COMPARING DIAGONALS ON THE ASSOCIAHEDRA

SAMSON SANEBLIDZE AND RONALD UMBLE

ABSTRACT. We prove that the formula for the diagonal approximation Δ_K on J. Stasheff's *n*-dimensional associahedron K_{n+2} derived by the current authors in [7] agrees with the "magical formula" for the diagonal approximation Δ'_K derived by Markl and Shnider in [5], by J.-L. Loday in [4], and more recently by Masuda, Thomas, Tonks, and Vallette in [6].

Dedicated to the memory of Jean-Louis Loday

1. INTRODUCTION

Recently there has been renewed interest in explicit combinatorial diagonal approximations on J. Stasheff's *n*-dimensional associahedron K_{n+2} [8]. Markl and Shnider (M-S) in [5], J.-L. Loday in [4], and more recently Masuda, Thomas, Tonks, and Vallette (MTTV) in [6] constructed a diagonal Δ'_K on K_{n+2} whose components are "matching pairs" of faces, which in the words of Jean-Louis Loday, are "pairs of cells of matching dimensions and comparable under the Tamari order." By definition, every component of the combinatorial diagonal Δ_K on K_{n+2} constructed by the current authors (S-U) in [7] is a matching pair. In this paper we prove that every matching pair is a component of Δ_K . Thus the S-U formula for Δ_K and the "magical formula" for Δ'_K agree (see Definitions 2.4 and 3.1).

Historically, S-U were the first to derive a cellular combinatorial/differential graded formula for Δ_K , M-S were the first to prove the magical formula for Δ'_K , and MTTV were the first to construct a point-set topological diagonal map, which descends to the magical formula at the cellular level.

Using the geometric methods of MTTV, Laplante-Anfossi created a general framework for studying diagonals on any polytope in [3]. In this framework, a choice of diagonal on the *n*-dimensional permutahedron P_{n+1} is given by a choice of chambers in its fundamental hyperplane arrangement ([3], Def. 1.18). While the specific diagonal Δ'_P on P_{n+1} studied in [3] differs from the S-U diagonal Δ_P , the diagonal Δ'_K on K_{n+2} induced by Δ'_P agrees with Δ_K .

Acknowledgments. We wish to thank Bruno Vallette for sharing his perspective on the history of combinatorial diagonals on K_n , and Guillaume Laplante-Anfossi and our anonymous referee for their helpful editorial suggestions.

Date: August 22, 2022; revised February 23, 2024.

²⁰²⁰ Mathematics Subject Classification. Primary 55P48, 55P99; Secondary 52B05, 52B11. Key words and phrases. Associahedron, permutahedron, diagonal approximation, magical formula.

2. Diagonals Induced by Δ_P

Let S_n be the symmetric group on the finite set $\underline{n} = \{1, 2, \ldots, n\}$. The permutahedron P_n is the convex hull of n! vertices $\{(\sigma(1), \ldots, \sigma(n)) : \sigma \in S_n\} \subset \mathbb{R}^n$. As a cellular complex, P_n is an (n-1)-dimensional convex polytope whose (n-p)-faces are indexed by (ordered) partitions $A_1 | \cdots | A_p$ of \underline{n} , $1 \leq p \leq n$. Denoting the set of ordered partitions of \underline{n} by P(n), the faces of P_n are identified with elements of P(n) in the standard way.

Let X be an n-dimensional polytope that admits a (surjective) cellular projection map $p: P_{n+1} \to X$ and a realization as a subdivision of the n-cube I^n , i.e., for $0 \le k \le n$, each k-cell (k-subcube) of I^n is a union of k-cells of X, any two of which intersect along their boundaries.

For example, $X = P_n$ can be realized as a subdivision of I^{n-1} inductively as follows: Identify P_1 with $1 \in P(1)$. If P_{n-1} has been constructed and $a = A_1 | \cdots | A_p \in P(n-1)$ is a face, let $a_0 = 0$, $a_j = \# (A_{p-j+1} \cup \cdots \cup A_p)$ for 0 < j < p, $a_p = \infty$, and define $\frac{1}{2^{\infty}} := 0$. Let $I(a) := I_1 \cup I_2 \cup \cdots \cup I_p$, where $I_j := [1 - \frac{1}{2^{a_{j-1}}}, 1 - \frac{1}{2^{a_j}}]$; then $P_n = \bigcup_{a \in P(n-1)} a \times I(a)$, where the identification of faces with partitions is given by

Face of $a \times I(a)$	Partition in $P(n)$	
a imes 0	$A_1 \cdots A_p n$	
$a \times (I_j \cap I_{j+1})$	$A_1 \cdots A_{p-j} n A_{p-j+1} \cdots A_p,$	$1 \leq j \leq p-1$
$a \times 1$	$n A_1 \cdots A_p,$	
$a \times I_j$	$A_1 \cdots A_{p-j+1}\cup n \cdots A_p,$	$1 \leq j \leq p$

(see Figures 1 and 2). We refer to a vertex common to P_n and I^{n-1} as a *cubical* vertex. Thus a is a cubical vertex of P_n if and only if a|n and n|a are cubical vertices of P_{n+1} . Indeed, a cubical vertex has the form $a = a_1|\cdots|a_{i-1}|1|a_{i+1}|\cdots|a_n$, where $a_1 > \cdots > a_{i-1}$ and $a_{i+1} < \cdots < a_n$.

We begin with a review of the diagonal Δ_P and the diagonal Δ_X induced by the projection p; then Δ_K is obtained by setting $X = K_{n+2}$. Whereas the vertices of P_{n+1} are identified with the permutations in S_{n+1} , the weak order on S_{n+1} given by $\cdots |x_i|x_{i+1}| \cdots < \cdots |x_{i+1}|x_i| \cdots$ if $x_i < x_{i+1}$ extends to a partial order (p-o) and the associated Hasse diagram orients the 1-skeleton of P_{n+1} [1]. Denote the minimal and maximal vertices of a face e of P_{n+1} by min e and max e, respectively, and define $e \leq e'$ if there exists an oriented edge-path in P_{n+1} from max e to min e'. Then p induces a p-o on the cells of X. For example, when the faces of P_{n+1} are indexed by planar leveled trees (PLTs) with n+2 leaves (without levels), Tonks' projection $p = \theta$ given by forgetting levels [9] induces the *Tamari order* on the faces $\{\theta(T_i)\}$ of K_{n+2} given by $\theta(T_i) \leq \theta(T_j)$ if $T_i \leq T_j$. In particular, the vertices of K_{n+1} form a subset of the vertices P_n and the Tamari order restricted to this subset agrees with the weak order.

Let e be a cell of X and let |e| denote its dimension. A k-subdivision cube of e is a set of faces of e whose union is a k-subcube of I^n for some $k \leq n$. For example, when e is the top dimensional cell of P_4 , the facets in $\{2|134, 24|13\}$ and $\{2|134, 24|13, 23|14, 234|1\}$ form 2-subdivision cubes of e, but any three in the latter do not (see Figure 2). Denote the set of vertices of e by \mathcal{V}_e (when e = X we suppress

the subscript e). Given a vertex $v \in \mathcal{V}_e$, let $I_{v,1}^{k_1}$ and $I_{v,2}^{k_2}$ be k_i -subdivision cubes of e such that max $I_{v,1}^{k_1} = \min I_{v,2}^{k_2} = v$ and $k_1 + k_2 = |e|$; then $\left(I_{v,1}^{k_1}, I_{v,2}^{k_2}\right)$ is a pair of (k_1, k_2) -subdivision cubes of e. Denote the set of all such pairs by e_v and let $(\mathbf{I}_{v,1}^{k_1}, \mathbf{I}_{v,2}^{k_2})_e$ denote its unique maximal element; then $\left(I_{v,3}^{k_3}, I_{v,4}^{k_4}\right) \subseteq (\mathbf{I}_{v,1}^{k_1}, \mathbf{I}_{v,2}^{k_2})_e$ for all $(I_{v,3}^{k_3}, I_{v,4}^{k_4}) \in e_v$. For example, when e is the top dimensional cell of P_4 and v = 4|2|3|1, we have $(\mathbf{I}_{v,1}^2, \mathbf{I}_{v,2}^1)_e = (\{2|134, 24|13\}, \{4|23|1\})$. For an explicit description of $\left(\mathbf{I}_{v,1}^{k_1}, \mathbf{I}_{v,2}^{k_2}\right)_e$ when $e \subseteq P_n$ see (2.3) below.

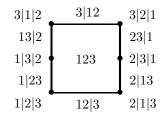


Figure 1: P_3 as a subdivision of $P_2 \times I$.

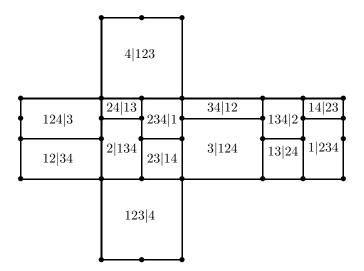


Figure 2: The facets of P_4 as a subdivision of I^3 .

If in addition, the cellular projection $p: P_{n+1} \to X$ preserves maximal pairs of (k_1, k_2) -subdivision cubes, i.e., for every cell e of P_{n+1} we have

$$p\left(\mathbf{I}_{v,1}^{k_{1}},\mathbf{I}_{v,2}^{k_{2}}\right)_{e} = \left(\mathbf{I}_{p(v),1}^{k_{1}},\mathbf{I}_{p(v),2}^{k_{2}}\right)_{p(e)},$$

the components of the induced diagonal Δ_X on a cell $f \subseteq X$ form the set of product cells

(2.1)
$$\Delta_X(f) := \bigcup_{\substack{(e^{k_1}, e^{k_2}) \in \left(\mathbf{I}_{v,1}^{k_1}, \mathbf{I}_{v,2}^{k_2}\right)_f \\ v \in \mathcal{V}_f}} \{e^{k_1} \times e^{k_2}\}.$$

In particular, $p = \theta$ preserves maximal pairs of (k_1, k_2) -subdivision cubes and $\Delta_K(e)$ is given by setting $X = K_{n+2}$ (see (2.4) below). Note that $(e^{k_1}, e^{k_2}) \in (\mathbf{I}_{v,1}^{k_1}, \mathbf{I}_{v,2}^{k_2})_X$ implies $e^{k_1} \leq e^{k_2}$. Thus $e^{k_1} \times e^{k_2}$ is a "matching pair" in the sense of MTTV (see Definition 2). Furthermore, since f = p(e) for some

$$e = P_{n_1} \times \cdots \times P_{n_s}$$
 and $p(e) = p(P_{n_1}) \times \cdots \times p(P_{n_s})$,

the diagonal $\Delta_X(f)$ is automatically the comultiplicative extension of its values on the factors of f, i.e.,

$$\Delta_X(f) = \Delta_X(p(P_{n_1})) \times \cdots \times \Delta_X(p(P_{n_s})).$$

The subset $\mathcal{V}_e \subseteq S_n$ determines the components of $\Delta_P(e)$ in the following way: Let $\sigma = x_1 | \cdots | x_n \in \mathcal{V}_e$. Reading σ from left-to-right and from right-to-left, construct the partitions $\overleftarrow{\sigma}_1 | \cdots | \overleftarrow{\sigma}_p$ and $\overrightarrow{\sigma}_q | \cdots | \overrightarrow{\sigma}_1$ of maximal decreasing subsets and form the *Strong Complementary Pair* (SCP)

$$a_{\sigma} \times b_{\sigma} := \overleftarrow{\sigma}_1 | \cdots | \overleftarrow{\sigma}_p \times \overrightarrow{\sigma}_q | \cdots | \overrightarrow{\sigma}_1 \in P(n) \times P(n)$$

Then

$$\sigma = \max a_{\sigma} = \min b_{\sigma}, \ \min \overleftarrow{\sigma}_{j} < \max \overleftarrow{\sigma}_{j+1} \text{ for all } j < p, \text{ and} \\ \min \overrightarrow{\sigma}_{i} < \max \overrightarrow{\sigma}_{i+1} \text{ for all } i < q.$$

Thus, for $\sigma = 2|1|3|5|4$ we have $\overleftarrow{\sigma}_1|\overleftarrow{\sigma}_2|\overleftarrow{\sigma}_3 = 21|3|54$ and $\overrightarrow{\sigma}_3|\overrightarrow{\sigma}_2|\overrightarrow{\sigma}_1 = 2|135|4$ so that $a_{\sigma} \times b_{\sigma} = 21|3|54 \times 2|135|4$.

Let $a = A_1 | \cdots | A_p \in P(n)$. For $1 \le j < p$, let $M_j \subseteq (A_j \setminus \{\min A_j\})$ such that $\min M_j > \max A_{j+1}$ when $M_j \ne \emptyset$. Define the right-shift M_j action

$$R_{M_j}(a) := \begin{cases} A_1 | \cdots | A_j \smallsetminus M_j | A_{j+1} \cup M_j | \cdots | A_k, & M_j \neq \emptyset \\ a, & M_j = \emptyset. \end{cases}$$

Let $\mathbf{M}:=(M_1, M_2, \ldots, M_{p-1})$ and denote the composition $R_{M_{p-1}}\cdots R_{M_2}R_{M_1}(a)$ by $R_{\mathbf{M}}(a)$.

Dually, let $b = B_q | \cdots | B_1 \in P(n)$. For $1 \le i < q$, let $N_i \subseteq (B_i \smallsetminus \{\min B_i\})$ such that $\min N_i > \max B_{i+1}$ when $N_i \ne \emptyset$. Define the *left-shift* N_i action

$$L_{N_i}(b) := \begin{cases} B_q | \cdots | B_{i+1} \cup N_i | B_i \smallsetminus N_i | \cdots | B_1, & N_i \neq \emptyset \\ b, & N_i = \emptyset \end{cases}$$

Let $\mathbf{N} := (N_1, N_2, \dots, N_{q-1})$ and denote the composition $L_{N_{q-1}} \cdots L_{N_2} L_{N_1}(b)$ by $L_{\mathbf{N}}(b)$.

Now given $\sigma \in \mathcal{V}_e$ and the SCP $a_{\sigma} \times b_{\sigma}$, the pair $R_{\mathbf{M}}(a_{\sigma}) \times L_{\mathbf{N}}(b_{\sigma})$ is a *Complementary Pair* (CP) on $a_{\sigma} \times b_{\sigma}$. Define

$$A_{\sigma} \times B_{\sigma} := \bigcup_{\mathbf{M}, \mathbf{N}} \left\{ R_{\mathbf{M}}(a_{\sigma}) \times L_{\mathbf{N}}(b_{\sigma}) \right\}$$

and

(2.2)
$$\Delta_P(e) := \bigcup_{\sigma \in \mathcal{V}_e} A_\sigma \times B_\sigma.$$

Example 1. On the top dimensional cell $e^2 \subseteq P_3$, $\Delta_P(e^2)$ is the union of

 $\begin{array}{ll} A_{1|2|3}\times B_{1|2|3} = \left\{1|2|3\times 123\right\}, & A_{1|3|2}\times B_{1|3|2} = \left\{1|32\times 13|2\right\}, \\ A_{2|1|3}\times B_{2|1|3} = \left\{21|3\times 2|13,\ 21|3\times 23|1\right\}, & A_{2|3|1}\times B_{2|3|1} = \left\{2|31\times 23|1\right\}, \\ A_{3|1|2}\times B_{3|1|2} = \left\{31|2\times 3|12,\ 1|32\times 3|12\right\}, & A_{3|2|1}\times B_{3|2|1} = \left\{321\times 3|2|1\right\}. \end{array}$

Remark 1. Note that the matrix representation of a CP introduced in [7] conveniently organizes and systematizes the combinatorial calculation of Δ_P . An SCP is represented by a step matrix and a general CP is represented by a derived matrix, given by left-shift and down-shift actions on a step matrix.

When $X = P_{n+1}$, Formulas (2.1) and (2.2) are equivalent. The maximal (k_1, k_2) -subdivision pair with respect to a vertex σ of P_{n+1} is

(2.3)
$$\left(\mathbf{I}_{\sigma,1}^{k_1}, \mathbf{I}_{\sigma,2}^{k_2}\right) = \left(\bigcup_{e_1 \in A_{\sigma}} e_1, \bigcup_{e_2 \in B_{\sigma}} e_2\right)$$

Definition 1. A positive dimensional face e of P_n is **non-degenerate** if $|\theta(e)| = |e|$. A positive dimensional partition $a = A_1 | \cdots | A_p \in P(n)$ is **degenerate** if for some j and some k > 0, there exist $x, z \in A_j$ and $y \in A_{j+k}$ such that x < y < z; otherwise a is **non-degenerate**. A CP $\alpha \times \beta$ is **non-degenerate** if α and β are non-degenerate.

Define
$$\Delta_K(K_{n+1}) = \Delta_K(\theta(P_n)) := (\theta \times \theta) \Delta_P(P_n)$$
; then
(2.4) $\Delta_K(e^{n-1}) = \bigcup_{\substack{\text{non-degenerate CPs}\\\alpha \times \beta \in A_\sigma \times B_\sigma\\\sigma \in S_n}} \{\theta(\alpha) \times \theta(\beta)\}.$

3. Agreement of Δ_K and Δ'_K

Definition 2. A pair of faces $a \times b \subseteq K_{n+1} \times K_{n+1}$ is a Matching Pair (MP) if $a \leq b$ and |a| + |b| = n - 1.

The "magical formula" derived in [5] and [6] is

(3.1)
$$\Delta'_{K}\left(e^{n-1}\right) = \bigcup_{\substack{\text{MPs of faces}\\a \times b \subseteq K_{n+1} \times K_{n+1}}} \{a \times b\}.$$

Tonks' projection θ sends every non-degenerate CP to an MP. The converse is our main result: Every MP is the image of a unique non-degenerate CP under θ ; thus Δ'_{K} and Δ_{K} agree. Our proof of this fact views P_{n} as a subdivision of K_{n+1} .

Definition 3. Let $0 \le k < n$. An associahedral k-cell of P_n is a k-cell of K_{n+1} . A subdivision k-cell of P_n is a k-cell of some associahedral k-cell of P_n . The maximal (respt. minimal) subdivision k-cell of an associahedral k-cell a, denoted by a_{\max} (respt. a_{\min}), satisfies $\max a_{\max} = \max a$ (respt. $\min a_{\min} = \min a$). A non-degenerate vertex of P_n is an associahedral vertex.

Thus a subdivision k-cell of P_n has the form $A_1 | \cdots | A_{n-k}$. In fact, a vertex v of P_n is associahedral if and only if the (n-q)-cell $\overrightarrow{v}_q | \cdots | \overrightarrow{v}_1$ is non-degenerate, in which case $\min \overrightarrow{v}_q > \cdots > \min \overrightarrow{v}_1$. If k > 0, an associahedral k-cell a is a subdivision k-cell if and only if $a = a_{\min}$.

Proposition 1. If a is an associahedral k-cell and u is a subdivision k-cell of a, then

- (i) a_{\min} is non-degenerate.
- (ii) If $u \neq a_{\min}$, then u is degenerate and $u = L_{\mathbf{N}}(a_{\min})$ for some N.
- (iii) $a_{\min} = R_{\mathbf{M}} (a_{\max})$ for some \mathbf{M} .

Proof. Set p = n - k and consider an associahedral k-cell a of P_n . If a is also a subdivision k-cell, then $a = a_{\min} = \theta(a)$ is non-degenerate and $\mathbf{M} = \emptyset$. Otherwise, conclusions (i) and (ii) follow from the construction of P_n as a subdivision of K_{n+1} . For part (iii), given a subdivision k-cell $u = A_1 | \cdots | A_p$ of a, let

$$N_p := \{ x \in A_p \setminus \{ \min A_p \} : x > \max A_{p-1} \}.$$

Inductively, if 1 < i < p and N_{i+1} has been constructed, let $A'_i := A_i \cup N_{i+1}$ and let

$$N_i := A'_i \setminus \{x \in A'_i \setminus \{\min A'_i\} : x > \max A_{i-1}\}.$$

Then $a_{\max} = L_{(N_p,...,N_2)}(a_{\min})$. Set $\mathbf{M} = (M_1,...,M_{p-1}) := (N_2,...,N_p)$; then $a_{\min} = R_{\mathbf{M}}(a_{\max})$.

Example 2. Consider the associatedral facet $a = 1|234 \cup 13|24 \cup 14|23 \cup 134|2;$ then $a_{\min} = 1|234$ is non-degenerate, $13|24 = L_{\{3\}}(a_{\min}), 14|23 = L_{\{4\}}(a_{\min}), and$ $a_{\max} = 134|2 = L_{\{3,4\}}(a_{\min}).$ Furthermore, $a_{\min} = 1|234 = R_{\{3,4\}}(134|2).$

Proposition 2. Let v be an associahedral vertex of P_n and let $a = \overrightarrow{v}_q | \cdots | \overrightarrow{v}_1$. If b is a non-degenerate cell of P_n such that |b| = |a| and $\min a \leq \min b$, then $b = L_{\mathbf{N}}(a)$ for some \mathbf{N} .

Proof. Let $a = A_{n-k} | \cdots | A_1$ and let $r_i = \min A_i$. Since v is associahedral, it follows that $r_{n-k} > \cdots > r_1$. Since $\min a \le \min b$, there is a product of p-o increasing transpositions $\tau := \tau_t \cdots \tau_2 \tau_1$ such that $\tau(\min a) = \min b$ and τ_i preserves the inequality $r_j > r_{j-1}$ for $1 \le i \le t$ and $1 \le j \le n-k$. Define $\tau_0 := \mathbf{Id}$ and consider the vertex $v_i := \tau_{t_i} \cdots \tau_1 \tau_0(\min a)$ for each $1 \le t_i \le t$. For each i, there is the (possibly degenerate) cell $u_i := \overrightarrow{v_i} | \cdots | \overrightarrow{v_i} |$, where $q \in \{n-k, n-k+1\}$. Thus there is the sequence $\{a = u_0, u_1, \dots, u_t = b\}$ and its subsequence of k-cells $\{a = u_{i_0}, u_{i_1}, \dots, u_{i_{s-1}}, u_{i_s} = b\}$. By construction, for $1 \le j \le s$, there exists $n_j \in \underline{n}$ such that $u_{i_j} = L_{\{n_j\}}(u_{i_{j-1}})$. For $1 \le i < s$, let

$$N_i = \{n_j \in A_i \cup N_1 \cup \dots \cup N_{i-1} : u_{i_j} = L_{\{n_j\}}(u_{i_{j-1}}) \text{ for some } j\}$$

and form the sequence of sets $\mathbf{N} := (N_{s-1}, ..., N_1)$. Since b is non-degenerate, the action $L_{\mathbf{N}}(a)$ is defined and $L_{\mathbf{N}}(a) = b$.

Identify a k-face $F \subset K_{n+1}$ with its corresponding associahedral k-cell of P_n and label F with its minimal subdivision k-cell F_{\min} ; then $\theta(F_{\min}) = F$ (compare Figures 2 and 3).

Example 3. Consider the associated ral vertex v = 5|3|1|2|4|6, the associated 3-cell $a = \overrightarrow{v}_3 |\overrightarrow{v}_2| \overrightarrow{v}_1 = 5|3|1246$ and the non-degenerate 3-cell b = 56|34|12. Then

$$\min a = 5|3|1|2|4|6 < 5|6|3|4|1|2 = \min b,$$

and there is the product of p-o increasing transpositions

$$\tau = \tau_6 \cdots \tau_1 := (3, 6) (4, 6) (1, 6) (2, 6) (1, 4) (2, 4)$$

such that

$$\{v_1 = \tau_1(\min a) = 5|3|1|4|2|6, v_2 = \tau_2(v_1) = 5|3|4|1|2|6, v_3 = \tau_3(v_2) = 5|3|4|1|6|2, v_3 = \tau_3(v_2) = 5|3|4|1|6|2, v_3 = \tau_3(v_3) = 5|3|4|1|6|2, v_3|4|1|6|2, v_3|4|1|6|2|2, v_3|4|1|6|2|2, v_3|4|1|6|2|2, v_3|4|1|6|2|2, v_3|4|1|6|2|2, v_3|4$$

 $v_4 = \tau_4(v_3) = 5|3|4|6|1|2, v_5 = \tau_5(v_4) = 5|3|6|4|1|2, v_6 = \tau_6(v_5) = 5|6|3|4|1|2\}.$ There is the sequence of cells

$$\{u_0 = 5|3|1246, u_1 = 5|3|14|26, u_2 = 5|34|126, u_3 = 5|34|16|2, u_4 = 5|34|16|2, u_5 = 5|34|16|2, u_6 = 5|34|16|2, u_8 = 5|34|16|2, u_8|16|16|2, u_8|16|16|16|2, u_8|16|16|16|2, u_8|16|16|16|16|16|16|16|16|$$

 $u_4 = 5|346|12, u_5 = 5|36|4|12, u_6 = 56|34|12\}$

and its subsequence of 3-cells

$$\{u_0 = 5|3|1246, u_2 = 5|34|126, u_4 = 5|346|12, u_6 = 56|34|12\}$$

Thus

$$N_{1} = \{n_{j} \in A_{1} : u_{i_{j}} = L_{\{n_{j}\}}(u_{i_{j-1}}) \text{ for some } j\} = \{4, 6\}, \text{ and}$$

$$N_{j} = \{n_{j} \in A_{j} \mid j \in N_{j} : j \in I_{j} \in I_{j} \} \text{ for some } j\} = \{6\}$$

 $N_2 = \{n_j \in A_2 \cup N_1 : u_{i_j} = L_{\{n_j\}} (u_{i_{j-1}}) \text{ for some } j\} = \{6\}.$ Conclude that $56|34|12 = L_{(\{4,6\},\{6\})}(5|3|1246).$

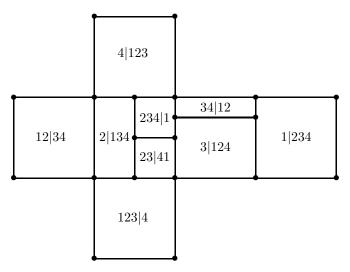


Figure 3: The facets of K_5 labeled with their minimal subdivision 2-cells in P_4 .

Theorem 1. Let $F \times G \subset K_{n+1} \times K_{n+1}$ be an MP. Then $F_{\min} \times G_{\min} \subset P_n \times P_n$ is a CP and $F \times G = \theta(F_{\min}) \times \theta(G_{\min})$. Consequently, the diagonals Δ'_K and Δ_K agree.

Proof. Let $\sigma = \max F$; then $F_{\max} = \overleftarrow{\sigma}_1 | \cdots | \overleftarrow{\sigma}_p$ for some p and $F_{\min} = R_{\mathbf{M}} (F_{\max})$ for some \mathbf{M} by Proposition 1. Let $\beta = \overrightarrow{\sigma}_q | \cdots | \overrightarrow{\sigma}_1$ and consider the SCP $F_{\max} \times \beta$. Since σ is an associahedral vertex and $\min \beta \leq \min G_{\min}$ the hypotheses of Proposition 2 is satisfied; hence $G_{\min} = L_{\mathbf{N}}(\beta)$ for some \mathbf{N} . Therefore $F_{\min} \times G_{\min} = R_{\mathbf{M}} (F_{\max}) \times L_{\mathbf{N}}(\beta)$ is a CP and $F \times G = \theta (F_{\min}) \times \theta (G_{\min})$. \Box

Example 4. Consider the diagonal component

$$F \times G = (\bullet \bullet \bullet) \bullet \bullet \times \bullet (\bullet \bullet (\bullet \bullet))$$

of $\Delta'_K(K_5)$. Then $F = 21|43 \cup 421|3$ is an associahedral 2-cell, $\sigma = \max F = 4|2|1|3$ is an associahedral vertex,

 $F_{\text{max}} = \overleftarrow{\sigma}_1 | \overleftarrow{\sigma}_2 = 421 | 3, \text{ and } F_{\text{min}} = 21 | 43 = R_{\{4\}} (421 | 3).$

Furthermore,

$$\beta = \overrightarrow{\sigma}_{3} | \overrightarrow{\sigma}_{2} | \overrightarrow{\sigma}_{1} = 4 | 2 | 13, \min \beta_{1} = 4 | 2 | 1 | 3 = \max F, \text{ and}$$
$$G_{\min} = L_{\{3\}} (4 | 2 | 13) = 4 | 23 | 1.$$

Thus $F \times G = \theta (21|43) \times \theta (4|23|1)$.

Addendum. After this paper was written, B. Delcroix-Oger, G. Laplante-Anfossi, V. Pilaud, and K. Stoeckl proved that Δ_P can be recovered from Δ'_P by an appropriate choice of chambers in the fundamental hyperplane arrangements of the permutahedra (see [2]). The fact that all known diagonals on the associahedra agree (up to mirror symmetry) follows immediately.

References

- Ceballos, C. and Pons, V.: The s-weak order and s-permutahedra. In: Proceedings of the 31st Conference on Formal Power Series and Algebraic Combinatorics (Ljubljana), Séminaire Lotharingien de Combinatoire 82B, 76 (2019)
- [2] Delcroix-Oger, B., Laplante-Anfossi, G., Pilaud, V., and Stoeckl, K.: Cellular diagonals of permutahedra. arXiv:2308.12119
- [3] Laplante-Anfossi, G.: The diagonal of the operahedra. Adv. Math. 405, 1-50 (2022).
- [4] Loday, J.-L.: The diagonal of the Stasheff polytope. In: Higher Structures in Geometry and Physics, Prog. Math. 287, Birkhäuser/Springer, New York, 269-292 (2011).
- [5] Markl, M. and Shnider, S.: Associahedra, cellular W-construction and products of A_{∞} -algebras. Trans. Amer. Math. Soc. **358**(6), 2353-2372 (2006).
- [6] Masuda, N., Thomas, H., Tonks, A., and Vallette, B.: The diagonal of the associahedra. J. Éc. Polytech. 8, 121-146 (2021).
- [7] Saneblidze, S., and Umble, R.: Diagonals on the permutahedra, multiplihedra and associahedra. Homol. Homotopy Appl. 6, 363-411 (2004).
- [8] Stasheff, J.: Homotopy associativity of H-spaces I, II. Trans. Am. Math. Soc. 108, 275-312 (1963).
- [9] Tonks, A.: Relating the associahedron and the permutohedron, In: Operads: Proceedings of the Renaissance Conferences (Hartford CT / Luminy Fr 1995), Contemporary Mathematics 20, 33-36 (1997).

A. RAZMADZE MATHEMATICAL INSTITUTE, I. JAVAKHISHVILI TBILISI STATE UNIVERSITY 2, MERAB ALEKSIDZE II LANE, 0193 TBILISI, GEORGIA Email address: same@rmi.ge

DEPARTMENT OF MATHEMATICS, MILLERSVILLE UNIVERSITY OF PENNSYLVANIA, MILLERSVILLE, PA 17551, USA

 $Email \ address: \ {\tt ron.umble@millersville.edu}$