carefully.

Lemma 5. The function f defined in (1) is an element of W 1,p(B1/2,C) for any

p ∈ [1,∞), and the weak derivatives ∂f and ∂f may be assumed to coincide with

the actual derivatives on B1/2 \ {0}.

Proof. (i) First we are going to show that the weak ∂- and ∂-derivatives of f are as
claimed. We consider ∂f ; for ∂f the argument is completely analogous. For ε > 0,
let χε ∈ C∞(C) be a cut-off function with χε ≡ 0 on Bε, and χε ≡ 1 outside B2ε.
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Set fε = χεf ∈ C∞(B1/2). For any test function ϕ ∈ C∞
c (B1/2), integration by

parts gives

(4)

∫

B1/2

(∂fε)ϕ = −

∫

B1/2

fε(∂ϕ).

We may assume that

|∂χε| ≤
c

2ε
for some constant c. For |z| ≤ ε and |z| ≥ 2ε, the derivative ∂χε vanishes identically.
It follows that

|∂χε(z)| ≤
c

|z|
for z ∈ B1/2 \ {0}.

From
∂fε = χε(∂f) + (∂χε)f

we then conclude that

|∂fε(z)| ≤ |∂f(z)|+ c

∣

∣

∣

∣

f(z)

z

∣

∣

∣

∣

for z ∈ B1/2 \ {0}.

Now, ∂fε converges pointwise on B1/2 \ {0} to ∂f . Hence, provided the functions
f/z and ∂f are integrable, we can take the limit ε ց 0 in (4) and conclude with
the Lebesgue dominated convergence theorem that

∫

B1/2

(∂f)ϕ = −

∫

B1/2

f(∂ϕ),

so ∂f constitutes the weak ∂-derivative of f .
(ii) It remains to show that the functions f/z, ∂f and ∂f are in Lp(B1/2,C) for

any p ∈ [1,∞). Both ∂f and the function z 7→ 1/ log |z|−2 extend continuously to
B1/2, so we need only show that

z 7−→ log log |z|−2, z 6= 0,

is in Lp(B1/2).
For r ∈ (0, 1/2) we have

0 < log log r−2 < log r−2 = 2 log r−1,

so it suffices to show that r 7→ log r−1 is an Lp-function on the interval (0, 1/2). In
fact, this function is even Lp-integrable on (0, 1), as can be seen by the substitution
t = log r−1, t ∈ (0,∞), which yields a transformation to the Γ-function. For with
r = e−t and dr = −e−t dt we have

∫ 1

0

(

log r−1
)p

dr =

∫ ∞

0

tpe−t dt = Γ(p+ 1).

We conclude that the function z 7→ log log |z|−2 is in Lp(B1/2,C). �

For the basic theory of mollifiers we use presently in the first proof of Proposi-
tion 4, see [3, Sections C.5 and 5.3].

First proof of Proposition 4. Let ρ ∈ C∞(C) be the standard mollifier,

ρ(z) =

{

C · exp
(

1
|z|2−1

)

for |z| < 1,

0 for |z| ≥ 1,

with C ∈ R
+ chosen such that

∫

R2 ρ = 1. Set ρε(z) =
1
ε2 ρ

(

z
ε

)

.
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The function f can be defined on B0.6, so for ε < 0.1 we can define the mollifi-
cation f ε = ρε ∗ f ∈ C∞(B1/2) of f , that is,

f ε(z) :=

∫

B0.6

ρε(z − w)f(w) dλ2w =

∫

Bε

ρε(w)f(z − w) dλ2w for z ∈ B1/2,

where dλ2w denotes the 2-dimensional Lebesgue measure with respect to the vari-
able w. As ε ց 0, the function f ε converges to f in W 1,p(B1/2,C), and for p > 2

this convergence is uniform in C0(B1/2,C) by the Sobolev embedding theorem.

Since ∂f is continuous on B1/2, we have

∂f ε = ∂(ρε ∗ f) = ρε ∗ ∂f −→ ∂f

uniformly on B1/2 as εց 0.
Now let ψ be the cut-off function defined in Section 3.2, and set

uε(z) = ψ(|z|2)f ε(z).

This function is compactly supported in B1/2, and we may regard it as an element

of C1
R
(D,C). Then

∂uε(z) = ψ′(|z|2)zf ε(z) + ψ(|z|2)∂f ε(z) −→ ψ′(|z|2)zf(z) + ψ(|z|2)∂f(z)

uniformly on D, and this limit equals the weak ∂-derivative of ψf .
But ∂(ψf) — regarded as an element of C0(D,C) — does not equal ∂h for any

h ∈ C1
R
(D,C), for otherwise we would have ∂(ψf − h) = 0 (in the distributional

sense), which by the regularity of the ∂-operator would entail that ψf−h is of class
C∞, contradicting the fact that ψf is not of class C1. Indeed, any weak solution
u ∈ L1

loc of the equation ∂u = 0 is also a weak solution of the Laplace equation
∆u = 0, and hence harmonic (and, in particular, smooth) by Weyl’s lemma. �

4.4. Proof using the sequence (fν). We now give a more explicit construction
of a sequence in im ∂ ⊂ C0(D,C) with limit not contained in that image, based
directly on the sequence (fν) presented in Section 3.2.

The idea is to interpolate between fν (or rather 4fν) near z = 0 and f outside
a neighbourhood of z = 0 that is shrinking as ν → ∞. To do so, consider the
continuous function

(5) t 7−→

{

4t
1
2ν for 0 ≤ t ≤ 16−ν,

1 for 16−ν ≤ t < 1/2,

which is smooth away from t = 0 and t = 16−ν. Let φν : [0, 1/2) → [0, 1] be
a smoothening of this function at t = 16−ν. Specifically, φν is a function that
coincides with (5) outside the interval

[

1
16ν+1

, 1
16ν

]

, and such that φ′ν is pointwise

at most double the slope of (5), that is,

(6) 0 ≤ φ′ν <
4

ν
t

1
2ν −1 for t ∈ (0, 16−ν),

and φ′ν(t) = 0 for t ≥ 16−ν.
Now set gν(z) = φν(|z|2)f(z). This function coincides with f for |z| ≥ 4−ν , and

with 4fν near z = 0. In particular, it is of class C1. We have

∂gν(z) = φ′ν(|z|
2)zf(z) + φν(|z|

2)∂f(z) for z ∈ B1/2 \ {0},

and ∂gν(0) = 4∂fν(0) = 0 = ∂f(0).
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We claim that ∂gν → ∂f uniformly on B1/2. To this end we estimate

(7) |∂gν(z)− ∂f(z)| ≤ |φ′ν(|z|
2)zf(z)|+ |(φν(|z|

2)− 1)∂f(z)|.

Thanks to (6), the first summand is at most equal to 8 times the norm of the first
summand in (2). With (3) and the observation that the function r 7→ −r log r is
monotone increasing on the interval (0, e−1), we see that the first summand on the
right-hand side of (7) is bounded uniformly by −8 · 16−ν log 16−ν , which goes to 0
as ν → ∞.

Regarding the second summand in (7), notice that |φν(|z|2)−1| is bounded by 1,
and it is identically equal to 0 for z ≥ 16−ν. It follows that

|(φν (|z|
2)− 1)∂f(z)| ≤ max

|ζ|≤16−ν
|∂f(ζ)| for z ∈ B1/2.

Since ∂f is continuous with ∂f(0) = 0, this bound on the right-hand side goes to 0
as ν → ∞. This proves the claim.

Similarly, ∂(ψgν) → ∂(ψf) uniformly in C0(D,C). This second proof of Propo-
sition 4 now concludes just like the first one.
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