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Abstract

We show the continuous dependence of solutions of linear nonau-
tonomous second order parabolic partial differential equations (PDEs)
with bounded delay on coefficients and delay. The assumptions are very
weak: only convergence in the weak-* topology of delay coefficients is
required. The results are important in the applications of the theory of
Lyapunov exponents to the investigation of PDEs with delay.

0 Introduction

The purpose of the present paper is to formulate and prove results on existence
and continuous dependence on parameters of solutions of linear second order
partial differential equations (PDEs) of parabolic type with bounded time delay.
To be more specific, consider a rather simplified example, that is, an equation
of the form





∂u

∂t
(t, x) = ∆u(t, x) + c1(t, x)u(t−R(t), x), t ∈ [0, T ], x ∈ D

u(t, x) = 0 t ∈ [0, T ], x ∈ ∂D,

(0.1)

where D ⊂ RN is a bounded domain with boundary ∂D, ∆ is the Laplace
operator in x, T > 0, c1 : (0, T ) × D → R belongs to L∞((0, T ) × D), and
R : [0, T ] → [0, 1] is a function in L∞((0, T )).

The theory of Lyapunov exponents (or rather, more generally, the the-
ory of skew-product dynamical systems) is a powerful tool in the applications
of the theory of dynamical systems to the investigation of evolution equa-
tions (in a broad sense, containing but not excluded to, ordinary differential
equations, parabolic partial differential equations, hyperbolic partial differential
equations). That theory requires the (linear) equation to generate a skew-prod-
uct dynamical system on some bundle whose base is the closure of the set of
coefficients of the original equation.
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Let us consider two cases. We will remain in the simplified framework
of (0.1).

• The nonautonomous case,





∂u

∂t
(t, x) = ∆u(t, x) + c1(t, x)u(t− R(t), x), t > 0, x ∈ D

u(t, x) = 0 t > 0, x ∈ ∂D,

(0.2)

where c1 is defined on (−∞,∞)×D and R is defined on (−∞,∞). We take
the closure, in an appropriate topology, of the set of all time-translates of
c1 (the so-called hull). The topology must be, on the one hand, coarse
enough for the hull to be a compact (metrizable) space, and, on the other
hand, fine enough for, first, the time translation operator on the hull to
be continuous, and, second, the solution operator to depend continuously
on parameters, that is, members of the hull. The paper [39] gives a survey
of subsets of function spaces that can serve as hulls.

For the theory of linear skew-product (semi)flows on bundles whose fibers
are Banach spaces and some of its applications, see, e.g., [40], [11], [12],
[41], [10], [35], [36], [4] for a very incomplete list arranged in chronological
order.

• The random case,





∂u

∂t
(t, x) = ∆u(t, x) + c1(θtω, x)u(t−R(θtω), x), t > 0, x ∈ D

u(t, x) = 0 t > 0, x ∈ ∂D,

(0.3)
where c1 is now defined on Ω × D and R is defined on Ω, with (Ω,F,P)
a probability space on which an ergodic measurable flow θ = (θt)t∈R acts.
Here the role of hull is played by Ω, and the measurability of the flow
θ is one of the assumptions. In order to apply the theory of Lyapunov
exponents in the measurable setting, as presented in, e.g., [30], [25], [26],
[27], [9], one needs to show the measurable dependence of the solution
operators on ω ∈ Ω

In the present paper we address the problem of continuous dependence on mem-
bers of the hull. As the space of coefficients we take a closed and bounded subset
of the Banach space of essentially bounded (Lebesgue-)measurable functions on
(0, T )×D, where T > 0, with the weak-* topology induced by the duality pair-
ing between L1 and L∞. Regarding the zero order coefficients and delay terms,
no additional assumption is made. In particular, the dependence on t can be
quite weak.

Although there have been a lot of papers dealing with the issues of the
existence of solutions of delay PDEs (many of them nonlinear, and admitting
more general delay terms, employing various definitions of solutions, see, e.g.,
[42], [43], [44], [20], [21], [31], [32], [46], [23], [24], [6], [7], [8]), the only papers
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we are aware of dealing explicitly with continuous dependence of solutions of
delay PDEs on parameters are [37] and [38].

To give a flavor of our results, we formulate now some specializations of our
main results to the case of (0.1). We assume 1 < p <∞.

The first, a specialization of Theorem 3.1, establishes the existence and
uniqueness of mild solutions.

Theorem. Let c1 ∈ L∞((0, T )×D), u0 ∈ C([−1, 0], Lp(D)) and R ∈ L∞((0, T ))
be such that R(t) ∈ [0, 1] for Lebesgue-a.e. t ∈ (0, T ). Then there exists a

unique solution u(·; c1, u0, R) ∈ C([−1, T ]) of Eq. (0.1) with initial condition

u(t; c1, u0, R) = u0, t ∈ [−1, 0]. The solution is understood in a suitable integral

sense (a mild solution).

The second, a specialization of Theorem 5.1(ii), establishes the continuity, in
a suitable sense, of a solution with respect to initial conditions and parameters.

Theorem. Assume that (c1,m)∞m=1, (u0,m)∞m=1 and (Rm)∞m=1 are sequences sat-

isfying the following:

• c1,m have their L∞((0, T ) × D)-norms uniformly bounded, and converge

in the weak-* topology to c1 ∈ L∞((0, T )×D);

• u0,m converge in the norm topology of C([−1, 0], Lp(D) to u0;

• Rm converge for Lebesgue-a.e. t ∈ (0, T ) to R.

Then

u(·; c1,m, u0,m, Rm) → u(·; c1, u0, R)

in the C([−1, 0], Lp(D))-norm.

The paper is organized as follows.
Section 1 presents the assumptions used throughout.
In Section 2 results concerning the existence and basic properties of (weak)

solutions to linear parabolic PDEs without delay terms are gathered. They are
for the most part taken from [35] and based on [13], though some of them (Propo-
sition 2.18, for example), perhaps belonging to the folk lore, appear in print for
the first time.

Section 3 is devoted to defining and proving the existence and uniqueness
of (mild) solutions of PDEs with delay terms. Section 4 provides estimates of
the solutions which are then used to prove the continuous dependence on initial
conditions.

Section 5 can be considered the main part of the paper. Here the continuous
dependence of solutions on coefficients and delay terms is proved under very
weak assumptions: coefficients are required to converge in the weak-* topology
only.

It should be mentioned that a similar approach has been successfully applied
in the case of ordinary differential equations with delay in [36], [33], [34], see
also [17, Chpt. 5], [18], [5].
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0.1 General Notations

We write R+ for [0,∞), and Q for the set of all rationals.
If B ⊂ A, we write 1B for the indicator of B: 1B(a) = 1 if a ∈ B and

1B(a) = 0 if a ∈ A \B.
For a metric space (Y, d), B(Y ) denotes the σ-algebra of all Borel subsets of

Y .
For Banach spaces X1, X2 with norms ‖·‖X1

, ‖·‖X2
, we let L(X1, X2) stand

for the Banach space of bounded linear mappings from X1 into X2, endowed
with the standard norm ‖·‖X1,X2

. Instead of L(X,X) we write L(X), and
instead of ‖·‖X,X we write ‖·‖X . Ls(X1, X2) denotes the space of bounded
linear mappings from X1 into X2 equipped with the strong operator topology.
Instead of Ls(X,X) we write Ls(X).

Throughout the paper, T > 0 will be fixed.
We set

∆ := { (s, t) ∈ R2 : 0 ≤ s ≤ t ≤ T }, ∆̇ := { (s, t) ∈ R2 : 0 ≤ s < t ≤ T }.

Throughout the paper, D ⊂ RN stands for a bounded domain, with bound-
ary ∂D.

By L((0, T )) we understand the σ-algebra of all Lebesgue-measurable subsets
of (0, T ). The notations L(D) and L((0, T )×D) are defined in a similar way.

For u belonging to a Banach space of (equivalence classes of) functions de-
fined on D we will denote by u[x] the value of u at x ∈ D.

Lp(D) = Lp(D,R) has the standard meaning, with the norm, for 1 ≤ p <∞,
given by

‖u‖Lp(D) :=

(∫

D

|u[x]|p dx

)1

p

,

and for p = ∞ given by
‖u‖L∞(D) := ess sup

D
u.

For 1 ≤ p ≤ ∞ let p′ stand for the Hölder conjugate of p. The duality
pairing between Lp(D) and Lp′(D) is given, for 1 < p < ∞, or for p = 1 and
p′ = ∞, by

〈u, v〉Lp(D),Lp′(D) =

∫

D

u[x] v[x] dx, u ∈ Lp(D), v ∈ Lp′(D).

Let u be an equivalence class of functions defined for Lebesgue-a.e. t ∈ (0, T )
and taking values in Lp(D), 1 ≤ p < ∞ (in the sequel we will refer to such u
simply as a function).

• u is said to be measurable if it is (L((0, T )),B(Lp(D)))-measurable, mean-
ing that the preimage under u of any open subset of Lp(D) belongs to
L((0, T )).
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• u is strongly measurable (sometimes called Bochner measurable) if there
exists a sequence (um)∞m=1 of simple functions such that lim

m→∞
‖um(t) −

u(t)‖Lp(D) = 0 for Lebesgue-a.e. t ∈ (0, T ).

• u is weakly measurable if for any v ∈ Lp′(D) the function

[ t 7→ 〈u(t), v〉Lp(D),Lp′(D) ]

is (L((0, T )),B(R))-measurable.

Theorem 0.1. For u : (0, T ) → Lp(D) measurability, strong measurability and

weak measurability are equivalent.

The equivalence of strong and weak measurability is a consequence of Pettis’s
Measurability Theorem (see, e.g., [16, Thm. 2.1.2]). For the fact that measura-
bility implies strong measurability see, e.g., [45, Thm. 1], whereas the proof of
the reverse implication is a simple exercise.

For our purposes we will use the following definitions (see, e.g. [2, Sect. X.4]).
A measurable u : (0, T ) → Lp(D) belongs to Lr((0, T ), Lp(D)), 1 ≤ r < ∞, if
‖u(·)‖Lp(D) belongs to Lr((0, T )), with

‖u‖Lr((0,T ),Lp(D)) =

( T∫

0

‖u(t)‖rLp(D) dt

)1/r
.

Similarly, a measurable u : (0, T ) → Lp(D) belongs to L∞((0, T ), Lp(D)), if
‖u(·)‖Lp(D) belongs to L∞((0, T )), with

‖u‖L∞((0,T ),Lp(D)) = ess sup
t∈(0,T )

‖u(t)‖Lp(D) .

The following result, a part of [19, Lemma III.11.16], will be used several
times.

Lemma 0.1.

(a) If u ∈ L1((0, T ), L1(D)) then the function
[
(0, T )×D ∋ (t, x) 7→ u(t)[x] ∈ R

]

belongs to L1((0, T )×D,R).

(b) If w is (L((0, T )×D),B(R))-measurable, and for Lebesgue-a.e. t ∈ (0, T )
the t-section w(t, ·) belongs to Lp(D), where 1 ≤ p <∞, then the function

[
(0, T ) ∋ t 7→

[
D ∋ x 7→ w(t, x) ∈ R

] ]

is (L(0, T ),B(Lp(D)))-measurable.

Remark 0.1. Regarding Lemma 0.1(b), we remark that in [19] the analog of w
is assumed to be (L((0, T )) ⊗ L(D),B(R))-measurable (no completion) rather
than (L((0, T )×D),B(R))-measurable. As an (L((0, T )×D),B(R))-measurable
function can be made into an (L((0, T ))⊗L(D),B(R))-measurable function by
changing its values on a set of (N +1)-dimensional Lebesgue measure zero (see,
e.g., [22, Prop. 2.12]), our formulation follows.
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1 Assumptions and Definitions

1.1 Main Equation

Consider a linear second order partial differential equation with bounded delay

∂u

∂t
=

N∑

i=1

∂

∂xi

( N∑

j=1

aij(t, x)
∂u

∂xj
+ ai(t, x)u

)

+

N∑

i=1

bi(t, x)
∂u

∂xi
+ c0(t, x)u

+ c1(t, x)u(t−R(t)); 0 ≤ t ≤ T, x ∈ D.

(ME)

The delay map R : [0, T ] → R is bounded from below by 0 and from above by
1, i.e.

0 ≤ R(t) ≤ 1, ∀ t ∈ [0, T ].

Sometimes the function ξ 7→ ξ − R(ξ) will be denoted by Φ. The function
Φ will be called relative time delay. Further, D ⊂ RN is a bounded domain
with boundary ∂D. The equation (ME) will be complemented with boundary
conditions

Bu = 0, 0 ≤ t ≤ T, x ∈ ∂D. (BC)

Later on, we will use the notation Ba in other to exhibit dependence of the
operator B on a. The boundary conditions operator (BC) will be one of this
form

Bu =





u (Dirichlet)

N∑

i=1

( N∑

j=1

aij(t, x)
∂u(t)

∂xj
+ ai(t, x)u

)
νi (Neumann)

N∑

i=1

( N∑

j=1

aij(t, x)
∂u(t)

∂xj
+ ai(t, x)u

)
νi + d0(t, x)u (Robin).

The vector ν = (ν1, . . . , νN ) denotes the unit normal on the boundary ∂D
pointing out of D, interpreted in a certain weak sense (in the regular sense if
∂D is sufficiently smooth [35]).

The initial condition is considered in the following way: for u0 ∈ C([−1, 0],
Lp(D)), where 1 ≤ p ≤ ∞, find a solution of (ME)+(BC) satisfying

u(t) = u0(t) for t ∈ [−1, 0]. (IC)

By (ME)+(BC) we understand equation (ME) equipped with boundary condi-
tion (BC). Later on, we will also use (ME)a + (BC)a notation to indicate that
parameters of (ME) + (BC) are fixed to be a.

Note that, without any additional assumptions on the delay map R, the
initial data cannot be taken from Lp(D)⊕Lr((−1, 0), Lp(D)), as in [33] or [34].
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The reason for this is that the delay map R can be constructed in such way
that t 7→ t− R(t) would be a constant function. In such a situation the initial
value problem (ME) + (BC) would be not meaningful. Under some additional
assumptions the situation can change, for example a constant delay map allows
us to introduce generalized initial data in Lp(D)⊕Lr((−1, 0), Lp(D)). However,
in this paper we will not focus on that.

In order to clearly define the problem (ME)a + (BC)a, it is also necessary
to set the delay map R. However, the assumptions on R will be given later.
Moreover, we suppress the notation of R from (ME)a + (BC)a. We will present
the solutions of (ME)a + (BC)a in the form of u(·; a, u0, R) and often suppress
the notation of a, u0 or R if it does not lead to confusion.

1.2 Main Assumptions

We introduce some assumptions on the domain D ⊂ RN and the coefficients of
the problem (ME)+(BC).

(DA1) (Boundary regularity) For Dirichlet boundary conditions, D is a bounded

domain. For Neumann or Robin boundary conditions, D is a bounded

domain with Lipschitz boundary.

In all expressions of the type “a.e.” we consider 1-dimensional Lebesgue mea-
sure on (0, T ), N -dimensional Lebesgue measure on D and (N − 1)-dimensional
Hausdorff measure on ∂D. The latter is, by (DA1), equal to surface measure
on ∂D.

The notation L∞(∂D) [resp. L∞((0, T )× ∂D)] corresponds to surface mea-
sure on ∂D [resp. to the product of 1-dimensional Lebesgue measure on (0, T )
and surface measure on ∂D].

(DA2) (Boundedness) The functions

⋄ aij : (0, T )×D → R (i, j = 1, . . . , N),

⋄ ai : (0, T )×D → R (i = 1, . . . , N),

⋄ bi : (0, T )×D → R (i = 1, . . . , N),

⋄ c0 : (0, T )×D → R ,

⋄ c1 : (0, T )×D → R

belong to L∞((0, T )×D). When the Robin boundary condition holds the

function d0 : (0, T )× ∂D → R belongs to L∞((0, T )× ∂D).

It is worth noticing at this point that uniform L∞(D)-boundedness of aij(t, ·),
ai(t, ·), bi(t, ·), c0(t, ·), c1(t, ·) and uniform L∞(∂D)-boundedness of d0(t, ·) for
a.e. t ∈ (0, T ) follow from the assumption (DA2) and Fubini’s theorem.

Definition 1.1 (Y coefficients space). Let Y be a subset of the Banach space

L∞((0, T ) × D,RN2+2N+2) ⊕ L∞((0, T ) × ∂D,R) satisfying the following as-

sumptions
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(Y1) Y is norm-bounded and, moreover, it is closed (hence compact, via the

Banach–Alaoglu theorem) in the weak-* topology,

(Y2) the function d0 ≥ 0 if the Robin boundary condition holds. The function

d0 is interpreted as the zero function in the Dirichlet or Neumann cases.

Elements of Y will be denoted by

a :=
(
(aij)

N
i,j=1, (ai)

N
i=1, (bi)

N
i=1, c0, c1, d0

)
∈ Y.

The weak-* topology of the space Y is understood in the standard sense,
namely, as the weak-* topology induced via the isomorphism

L∞((0, T )×D,RN2+2N+2)⊕ L∞((0, T )× ∂D,R)

∼=
(
L1((0, T ))×D,RN2+2N+2)⊕ L1((0, T )× ∂D,R)

)∗
.

Definition 1.2 (Flattening Y to Y0). The mapping defined on Y by

(
(aij)

N
i,j=1, (ai)

N
i=1, (bi)

N
i=1, c0, c1, d0

)
˜:=

(
(aij)

N
i,j=1, (ai)

N
i=1, (bi)

N
i=1, c0, 0, d0

)

will be called the flattening of a ∈ Y .

The above mapping is obviously continuous. As a consequence, the image
Y0 of Y under that mapping shares properties analogous to (Y1) and (Y2).

(DA3) (Ellipticity) There exists a constant α0 > 0 such that for any a0 ∈ Y0 the

inequality
N∑

i,j=1

aij(t, x)ξiξj ≥ α0

N∑

i=1

ξ2i ,

holds for a.e. (t, x) ∈ (0, T )×D and all ξ ∈ RN , and the functions aij(·, ·)
are symmetric in the indices, i.e. aij(·, ·) ≡ aji(·, ·) for all i, j = 1, . . . , N .

(DA4) (Sequential compactness of Y0 with respect to convergence a.e.)

Any sequence (a0,m)∞m=1 of elements of Y0, where

a0,m :=
(
(aij,m)Ni,j=1, (ai,m)Ni=1, (bi,m)Ni=1, c0,m, 0, d0,m

)
,

convergent as m → ∞ in the weak-* topology to a0 ∈ Y0 has the property

that

• the sequence
(
(aij,m)Ni,j=1, (ai,m)Ni=1, (bi,m)Ni=1

)
converges to

(
(aij)

N
i,j=1,

(ai)
N
i=1, (bi)

N
i=1

)
pointwise a.e. on (0, T )×D,

• the sequence d0,m converges to d0 pointwise a.e. on (0, T )× ∂D.

Occasionally we will use the following.

(DA5) Y0 is a singleton.
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For the purposes of studying continuous dependence on parameters and delay
we introduce now the delay class and the relative delay class equipped with
suitable topologies.

Definition 1.3. The delay class is defined as follows

R :=
{
R ∈ L∞((0, T )) : R(t) ∈ [0, 1] for a.e. t ∈ (0, T )

}
.

The delay class is equipped with the weak-* topology.

At some moments we also use the following notation R̃ := {[ t 7→ t−R(t) ] : R ∈
R} especially in more abstract lemmas when general properties of the mapping
t 7→ t−R(t) are important.

Remark 1.1. The delay class R is a norm-bounded, convex and weak-* closed

subset of L∞((0, T )), hence, by the Banach–Alaoglu theorem, it is compact in

the weak-* topology.

The following assumption is a property of a subset R0 ⊂ R.

(DA6) If R ∈ R0 is a weak-* limit of (Rm)∞m=1 ⊂ R0 then (Rm)∞m=1 converge

pointwise a.e. on (0, T ) to R.

Remark 1.2. Note that the assumption (DA6) is naturally satisfied when R0

is compact in R with respect to the norm topology. This fact follows from an

observation that any Hausdorff topology weaker than the norm topology (such
as the weak-* topology) is equal to the norm topology on a compact subset.

Remark 1.3. Note that the weak-* topology on Y is metrizable, see [35, (1.3.1)].
Similarly, the weak-* topology on R is metrizable, see [14, Thm. 3.6.17 and Cor.
3.6.18].

2 Weak Solutions

In the present section we assume (DA1), (DA2) and that the flattening Y0 of
Y as in Definition 1.1 satisfies (DA3). Occasionally we will assume (DA4).

We start with a PDE parameterized by a0 ∈ Y0

∂u

∂t
=

N∑

i=1

∂

∂xi

( N∑

j=1

aij(t, x)
∂u

∂xj
+ ai(t, x)u

)

+

N∑

i=1

bi(t, x)
∂u

∂xi
+ c0(t, x)u; 0 ≤ s ≤ t ≤ T, x ∈ D.

(M̂E)

Equation (M̂E) is complemented with boundary conditions

Bu = 0, 0 ≤ s ≤ t ≤ T, x ∈ ∂D, (B̂C)

9



where B is either the Dirichlet or the Neumann or else the Robin boundary
operator.

We are looking for solutions of the problem (M̂E)a0
+ (B̂C)a0

for initial
condition u0 ∈ L2(D). To define a solution we introduce the space H as follows.
Let

V :=

{
H1

0 (D) for Dirichlet boundary condition

H1(D) for Neumann or Robin boundary condition

and
H = H(s, T ;V ) := { v ∈ L2((s, T ), V ) : v̇ ∈ L2((s, T ), V

∗) }

equipped with the norm

‖v‖H :=
( T∫

s

‖v(ζ)‖2V dζ +

T∫

s

‖v̇(ζ)‖2V ∗ dζ
) 1

2

,

where v̇ := dv/dt is the time derivative in the sense of distributions taking
values in V ∗ (see [15, Chpt. XVIII] for definitions).

For a0 ∈ Y0 define a bilinear form

Ba0
[t;u, v] :=

∫

D

( N∑

i,j=1

aij(t, x)
∂u

∂xi

∂v

∂xj
+

N∑

i=1

ai(t, x)u
∂v

∂xi

−

N∑

i=1

bi(t, x)
∂u

∂xi
v − c0(t, x)uv

)
dx

in the Dirichlet or Neumann case, and

Ba0
[t;u, v] :=

∫

D

( N∑

i,j=1

aij(t, x)
∂u

∂xi

∂v

∂xj
+

N∑

i=1

ai(t, x)u
∂v

∂xi

−

N∑

i=1

bi(t, x)
∂u

∂xi
v − c0(t, x)uv

)
dx+

∫

∂D

d0(t, x)uv dH

in the Robin case, where HN−1 stands for the (N − 1)-dimensional Hausdorff
measure.

Definition 2.1 (Local Weak Solution). For a0 ∈ Y0, 0 ≤ s ≤ t ≤ T and

u0 ∈ L2(D) a function u ∈ L2([s, t], V ) such that u̇ ∈ L2([s, t], V
∗) is a weak

solution of (M̂E)a0
+ (B̂C)a0

on [s, t] with initial condition u(s) = u0 if

−

t∫

s

(u(ζ), v)L2(D) ψ̇(ζ) dζ +

t∫

s

Ba0
[ζ;u(ζ), v]ψ(ζ) dζ = (u0, v)L2(D) ψ(s)

10



for any v ∈ V and any ψ ∈ D([s, t),R) where set D([s, t),R) is the space of all

smooth real functions having compact support in [s, t) and (·, ·)L2(D) denotes the

standard inner product in L2(D).

Definition 2.2 (Global Weak Solution). When t = T in definition 2.1 then a

weak solution will be called a global weak solution.

Proposition 2.1 (Existence of global weak solution). For any initial condition

u0 ∈ L2(D) there exists a unique global weak solution of (M̂E)+(B̂C).

Proof. See [13, Thm. 2.4] for a proof and [35, Prop. 2.1.5] for a unified theory
of weak solutions.

For a0 ∈ Y0 and 0 ≤ s < T we write the unique global weak solution of
(M̂E)a0

+ (B̂C)a0
with initial condition u(s) = u0 as Ua0

(t, s)u0 := u(t).
Below we present a couple of results from [35, Ch. 2].

Proposition 2.2. The mappings

Ua0
(t, s)u0 = u(t; a0, u0), 0 ≤ s ≤ t ≤ T, a0 ∈ Y0, u0 ∈ L2(D)

have the following properties.

Ua0
(s, s) = IdL2(D), a0 ∈ Y0, s ∈ [0, T ], (2.1)

Ua0
(t2, t1) ◦ Ua0

(t1, s) = Ua0
(t2, s), a0 ∈ Y0, 0 ≤ s ≤ t1 ≤ t2 ≤ T. (2.2)

Proof. See [35, Props. 2.1.5 through 2.1.8].

Proposition 2.3.

(i) Let 1 ≤ p < ∞ and 0 ≤ s < T . For any a0 ∈ Y0 there exists Ua0,p(t) ∈
L(Lp(D)) such that

Ua0,p(t, s)u0 = Ua0
(t, s)u0, u0 ∈ L2(D) ∩ Lp(D).

(ii) Let 1 < p <∞ and a0 ∈ Y0. Then the mapping

[
[s, T ] ∋ t 7→ Ua0,p(t, s) ∈ Ls(Lp(D))

]

is continuous.

Proof. See [13, Cor. 7.2] for part (i) and [13, Thm. 5.1] for part (ii).

For p = 1 we have an analog of Proposition 2.3(ii).

Proposition 2.4. Let 1 ≤ p <∞, 0 ≤ s < T and a0 ∈ Y0. Then the mapping

[
(s, T ] ∋ t 7→ Ua0

(t, s) ∈ Ls(Lp(D))
]

is continuous.
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Proof. See [35, Prop. 2.2.6].

For 0 ≤ s < T we write Ua0,p(s, s) = IdLp(D) even if p = 1,∞.

Proposition 2.5. For any a0 ∈ Y0, 0 ≤ s ≤ t1 ≤ t2 ≤ T and any 1 ≤ p ≤ ∞

Ua0,p(t2, t1) ◦ Ua0,p(t1, s) = Ua0,p(t2, s) (2.3)

Proof. See [35, Prop. 2.1.7] for the proof of p = 2 case. For p 6= 2 it suffices
to use the fact that Ua0

(t, s) ∈ L(L2(D)) and the continuity of the mappings
[u 7→ Ua0,p(t2, t1)◦Ua0,p(t1, s)u] and [u 7→ Ua0,p(t2, s)u], which is guaranteed by
Proposition 2.3.

Proposition 2.6. For any a0 ∈ Y0 and any 0 ≤ s ≤ t1 ≤ t2 ≤ T the operator

Ua0
(t2, t1) has an a.e. nonnegative kernel.

Proof. See [3, Thm. 1.3] for the existence of a kernel, for nonnegativity see [13,
Cor. 8.2].

Proposition 2.7.

(i) For any a0 ∈ Y0, any (s, t) ∈ ∆̇ and any 1 ≤ p ≤ q ≤ ∞ there holds

Ua0
(t, 0) ∈ L(Lp(D), Lq(D)).

(ii) There are constants M ≥ 1 and γ ∈ R such that

‖Ua0
(t, s)‖L(Lp(D),Lq(D)) ≤M(t− s)−

N
2 (

1

p
− 1

q )eγ(t−s) (2.4)

for 1 ≤ p ≤ q ≤ ∞, a0 ∈ Y0 and (s, t) ∈ ∆̇.

Proof. See [13, Sect. 5 and Cor. 7.2].

In particular, setting p = q we have

‖Ua0
(t, s)‖L(Lp(D)) ≤Meγ(t−s). (2.5)

In the sequel we will frequently assume that γ ≥ 0 in Proposition 2.7 and its
derivates.

Proposition 2.8. Let 1 ≤ p ≤ ∞ and 0 ≤ s < T . Then for any T1 ∈ (s, T ]
there exists α ∈ (0, 1) such that for any a0 ∈ Y0, any u0 ∈ Lp(D), and any com-

pact subset D0 ⊂ D the function
[
[T1, T ]×D0 ∋ (t, x) 7→ (Ua0

(t)u0)[x]
]
belongs

to Cα/2,α([T1, T ] × D0). Moreover, for fixed T1, and D0, the C
α/2,α([T1, T ] ×

D0)-norm of the above restriction is bounded above by a constant depending on

‖u0‖Lp(D) only.

Proof. It follows from Proposition 2.7 and from [29, Chpt. III, Thm. 10.1].
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Proposition 2.9. For any (s, T1) ∈ ∆̇, 1 ≤ p < ∞ and a bounded E ⊂ Lp(D)
the set { [

[T1, T ] ∋ t 7→ Ua0
(t, s)u0 ∈ Lp(D)

]
: a0 ∈ Y0, u0 ∈ E

}

is precompact in C([T1, T ], Lp(D)).

Proof. Fix (s, T1) ∈ ∆̇, 1 ≤ p <∞ and a bounded E ⊂ Lp(D). Let (a0,m)∞m=1 ⊂
Y0 and (u0,m)∞m=1 ⊂ E. Put, for m = 1, 2, . . . ,

um(t) := Ua0,m
(t)u0,m, t ∈ [T1, T ].

It follows from Proposition 2.8 via the Ascoli–Arzelà theorem by diagonal pro-
cess that, after possibly taking a subsequence, (um)∞m=1 converges as m → ∞
to some function ũ defined on [T1, T ] and taking values in the set of continuous
real functions on D in such a way that for any compact D0 ⊂ D the functions
[ t 7→ um(t)↾D0

] converge to [ t 7→ ũ(t)↾D0
] in C([T1, T ], C(D0)).

We claim that um converge to ũ in the C([T1, T ], Lp(D))-norm. By Proposi-
tion 2.7, there isM > 0 such that ‖um(t)‖L∞(D) ≤M and ‖ũ(t)‖L∞(D) ≤M for
all m = 1, 2, . . . and all t ∈ [T1, T ]. For ǫ > 0 take a compact D0 ⊂ D such that
λ(D \D0) < (ǫ/(4M))p, where λ denotes the N -dimensional Lebesgue measure.
We have

‖(um(t)− ũ(t))1D\D0
‖Lp(D) ≤

ǫ

2

for all m = 1, 2, . . . and all t ∈ [T1, T ]. Further, since [ t 7→ um(t)↾D0
] converge

to [ t 7→ ũ(t)↾D0
] in the C([T1, T ], C(D0))-norm, there is m0 such that

‖(um − ũ)1D0
‖C([T1,T ],Lp(D)) ≤

ǫ

2

for all m ≥ m0 (here 1D0
stands for the function constantly equal to 1D0

).
Consequently,

‖um − ũ‖C([T1,T ],Lp(D)) ≤ ǫ

for all m ≥ m0.

Corollary 2.1. Let 1 ≤ p <∞, 0 ≤ s < T , a0 ∈ Y0. Then the mapping

[ (s, T ]× Lp(D) ∋ (t, u0) 7→ Ua0
(t, s)u0 ∈ Lp(D) ]

is continuous.

Proof. Let (um)∞m=1 converge in Lp(D) to u0 and let (tm)∞m=1 converge to
t > s. Take ǫ > 0. It follows from Proposition 2.4 that there is m1 such that
‖Ua0

(tm, s)u0−Ua0
(t, s)u0‖Lp(D) < ǫ/2 form ≥ m1, and it follows from Proposi-

tion 2.7(ii) that there is m2 such that ‖Ua0
(tm, s)um−Ua0

(tm, s)u0‖Lp(D) < ǫ/2
for m ≥ m2. Consequently,

‖Ua0
(tm, s)um − Ua0

(t, s)u0‖Lp(D)

≤ ‖Ua0
(tm, s)um − Ua0

(tm, s)u0‖Lp(D)

+ ‖Ua0
(tm, s)u0 − Ua0

(t, s)u0‖Lp(D) < ǫ

for m ≥ max{m1,m2}.
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2.1 The Adjoint Operator

For a fixed 0 < s ≤ T together with (M̂E)a0
+ (B̂C)a0

we consider the adjoint
equations, that is the backward parabolic equations

−
∂u

∂t
=

N∑

i=1

∂

∂xi

( N∑

j=1

aji(t, x)
∂u

∂xj
− bi(t, x)u

)

−

N∑

i=1

ai(t, x)
∂u

∂xi
+ c0(t, x)u, 0 ≤ t < s, x ∈ D, (2.6)

complemented with the boundary conditions:

B∗
a0
u = 0, 0 ≤ t < s, x ∈ ∂D, (2.7)

where B∗
a0
u = Ba∗

0
u with a∗0 := ((aji)

N
i,j=1,−(bi)

N
i=1,−(ai)

N
i=1, c0, d0) and Ba∗

0
is

as in (B̂C)a0
with a0 replaced by a∗0.

Since all analogs of the assumptions (DA1) and (DA2) are satisfied for (2.6)+(2.7),
we can define, for u0 ∈ L2(D), a global (weak) solution of (2.6)a∗

0
+(2.7)a∗

0
, de-

fined on [0, s], with the final condition u(s) = u0. The following analog of
Proposition 2.2 holds.

Proposition 2.10. For a0 ∈ Y0, 0 < s ≤ T and u0 ∈ L2(D) there is precisely

one global weak solution

[
[0, s] ∋ t 7→ U∗

a0
(t, s)u0 ∈ L2(D)

]

of (2.6)a∗

0
+(2.7)a∗

0
satisfying the final condition u∗(s; a0, u0) = u0. This map-

ping has the following properties

U∗
a0
(t, t) = IdL2(D), a0 ∈ Y0, t ∈ [0, s], (2.8)

U∗
a0
(t1, t2) ◦ U

∗
a0
(t2, s) = U∗

a0
(t1, s), a0 ∈ Y0, 0 ≤ t1 ≤ t2 ≤ s. (2.9)

From now on s and t will play a role as in the (M̂E)a0
+ (B̂C)a0

.
Below we formulate an analog of Proposition 2.3.

Proposition 2.11.

(i) Let 1 ≤ p <∞ and (s, t) ∈ ∆̇. Then U∗
a0
(s, t) extends to a linear operator

in L(Lp(D)).

(ii) Let 1 < p <∞, 0 < s ≤ T and a0 ∈ Y0. Then the mapping

[
[0, s] ∋ t 7→ U∗

a0
(s, t) ∈ Ls(Lp(D))

]

is continuous.

The following analog of Proposition 2.7(i) holds.
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Proposition 2.12. For any a0 ∈ Y0, any 0 ≤ t < s ≤ T and any 1 ≤ p ≤ q ≤
∞ there holds U∗

a0
(s, t) ∈ Ls(Lp(D), Lq(D)).

Proposition 2.13. For a0 ∈ Y0 there holds

〈Ua0
(t, s)u0, v0〉L2(D) = 〈u0, U

∗
a0
(s, t)v0〉L2(D)

for any 0 ≤ s ≤ t ≤ T, u0, v0 ∈ L2(D). (2.10)

Proposition 2.13 states that the linear operator U∗
a0
(s, t) ∈ L(L2(D)) is the

dual (in the functional-analytic sense) of Ua0
(t, s) ∈ L(L2(D)). For a proof,

see [35, Prop. 2.3.3].

Proposition 2.14. For 1 < p <∞ and a0 ∈ Y0 there holds

〈Ua0
(t, s)u0, v0〉Lp(D),Lp′(D) = 〈u0, U

∗
a0
(s, t)v0〉Lp(D),Lp′(D) (2.11)

for any (s, t) ∈ ∆̇, u0 ∈ Lp(D) and v0 ∈ Lp′(D).

Proof. Fix (s, t) ∈ ∆̇, u0 ∈ Lp(D) and v0 ∈ Lq′(D). From Propositions 2.7(i)
and 2.12 it follows that Ua0

(ζ, s)u0, U
∗
a0
(ζ, t)v0 ∈ L2(D) for all ζ ∈ (s, t), conse-

quently 〈Ua0
(ζ, s)u0, Ua0

(ζ, t)v0〉L2(D) is well defined for such ζ. An application
of (2.2), Proposition 2.13 and (2.9) gives that for any s < ζ1 ≤ ζ2 < t there
holds

〈Ua0
(ζ2, s)u0, U

∗
a0
(ζ2, t)v0〉L2(D)

= 〈Ua0
(ζ2, ζ1)Ua0

(ζ1, s)u0, U
∗
a0
(ζ2, t)v0〉L2(D)

= 〈Ua0
(ζ1, s)u0, U

∗
a0
(ζ1, ζ2)U

∗
a0
(ζ2, t)v0〉L2(D)

= 〈Ua0
(ζ1, s)u0, U

∗
a0
(ζ1, t)v0〉L2(D).

Therefore the assignment

(s, t) ∋ ζ 7→ 〈Ua0
(ζ, s)u0, U

∗
a0
(ζ, t)v0〉L2(D)

= 〈Ua0
(ζ, s)u0, U

∗
a0
(ζ, t)v0〉Lp(D),Lp′(D)

= 〈Ua0
(ζ, s)u0, U

∗
a0
(ζ, t)v0〉Lp(D),Lp′(D)

is constant (denote its value by A). If we let ζ ր t, then Ua0
(ζ, s)u0 con-

verges, by Proposition 2.4, in the Lp(D)-norm to Ua0
(t, s)u0 and U∗

a0
(ζ, t)v0

converges, by Proposition 2.11(ii), in the Lp′(D)-norm to v0, consequently
〈Ua0

(t, s)u0, v0〉Lp(D),Lp′(D) = A. If we let ζ ց s, then Ua0
(ζ, s)u0 converges,

by Proposition 2.3(ii), in the Lp(D)-norm to u0 and U∗
a0
(ζ, t)v0 converges, by

Propositions 2.12 and 2.11(ii), in the Lp′(D)-norm to U∗
a0
(s, t)v0, consequently

〈u0, U
∗
a0
(s, t)v0〉Lp(D),Lp′(D) = A. This concludes the proof.

It follows from Proposition 2.14 that the linear operator U∗
a0
(s, t) ∈ L(Lp′(D))

is the dual (in the functional-analytic sense) of Ua0
(t, s) ∈ L(Lp(D)).

In the light of the above, the following counterpart to Proposition 2.7(ii)
holds.
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Proposition 2.15. There are constants M ≥ 1 and γ ∈ R, the same as in

Proposition 2.7, such that

‖U∗
a0
(s, t)‖L(Lp(D),Lq(D)) ≤M(t− s)

−
N
2

(
1
p−

1
q

)
eγ(t−s)

for 1 ≤ p ≤ q ≤ ∞, a0 ∈ Y0 and (s, t) ∈ ∆̇.

2.2 Continuous Dependence of Weak Solutions

Lemma 2.1. Let 1 < p <∞ and a0 ∈ Y0. Then the mapping
[
∆̇ ∋ (s, t) 7→ Ua0

(t, s) ∈ Ls(Lp(D))
]

is continuous.

Proof. If tm → t > s as m → ∞, Ua0
(tm, s)u0 → Ua0

(t, s)u0 in Lp(D), by
Proposition 2.4.

Assume that sm → s < t as m→ ∞. Fix u0 ∈ Lp(D) and v0 ∈ Lp′(D). We
have, by Proposition 2.14 and the adjoint equation analog of Proposition 2.4,

〈Ua0
(t, sm)u0, v0〉Lp(D),Lp′(D) = 〈u0, U

∗
a0
(sm, t)v0〉Lp(D),Lp′(D)

→ 〈u0, U
∗
a0
(s, t)v0〉Lp(D),Lp′(D) = 〈Ua0

(t, s)u0, v0〉Lp(D),Lp′(D),

so Ua0
(t, sm)u0 ⇀ Ua0

(t, s)u0 in Lp(D). As {Ua0
(t, sm)u0 : m ∈ N } is, by

Proposition 2.9, precompact in Lp(D), the convergence is in the norm.
Finally, assume that sm → s and tm → t with s < t, and fix u0 ∈ Lp(D).

We can assume that sm < (s + t)/2 < t for all m. By the previous paragraph,
Ua0

((s+ t)/2, sm)u0 → Ua0
((s+ t)/2, s)u0 in Lp(D). Corollary 2.1 implies that

Ua0
(tm, sm)u0 = Ua0

(tm,
1
2 (s+ t))(Ua0

(12 (s+ t), sm)u0

→ Ua0
(t, 12 (s+ t))(Ua0

(12 (s+ t), s)u0 = Ua0
(t, s)u0,

where the convergence is in Lp(D), too.

Proposition 2.16. Let 1 < p <∞ and a0 ∈ Y0. Then the mapping
[
∆̇ ∋ (s, t) 7→ Ua0

(t, s) ∈ L(Lp(D))
]

is continuous.

Proof. Let sm → s and tm → t with s < t. Suppose to the contrary that there
are ǫ > 0 and (um)∞m=1 ⊂ Lp(D), ‖um‖Lp(D) = 1, such that

‖Ua0
(tm, sm)um − U(t, s)um‖Lp(D) ≥ ǫ, m = 1, 2, 3, . . . .

It follows from Proposition 2.9 that, after possibly taking a subsequence and
relabelling, we can assume that Ua0

(tm, sm)um converge to ũ and Ua0
(t, s)um

converge to û, both in Lp(D). For any v0 ∈ Lp′(D) we have, by Proposition 2.14,

〈(Ua0
(tm, sm)− Ua0

(t, s))um, v0〉Lp(D),Lp′(D)

= 〈um, (U
∗
a0
(sm, tm)− U∗

a0
(s, t))v0〉Lp(D),Lp′(D).
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Since ‖um‖Lp(D) = 1, we conclude from the adjoint equation analog of Lemma 2.1
that the above expression converges to zero as m→ ∞. Consequently ũ = û, a
contradiction.

Proposition 2.17. Assume, in addition, (DA4). For 1 < p <∞ the mapping

[
Y0 × ∆̇× Lp(D) ∋ (a0, s, t, u0) 7→ Ua0

(t, s)u0 ∈ Lp(D)
]

is continuous.

Proof. It follows from [35, Props. 2.2.12 and 2.2.13] that, for 2 ≤ p < ∞, the
mapping

[
Y0 × ∆̇× L2(D) ∋ (a0, s, t, u0) 7→ Ua0

(t, s)u0 ∈ Lp(D)
]

is continuous, too.
To conclude the proof it suffices to show that for any 1 < p < 2 the mapping

[
Y0 × ∆̇× Lp(D) ∋ (a0, s, t, u0) 7→ Ua0

(t, s)u0 ∈ L2(D)
]

is continuous. Observe that if we have a0,m → a0 ∈ Y0, sm → s, tm → t
with sm < tn and s < t, and u0,m → u0 ∈ Lp(D), then from Proposition 2.9 it
follows that, after possibly choosing a subsequence, there is w ∈ L2(D) such that
Ua0,m

(tm, sm)u0,m → w in L2(D). Consequently, 〈Ua0,m
(tm, sm)u0,m, v〉L2(D) →

〈w, v〉L2(D) as m → ∞, for any v ∈ L2(D). On the other hand, one has, by
Proposition 2.14,

〈Ua0,m
(tm, sm)u0,m, v〉L2(D) = 〈u0,m, U

∗
a0,m

(sm, tm)v〉Lp(D),Lp′(D).

As 2 < p′ <∞, an application of the result already obtained to the adjoint equa-
tion yields that U∗

a0,m
(sm, tm)v converges, as m → ∞, to U∗

a0
(s, t)v in Lp′(D).

As u0,m converges to u0 in Lp(D), we have that 〈u0,m, U
∗
a0,m

(sm, tm)v〉Lp(D),Lp′(D)

converges to 〈u0, U
∗
a0
(s, t)v〉Lp(D),Lp′(D), which is, by Proposition 2.14, equal to

〈Ua0
(t, s)u0, v〉L2(D). As v ∈ L2(D) is arbitrary, we have w = Ua0

(t, s)u0.

Proposition 2.18. Assume, in addition, (DA4). For 1 < p <∞ the mapping

[
Y0 × ∆̇ ∋ (a0, s, t) 7→ Ua0

(t, s) ∈ L(Lp(D))
]

is continuous.

Proof. In order not to overburden the notation we assume s = 0.
Let (a0,m)∞m=1 ⊂ Y0 be a sequence converging to a0 as m → ∞, and let

(tm)∞m=1 ⊂ (0, T ] be a sequence converging to t > 0 as m→ ∞. Suppose to the
contrary that ‖Ua0,m

(tm, 0)−Ua0
(t, 0)‖L(Lp(D)) does not converge to 0, that is,

there exist ǫ > 0 and a sequence (um)∞m=1 ⊂ Lp(D), ‖um‖Lp(D) = 1 for all m,
such that

‖Ua0,m
(tm, 0)um − Ua0

(t, 0)um‖Lp(D) ≥ ǫ
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for all m.
It follows from Proposition 2.9 that, after possibly extracting a subsequence,

we can assume that Ua0,m
(tm/2, 0)um and Ua0

(t/2, 0)um converge, as m → ∞,
in the Lp(D)-norm. We claim that both converge to the same ũ. Indeed, it
suffices to check that the difference (Ua0,m

(tm/2, 0)− Ua0
(t/2, 0))um converges

to zero in Lp(D), which is, in light of the equalities

〈(Ua0,m
(tm/2, 0)− Ua0

(t/2, 0))um, v〉Lp(D),Lp′(D)

= 〈um, (U
∗
a0,m

(0, tm/2)− U∗
a0
(0, t/2))v〉Lp(D),Lp′(D), v ∈ Lp′(D),

a consequence of the analog for the adjoint equation of Proposition 2.17.
Proposition 2.17 implies that

‖Ua0,m
(tm, 0)um − Ua0

(t, t/2)ũ‖Lp(D)

= ‖Ua0,m
(tm, tm/2)(Ua0,m

(tm/2, 0)um)− Ua0
(t, t/2)ũ‖Lp(D) → 0,

and

‖Ua0
(t, 0)um − Ua0

(t, t/2)ũ‖Lp(D)

= ‖Ua0
(t, t/2)(Ua0

(t/2, 0)um)− Ua0
(t, t/2)ũ‖Lp(D)

≤ ‖Ua0
(t, t/2)‖L(Lp(D))‖Ua0

(t/2, 0)um − ũ‖Lp(D) → 0

therefore ‖Ua0,m
(tm, 0)um − Ua0

(t, 0)um‖Lp(D), converges to zero, a contradic-
tion.

3 Mild Solutions

In the present section we assume (DA1), (DA2) and that Y as in Definition 1.1 is
such that its flattening Y0 satisfies (DA3). Occasionally we will assume (DA5).

Definition 3.1 (Multiplication Operator). For a ∈ Y , 1 ≤ p ≤ ∞ and 0 ≤ t ≤
T we define multiplication operator C1

a(t) : Lp(D) → Lp(D) as follows

C1
a(t)v = c1(t, ·)v.

The C1
a(t) operator is well defined as long as assumption (DA2) holds. To

be more precise we use a corollary from assumption (DA2) on t-sections of c1.

Lemma 3.1 (Boundedness of Multiplication Operator). The multiplication op-

erator C1
a(t) is linear and bounded uniformly with respect to a.e. 0 < t < T and

a ∈ Y .

It should be remarked that the exceptional sets can be different for different
a ∈ Y .
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Proof. Let K be the norm bound of Y (see assumption Y1). For any v ∈ Lp(D)
by the Hölder inequality we get

‖C1
a(t)v‖Lp(D) = ‖c1(t, ·)v‖Lp(D)

≤ ‖c1(t, ·)‖L∞(D)‖v‖Lp(D)

≤ K‖v‖Lp(D)

where above inequality holds for a.e. 0 < t < T , so the operator norm of C1
a(t)

is bounded a.e. by ‖c1(t, ·)‖L∞(D) what can be bounded uniformly with respect
to a.e. 0 < t < T by virtue of assumption (DA2). Since Y is bounded by K we
also have uniform boundedness in a ∈ Y .

Below we present a series of lemmas to prove the measurability of individual
parts of the mild solution. We will make frequent use of the Lemma 0.1 in this
part of the work, in particular, Remark 0.1 on measurability will also be useful.

Lemma 3.2. For any 1 < p <∞ and any norm bounded set E ⊂ C([−1, T ], Lp(D))
the set {

[ (0, T ) ∋ t 7→ (u ◦ Φ)(t) ∈ Lp(D) ] : u ∈ E,Φ ∈ R̃
}

(3.1)

is bounded in L∞((0, T ), Lp(D)).

Proof. Let u ∈ E and Φ ∈ R̃. The mapping u ◦ Φ is (L((0, T )),B(Lp(D)))-mea-
surable, since for any fixed open set V ⊂ Lp(D) the preimage u−1[V ] is open,
hence (u ◦ Φ)−1[V ] ∈ L((0, T )). Moreover, the L∞((0, T ), Lp(D))-norm of the
map u ◦Φ is uniformly bounded with respect to u and Φ by the same constant
as E due to the inequality

‖u ◦ Φ‖L∞((0,T ),Lp(D)) = ess sup
t∈(0,T )

‖(u ◦ Φ)(t)‖Lp(D)

≤ sup
t∈[−1,T ]

‖u(t)‖Lp(D) = ‖u‖C([−1,T ],Lp(D)).

Lemma 3.3. For any 1 < p <∞ and any norm bounded set Ẽ ⊂ L∞((0, T ), Lp(D))
the set {

[ (0, T ) ∋ t 7→ C1
a(t)ũ(t) ∈ Lp(D) ] : a ∈ Y, ũ ∈ Ẽ

}

is bounded in L∞((0, T ), Lp(D)).

Proof. Let ũ ∈ Ẽ and a ∈ Y . From Lemma 0.1(a) follows that the mapping

[
(0, T )×D ∋ (t, x) 7→ ũ(t)[x] ∈ R

]
(3.2)

is (L((0, T ))⊗ L(D),B(R))-measurable. Hence the function

[
(0, T )×D ∋ (t, x) 7→

(
Ca(t)ũ(t)

)
[x] ∈ R

]
(3.3)
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for any a ∈ Y is (L((0, T ))⊗L(D),B(R))-measurable, since it can be rewritten
as the product of (L((0, T ))⊗ L(D),B(R))-measurable functions, namely

[
(0, T )×D ∋ (t, x) 7→ c1(t, x) ũ(t)[x] ∈ R

]
. (3.4)

It suffices now to notice that for a.e. t ∈ (0, T ) the t-section of (3.3) belongs (by
the definition of the multiplication operator) to Lp(D). So from Lemma 0.1(b)
it follows that the mapping

[
(0, T ) ∋ t 7→ Ca(t)ũ(t) ∈ Lp(D)

]

is (L((0, T )),B(Lp(D)))-measurable. By the norm estimate,

‖C1
a(·)ũ‖L∞((0,T ),Lp(D)) = ess sup

t∈(0,T )

‖c1(t, ·)ũ(t)‖Lp(D)

≤ K‖ũ‖L∞((0,T ),Lp(D))

we obtain the statement.

Lemma 3.4. Assume 1 < p <∞, a0 ∈ Y0, and u ∈ L∞((0, T ), Lp(D)). Then

(i) for any 0 < t ≤ T the function

[ ζ 7→ Ua0
(t, ζ)u(ζ), for a.e. ζ ∈ (0, t) ] (3.5)

belongs to L∞((0, t), Lp(D)) moreover, the linear operator assigning (3.5)
to u belongs to L(L∞((0, 1), Lp(D)), L∞((0, 1), Lp(D))), with the norm

bounded uniformly in a0 ∈ Y0,

(ii) the mapping
[
[0, T ] ∋ t 7→

t∫

0

Ua0
(t, ζ)u(ζ) dζ

]
(3.6)

belongs to C([0, T ], Lp(D)).

Proof. Fix 0 < t ≤ T . We show first that (3.5) defines a (L((0, t)),B(Lp(D)))-mea-
surable function. It is equivalent, by Theorem 0.1, to showing that for each
v ∈ Lp′(D) the function

[ ζ 7→ 〈Ua0
(t, ζ)u(ζ), v〉Lp(D),Lp′(D)]

is (L((0, t)),B(R))-measurable. By Proposition 2.14, for Lebesgue-a.e. ζ ∈ [0, t)
there holds

〈Ua0
(t, ζ)u(ζ), v〉Lp(D),Lp′(D) = 〈u(ζ), U∗

a0
(ζ, t)v〉Lp(D),Lp′(D)

It suffices now to notice that u is (L((0, t)),B(Lp(D)))-measurable, by assump-
tion, and that the function

[
[0, t) ∋ ζ 7→ U∗

a0
(ζ, t)v ∈ Lp′(D)

]
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is continuous, by the adjoint equation analog of Lemma 2.1. It follows from
Proposition 2.7(ii) that the function

[
(0, t) ∋ ζ 7→ ‖Ua0

(t, ζ)‖L(Lp(D))

]

belongs to L∞((0, t)). Then the membership of (3.5) in L∞((0, t), Lp(D)) as
well as the bound on its norm follow from the generalized Hölder inequality.
The proof of part (i) is thus completed.

We proceed to the proof of part (ii). By part (i), the function (3.6) is well
defined. Let 0 ≤ t1 ≤ t2 ≤ T . We write

t2∫

0

Ua0
(t2, ζ)u(ζ) dζ −

t1∫

0

Ua0
(t1, ζ)u(ζ) dζ

=

t1∫

0

(
Ua0

(t2, ζ)− Ua0(t1, ζ)
)
u(ζ) dζ +

t2∫

t1

Ua0
(t2, ζ)u(ζ) dζ.

Let ǫ > 0. As (3.5) belongs to L∞((0, t), Lp(D)), it is a consequence of [16,
Thm. II.2.4(i)] that the Lp(D)-norm of the second term on the right-hand side
can be made < ǫ/3 by taking t1, t2 sufficiently close to each other. Regarding
the first term, we write

t1∫

0

(
Ua0

(t2, ζ) − Ua0
(t1, ζ)

)
u(ζ) dζ

=

t1−η∫

0

(
Ua0

(t2, ζ)− Ua0
(t1, ζ)

)
u(ζ) dζ +

t1∫

t1−η

(
Ua0

(t2, ζ)− Ua0
(t1, ζ)

)
u(ζ) dζ.

Again by [16, Thm. II.2.4(i)], for η > 0 sufficiently small there holds

∥∥∥∥
t1∫

t1−η

(
Ua0

(t2, ζ)− Ua0
(t1, ζ)

)
u(ζ) dζ

∥∥∥∥
Lp(D)

<
ǫ

3
.

It follows from Proposition 2.16 that the assignment

[
{ ∆̇ : η ≤ ζ + η ≤ t ≤ T } ∋ (ζ, t) 7→ Ua0

(t, ζ) ∈ L(Lp(D))
]

is uniformly continuous, consequently there exists δ > 0 such that if η ≤ ζ+η ≤
t1 ≤ t2, t2 − t1 < δ, then

‖Ua0
(t2, ζ)− Ua0

(t1, ζ)‖L(Lp(D)) <
ǫ

3‖u‖L1((0,T ),Lp(D))
.
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Therefore
∥∥∥∥

t1−η∫

0

(
Ua0

(t2, ζ)− Ua0
(t1, ζ)

)
u(ζ) dζ

∥∥∥∥
Lp(D)

<
ǫ

3
.

This concludes the proof of part (ii).

Definition 3.2 (Mild Solution). For 1 ≤ p < ∞, a ∈ Y , 0 ≤ s < T0 ≤ T and

u0 ∈ C([s− 1, s], Lp(D)) and R ∈ R the function u ∈ C([s− 1, T0], Lp(D)) such
that

u(t) = u0(t) for t ∈ [s− 1, s], (3.7)

holds and the integral equation

u(t) = Uã(t, s)u0(s) +

t∫

s

Uã(t, ζ)C
1
a(ζ)u(ζ −R(ζ)) dζ (3.8)

is satisfied in Lp(D) on [s, T0] will be called a mild solution of (ME)a+(BC)a.
For T0 = T we have a global mild solution.

At first note that the concept of mild solution, especially part (3.8), is well
defined based on Lemma 3.3 and Lemma 3.4. At some moments we use the name
“mild solution” to describe function u ↾[0,T0] instead of u ∈ C([−1, T0], Lp(D))
satisfying (3.7) and (3.8). This convention seems more natural especially in the
context of continuous dependence on coefficients. A similar convention can be
found in the literature [28].

3.1 Existence and Uniqueness of Global Mild Solutions

Proposition 3.1. There exists Θ0 ∈ (0, T ] such that for any 1 < p <∞, a ∈ Y ,

R ∈ R, 0 ≤ s ≤ T − Θ0, u0 ∈ C([s − 1, s], Lp(D)) and any 0 < Θ ≤ Θ0 there

exist unique solution of (ME)a+(BC)a on [s − 1, s + Θ] with initial condition

u0.

Proof. The idea of the proof runs as follows. The solution is obtained as a fixed
point of the contraction mapping G of C([s, s+Θ], Lp(D)) into itself (see 2.3(ii),
3.4(ii) and 3.3) defined as

(Gu)[t] := Uã(t, s)u0(s) +

t∫

s

Uã(t, ζ)C
1
a(ζ)u(ζ −R(ζ)) dζ, (3.9)

where s ≤ t ≤ s+ Θ and Θ ∈ (0, T ] is sufficiently small. Until revoking, u and
v stand for generic functions in C([s, s+Θ], Lp(D)). For such a u we interpret
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u(ζ −R(ζ)) (similarly v) as u0(ζ −R(ζ)) when ζ −R(ζ) ∈ (−1, 0).

‖(Gu)[t]− (Gv)[t]‖Lp(D) ≤

t∫

s

‖Uã(t, ζ)C
1
a(ζ)

(
u(ζ −R(ζ))− v(ζ −R(ζ))

)
‖Lp(D) dζ

≤MKeγt
t∫

s

‖u(ζ −R(ζ)) − v(ζ −R(ζ))‖Lp(D) dζ

≤MKeγt
t∫

s

sup
s≤ξ≤t

‖u(ξ −R(ξ))− v(ξ −R(ξ))‖Lp(D) dζ

≤MKeγt
t∫

s

sup
s−1≤ξ≤t

‖u(ξ)− v(ξ)‖Lp(D) dζ

=MKeγt
t∫

s

sup
s≤ξ≤t

‖u(ξ)− v(ξ)‖Lp(D) dζ

≤MKeγTΘ‖u− v‖C([s,s+Θ],Lp(D)).

By taking 0 < Θ ≤ Θ0 := 1/(2MKeγT ) we obtain that the contraction coeffi-
cient is less than 1.

The Contraction Mapping Principle guarantees the existence and unique-
ness of the fixed point u of G, which is then the unique mild Lp-solution of
(ME)a+(BC)a on [s− 1,Θ0] satisfying the initial condition (IC).

Lemma 3.5. For any 1 < p < ∞, 0 < s1 < s2 ≤ T , a ∈ Y , R ∈ R,

u0 ∈ C([−1, 0], Lp(D)) and v : [−1, s2] → Lp(D) the following statements are

equivalent:

(i) a function v is the mild solution of (ME)a+(BC)a on [−1, s2] with initial

condition u0,

(ii) a function v↾[−1,s1] is the mild solution of (ME)a+(BC)a with initial con-

dition u0 and v↾[s1−1,s2] is the mild solution of (ME)a+(BC)a with initial

condition v↾[s1−1,s1].

Proof. Let p, s1, s2, a, R, u0 and v be as in the statement. To prove (i) ⇒ (ii) it
suffices to see that for any s1 ≤ t ≤ s2, in view of (2.2) and [1, Lemma 11.45]
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there holds

v(t) = Uã(t, 0)u0(0) +

t∫

0

Uã(t, ζ)C
1
a(ζ)v(ζ −R(ζ)) dζ

= Uã(t, s1)

(
Uã(s1, 0)u0(0) +

s1∫

0

Uã(s1, ζ)C
1
a(ζ)v(ζ −R(ζ)) dζ

)

+

t∫

s1

Uã(t, ζ)C
1
a(ζ)v(ζ −R(ζ)) dζ

= Uã(t, s1)v↾[s1−1,s1](s1) +

t∫

s1

Uã(t, ζ)C
1
a(ζ)v↾[s1−1,s2](ζ −R(ζ)) dζ.

(3.10)
In order to prove (ii) ⇒ (i) fix t ∈ [−1, s2] and consider the cases: t ∈ [−1, 0],
t ∈ [0, s1] or t ∈ [s1, s2]. Since the first two cases are straightforward and the
third is a similar calculation to (3.10), the proof is finished.

Theorem 3.1. For any 1 < p <∞, a ∈ Y , u0 ∈ C([−1, 0], Lp(D)) and R ∈ R
equation (ME)a+(BC)a has a unique global mild solution on [0, T ].

Proof. Fix a, u0 and R as in the statement. Let

Q = {q ∈ [0, T ] : (ME)a+(BC)a has a unique mild solution on [−1, q]}.

It suffices to prove that T ∈ Q. Suppose to the contrary that T 6∈ Q. Since
Θ0 ∈ Q (where Θ0 stands for constant obtained in Proposition 3.1) and Q ⊂
[0, T ], supQ < ∞. It is straightforward that 0 ≤ supQ − Θ0/2 < supQ ≤ T
hence there exists s ∈ Q such that s > supQ−Θ0/2.

Let v1 : [−1, s] → Lp(D) be the unique mild solution with initial condition
u0. From the definition of Θ it follows that there is a mild solution v2 : [s −
1,min{s+Θ0, T }] → Lp(D) with initial condition v1↾[s−1,s]. Let

v(t) =

{
v1(t) for t ∈ [−1, s]

v2(t) for t ∈ [s− 1,min{s+Θ0, T }].

We claim that v is a unique mild solution of (ME)a+(BC)a on [−1,min{s +
Θ0, T }] with initial condition u0. From Lemma 3.5 it follows that v is in fact a
mild solution. For uniqueness, assume w : [−1,min{s+Θ0, T }] → Lp(D) is any
mild solution. Then clearly w↾[−1,s]= v1. Moreover, by Lemma 3.5, the function
w↾[s−1,min{s+Θ0,T}] is a mild solution with initial condition w↾[s−1,s]= v1↾[s−1,s],
so by the uniqueness of v2 we have that w↾[s−1,min{s+Θ0,T}]= v2. Hence v = w.
The proof is completed by the following observation: if min{s+Θ0, T } = s+Θ0

then s+ Θ0 ∈ Q, so we get a contradiction with the fact that s+Θ0 > supQ:
otherwise T ∈ Q, which contradicts the assumption.
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The above result allows us to define a mild solution of (ME)a+(BC)a on the
whole of [−1, T ] or [s− 1, T ] if necessary.

For s = 0, to stress the dependence of the solution on a, u0, R we write
u(·; a, u0, R). For t ∈ [−1, 0], u(t; a, u0, R) is interpreted as u0(t). Moreover,
when it does not lead to confusion, we sometimes write u(t; a, u0,Φ) instead of
u(t; a, u0, R).

3.2 Compactness of Solution Operator

Lemma 3.6. Assume 1 < p < ∞ and 0 < T1 ≤ T . Then for any bounded

F ⊂ L∞((0, T ), Lp(D)) the set

F̂ :=

{ t∫

0

Ua0
(t, ζ)u(ζ) dζ : a0 ∈ Y0, u ∈ F, t ∈ [T1, T ]

}

is precompact in Lp(D).

Proof. Compare [35, Thm. 6.1.3]. Fix p, T1 and F as in the statement. Let
(tm)∞m=1 ⊂ [T1, T ], (a0,m)∞m=1 ⊂ Y0, (um)∞m=1 ⊂ F . We claim that for any fixed
l ∈ N the set

F̃l :=

{ tm− 1

l∫

0

Ua0,m
(tm, ζ)um(ζ) dζ : m ∈ N

}
.

is precompact in Lp(D). Denote by M0 > 0 the supremum of the L∞((0, T ),

Lp(D))-norms of um, and put qFl to be the closure in Lp(D) of the set

{
Ua0

(s, 0)ũ : a0 ∈ Y0, s ∈
[1
l
, T
]
, ‖ũ‖Lp(D)≤M0

}

The set qFl is balanced. We have qFl ⊂ qFl+1. By Proposition 2.9, qFl is compact.
[16, Cor. II.2.8] implies that

tm− 1

l∫

0

Ua0,m
(tm, ζ)um(ζ) dζ ∈ T · co qFl

where co denotes the closed convex hull in Lp(D). As, by Mazur’s theorem ([16,

Thm. II.2.12]), T · co qFl is compact for any l ∈ N, this proves our claim that F̃l

are precompact in Lp(D). By a diagonal process we can assume without loss of
generality that for each l ∈ N the integrals

tm− 1

l∫

0

Ua0,m
(tm, ζ)um(ζ) dζ
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converge, as m→ ∞, in Lp(D).
Lemma 3.4(i) guarantees that the functions Ua0,m

(tm, ·)um(·) belong to L∞((0, tm), Lp(D)),
with their L∞((0, tm), Lp(D))-norms bounded uniformly in m. We estimate, via
Hölder’s inequality,

∥∥∥∥
tm∫

tm− 1

l

Ua0,m
(tm, ζ)um(ζ) dζ

∥∥∥∥
Lp(D)

≤

tm∫

tm− 1

l

‖Ua0,m
(tm, ζ)um(ζ)‖Lp(D) dζ

≤ ‖Ua0,m
(tm, ·)um(·)‖L∞((0,tm),Lp(D)) · (1/l).

It follows from Proposition 2.7(ii) that for any ǫ > 0 there is l0 ∈ N such
that ∥∥∥∥

tm∫

tm− 1

l0

Ua0,m
(tm, ζ)um(ζ) dζ

∥∥∥∥
Lp(D)

<
ǫ

3

uniformly in m ∈ N. By the previous paragraph, there is m0 such that if
m1,m2 ≥ m0 then

∥∥∥∥

tm1
− 1

l0∫

0

Ua0,m1
(tm1

, ζ)um1
(ζ) dζ −

tm2
− 1

l0∫

0

Ua0,m2
(tm2

, ζ)um2
(ζ) dζ

∥∥∥∥
Lp(D)

<
ǫ

3
.

Therefore

∥∥∥∥

tm1∫

0

Ua0,m1
(tm1

, ζ)um1
(ζ) dζ −

tm2∫

0

Ua0,m2
(tm2

, ζ)um2
(ζ) dζ

∥∥∥∥
Lp(D)

< ǫ

for any m1,m2 ≥ m0.
From this it follows that

( tm∫

0

Ũa0,m
(tm, ζ)um(ζ) dζ

)∞

m=1

is a Cauchy sequence in Lp(D). Therefore F̂ is precompact in Lp(D).

Lemma 3.7. For any 1 < p <∞ and any bounded F ⊂ L∞((0, T ), Lp(D)) the
set

{[
[0, T ] ∋ t 7→

t∫

0

Ua0
(t, ζ)u(ζ) dζ ∈ Lp(D)

]
: a0 ∈ Y0, u ∈ F

}

is precompact in C([0, T ], Lp(D)).
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Proof. By the Ascoli–Arzelà theorem, it suffices, taking Lemma 3.6 into account,
to show that for any ǫ > 0 there is δ > 0 such that, if 0 ≤ t1 ≤ t2 ≤ T , t2−t1 < δ,
then ∥∥∥∥

t2∫

0

Ua0
(t2, ζ)u(ζ) dζ −

t1∫

0

Ua0
(t1, ζ)u(ζ) dζ

∥∥∥∥
Lp(D)

< ǫ

for all a0 ∈ Y0 and all u ∈ F . In order not to introduce too many constants we
assume that F equals the unit ball in L∞((0, T ), Lp(D)).

We write

t2∫

0

Ua0
(t2, ζ)u(ζ) dζ −

t1∫

0

Ua0
(t1, ζ)u(ζ) dζ

=

t1∫

0

(
Ua0

(t2, ζ)− Ua0
(t1, ζ)

)
u(ζ) dζ +

t2∫

t1

Ua0
(t2, ζ)u(ζ) dζ

By Proposition 2.7(ii),

∥∥∥∥
t2∫

t1

Ua0
(t2, ζ)u(ζ) dζ

∥∥∥∥
Lp(D)

<
ǫ

3
, (3.11)

provided t2 − t1 < ǫ/(3MeγT ).
Further, we write

t1∫

0

(
Ua0

(t2, ζ) − Ua0
(t1, ζ)

)
u(ζ) dζ

=

t1−η∫

0

(
Ua0

(t2, ζ)− Ua0
(t1, ζ)

)
u(ζ) dζ +

t1∫

t1−η

(
Ua0

(t2, ζ)− Ua0
(t1, ζ)

)
u(ζ) dζ.

By Proposition 2.7(ii), if 0 < η < ǫ/(6MeγT ) then

∥∥∥∥
t1∫

t1−η

(
Ua0

(t2, ζ)− Ua0
(t1, ζ)

)
u(ζ) dζ

∥∥∥∥
Lq(D)

<
ǫ

3
. (3.12)

It follows from Proposition 2.18 that the assignment
[
Y0 × [η, T ] ∋ (a0, t) 7→ Ua0

(t, 0) ∈ L(Lp(D))
]

is uniformly continuous, consequently there exists δ > 0 such that if η ≤ s1 < s2,
s2 − s1 < δ, then

‖Ua0
(s2, 0)− Ua0

(s1, 0)‖L(Lp(D)) <
ǫ

3T
.
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Therefore
∥∥∥∥

t1−η∫

0

(
Ua0

(t2, ζ)− Ua0
(t1, ζ)

)
u(ζ) dζ

∥∥∥∥
Lq(D)

<
ǫ

3
.

The estimates (3.11), (3.12) and (3.2) do not depend on the choice of a0 ∈ Y0,
so gathering them gives the required property.

Theorem 3.2. For any 0 < T1 ≤ T , any 1 < p < ∞ and any bounded E ⊂
C([−1, 0], Lp(D)) the set

{ [
[T1, T ] ∋ t 7→ u(t; a, u0, R)

]
: a ∈ Y, u0 ∈ E,R ∈ R

}

is precompact in C([T1, T ], Lp(D)).

Proof. We will use the notation Ii(t; a, u0, R), i = 0, 1 where

I0(t) := Uã(t, 0)u0(0),

I1(t) :=

t∫

0

Uã(t, ζ)C
1
a(ζ)u(ζ −R(ζ)) dζ,

(3.13)

taking account of the parameter a and the initial value u0. The precompactness
of the set

{ [
[T1, T ] ∋ t 7→ I0(t; a, u0, R)

]
: a ∈ Y, u0 ∈ E,R ∈ R

}

in C([T1, T ], Lp(D)) is a consequence of Proposition 2.9. In order to prove the
precompactness in C([T1, T ], Lp(D)) of

{ [
[T1, T ] ∋ t 7→ I1(t; a, u0, R)

]
: a ∈ Y, u0 ∈ E,R ∈ R

}
,

it suffices to use results from Lemma 3.3 and Lemma 3.7.

Theorem 3.2 leads to the following conclusion about precompactness of the
solutions up to zero. Since under additional assumption (DA5) for a fixed
u0 ∈ C([−1, 0], Lp(D)) the set

{ [
[0, T ] ∋ t 7→ Uã(t, 0)u0(0)

]
: a ∈ Y

}

is simply a singleton, this observation combined with Lemma 3.7 leads to the
following result.

Theorem 3.3. Assume additionally (DA5). For any 1 < p < ∞ and any

u0 ∈ C([−1, 0], Lp(D)) the set

{ [
[0, T ] ∋ t 7→ u(t; a, u0, R)

]
: a ∈ Y,R ∈ R

}

is precompact in C([0, T ], Lp(D)).
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4 Continuous Dependence on Initial Conditions

In the present section we assume (DA1), (DA2) and that Y as in Definition 1.1
is such that its flattening Y0 satisfies (DA3). Further, 1 < p <∞.

Definition 4.1. For t ∈ [0, T ], a ∈ Y , u0 ∈ C([−1, 0], Lp(D)) and R ∈ R we

define

δ(t; a, u0, R) = sup
ϑ∈[−1,0]

‖u(t+ ϑ; a, u0, R)‖Lp(D)

= ‖u(t+ · ; a, u0, R) ↾[−1,0]‖C([−1,0],Lp(D)).

For notational simplicity we often write u(t+ ·) instead of u(t+ · ; a, u0, R)
and δ(t) instead of δ(t; a, u0, R) when a ∈ Y and u0 ∈ C([−1, 0], Lp(D)) are

fixed and this does not lead to confusion.

Lemma 4.1. For any a ∈ Y , u0 ∈ C([−1, 0], Lp(D)) and R ∈ R the function

δ(·; a, u0, R) : [0, T ] → R+ is continuous.

Proof. First note that the mapping
[
[0, T ]× [−1, 0] ∋ (t, ϑ) 7→ ‖u(t+ ϑ; a, u0, R)‖Lp(D) ∈ R+

]

is continuous as a composition of continuous mappings. Due to the compactness
of [−1, 0] the δ(·, a, u0, R) function is continuous when a ∈ Y , R ∈ R and
u0 ∈ C([−1, 0], Lp(D)) are fixed.

Lemma 4.2. There are constants M1,M2 such that for any ρ ∈ [0, T ] the

inequality

‖u(ρ; a, u0, R)‖Lp(D) ≤M1δ(0; a, u0, R) +M2

ρ∫

0

δ(ζ; a, u0, R) dζ

holds for all a ∈ Y , u0 ∈ C([−1, 0], Lp(D)) and R ∈ R.

Proof. Fix ρ ∈ [0, T ] and note that

‖u(ρ)‖Lp(D) ≤ ‖Uã(ρ)u0(0)‖Lp(D) +

ρ∫

0

‖Uã(ρ, ζ)C
1
a(ζ)(u ◦ Φ)(ζ)‖Lp(D) dζ

≤Meγρ‖u0(0)‖Lp(D) +MeγρK

ρ∫

0

‖(u ◦Φ)(ζ)‖Lp(D) dζ

≤Meγρ‖u0‖C([−1,0],Lp(D)) +MeγρK

ρ∫

0

‖u(ζ + ·) ↾[−1,0]‖C([−1,0],Lp(D)) dζ

=M1δ(0) +M2

ρ∫

0

δ(ζ) dζ,
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where M is a uniform bound of the operator Uã(t) with respect to a ∈ Y and
0 ≤ t ≤ T (see Proposition 2.7(ii)), the constant K is a uniform bound of
the operator C1

a(ζ) with respect to a ∈ Y and 0 ≤ t ≤ T (see Lemma 3.1).
Moreover, the bounds M and K are independent on initial condition u0. By
setting M1 =MeγT , M2 =MKeγT we end the proof.

From now on, throughout this section the constants M1 and M2 will be
defined as in Lemma 4.2.

Proposition 4.1. For any sequence (u0,m)∞m=1 ⊂ C([−1, 0], Lp(D)) convergent
to zero, any t ∈ [0, T ], R ∈ R and a ∈ Y the sequence δm(t) := δ(t; a, u0,m, R)
converges to zero.

Proof. Fix t ∈ [0, T ] and −1 ≤ ϑ ≤ 0 and let us consider two cases.

• If 0 ≤ t+ ϑ ≤ T then from Lemma 4.2 there holds

‖u(t+ ϑ)‖Lp(D) ≤M1δ(0) +M2

t+ϑ∫

0

δ(ζ) dζ

≤M1δ(0) +M2

t∫

0

δ(ζ) dζ.

• If −1 ≤ t+ ϑ ≤ 0 then the inequality

‖u(t+ ϑ)‖Lp(D) ≤M1δ(0) +M2

t∫

0

δ(ζ) dζ

is straightforward, as even the stronger one ‖u(t+ ϑ)‖Lp(D) ≤ M1δ(0) is
true.

Applying sup with respect to ϑ on both sides give us that

sup
ϑ∈[−1,0]

‖u(t+ ϑ, a, u0, R)‖Lp(D) ≤M1δ(0) +M2

t∫

0

δ(ζ) dζ,

what can be rewritten in terms of the δ function as

δ(t) ≤M1δ(0) +M2

t∫

0

δ(ζ) dζ.

The function δ is nonnegative and continuous on the compact domain, hence it
is integrable. Using the Grönwall lemma we get

δ(t) ≤M1δ(0) exp
(
M2

t∫

0

dζ
)
. (4.1)
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The above Lemma 4.2 and Proposition 4.1 lead to global Lp-norm estimation
of the mild solution of (ME)a + (BC)a in terms of initial conditions.

Proposition 4.2. There is constant M > 0 such that inequality

‖u(t; a, u0, R)‖Lp(D) ≤M‖u0‖C([−1,0],Lp(D))

holds for any 1 < p <∞, t ∈ [0, T ], a ∈ Y , R ∈ R and u0 ∈ C([−1, 0], Lp(D)).

Proof. Let M = M1 exp(M2T ), where M1,M2 are constants as in Lemma 4.2.
Then by Proposition 4.1 we can write

‖u(t; a, u0, R)‖Lp(D) ≤ δ(t; a, u0, R)

≤M‖u0‖C([−1,0],Lp(D)).

Proposition 4.3. For any a ∈ Y and R ∈ R the mapping

[
C([−1, 0], Lp(D)) ∋ u0 7→ u(·; a, u0, R) ∈ C([−1, T ], Lp(D))

]

is continuous.

Proof. Let a ∈ Y , R ∈ R be fixed. Then in the spirit of Cauchy’s definition we
can find that

‖u(·; a, u0,1, R)− u(·; a, u0,2, R)‖C([−1,T ],Lp(D))

≤ sup
t∈[0,T ]

δ(t; a, u0,1 − u0,2, R)

≤M1 exp(M2T )‖u0,1 − u0,2‖C([−1,0],Lp(D))

for any initial conditions u0,1, u0,2 ∈ C([−1, 0], Lp(D)). The first inequality re-
sults from the linearity of the problem (ME)a+(BC)a and the second inequality
follows from (4.1).

5 Continuous Dependence on Coefficients and

Delay

In the present section we assume (DA1), (DA2) and that Y as in Definition 1.1
is such that its flattening Y0 satisfies (DA3) and (DA4). As in Section 4,
1 < p <∞.

Proposition 5.1. For any 0 < T1 ≤ T , R ∈ R and u0 ∈ C([−1, 0], Lp(D)) the

mapping [
Y ∋ a 7→ u(·; a, u0, R)↾[T1,T ]∈ C([T1, T ], Lp(D))

]

is continuous.
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Proof. Fix p, T1, R and u0 as in the Proposition. Let (am)∞m=1 ⊂ Y converge
to a. Put um(·) for u(·; am, u0, R) and u(·) for u(·; a, u0, R). It suffices to
prove that there is a subsequence (amk

)∞k=1 ⊂ Y such that umk
(·) converges to

u(·) on [T1, T ] uniformly. By Theorem 3.2 via diagonal process, we can find a
subsequence umk

such that umk
↾(0,T ] converge to some continuous û : (0, T ] →

Lp(D) and the convergence is uniform on compact subsets of (0, T ]. The function
û is clearly bounded by Proposition 4.2. Moreover, we extend the map û to the
whole [−1, T ] by u0 on [−1, 0], i.e., now

ũ(t) :=

{
u0(t) for t ∈ [−1, 0]

lim
k→∞

umk
(t) for t ∈ (0, T ].

It remains to prove that ũ = u. In order not to overburden the notation we
write um instead of umk

.
Our first step is to show that, for each t ∈ (0, T ],

Uãm
(t, 0)u0(0) → Uã(t, 0)u0(0) (5.1)

t∫

0

Uãm
(t, ζ)C1

am
(ζ)um(ζ −R(ζ)) dζ →

t∫

0

Uã(t, ζ)C
1
a(ζ)ũ(ζ −R(ζ)) dζ. (5.2)

in the Lp(D)-norm as m → ∞. The convergence in (5.1) is a consequence
of Proposition 2.17. The convergence in (5.2) can be shown by showing the
convergence of the difference

t∫

0

Uãm
(t, ζ)C1

am
(ζ)um(ζ −R(ζ)) dζ −

t∫

0

Uã(t, ζ)C
1
a(ζ)ũ(ζ −R(ζ)) dζ

=

t∫

0

(Uãm
(t, ζ) − Uã(t, ζ))C

1
am

(ζ)um(ζ −R(ζ)) dζ

+

t∫

0

Uã(t, ζ)C
1
am

(ζ)(um(ζ −R(ζ))− ũ(ζ −R(ζ))) dζ

+

t∫

0

Uã(t, ζ)(C
1
am

(ζ) − C1
a(ζ))ũ(ζ −R(ζ)) dζ

(5.3)

to zero. Write J
(i)
m (t), i = 1, 2, 3, for the i-th term on the right-hand side of (5.3).

The convergence of J
(1)
m (t) follows from the Lebesgue dominated convergence

theorem for Bochner integral: since the integrand

(0, t) ∋ ζ 7→ (Uãm
(t, ζ)− Uã(t, ζ))C

1
am

(ζ)um(ζ −R(ζ)) ∈ Lp(D)
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is (L((0, t)),B(Lp(D)))-measurable for all m ∈ N (see Lemmas 3.4(i) and 3.3)
and bounded uniformly (see Proposition 4.2) in m ∈ N:

‖(Uãm
(t, ζ)− Uã(t, ζ))C

1
am

(ζ)um(ζ −R(ζ))‖Lp(D)

≤ 2MeγTKM‖u0‖C([−1,0],Lp(D))

it suffices to check that for a.e. ζ ∈ (0, t) the integrand converges to zero, which
follows from the estimate

‖(Uãm
(t, ζ)− Uã(t, ζ))C

1
am

(ζ)um(ζ −R(ζ))‖Lp(D)

≤ ‖(Uãm
(t, ζ)− Uã(t, ζ))‖L(Lp(D))KM‖u0‖C([−1,0],Lp(D))

and Proposition 2.18.

In order to prove J
(2)
m (t) → 0 as m → ∞ we proceed similarly. We see that

the mapping

[
(0, t) ∋ ζ 7→ Uã(t, ζ)C

1
am

(ζ)(um(ζ −R(ζ))− ũ(ζ −R(ζ))) ∈ Lp(D)
]

is (L((0, t)),B(Lp(D)))-measurable for all m ∈ N, as a consequence of Lem-
mas 3.4(i) and 3.3, and bounded uniformly in m ∈ N, since, by Proposi-
tion 2.7(ii), Lemma 3.1 and Proposition 4.2,

‖Uã(t, ζ)C
1
am

(ζ)(um(ζ −R(ζ))− ũ(ζ −R(ζ)))‖Lp(D)

≤ 2MKeγTM‖u0‖C([−1,0],Lp(D)).

Further, the convergence, for a.e. ζ ∈ (0, t),

Uã(t, ζ)C
1
am

(ζ)(um(ζ −R(ζ))− ũ(ζ −R(ζ))) → 0

in Lp(D) is due to the pointwise convergence of um to ũ on [−1, T ] and the
estimate (by Proposition 2.7(ii) and Lemma 3.1)

‖Uã(t, ζ)C
1
am

(ζ)(um(ζ −R(ζ))− ũ(ζ −R(ζ)))‖Lp(D)

≤MKeγT‖um(ζ −R(ζ))− ũ(ζ −R(ζ))‖Lp(D).

The convergence of J
(3)
m (t) follows from the facts that the set

{ J (3)
m (t) : m ∈ N }

is precompact in Lp(D) (see Lemma 3.6, Lemma 3.3, Proposition 4.2) and that

J
(3)
m (t) converge weakly to zero, i.e.,

〈J (3)
m (t), v〉 → 0 as m→ ∞, (5.4)
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for any v ∈ Lp′(D), where 〈·, ·〉 stands for the duality pairing between Lp(D)
and Lp′(D). By the Hille theorem ([16, Thm. II.2.6]) and Proposition 2.14,

〈J (3)
m (t), v〉 =

t∫

0

〈Uã(t, ζ)(C
1
am

(ζ)− C1
a(ζ))ũ(ζ −R(ζ)), v〉dζ

=

t∫

0

〈(C1
am

(ζ) − C1
a(ζ))ũ(ζ −R(ζ)), U∗

ã (t, ζ)v〉dζ.

Now we need to use a subtler approach based on the convergence c1,m to c1 in
the weak-* topology of L∞((0, t)×D). First note that the mappings
[
(0, t) ∋ ζ 7→ ũ(ζ −R(ζ)) ∈ Lp(D)

]
&

[
(0, t) ∋ ζ 7→ U∗

ã (t, ζ)v ∈ Lp′(D)
]

belong to L∞((0, t), Lp(D)) and L∞((0, t), Lp′(D)) respectively. Therefore the
mapping (the product of the above maps)

[
(0, t)×D ∋ (ζ, x) 7→ ũ(ζ −R(ζ))[x](U∗

ã (t, ζ)v)[x] ∈ R
]

belong to L1((0, t) × D) see Lemma 0.1(a). It suffices now to note that from
Fubini’s theorem we have

t∫

0

〈(C1
am

(ζ)− C1
a(ζ))ũ(ζ −R(ζ)), U∗

ã (t, ζ)v〉dζ

=

t∫

0

∫

D

(c1,m(ζ, x) − c1(ζ, x)) ũ(ζ −R(ζ))[x] (U∗
ã (ζ, t)v)[x] dxdζ,

so the integral tends to zero as m→ ∞.
We have thus proved that

ũ(t) = Uã(t, 0)u0(0) +

t∫

0

Uã(t, ζ)C
1
a(ζ)ũ(ζ −R(ζ)) dζ, t ∈ [0, T ].

Now we prove the continuity of the extension ũ. Note that the only point
where it can fail is t = 0. However, this is not the case since the mappings

[
[0, T ] ∋ t 7→ Uã(t, 0)u0(0) ∈ Lp(D)

]

[
[0, T ] ∋ t 7→

t∫

0

Uã(t, ζ)C
1
a(ζ)ũ(ζ −R(ζ)) dζ ∈ Lp(D)

]

are continuous (see Lemmas 2.3(ii) and 3.4(ii)), so the mapping ũ is continuous
on the whole [−1, T ]. Also, ũ = u0 on [−1, 0], hence ũ is in fact the mild
solution of (ME)ã + (BC)ã, therefore, by uniqueness, ũ(t) = u(t; ã, u0, R) for
any t ∈ [−1, T ].
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Proposition 5.2. Assume additionally (DA5). For any u0 ∈ C([−1, 0], Lp(D))
and R0 ⊂ R satisfying the assumption (DA6) the mapping

[
Y ×R0 ∋ (a,R) 7→ u(·; a, u0, R)↾[0,T ]∈ C([0, T ], Lp(D))

]

is continuous.

Sketch of proof. Fix p, u0 and R0. Let (am)∞m=1 ⊂ Y converge to a and
(Rm)∞m=1 ⊂ R0 converge to R, and put um(·) for u(·; am, u0, Rm) and u(·)
for u(·; a, u0, R). We will proceed as in Proposition 5.1. In particular, ũ has
the same meaning. However, we have in fact more: as we assume (DA5), we
can apply Theorem 3.3 to show that um converge to û uniformly on [0, T ], from
which it follows in particular that ũ is continuous on the whole of [−1, T ].

It follows again from (DA5) that ãm = ã for all m ∈ N, so

Uãm
(t, 0)u0(0) → Uã(t, 0)u0(0)

holds trivially. We start by showing that, for each t ∈ [0, T ],

t∫

0

Uã(t, ζ)C
1
am

(ζ)um(ζ −Rm(ζ)) dζ →

t∫

0

Uã(t, ζ)C
1
a(ζ)ũ(ζ −R(ζ)) dζ. (5.5)

in the Lp(D)-norm as m → ∞. The above convergence can be proved by
showing convergence of the terms

t∫

0

Uã(t, ζ)C
1
am

(ζ)um(ζ −Rm(ζ)) dζ −

t∫

0

Uã(t, ζ)C
1
a(ζ)ũ(ζ −R(ζ)) dζ

=

t∫

0

Uã(t, ζ)C
1
am

(ζ)(um(ζ −Rm(ζ)) − ũ(ζ −R(ζ))) dζ

+

t∫

0

Uã(t, ζ)(C
1
am

(ζ) − C1
a(ζ))ũ(ζ −R(ζ)) dζ.

(5.6)

to zero. Write K
(i)
m (t), i = 1, 2, for the i-th term on the right-hand side of (5.6).

Regarding the convergence ofK
(1)
m (t) to zero, we show the (L((0, t)),B(Lp(D)))-mea-

surability, for all m ∈ N, of the integrand

[
(0, t) ∋ ζ 7→ Uã(t, ζ)C

1
am

(ζ)(um(ζ −Rm(ζ)) − ũ(ζ −R(ζ))) ∈ Lp(D)
]

in the same way as in the proof of the convergence of J
(2)
m (t) in Proposition 5.1.

The fact that for a.e. ζ ∈ (0, T ) we have that

Uã(t, ζ)C
1
am

(ζ)(um(ζ −Rm(ζ)) − ũ(ζ −R(ζ))) → 0
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in Lp(D) is due, in view of (DA6), to the uniform convergence of um to ũ on
[−1, T ] together with the estimate

‖Uã(t, ζ)C
1
am

(ζ)(um(ζ −Rm(ζ)) − ũ(ζ −R(ζ)))‖Lp(D)

≤MKeγT‖um(ζ −Rm(ζ)) − ũ(ζ −R(ζ))‖Lp(D).

The proof of the convergence of K
(2)
m (t) to zero is just a copy, word for word, of

the proof of the convergence of J
(3)
m (t) in Proposition 5.1.

Theorem 5.1.

(i) For any 0 < T1 ≤ T and R ∈ R the mapping

[
Y × C([−1, 0], Lp(D)) ∋ (a, u0)

7→ u(·; a, u0, R)↾[T1,T ]∈ C([T1, T ], Lp(D))
]

is continuous.

(ii) Under (DA5), if R0 ⊂ R is a subset such that the assumption (DA6)
holds then the mapping

[
Y × C([−1, 0], Lp(D)) ×R0 ∋ (a, u0, R)

7→ u(·; a, u0, R)↾[0,T ]∈ C([0, T ], Lp(D))
]

is continuous.

Proof. Fix 1 < p < ∞. We start by proving (i), so fix also T1, R as in the
statement. Let a sequence (am)∞m=1 ⊂ Y converge to a ∈ Y and (u0,m)∞m=1 ⊂
C([−1, 0], Lp(D)) converge to u0 ∈ C([−1, 0], Lp(D)). The main idea of the
proof is based on the estimation

‖u(·; am, u0,m, R)↾[T1,T ] − u(·; a, u0, R)↾[T1,T ]‖C([T1,T ],Lp(D))

≤ ‖u(·; am, u0,m, R)↾[T1,T ] − u(·; am, u0, R)↾[T1,T ]‖C([T1,T ],Lp(D))

+ ‖u(·; am, u0, R)↾[T1,T ] − u(·; a, u0, R)↾[T1,T ]‖C([T1,T ],Lp(D)).

(5.7)

Proposition 4.2 implies

‖u(·; am, u0,m, R)↾[T1,T ] − u(·; am, u0, R)↾[T1,T ]‖C([T1,T ],Lp(D))

≤M‖u0,m − u0‖C([−1,0],Lp(D)).

Therefore the first part of the right-hand side of (5.7) converges to zero as
m→ ∞. The second part of (5.7) converges to zero by Proposition 5.1. Item (ii)
can be proved similarly. So, assume additionally (DA5) and, instead of fixing
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the delay R ∈ R take a sequence (Rm)∞m=1 ⊂ R0 convergent to some R ∈ R0.
By similar estimation,

‖u(·; am, u0,m, Rm)↾[0,T ] − u(·; a, u0, R)↾[0,T ]‖C([0,T ],Lp(D))

≤ ‖u(·; am, u0,m, Rm)↾[0,T ] − u(·; am, u0, Rm)↾[0,T ]‖C([0,T ],Lp(D))

+ ‖u(·; am, u0, Rm)↾[0,T ] − u(·; a, u0, R)↾[0,T ]‖C([0,T ],Lp(D))

(5.8)

together with Propositions 4.2 and 5.2 concludes the proof.
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[29] O. A. Ladyzhenskaya [O. A. Ladyženskaja], V. A. Solonnikov and N. N.
Ural′tseva [N. N. Ural’ceva], “Linear and Quasilinear Equations of Parabolic
Type,” translated from the Russian by S. Smith, Transl. Math. Monogr., Vol.
23, American Mathematical Society, Providence, RI, 1967.

[30] Z. Lian and K. Lu, “Lyapunov Exponents and Invariant Manifolds for
Random Dynamical Systems in a Banach Space,” Mem. Amer. Math. Soc.
206 (2010), no. 967.

[31] R. H. Martin, Jr., and H. L. Smith, Abstract functional-differential equa-
tions and reaction-diffusion systems, Trans. Amer. Math. Soc. 321 (1990),
no. 1, 1–44.

[32] R. H. Martin, Jr., and H. L. Smith, Reaction-diffusion systems with time de-

lays: monotonicity, invariance, comparison and convergence, J. Reine Angew.
Math. 413 (1991), 1–35.
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