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2 Generations of random hypergraphs and random

simplicial complexes by the map algebra

Shiquan Ren

Abstract

We consider the random hypergraph on a finite vertex set by choos-

ing each set of vertices as an hyperedge independently at random. We

express the probability distributions of the (lower-)associated simplicial

complex and the (lower-)associated independence hypergraph of the ran-

dom hypergraph in terms of the probability distributions of certain ran-

dom simplicial complex and certain random independence hypergraph

of Erdös-Rényi type. We construct a graded structure of the map alge-

bra explicitly and give algorithms to generate random hypergraphs and

random simplicial complexes.
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1 Introduction

Let V be a finite vertex set. Let ∆[V ] be the collection of all the nonempty

subsets of V . Let p : ∆[V ] −→ [0, 1] be a function on ∆[V ] with values in the

unit interval. A hypergraph on V is a subset of ∆[V ]. A hypergraph is an

(abstract) simplicial complex if any nonempty subset of any hyperedge is still a

hyperedge in the hypergraph. For any simplicial complex K on V , an external

face of K is a nonempty subset σ of V such that σ /∈ K and τ ∈ K for any

proper subset τ of σ. Let E(K) be the set of all the external faces of K. We call

a hypergraph an independence hypergraph if any superset, which is a subset of

V , of any hyperedge is still a hyperedge in the hypergraph. The complement

of a simplicial complex in ∆[V ] is an independence hypergraph and vice versa.

For any independence hypergraph L on V , a co-external face of L is a subset

σ of V such that σ /∈ L and τ ∈ L for any proper superset τ of σ such that τ

a subset of V . Let Ē(L) be the set of all the co-external faces of L.

Let H be a hypergraph on V . The associated simplicial complex ∆H of

H is the smallest simplicial complex containing H (cf. [7, 9, 37]). The lower-

associated simplicial complex δH of H is the largest simplicial complex con-

tained in H (cf. [39]). We define the associated independence hypergraph ∆̄H
of H as the smallest independence hypergraph containing H and define the

lower-associated independence hypergraph δ̄H of H as the largest indepen-

dence hypergraph contained in H. Consider the random hypergraph whose
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probability is given by

P̄p(H) =
∏

σ∈H

p(σ)
∏

σ/∈H

(

1− p(σ)
)

,

where H is any hypergraph on V , the random simplicial complex whose prob-

ability is given by

Pp(K) =
∏

σ∈K

p(σ)
∏

σ∈E(K)

(

1− p(σ)
)

,

where K is any simplicial complex on V , and the random independence hyper-

graph whose probability is given by

Qp(L) =
∏

σ∈L

p(σ)
∏

σ∈Ē(L)

(

1− p(σ)
)

,

where L is any independence hypergraph on V . Note that P̄p, Pp and Qp are

well-defined probability functions, i.e.
∑

H

P̄p(H) =
∑

K

Pp(K) =
∑

L

Qp(L) = 1.

The summations are over all the hypergraphs on V , all the simplicial complexes

on V and all the independence hypergraphs on V respectively.

Theorem 1.1. Let H ∼ P̄p be a randomly generated hypergraph on V . Then

(1). the complement of H is a randomly generated hypergraph γH ∼ P̄1−p,

(2). the complement of the associated simplicial complex of H is a randomly

generated independence hypergraph γ∆H ∼ Q1−p,

(3). the complement of the associated independence hypergraph of H is a ran-

domly generated simplicial complex γ∆̄H ∼ P1−p,

(4). the lower-associated simplicial complex of H is a randomly generated sim-

plicial complex δH ∼ Pp,

(5). the lower-associated independence hypergraph of H is a randomly generated

independence hypergraph δ̄H ∼ Qp.

We will prove Theorem 1.1 in Section 3. In fact, Theorem 1.1 (1) follows

from Lemma 3.2, Theorem 1.1 (2), (3) follow from Corollary 3.6 (1), (2) respec-

tively, and Theorem 1.1 (4), (5) follow from Theorem 3.5 (3), (4) respectively.

As by-products, we have the following two corollaries.

Corollary 1.2. Let V ′ and V ′′ be two disjoint vertex sets. Let p′ : ∆[V ′] −→
[0, 1] and let p′′ : ∆[V ′′] −→ [0, 1]. Define p′ ∗ p′′ : ∆[V ′ ⊔ V ′′] −→ [0, 1] by

letting (p′ ∗ p′′)(σ) = p′(σ ∩ V ′)p′′(σ ∩ V ′′) for any σ ∈ ∆[V ′ ⊔ V ′′].

(1). Let H′ ∼ P̄p′ and H′′ ∼ P̄p′′ be randomly generated hypergraphs. Then

their join is a randomly generated hypergraph H′ ∗ H′′ ∼ P̄p′∗p′′ ;

(2). Let K′ ∼ Pp′ and K′′ ∼ Pp′′ be randomly generated simplicial complexes.

Then their join is a randomly generated simplicial complex K′ ∗ K′′ ∼
Pp′∗p′′ ;
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(3). Let L′ ∼ Qp′ and L′′ ∼ Qp′′ be randomly generated independence hyper-

graphs. Then their join is a randomly generated independence hypergraph

L′ ∗ L′′ ∼ Qp′∗p′′ .

Corollary 1.2 (1) follows from Lemma 3.4 and Corollary 1.2 (2), (3) follow

from Corollary 3.8 (1), (2) respectively.

Corollary 1.3. Let p′, p′′ : ∆[V ] −→ [0, 1]. Define p′ ∩ p′′, p′ ∪ p′′ : ∆[V ] −→
[0, 1] by letting (p′ ∩ p′′)(σ) = p′(σ)p′′(σ) and (p′ ∪ p′′)(σ) = 1− (1− p′(σ))(1−
p′′(σ)) for any σ ∈ ∆[V ].

(1). Let H′ ∼ P̄p′ and let H′′ ∼ P̄p′′ . Then their intersection is a randomly

generated hypergraph H′ ∩ H′′ ∼ P̄p′∩p′′ and their union is a randomly

generated hypergraph H′ ∪H′′ ∼ P̄p′∪p′′ ;

(2). Let K′ ∼ Pp′ and let K′′ ∼ Pp′′ . Then their intersection is a randomly

generated simplicial complex K′ ∩ K′′ ∼ Pp′∩p′′ ;

(3). Let L′ ∼ Qp′ and let L′′ ∼ Qp′′ . Then their intersection is a randomly

generated independence hypergraph L′ ∩ L′′ ∼ Qp′∩p′′ .

Corollary 1.3 (1) follows from [38, Lemma 4.5] (Lemma 3.3) and Corol-

lary 1.3 (2), (3) follow from Corollary 3.7 (1), (2) respectively.

The generation of random hypergraphs as well as random simplicial com-

plexes is useful in computer science (for example, [2]). The map algebra on the

space of random sub-hypergraphs of a fixed simplicial complex was initially

studied by C. Wu, J. Wu and the present author [38]. In Section 4 of this pa-

per, we consider the map algebra on the space of random sub-hypergraphs of

the complete complex ∆[V ]. By considering the compositions of ∆, ∆̄, δ, δ̄, γ,

the intersections, the unions, the joins and the products, we construct a graded

structure of the map algebra in (4.1). We consider the action of the map alge-

bra on the random hypergraph H ∼ P̄p, the random simplicial complex K ∼ Pp

and the random independence hypergraph L ∼ Qp in (4.2). Using the graded

structure in (4.2), we give some algorithms generating random hypergraphs,

random simplicial complexes and random independence hypergraphs. Each

element in (4.2) will randomly generate a hypergraph and each element of cer-

tain particular forms will generate a random simplicial complex or a random

independence hypergraph.

1.1 Literature review on random simplicial complexes

Let V be a vertex set of cardinality N . Denote ∆[V ] as ∆N . Let skr(∆N ) be the

r-skeleton of ∆N , 0 ≤ r ≤ N − 1. Consider the space Ωr
N consisting of all sub-

complexes K of skr(∆N ). Consider the probability function Pr,N,p : Ωr
N −→ R

given by

Pr,N,p(K) =
∏

σ∈K

p(σ)
∏

σ∈E(K)

(

1− p(σ)
)

,

where p = (p0, p1, . . . , pr), 0 ≤ p0, p1, . . . , pr ≤ 1 are constants, and p(σ) = pi
for any i-simplex σ ∈ skr(∆N ), 0 ≤ i ≤ r. This model Pr,N,p was given by A.

Costa and M. Farber in [15, 16, 19]. The connectivity, the fundamental group,
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the dimension, and the Betti number of the random simplicial complex with

the probability Pr,N,p have been studied by A. Costa and M. Farber in [15–19].

In particular, let 0 ≤ p ≤ 1 be a constant. The followings are special cases of

Pr,N,p:

(1). P1,N,p with p = (1, p) is the Erdös-Rényi model G(N, p). P. Erdös

and A. Rényi [20] and E.N. Gilbert [23] constructed the Erdös-Rényi model

G(N, p) by choosing each pair of vertices in V as an edge independently at

random with probability p. Thresholds for the connectivity of G(N, p) were

proved by P. Erdös and A. Rényi in [21].

(2). P2,N,p with p = (1, 1, p) is the Linial-Meshulam model Y2(N, p). N.

Linial and R. Meshulam [33] constructed a random 2-complex Y2(N, p) by tak-

ing the complete graph on V as the 1-skeleton and then choosing each 2-simplex

independently at random with probability p. The fundamental group, the ho-

mology groups, and the asphericity as well as the hyperbolicity of Y2(N, p) were

respectively studied in [5], [10, 11], and [12, 13].

(3). Pd,N,p with p = (1, . . . , 1, p) is the Meshulam-Wallach model Yd(N, p).

R. Meshulam and N. Wallach [35] constructed a random d-complex Yd(N, p)

by taking the (d−1)-skeleton of the complete complex on V and then choosing

each d-simplex independently at random with probability p. The (co)homology

groups, the phase transition of the homology groups, the eigenvalues of the

Laplacian, the collapsibility and the topological minor were respectively studied

in [4, 27, 31, 32], [34], [24], [3, 4] and [25].

(4). PN−1,N,p with p = (1, p, 1, . . . , 1) is the random flag complex (ran-

dom clique complex) X(N, p) of G(N, p). This random simplicial complex was

studied by M. Kahle in [28,30] and A. Costa, M. Farber and D. Horak in [14].

Sharp vanishing thresholds for the cohomology of X(N, p) were proved by M.

Kahle in [30].

(5). P2,N,p with p = (p0, p1, p2) was considered by M. Farber and T.

Nowik in [22]. The multi-parameter threshold for the property that every 2-

dimensional simplicial complex admits a topological embedding into the P2,N,p-

generated random 2-complex asymptotically almost surely was established.

2 Simplicial models for hypergraphs

2.1 Hypergraphs and simplicial complexes

Let V be a finite set with a total order ≺. The elements of V are called vertices.

Let 2V be the power set of V . Let ∆[V ] = 2V \{∅}. For any nonnegative integer

n and any distinct vertices v0, v1, . . . , vn ∈ V such that v0 ≺ v1 ≺ · · · ≺ vn, we

call the set σ = {v0, v1, . . . , vn} an n-hyperedge on V . Let σ be an n-hyperedge

on V . The subset closure ∆σ of σ is an n-dimensional simplicial complex whose

set of simplices consists of all the non-empty subsets of σ. The superset closure

∆̄σ of σ is (∆[V ] \ ∆σ) ∪ σ, in other words, ∆̄σ consists of all the supersets

τ ⊇ σ such that τ ⊆ V . Note that ∆σ does not depend on the choice of V

while ∆̄σ depends on the choice of V .

Definition 2.1. [6, 9, 37] A hypergraph H on V is a collection of hyperedges

on V . In particular,
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(1). H is an (abstract) simplicial complex if τ ∈ H for any σ ∈ H and any

nonempty subset τ ⊆ σ. A hyperedge of a simplicial complex is called a

simplex (cf. [26, 36]);

(2). H is called an independence hypergraph if τ ∈ H for any σ ∈ H and any

superset τ ⊇ σ with τ ⊆ V .

Let H be a hypergraph on V .

Definition 2.2. The complement of H is a hypergraph on V given by

γH = {σ ∈ ∆[V ] | σ /∈ H}.

By Definition 2.2, γH is a simplicial complex (resp. an independence hy-

pergraph) iff H is an independence hypergraph (resp. a simplicial complex).

Note that γ2 = id.

Definition 2.3. The associated simplicial complex (cf. [7, 9, 37]) is

∆H =
⋃

σ∈H

∆σ,

which is the smallest simplicial complex containing H. The lower-associated

simplicial complex is (cf. [39])

δH =
⋃

∆σ⊆H

{σ},

which is the largest simplicial complex contained in H. The associated inde-

pendence hypergraph is

∆̄H =
⋃

σ∈H

∆̄σ,

which is the smallest independence hypergraph containing H. The lower-

associated independence hypergraph is

δ̄H =
⋃

∆̄σ⊆H

{σ},

which is the largest independence hypergraph contained in H.

By Definition 2.3, we have a diagram

δH
iδ

!!
❇❇

❇❇
❇❇

❇❇
∆H

H

i∆

==④④④④④④④④

i∆̄

!!
❈❈

❈❈
❈❈

❈❈

δ̄H

iδ̄
>>⑤⑤⑤⑤⑤⑤⑤

∆̄H

such that each arrow is a canonical inclusion of hypergraphs.

Lemma 2.1. ∆̄ = γδγ and δ̄ = γ∆γ.
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Proof. For any hypergraph H on V , we have

γ∆̄γH = {σ ∈ ∆[V ] | σ /∈ ∆̄γH}

= {σ ∈ ∆[V ] | σ 6⊇ τ for any τ ∈ γH}

= {σ ∈ ∆[V ] | σ 6⊇ τ for any τ /∈ H, where τ ∈ ∆[V ]}

= {σ ∈ ∆[V ] | τ ∈ H for any τ ⊆ σ, where τ ∈ ∆[V ]}

= δH.

Therefore, ∆̄ = γδγ. Moreover, For any hypergraph H on V , we have

γ∆γH = {σ ∈ ∆[V ] | σ /∈ ∆γH}

= {σ ∈ ∆[V ] | σ 6⊆ τ for any τ ∈ γH}

= {σ ∈ ∆[V ] | σ 6⊆ τ for any τ /∈ H, where τ ∈ ∆[V ]}

= {σ ∈ ∆[V ] | τ ∈ H for any τ ⊇ σ, where τ ∈ ∆[V ]}

= δ̄H.

Therefore, δ̄ = γ∆γ.

By [38, Subsection 2.1] and Lemma 2.1, the following relations among γ, ∆,

δ, ∆̄ and δ̄ hold: (1). γ2 = id, (2). ∆̄ = γδγ and δ̄ = γ∆γ, (3). ∆δ = δ, ∆̄δ̄ = δ̄,

δ∆ = ∆ and δ̄∆̄ = ∆̄, (4). ∆2 = ∆, ∆̄2 = ∆̄, δ2 = δ and δ̄2 = δ̄, (5). (δ∆̄)2 =

(δγδγ)2 = δγδγ = δ∆̄, (∆̄δ)2 = (γδγδ)2 = γδγδ = ∆̄δ, (∆δ̄)2 = (∆γ∆γ)2 =

∆γ∆γ = ∆δ̄ and (δ̄∆)2 = (γ∆γ∆)2 = γ∆γ∆ = δ̄∆. Moreover, since the

associated simplicial complex of any nonempty independence hypergraph is

∆[V ], we have

∆∆̄(H) =

{

∆[V ], H 6= ∅,

∅, H = ∅,

∆δ̄(H) =

{

∆[V ], {V } ∈ H,

∅, {V } /∈ H.

Thus the following relations hold as well: (6). ∆2∆̄ = ∆̄∆∆̄ = δ∆∆̄ = δ̄∆∆̄ =

∆∆̄ and ∆2δ̄ = ∆̄∆δ̄ = δ∆δ̄ = δ̄∆δ̄ = ∆δ̄.

Let H and H′ be two hypergraphs on V . We have the following observations:

(i). γ(H ∩H′) = γH ∪ γH′, γ(H ∪H′) = γH ∩ γH′,

(ii). ∆(H ∩H′) ⊆ ∆H ∩∆H′, ∆(H ∪H′) = ∆H ∪∆H′,

(iii). δ(H ∩H′) = δH ∩ δH′, δ(H ∪H′) ⊇ δH ∪ δH′,

(iv). ∆̄(H ∩H′) ⊆ ∆̄H ∩ ∆̄H′, ∆̄(H ∪H′) = ∆̄H ∪ ∆̄H′,

(v). δ̄(H ∩H′) = δ̄H ∩ δ̄H′, δ̄(H ∪H′) ⊇ δ̄H ∪ δ̄H′.

If both H and H′ are simplicial complexes (resp. independence hypergraphs),

then both H ∩ H′ and H ∪ H′ are simplicial complexes (resp. independence

hypergraphs).

Let σ = {v0, v1, . . . , vn} be an n-hyperedge on V and let τ = {u0, u1, . . . , um}
be an m-hyperedge on V ′. The box product σ�τ is an (mn+m+n+1)-hyperedge

σ�τ = {(v, u) | v ∈ σ, u ∈ τ} (2.1)
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on the Cartesian product V × V ′. The right-hand side of (2.1) is up to a rear-

rangement of the vertices with respect to the lexicographic order. In addition,

suppose V ∩ V ′ = ∅. The join σ ∗ τ is an (n+m+ 1)-hyperedge

σ ∗ τ = {v0, v1, . . . , vn, u0, u1, . . . , um} (2.2)

on the disjoint union V ⊔ V ′, where the right-hand side of (2.2) is with respect

to the total order on V ⊔ V ′ given by v ≺ v′ for any v ∈ V and any v′ ∈ V ′.

We observe

∆(σ ∗ τ) = (∆σ) ∗ (∆τ),

∆̄(σ ∗ τ) = (∆̄σ) ∗ (∆̄τ),

where the associated independence hypergraphs of σ ∗ τ , σ and τ are taken

with respect to V ⊔ V ′, V and V ′ respectively.

Definition 2.4. Let V and V ′ be two finite sets. Let H be a hypergraph on

V and let H′ be a hypergraph on V ′.

(1). We define the box product of H and H′ as

H�H′ = {σ�σ′ | σ ∈ H, σ′ ∈ H′}.

Then H�H′ is a hypergraph on V × V ′;

(2). Suppose in addition V ∩ V ′ = ∅. We define the join of H and H′ as

H ∗H′ = {σ ∗ σ′ | σ ∈ H and σ′ ∈ H′} ∪ H ∪H′.

Then H ∗H′ is a hypergraph on V ⊔ V ′.

By Definition 2.4, we observe the followings:

(i)’. ∆(H ∗H′) = ∆H ∗∆H′,

(ii)’. δ(H ∗H′) = δH ∗ δH′,

(iii)’. ∆̄(H ∗H′) = ∆̄H ∗ ∆̄H′,

(iv)’. δ̄(H ∗H′) = δ̄H ∗ δ̄H′,

(v)’. H1 ∗ (H2 ∪H3) = (H1 ∗ H2) ∪ (H1 ∗ H3),

(vi)’. H1 ∗ (H2 ∩H3) = (H1 ∗ H2) ∩ (H1 ∗ H3),

(vii)’. H1�(H2 ∪H3) = (H1�H2) ∪ (H1�H3),

(viii)’. H1�(H2 ∩H3) = (H1�H2) ∩ (H1�H3),

(ix)’. H1�(H2 ∗ H3) = (H1�H2) ∗ (H1�H3),

where ∆̄ and δ̄ on the left-hand sides are with respect to V ⊔ V ′ while ∆̄ and

δ̄ on the right-hand sides are with respect to V and V ′.

Let K be a simplicial complex on V and let K′ be a simplicial complex

on V ′. Then K ∗ K′ is a simplicial complex on V ⊔ V ′ and both ∆(K�K′)

and δ(K�K′) are simplicial complexes on V × V ′. Let L be an independence

hypergraph on V and let L′ be an independence hypergraph on V ′. Then L∗L′

is an independence hypergraph on V ⊔V ′ and both ∆̄(L�L′) and δ̄(L�L′) are

independence hypergraphs on V × V ′.
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Example 2.1. Let V = {v0, v1} and let V ′ = {v′0, v
′
1, v

′
2, v

′
3}. Let H =

{{v0}, {v0, v1}} be a hypergraph on V and let H′ = {{v′0, v
′
1}, {v

′
0, v

′
1, v

′
2}} be a

hypergraph on V ′. Let v0 ≺ v1 ≺ v′0 ≺ v′1 ≺ v′2 ≺ v′3. Then

H ∗H′ = {{v0}, {v0, v1}, {v
′
0, v

′
1}, {v

′
0, v

′
1, v

′
2}, {v0, v

′
0, v

′
1},

{v0, v
′
0, v

′
1, v

′
2}, {v0, v1, v

′
0, v

′
1}, {v0, v1, v

′
0, v

′
1, v

′
2}}

is a hypergraph on V ⊔ V ′ and

H�H′ = {{(v0, v
′
0), (v0, v

′
1)}, {(v0, v

′
0), (v0, v

′
1), (v0, v

′
2)},

{(v0, v
′
0), (v0, v

′
1), (v1, v

′
0), (v1, v

′
1)},

{(v0, v
′
0), (v0, v

′
1), (v0, v

′
2), (v1, v

′
0), (v1, v

′
1), (v1, v

′
2)}}

is a hypergraph on V × V ′. Moreover,

(1). ∆H = {{v0}, {v1}, {v0, v1}}, δH = {{v0}}, ∆̄H = δ̄H = H,

(2). ∆H′ = {{v′0}, {v
′
1}, {v

′
2}, {v

′
0, v

′
1}, {v

′
0, v

′
2}, {v

′
1, v

′
2}, {v

′
0, v

′
1, v

′
2}}, δH′ =

∅, ∆̄H′ = {{v′0, v
′
1}, {v

′
0, v

′
1, v

′
2}, {v

′
0, v

′
1, v

′
2, v

′
3}}, δ̄H

′ = ∅,

(3). ∆H ∗ ∆H′ = ∆{v0, v1, v′0, v
′
1, v

′
2}, δH ∗ δH′ = {{v0}}, ∆̄H ∗ ∆̄H′ =

{{v0, v′0, v
′
1}, {v0, v

′
0, v

′
1, v

′
2}, {v0, v

′
0, v

′
1, v

′
2, v

′
3}, {v0, v1, v

′
0, v

′
1},

{v0, v1, v
′
0, v

′
1, v

′
2}, {v0, v1, v

′
0, v

′
1, v

′
2, v

′
3}} ∪ H ∪H′, δ̄H ∗ δ̄H′ = H.

2.2 Morphisms of hypergraphs and simplicial maps

Let V and V ′ be two finite sets. Let H be a hypergraph on V and let H′

be a hypergraph on V ′. A morphism f : H −→ H′ of hypergraphs is a map

f : V −→ V ′ such that for any hyperedge σ = {v0, v1, . . . , vn} in H, its

image f(σ) is a hyperedge in H′ spanned by the (not necessarily distinct)

vertices f(v0), f(v1), . . ., f(vn). Let K be a simplicial complex on V and

let K′ be a simplicial complex on V ′. We call a morphism f : K −→ K′ a

simplicial map. Let L be an independence hypergraph on V and let L′ be an

independence hypergraph on V ′. We call a morphism f : L −→ L′ a morphism

of independence hypergraphs.

Let f : H −→ H′ be a morphism of hypergraphs. Then f canonically

induces two simplicial maps

∆f : ∆H −→ ∆H′,

δf : δH −→ δH′

and two morphisms of independence hypergraphs

∆̄f : ∆̄H −→ ∆̄H′,

δ̄f : δ̄H −→ δ̄H′.

We have the following naturalities:

(1). The canonical inclusions i∆ and iδ are natural. That is, for any mor-

phism f : H −→ H′ we have the commutative diagrams

H

i∆

��

f
// H′

i′∆
��

∆H
∆f

// ∆H′,

H

iδ
��

f
// H′

i′δ
��

δH
δf

// δH′.

8



(2). The join of hypergraphs is natural. That is, for any two morphisms

f : H1 −→ H2 and f ′ : H′
1 −→ H′

2, we have a canonical induced morphism

f ∗ f ′ : H1 ∗H
′
1 −→ H2 ∗H

′
2 such that (f ∗ f ′) |H1= f , (f ∗ f ′) |H′

1
= f ′ and for

any σ ∈ H1 and any σ′ ∈ H′
1, the join σ ∗σ′ in H1 ∗H′

1 is sent to the hyperedge

f(σ) ∗ f ′(σ′) in H2 ∗ H′
2. The followings are direct

∆(f ∗ f ′) = ∆f ∗∆f ′, δ(f ∗ f ′) = δf ∗ δf ′,

∆̄(f ∗ f ′) = ∆̄f ∗ ∆̄f ′, δ̄(f ∗ f ′) = δ̄f ∗ δ̄f ′,

where ∆̄ and δ̄ on the left-hand sides are with respect to V ⊔ V ′ while ∆̄ and

δ̄ on the right-hand sides are with respect to V and V ′.

(3). The box product of hypergraphs is natural. That is, for any two

morphisms f : H1 −→ H2 and f ′ : H′
1 −→ H′

2, we have a canonical induced

morphism f�f ′ : H1�H′
1 −→ H2�H′

2 sending σ�σ′ to f(σ)�f ′(σ′).

3 Random hypergraphs and random simplicial

complexes

3.1 General random hypergraphs and random simplicial

complexes

Let H(V ) be the category whose objects are hypergraphs on V and whose

morphisms are morphisms of hypergraphs. Let K(V ) be the category whose

objects are simplicial complexes on V and whose morphisms are simplicial

maps. Let L(V ) be the category whose objects are independence hypergraphs

on V and whose morphisms are morphisms of independence hypergraphs. Both

K(V ) and L(V ) are full subcategories of H(V ).

A random hypergraph (resp. random simplicial complex and random in-

dependence hypergraph) on V is a probability function on Obj(H(V )) (resp.

Obj(K(V )) and Obj(L(V ))). Let D(H(V )) (resp. D(K(V )) and D(L(V )))

be the functional space of all the probability functions on Obj(H(V )) (resp.

Obj(K(V )) and Obj(L(V ))). For any map

f : H(V ) −→ H(V )

there is an induced map

Df : D(H(V )) −→ D(H(V ))

given by

(Df)(ϕ)(H) =
∑

f(H′)=H

ϕ(H′),

where ϕ ∈ D(H(V )) and H,H′ ∈ Obj(H(V )). Let f be ∆, δ, ∆̄ and δ̄ respec-

tively. We have the induced maps

D∆, Dδ : D(H(V )) −→ D(K(V )),

D∆̄, Dδ̄ : D(H(V )) −→ D(L(V )).
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Moreover, for any map µ : Obj(H(V ))×Obj(H(V )) −→ Obj(H(V )) there

is an induced map

Dµ : D(H(V ))×D(H(V )) −→ D(H(V ))

given by

Dµ(ϕ′, ϕ′′)(H) =
∑

µ(H′,H′′)=H

ϕ′(H′)ϕ′′(H′′),

where ϕ′, ϕ′′ ∈ D(H(V )) and H,H′,H′′ ∈ Obj(H(V )). Let µ(H′,H′′) be H′ ∩
H′′ and H′ ∪H′′ respectively. We obtain the induced maps

D∩, D∪ : D(H(V ))×D(H(V )) −→ D(H(V )).

The restrictions of D∩ and D∪ give the maps

D∩, D∪ : D(K(V ))×D(K(V )) −→ D(K(V )),

D∩, D∪ : D(L(V ))×D(L(V )) −→ D(L(V )).

Furthermore, let V ′ and V ′′ be two finite sets. Then the box product

� : Obj(H(V ′))×Obj(H(V ′′)) −→ Obj(H(V ′ × V ′′))

sending (H′,H′′) to H′
�H′′ induces a map

D� : D(H(V ′))×D(H(V ′′)) −→ D(H(V ′ × V ′′))

given by

(D�)(ϕ′, ϕ′′)(H) =
∑

H′�H′′=H

ϕ′(H′)ϕ′′(H′′). (3.1)

Here in (3.1), we take ϕ′ ∈ D(H(V ′)), ϕ′′ ∈ D(H(V ′′)), H′ ∈ Obj(H(V ′)),

H′′ ∈ Obj(H(V ′′)) and H ∈ Obj(H(V ′×V ′′)). Suppose in addition V ′∩V ′′ =

∅. Then the join

∗ : Obj(H(V ′))×Obj(H(V ′′)) −→ Obj(H(V ′ ⊔ V ′′))

sending (H′,H′′) to H′ ∗ H′′ induces a map

D∗ : D(H(V ′))×D(H(V ′′)) −→ D(H(V ′ ⊔ V ′′))

given by

(D∗)(ϕ′, ϕ′′)(H) =
∑

H′∗H′′=H

ϕ′(H′)ϕ′′(H′′). (3.2)

Here in (3.2), we take ϕ′ ∈ D(H(V ′)), ϕ′′ ∈ D(H(V ′′)), H′ ∈ Obj(H(V ′)),

H′′ ∈ Obj(H(V ′′)) and H ∈ Obj(H(V ′ ⊔ V ′′)).

Lemma 3.1. (1). (D∪)(D∆, D∆) = (D∆)(D∪) and (D∪)(D∆̄, D∆̄) = (D∆̄)(D∪),

(2). (D∩)(Dδ,Dδ) = (Dδ)(D∩) and (D∩)(Dδ̄,Dδ̄) = (Dδ̄)(D∩);
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(3). (D∗)(D∆, D∆) = (D∆)(D∗), (D∗)(Dδ,Dδ) = (Dδ)(D∗), (D∗)(D∆̄, D∆̄) =

(D∆̄)(D∗) and (D∗)(Dδ̄,Dδ̄) = (Dδ̄)(D∗).

Proof. For any ϕ′, ϕ′′ ∈ D(H(V )) and any K ∈ K(V ), with the help of Sub-

section 2.1 (ii),

(D∪)(D∆, D∆)(ϕ′, ϕ′′)(K) =
∑

K′∪K′′=K

(

(D∆)(ϕ′)(K′)
)(

(D∆)(ϕ′′)(K′′)
)

=
∑

K′∪K′′=K

(

∑

∆H′=K′

ϕ′(H′)
)(

∑

∆H′′=K′′

ϕ′′(H′′)
)

=
∑

∆H′∪∆H′′=K

ϕ′(H′)ϕ′′(H′′)

=
∑

∆(H′∪H′′)=K

ϕ′(H′)ϕ′′(H′′)

=
∑

∆H=K

∑

H′∪H′′=H

ϕ′(H′)ϕ′′(H′′)

= (D∆)(D∪)(ϕ′, ϕ′′)(K).

We obtain (D∪)(D∆, D∆) = (D∆)(D∪). Other identities can be proved

analogously. The second identity in (1) is proved with the help of Subsec-

tion 2.1 (iv). The two identities in (2) are respectively proved with the help of

Subsection 2.1 (iii) and (v). The identities in (3) are proved with the help of

Subsection 2.1 (i)’ - (iv)’.

3.2 Random hypergraphs and random simplicial complexes

of Erdös-Rényi type

Let p : ∆[V ] −→ [0, 1]. Let K be a simplicial complex on V . An external face

of K is a hyperedge σ ∈ ∆[V ] such that σ /∈ K and τ ∈ K for any nonempty

proper subset τ ( σ. Let E(K) be the collection of all the external faces of

K. Let L be an independence hypergraph on V . A co-external face of L is a

hyperedge σ ∈ ∆[V ] such that σ /∈ L and τ ∈ L for any proper superset τ ) σ,

where τ ∈ ∆[V ]. Let Ē(L) be the collection of all the co-external faces of L.

(1). Consider the Erdös-Rényi-type model P̄p of random hypergraphs given

by

P̄p(H) =
∏

σ∈H

p(σ)
∏

σ/∈H

(

1− p(σ)
)

for any H ∈ Obj(H(V )). We choose each element σ ∈ ∆[V ] to be a hyperedge

of H independently at random with probability p(σ). This randomly generated

hypergraph H satisfies the probability distribution P̄p, written H ∼ P̄p.

(2). Consider the Erdös-Rényi-type model Pp of random simplicial com-

plexes given by

Pp(K) =
∏

σ∈K

p(σ)
∏

σ∈E(K)

(

1− p(σ)
)

,

where K ∈ Obj(K(V )). We generate the 0-skeleton of K by choosing each 0-

hyperedge {v} ∈ ∆[V ] independently at random with probability p({v}). For
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any nonnegative integer k, once the k-skeleton of K is randomly generated, we

generate the (k + 1)-skeleton of K by choosing each external (k + 1)-face σ

of the k-skeleton of K independently at random with probability p(σ). By an

induction on k, the final randomly generated simplicial complex K satisfies the

probability distribution Pp, written K ∼ Pp.

(3). Consider the Erdös-Rényi-type model Qp of random independence

hypergraphs given by

Qp(L) =
∏

σ∈L

p(σ)
∏

σ∈Ē(L)

(

1− p(σ)
)

,

where L ∈ Obj(L(V )). We choose the (|V |−1)-hyperedge V ∈ ∆[V ] at random

with probability p(V ) to be a hyperedge of L. Once all the i-hyperedges,

i = k + 1, k + 2, . . . , |V | − 1, of L are randomly generated, we generate the

k-hyperedges of L by choosing each co-external face σ of the collection of all

the (k + 1)-hyperedges of L independently at random with probability p(σ).

By an induction on k in reverse, The final randomly generated independence

hypergraph L satisfies the probability distribution Qp, written L ∼ Qp.

Lemma 3.2. (cf. [38, Lemma 4.4]). (Dγ)(P̄p) = P̄1−p.

Lemma 3.3. (cf. [38, Lemma 4.5]). Let p′, p′′ : ∆[V ] −→ [0, 1]. Write (p′ ∩
p′′)(σ) = p′(σ)p′′(σ) and (p′ ∪ p′′)(σ) = 1 − (1 − p′(σ))(1 − p′′(σ)) for any

σ ∈ ∆[V ]. Then (D∩)(P̄p′ , P̄p′′) = P̄p′∩p′′ and (D∪)(P̄p′ , P̄p′′) = P̄p′∪p′′ . In

other words, if H′ ∼ P̄p′ and H′′ ∼ P̄p′′ , then H′∩H′′ ∼ P̄p′∩p′′ and H′∪H′′ ∼
P̄p′∪p′′ .

Lemma 3.4. Let V ′ and V ′′ be two disjoint vertex sets. Let p′ : ∆[V ′] −→ [0, 1]

and p′′ : ∆[V ′′] −→ [0, 1]. Write (p′ ∗ p′′)(σ) = p′(σ ∩ V ′)p′′(σ ∩ V ′′) for any

σ ∈ ∆[V ′ ⊔ V ′′]. Then (D∗)(P̄p′ , P̄p′′) = P̄p′∗p′′ . In other words, if H′ ∼ P̄p′

and H′′ ∼ P̄p′′ , then H′ ∗ H′′ ∼ P̄p′∗p′′ .

Proof. Consider the following two independent trials: (1). generate H′, (2).

generate H′′. Then for any σ ∈ ∆[V ′ ⊔ V ′′], both of the followings hold:

(1). σ ∈ H′ ∗ H′′ iff both (σ ∩ V ′) ∈ H′ in trial (1) and (σ ∩ V ′′) ∈ H′′ in

trial (2). Thus the event σ ∈ H′ ∗ H′′ is the product event of the two

independent events (σ ∩ V ′) ∈ H′ and (σ ∩ V ′′) ∈ H′′. This event has the

probability p′(σ ∩ V ′)p′′(σ ∩ V ′′);

(2). σ /∈ H′∗H′′ iff either (σ∩V ′) /∈ H′ in trial (1) or (σ∩V ′′) /∈ H′′ in trial (2).

Thus the event σ /∈ H′ ∗H′′ has the probability 1− p′(σ ∩ V ′)p′′(σ ∩ V ′′).

Therefore, H′ ∗H′′ is the randomly generated hypergraph on V ′⊔V ′′ satisfying

the probability distribution P̄p′∗p′′ .

Theorem 3.5. For any H ∈ Obj(H(V )), any K ∈ Obj(K(V )) and any L ∈
Obj(L(V )),

(1).
(

(D∆)(P̄p)
)

(K) = Q1−p(γK),

(2).
(

(D∆̄)(P̄p)
)

(L) = P1−p(γL),

(3).
(

(Dδ)(P̄p)
)

(K) = Pp(K),
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(4).
(

(Dδ̄)(P̄p)
)

(L) = Qp(L).

We will prove Theorem 3.5 in the next subsection. The following corollary

is a restatement of Theorem 3.5 (1) and (2).

Corollary 3.6. For any H ∈ Obj(H(V )), any K ∈ Obj(K(V )) and any L ∈
Obj(L(V )),

(1).
(

(Dγ)(D∆)(P̄p)
)

(L) = Q1−p(L),

(2).
(

(Dγ)(D∆̄)(P̄p)
)

(K) = P1−p(K).

The following two corollaries follow from Theorem 3.5.

Corollary 3.7. Let p′, p′′ : ∆[V ] −→ [0, 1]. Then

(1). (D∩)(Pp′ ,Pp′′) = Pp′∩p′′ ,

(2). (D∩)(Qp′ ,Qp′′) = Qp′∩p′′ .

Proof. By Lemma 3.1, Lemma 3.3 and Theorem 3.5,

(D∩)(Pp′ ,Pp′′) = (D∩)(Dδ,Dδ)(P̄p′ , P̄p′′)

= (Dδ)(D∩)(P̄p′ , P̄p′′)

= (Dδ)(P̄p′∩p′′)

= Pp′∩p′′

and

(D∩)(Qp′ ,Qp′′) = (D∩)(Dδ̄,Dδ̄)(P̄p′ , P̄p′′)

= (Dδ̄)(D∩)(P̄p′ , P̄p′′)

= (Dδ̄)(P̄p′∩p′′)

= Qp′∩p′′ .

Corollary 3.8. Let V ′ and V ′′ be two disjoint vertex sets. Let p′ : ∆[V ′] −→
[0, 1] and p′′ : ∆[V ′′] −→ [0, 1]. Then

(1). (D∗)(Pp′ ,Pp′′) = Pp′∗p′′ ,

(2). (D∗)(Qp′ ,Qp′′) = Qp′∗p′′ .

Proof. By Lemma 3.1, Lemma 3.4 and Theorem 3.5,

(D∗)(Pp′ ,Pp′′) = (D∗)(Dδ,Dδ)(P̄p′ , P̄p′′)

= (Dδ)(D∗)(P̄p′ , P̄p′′)

= (Dδ)(P̄p′∗p′′)

= Pp′∗p′′

and

(D∗)(Qp′ ,Qp′′) = (D∗)(Dδ̄,Dδ̄)(P̄p′ , P̄p′′)

= (Dδ̄)(D∗)(P̄p′ , P̄p′′)

= (Dδ̄)(P̄p′∗p′′ )

= Qp′∗p′′ .
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3.3 Proof of Theorem 3.5

Consider a map p : ∆[V ] −→ [0, 1]. For any hypergraph H on V and any

hyperedge σ ∈ H, we call σ a maximal hyperedge of H if there does not exist

any τ ∈ H such that σ ( τ and call σ a minimal hyperedge of H if there does

not exist any τ ∈ H such that σ ) τ . Let max(H) be the collection of all the

maximal hyperedges of H and let min(H) be the collection of all the minimal

hyperedges of H.

Lemma 3.9. (cf. [38, Theorem 1.5 (2)]). For any simplicial complex K on V ,

(

(D∆)(P̄p)
)

(K) =
∏

τ∈max(K)

p(τ)
∏

τ∈∆[V ]
τ /∈K

(

1− p(τ)
)

. (3.3)

The proof of Lemma 3.9 is in [38, Lemma 4.2].

Lemma 3.10. For any independence hypergraph L on V ,
(

(D∆̄)(P̄p)
)

(L) =
∏

τ∈min(L)

p(τ)
∏

τ∈∆[V ]
τ /∈L

(

1− p(τ)
)

. (3.4)

Proof. Let L be an independence hypergraph on V . Let S = {σ1, σ2, . . . , σs}
be any set (allowed to be the emptyset) of distinct hyperedges in L such that

for each σi, i = 1, 2, . . . , s, there exists τ ∈ min(L) such that σi ) τ . Suppose

S runs over all such sets of hyperedges in L. Then H = min(L) ⊔ S runs over

all the hypergraphs on V such that ∆̄H = L. Consequently,
(

(D∆̄)(P̄p)
)

(L) =
∑

∆̄H=L

P̄p(H)

=
∑

∆̄H=L

∏

σ∈H

p(σ)
∏

σ/∈H

(

1− p(σ)
)

=
∑

H=min(L)⊔S

∏

σ∈H

p(σ)
∏

σ∈∆[V ]
σ/∈H

(

1− p(σ)
)

=
∏

σ∈min(L)

p(σ)
∏

σ∈∆[V ]
σ/∈L

(

1− p(σ)
)

(

∑

S⊆L\min(L)

∏

σ∈S

p(σ)
∏

σ∈L\min(L)
σ/∈S

(

1− p(σ)
)

)

=
∏

σ∈min(L)

p(σ)
∏

σ∈∆[V ]
σ/∈L

(

1− p(σ)
)

∏

σ∈L\min(L)

(

p(σ) +
(

1− p(σ)
)

)

=
∏

τ∈min(L)

p(τ)
∏

τ∈∆[V ]
τ /∈L

(

1− p(τ)
)

. (3.5)

We obtain (3.4).

Lemma 3.11. For any simplicial complex K on V ,
(

(Dδ)(P̄p)
)

(K) =
∏

τ∈min(γK)

(

1− p(τ)
)

∏

τ∈K

p(τ).
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Proof. By a direct calculation,

(

(Dδ)(P̄p)
)

(K) =
(

(Dγ) ◦ (D∆̄) ◦ (Dγ)(P̄p)
)

(K)

=
∑

γL=K

(D∆̄ ◦Dγ)(P̄p)(L)

=
∑

γL=K

∑

∆̄H=L

(Dγ)(P̄p)(H)

=
∑

γL=K

∑

∆̄H=L

∑

γH′=H

P̄p(H
′)

=
∑

∆̄H=γK

P̄p(γH)

=
∏

τ∈min(γK)

(

1− p(τ)
)

∏

τ∈K

p(τ).

The last equality follows by a analogous calculation of (3.5).

Lemma 3.12. For any independence hypergraph L on V ,

(

(Dδ̄)(P̄p)
)

(L) =
∏

τ∈max(γL)

(

1− p(τ)
)

∏

τ∈L

p(τ).

Proof. By a direct calculation,

(

(Dδ̄)(P̄p)
)

(L) =
(

(Dγ) ◦ (D∆) ◦ (Dγ)(P̄p)
)

(L)

=
∑

γK=L

(D∆ ◦Dγ)(P̄p)(K)

=
∑

γK=L

∑

∆H=K

(Dγ)(P̄p)(H)

=
∑

γK=L

∑

∆H=K

∑

γH′=H

P̄p(H
′)

=
∑

∆H=γL

P̄p(γH)

=
∏

τ∈max(γL)

(

1− p(τ)
)

∏

τ∈L

p(τ).

The last equality follows by a analogous calculation of [38, Lemma 4.2].

Proof of Theorem 3.5. For any simplicial complex K on V ,

E(K) = min(γK).

For any independence hypergraph L on V ,

Ē(L) = max(γL).

Therefore, Theorem 3.5 follows from Lemma 3.9 - Lemma 3.12.
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4 Generations of random hypergraphs and ran-

dom simplicial complexes by the map algebra

4.1 A graded construction of the map algebra

Let H be the category such that each object is a pair (V,H), where V is a finite

set and H is a hypergraph on V , and each morphism from (V,H) to (V ′,H′)

is a morphism f : V −→ V ′ of hypergraphs from H to H′. Let G1 be the

semi-group generated by γ, δ and ∆, where the unit element is the identity

map and the multiplication is the composition of maps. Each element of G1 is

a map from Obj(H) to itself.

Proposition 4.1. Each of the triples {γ, δ,∆}, {γ, δ̄, ∆̄}, {γ,∆, ∆̄} and {γ, δ, δ̄}
is a set of multiplicative generators of G1.

Proof. By Lemma 2.1, each of the triples {γ,∆, δ}, {γ, ∆̄, δ̄}, {γ,∆, ∆̄} and

{γ, δ, δ̄} could multiplicatively generate γ, ∆, δ, ∆̄ and δ̄. Therefore, each of

the triple could multiplicatively generate G1.

For any positive integer k, Let Gk be the collection of all the words

(· · · (w1 • w2) • · · · • wk),

where w1, w2, . . . , wk ∈ G and • = ∩,∪, ∗ or �, with the binary operation

• for k − 1 times and k − 2 brackets giving the order of operations. For

any w ∈ Gk, we call an element (· · · , (V1,H1), (V2,H2), · · · ) in Obj(H)×k

w-admissible if it is sent to an element in Obj(H) by w, i.e. all the binary

operations w1(H1) • w2(H2) in w are well-defined. For example, any element

in Obj(H)×2 is �-admissible, a ∗-admissible element in Obj(H)×2 is of the

form ((V1,H1), (V2,H2)) where V1∩V2 = ∅, and a ∩-admissible element as well

as a ∪-admissible element in Obj(H)×2 is of the form ((V,H1), (V,H2)). Note

that w is a map from the set of all w-admissible elements, which is a subset of

Obj(H)×k, to Obj(H). We define the map algebra to be the union

G =
⋃

k≥1

Gk. (4.1)

Let T be a binary tree. Let x0 be the root of T . We label x0 with ∩, ∪, ∗
or � if deg x0 = 2 and label x0 with ∆, δ or γ if deg x0 = 0, 1. For any vertex

x of T with x 6= x0, we label x with ∩, ∪, ∗ or � if deg x = 3 and label x with

∆, δ or γ if deg x = 1, 2. Let VT be the vertex set of T . Consider a map

α : VT −→ {∩,∪, ∗,�,∆, δ, γ}

sending each vertex of T to its label satisfying the above labeling rule. Let

k(T ) = 1 if T is the empty binary tree or T has a single vertex x0 and let

k(T ) be the number of vertices x 6= x0 such that deg x = 1 if T has at least

two vertices. Then each pair (T, α) represents an element in Gk(T ). For each

nonnegative integer k, each element in Gk has such a representation (T, α),

while two pairs (T, α) and (T ′, α′) may represent one element in Gk. The pair

(∅, α), where ∅ is the empty binary tree, represents id ∈ G1. A pair (T, α),
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where T is a binary tree such that deg x0 = 1 and deg x = 1, 2 for any x 6= x0,

represents an element in G1.

Let DH be the category such that each object is a triple (V,H, ϕ), where

V is a finite set, H is a hypergraph on V and ϕ ∈ D(H(V )) is a probability

distribution on Obj(H(V )), and each morphism from (V,H, ϕ) to (V ′,H′, ϕ′) is

a morphism f : V −→ V ′ of hypergraphs from H to H′ satisfying (Df)(ϕ) = ϕ′.

Let S be the subset of Obj(DH) consisting of all the elements (V,H, P̄p) ∈
Obj(DH), where p : ∆[V ] −→ [0, 1]. For any w1, w2 ∈ G1, define D(w1w2) =

(Dw1)(Dw2). For each w ∈ G1, define

w(V,H, ϕ) = (w(V,H), (Dw)(ϕ)).

Then w is a map from Obj(DH) to itself. Let G1(S) be the union of w(S) for

all w ∈ G1, where w(S) is the image of S under w.

Proposition 4.2. For any p : ∆[V ] −→ [0, 1], Pp and and Qp are in G1(S).

Proof. By Theorem 1.1 (4) or Theorem 3.5 (3), Pp ∈ G1(S). By Theo-

rem 1.1 (5) or Theorem 3.5 (4), Qp ∈ G1(S).

Define D� to be the map from Obj(DH)×Obj(DH) to Obj(DH) by

(D�)((V,H, ϕ), (V ′,H′, ϕ′)) = (V × V ′,H�H′, (D�)(ϕ, ϕ′)).

Define D∗ to be the map from the collection of ∗-admissible elements in Obj(DH)×
Obj(DH) to Obj(DH) by

(D∗)((V,H, ϕ), (V ′,H′, ϕ′)) = (V ⊔ V ′,H ∗H′, (D∗)(ϕ, ϕ′)),

where V ∩ V ′ = ∅. Define D∩ and D∪ to be maps from the collection of ∩-

admissible (equivalently, ∪-admissible) elements in Obj(DH) ×Obj(DH) to

Obj(DH) by

(D∩)((V,H, ϕ), (V,H′, ϕ′)) = (V,H ∩H′, (D∩)(ϕ, ϕ′)),

(D∪)((V,H, ϕ), (V,H′, ϕ′)) = (V,H ∪H′, (D∪)(ϕ, ϕ′)).

Define D(w1 •w2) = (D•)(Dw1, Dw2) for • = ∩,∪, ∗ or �. Then each element

in Gk is a map from an admissible subset of Obj(DH)×k to Obj(DH). Let

Gk(S×k) = {w((V1,H1, P̄∗), · · · , (Vk,Hk, P̄∗)) | w ∈ Gk and

((V1,H1, P̄∗), · · · , (Vk,Hk, P̄∗)) ∈ S×k is w-admissible}.

Take the union

G(S) =
⋃

k≥1

Gk(S×k). (4.2)

Each element in G(S) is of the form (V,H, ϕ), where V is a finite vertex set,

H is a hypergraph on V and ϕ is a probability function on Obj(H(V )). The

probability function ϕ is given by the action of certain Dw, where w ∈ G, on

multiple probability functions of the form P̄∗, P∗ and Q∗.

17



4.2 Algorithms for the generations of random hypergraphs

and random simplicial complexes

Algorithm generating random hypergraphs. Step 1. Choose a positive integer

k. Choose k finite sets V1, V2, . . ., Vk as the vertex sets without mutual

intersections.

Step 2. For each i = 1, 2, . . . , k, choose a positive integer ni. Use the

Erdös-Rényi-type model P̄p to give ni randomly generated hypergraphs H1,i,

H2,i, . . ., Hni,i on Vi.

Step 3. For each i = 1, 2, . . . , k and each j = 1, 2, . . . , ni, choose an element

wj,i ∈ G1. Apply wj,i to Hj,i and give a randomly generated hypergraph

wj,i(Hj,i) on Vi.

Step 4. For each i = 1, 2, . . . , k, (4.a). Choose two randomly generated

hypergraphs from wj,i(Hj,i), j = 1, 2, . . ., ni, and apply ∩ or ∪ to these two

randomly generated hypergraphs. (4.b). Choose a randomly generated hyper-

graph from the remaining ni − 2 randomly generated hypergraphs wj,i(Hj,i),

j = 1, 2, . . ., ni, and apply ∩ or ∪ to this chosen randomly generated hyper-

graph and the randomly generated hypergraph given in (4.a). (4.c). Repeat

(4.b) for ni − 2 times. Denote this final randomly generated hypergraph on Vi

as Hi.

Step 5. (5.a). Choose two randomly generated hypergraphs from Hi,

i = 1, 2, . . ., k, and apply � or ∗ to these two randomly generated hyper-

graphs. (5.b). Choose a randomly generated hypergraph from the remaining

k − 2 randomly generated hypergraphs Hi, i = 1, 2, . . ., k, and apply � or

∗ to this chosen randomly generated hypergraph and the randomly generated

hypergraph given in (5.a). (5.c). Repeat (5.b) for k − 2 times. This gives a

randomly generated hypergraph H.

Step 6. Choose w ∈ G1. Apply w to H. The final randomly generated

hypergraph is w(H).

Some algorithms that generate random simplicial complexes and random

independence hypergraphs follow immediately.

Algorithm generating random simplicial complexes. Step 1. Same as Step 1 in

the algorithm generating random hypergraphs.

Step 2. For each i = 1, 2, . . . , k, choose a positive integer ni. Use the

algorithm generating random hypergraphs to give ni randomly generated hy-

pergraphs H1,i, H2,i, . . ., Hni,i on Vi.

Step 3. For each i = 1, 2, . . . , k and each j = 1, 2, . . . , ni, apply ∆ or δ to

Hj,i. This gives a randomly generated simplicial complex Kj,i on Vi.

Step 4. For each i = 1, 2, . . . , k, similar to Step 4 of the previous algorithm,

apply the binary operations ∩ and ∪ to K1,i, K2,i, . . ., Kni,i. After ni−1 times

of the binary operations, we obtain a randomly generated simplicial complex

Ki on Vi.

Step 5. Similar to Step 5 of the previous algorithm, apply the binary

operations ∗, ∆� and δ� to K1, K2, . . ., Kk. After k − 1 times of the binary

operations, we obtain a randomly generated simplicial complex K.

Algorithm generating random independence hypergraphs. Steps 1-2. Same as

Steps 1-2 in the algorithm generating random simplicial complexes.
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Step 3. For each i = 1, 2, . . . , k and each j = 1, 2, . . . , ni, apply ∆̄ or

δ̄ to Hj,i with respect to Vi. This gives a randomly generated independence

hypergraph Lj,i on Vi.

Step 4. For each i = 1, 2, . . . , k, similar to Step 4 of the previous algorithms,

apply the binary operations ∩ and ∪ to L1,i, L2,i, . . ., Lni,i. After ni − 1

times of the binary operations, we obtain a randomly generated independence

hypergraph Li on Vi.

Step 5. Similar to Step 5 of the previous algorithms, apply the binary

operations ∗, ∆̄� and δ̄� to L1, L2, . . ., Lk. After k − 1 times of the binary

operations, we obtain a randomly generated independence hypergraph L.
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