
ar
X

iv
:2

20
7.

08
55

4v
4 

 [
m

at
h.

L
O

] 
 9

 J
an

 2
02

4

Regressive versions of Hindman’s Theorem

Lorenzo Carlucci1 and Leonardo Mainardi2

1Sapienza University of Rome, Department of Mathematics
2Sapienza University of Rome, Department of Computer Science

1lorenzo.carlucci@uniroma1.it
2leonardo.mainardi@uniroma1.it

January 10, 2024

Abstract

When the Canonical Ramsey’s Theorem by Erdős and Rado is applied to regressive func-
tions, one obtains the Regressive Ramsey’s Theorem by Kanamori and McAloon. Taylor
proved a “canonical” version of Hindman’s Theorem, analogous to the Canonical Ramsey’s
Theorem. We introduce the restriction of Taylor’s Canonical Hindman’s Theorem to a sub-
class of the regressive functions, the λ-regressive functions, relative to an adequate version of
min-homogeneity and prove some results about the Reverse Mathematics of this Regressive
Hindman’s Theorem and of natural restrictions of it.

In particular we prove that the first non-trivial restriction of the principle is equivalent
to Arithmetical Comprehension. We furthermore prove that the well-ordering-preservation
principle for base-ω exponentiation is reducible to this same principle by a uniform com-
putable reduction.

1 Introduction and motivation

Hindman’s well-known Finite Sums Theorem [15] states that for any finite colouring of the
natural numbers there exists an infinite subset of positive natural numbers such that all finite
sums of distinct terms from that subset get the same colour.

The strength of Hindman’s Theorem is a major open problem in Reverse Mathematics (see,
e.g., [28]) since the seminal work of Blass, Hirst and Simpson [2]. They showed that Hindman’s
Theorem is provable in the system ACA+

0 (axiomatized by closure under the ω-th Turing Jump)
and in turn implies ACA0 (axiomatized by closure under the Turing Jump) over the base system
RCA0. This leaves a huge gap between the upper and the lower bound (we refer to [31, 17] and
to the recent [12] for Reverse Mathematics fundamentals).

Recently, substantial interest has been given to various restrictions of Hindman’s Theorem
(see [6] and [12] Section 9.9.3 for an overview and references). Dzhafarov, Jockusch, Solomon
and Westrick [11] proved that the ACA0 lower bound on Hindman’s Theorem already applies to
the restriction of the theorem to colourings in 3 colours and sums of at most 3 terms (denoted
HT

≤3
3 ) and that Hindman’s Theorem restricted to colourings in 2 colours and sums of at most 2

terms (denoted HT
≤2
2 ) is unprovable in RCA0. The first author in joint work with Ko lodziejczyk,

Lepore and Zdanowski later showed that HT
≤2
4 implies ACA0 and that HT

≤2
2 is unprovable in

WKL0 [5]. However, no upper bound other than the one for the full Hindman’s Theorem is
known for HT≤2

k , let alone HT
≤3
k , for any k > 1. Indeed, it is an open question in Combinatorics

whether Hindman’s Theorem for sums of at most 2 terms is already equivalent to the full

1

http://arxiv.org/abs/2207.08554v4


Hindman’s Theorem (see [16], Question 12). On the other hand some restrictions of Hindman’s
Theorem that are equivalent to ACA0 have been isolated and called “weak yet strong” principles
by the first author (see [4]). Theorem 3.3 in [5] shows that Hindman’s Theorem restricted to
colourings in 2 colours and sums of exactly 3 terms with an apartness condition on the solution
set is a weak yet strong principle in this sense.

In this paper we isolate a new natural variant of Hindman’s Theorem, called the Regres-
sive Hindman’s Theorem, modeled on Kanamori-McAloon’s Regressive Ramsey’s Theorem [25],
and we investigate its strength in terms of provability over RCA0 and in terms of computable
reductions. In particular we prove that the weakest non-trivial restriction of the Regressive
Hindman’s Theorem is a weak yet strong principle in the sense of [4], being equivalent to ACA0.
We also show that the Range Existence Principle for injective functions is reducible to that
same Regressive Hindman’s Theorem by a uniform computable reduction (called Weihrauch re-
duction). Moreover, we show that the same is true of the Well-Ordering Preservation Principle
for base-ω exponentiation. This principle states that, for any linear order X , if X is well-ordered
then ωX is well-ordered. It is known to be equivalent to ACA0 (see [21]); well-ordering princi-
ples have received substantial attention in later years (see the recent survey by Michael Rathjen
[30] for an overview and references). No direct connection to Hindman-type theorems has been
drawn in previous works.

The theorems studied in this paper are Π1
2-principles, i.e., principles that can be written in

the following form:
∀X(I(X) → ∃Y S(X,Y ))

where I(X) and S(X,Y ) are arithmetical formulas and X and Y are set variables. For principles
P of this form we call any X that satisfies I an instance of P and any Y that satisfies S(X,Y )
a solution to P for X. We will use the following notions of computable reducibility between
two Π1

2-principles P and Q, which have become of central interest in Computability Theory and
Reverse Mathematics in recent years (see [12] for background and motivation).

1. Q is strongly Weihrauch reducible to P (denoted Q ≤sW P) if there exist Turing functionals
Φ and Ψ such that for every instance X of Q we have that Φ(X) is an instance of P, and
if Ŷ is a solution to P for Φ(X) then Ψ(Ŷ ) is a solution to Q for X.

2. Q is Weihrauch reducible to P (denoted Q ≤W P) if there exist Turing functionals Φ and
Ψ such that for every instance X of Q we have that Φ(X) is an instance of P, and if Ŷ is
a solution to P for Φ(X) then Ψ(X ⊕ Ŷ ) is a solution to Q for X.

3. Q is computably reducible to P (denoted Q ≤c P) if every instance X of Q computes an
instance X̂ of P such that if Ŷ is any solution to P for X̂ , then there is a solution Y to Q

for X computable from X ⊕ Ŷ .

The above reducibility notions are related by the following strict implications:

≤sW =⇒ ≤W =⇒ ≤c,

and make it possible to illuminate subtle differences in the intuitive idea of solving a problem
Q algorithmically from a problem P. Note that Q ≤c P implies that each ω-model of RCA0 + P

is also a model of Q (the latter fact is usually denoted by Q ≤ω P). We refer the reader to [12]
for examples witnessing how the three reducibility notions differ.

In the present paper we only establish positive reducibility results, indicating when implica-
tions of type P → Q over RCA0 are witnessed by strongly Weihrauch, Weihrauch or computable
reductions. A few non-reducibility results are obtained as simple corollaries of our reducibility
results and non-reducibility results from the literature.
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2 Canonical and Regressive Ramsey’s Theorems

We review some definitions and known facts concerning Ramsey’s Theorem and its canonical
and regressive versions. We use N for the set of natural numbers and N+ for the set of positive
integers. For X ⊆ N and n ≥ 1 we denote by [X]n the set of subsets of X of cardinality n. For
k ∈ N+ we identify k with {0, 1, . . . , k − 1}. Accordingly, for S ⊆ N, c : [S]n → k indicates a
colouring of [S]n in k colours. Intervals are intervals in N. We start by recalling the statement
of the standard countable Ramsey’s Theorem.

Definition 1 (Ramsey’s Theorem). Let n, k ∈ N+. We denote by RTn
k the following principle.

For all c : [N]n → k there exists an infinite set H ⊆ N such that c is constant on [H]n. The set
H is called homogeneous or monochromatic for c. Also, we use RTn to denote (∀k ≥ 1)RTn

k

and RT to denote (∀n ≥ 1)RTn.

For n ∈ N+, S ⊆ {1, . . . , n}, I = {i1 < · · · < in} ⊆ N and J = {j1 < · · · < jn} ⊆ N we say
that I and J agree on S if and only if for all s ∈ S, is = js. Note that if S is empty then all
n-sized subsets of N agree on S.

The following generalization of Ramsey’s Theorem to colourings in possibly infinitely many
colours was established by Erdős and Rado [13].

Definition 2 (Erdős and Rado’s Canonical Ramsey’s Theorem). Let n ∈ N+. We denote by
canRTn the following principle. For all c : [N]n → N there exists an infinite set H ⊆ N and a
finite (possibily empty) set S ⊆ {1, . . . , n} such that for all I, J ∈ [H]n the equality c(I) = c(J)
holds if and only if I and J agree on S. The set H is called canonical for c. We use canRT to
denote (∀n ≥ 1)canRTn.

The Reverse Mathematics of canRTn is studied in [27], where it is denoted by CANn.
As observed in [27] (Proposition 8.5), canRT1 is equivalent to RT1 over RCA0.
Kanamori and McAloon [25] isolated a straightforward corollary of the Canonical Ramsey’s

Theorem inspired by Fodor’s Lemma in Uncountable Combinatorics. To state the Kanamori-
McAloon’s principle we need the following definitions.

Definition 3 (Regressive function). Let n ∈ N+. A function c : [N]n → N is called regressive
if and only if, for all I ∈ [N]n, c(I) < min(I) if min(I) > 0, else c(I) = 0.

Definition 4 (Min-homogeneity). Let n ∈ N+, c : [N]n → N and H ⊆ N an infinite set. The
set H is min-homogeneous for c if and only if the following condition holds: for any I, J ∈ [H]n,
if min(I) = min(J) then c(I) = c(J).

Definition 5 (Kanamori-McAloon’s Regressive Ramsey’s Theorem). Let n ∈ N+. We denote
by regRTn the following principle. For all regressive c : [N]n → N there exists an infinite
min-homogeneous set H ⊆ N. We denote by regRT the principle (∀n ≥ 1)regRTn.

The Reverse Mathematics of regRTn is studied in [27], where it is denoted by REGn. Note
that regRT1 is trivial. A finite first-order miniaturization of regRT was proved by Kanamori
and McAloon [25] to be independent from Peano Arithmetic and is often considered as one of
the most mathematically natural examples of statements independent from that system.

The following theorem summarizes the main known results about the Reverse Mathematics
of the Canonical and Regressive versions of Ramsey’s Theorem.

Theorem 1. The following are equivalent over RCA0.

1. ACA0.
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regRT canRT RT ACA′
0

regRTn, n ≥ 2 canRTn, n ≥ 2 RTn, n ≥ 3 ACA0

RTn
k , n ≥ 3, k ≥ 2

Figure 1: Implications over RCA0. Double arrows indicate strict implications. The equivalences
with ACA0 are from Theorem 1. For the other implications we refer the reader to [27].

2. canRTn, for any fixed n ≥ 2.

3. regRTn, for any fixed n ≥ 2.

4. RTn
k , for any fixed n ≥ 3 and k ≥ 2.

Proof. The equivalences concerning ACA0 and Ramsey’s Theorems are all due to Simpson (The-
orem III.7.6 in [31]), based on the computability-theoretic analysis by Jockusch [24]. The fact
that regRTn implies ACA0 is due to Hirst, see [20]. That ACA0 implies canRTn is due to Mileti,
using a new proof of the Canonical Ramsey’s Theorem [27]. The implications from canRTn to
RTn and canRTn to regRTn are simple observations.

Theorem 6.14 in Hirst’s Ph.D. Thesis [20] gives an implication (and a strong Weihrauch
reduction) from RT2n−1

2 to regRTn, for all n ≥ 2.
There seems to be no direct and exponent-preserving proof of RTn from regRTn in the

literature. A simple proof of this implication is in Proposition 7 below. As pointed out by one
of the anonymous reviewers of the present paper, a simple forgetful function argument proves
RTn from regRTn+1.

Also note that Ramsey’s Theorem for pairs is strictly between RCA0 and ACA0 (see [17] for
details). Moreover, the principles canRT, RT and regRT are all equivalent to ACA′

0, the system
obtained by adding to RCA0 the axiom ∀n∀X∃Y (Y = (X)(n)) stating the closure of the set
universe under the n-th Turing Jump for every n; see [27], Proposition 8.4. The main relations
among Canonical, Regressive and standard Ramsey’s Theorems with respect to implication over
RCA0 are visualized in Figure 1.

3 Canonical and Regressive Hindman’s Theorems

We start by recalling Hindman’s Finite Sums Theorem [15]. For a set X ⊆ N we denote by
FS(X) the set of all finite non-empty sums of distinct elements of X.

Definition 6 (Hindman’s Theorem). Let k ∈ N+. We denote by HTk the following principle.
For all c : N → k there exists an infinite set H ⊆ N such that c is constant on FS(H). We
denote by HT the principle (∀k ≥ 1)HTk.

For technical convenience, Hindman’s Theorem is usually stated with N+ instead of N.
Obviously we can always assume without loss of generality that H in the above definition is a
subset of N+.
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Taylor [32] proved the following “canonical” version of Hindman’s Theorem, analogous to
the Canonical Ramsey’s Theorem by Erdős and Rado (Definition 2). We denote by FIN(N) the
set of non-empty finite subsets of N.

Definition 7 (Taylor’s Canonical Hindman’s Theorem). We denote by canHT the following
principle. For all c : N → N there exists an infinite set H = {h0 < h1 < · · · } ⊆ N such that
one of the following holds:

1. For all I, J ∈ FIN(N), c(
∑

i∈I hi) = c(
∑

j∈J hj).

2. For all I, J ∈ FIN(N), c(
∑

i∈I hi) = c(
∑

j∈J hj) if and only if I = J .

3. For all I, J ∈ FIN(N), c(
∑

i∈I hi) = c(
∑

j∈J hj) if and only if min(I) = min(J).

4. For all I, J ∈ FIN(N), c(
∑

i∈I hi) = c(
∑

j∈J hj) if and only if max(I) = max(J).

5. For all I, J ∈ FIN(N), c(
∑

i∈I hi) = c(
∑

j∈J hj) if and only if min(I) = min(J) and
max(I) = max(J).

The set H is called canonical for c.

None of the cases in Definition 7 can be omitted without falsifying Taylor’s Theorem. For
technical convenience, canHT is usually stated with N+ instead of N. We can always assume
without loss of generality that H in the above definition is a subset of N+.

We first observe how Taylor’s Theorem implies the standard Hindman’s Theorem just as
the Canonical Ramsey’s Theorem implies Ramsey’s Theorem.

Proposition 1. canHT implies HT over RCA0. Moreover, canHT ≥sW HT.

Proof. Let c : N → k be a finite colouring of N, with k ∈ N+. By canHT there exists an infinite
set H ⊆ N+ such that one of the five canonical cases in Definition 7 occurs. It is easy to see
that, since c is a colouring in k colours, only case (1) of Definition 7 can occur. Thus FS(H) is
homogeneous for c. The argument obviously establishes a strong Weihrauch reduction.

In the usual Finite Unions versions of Hindman’s Theorem and of Taylor’s Theorem the
instance is a finite colouring of the finite subsets of N and the solution is an infinite sequence
(Bi)i∈N of finite subsets of N+ satisfying the so-called block condition: for all i < j, max(Bi) <
min(Bj); henceforth we will write X < Y to indicate that this condition holds for the finite
sets X and Y . When this condition is dropped, Hindman’s Finite Unions Theorem becomes
much weaker (in particular, provable in RCA0) as shown by Hirst (see [6] for references). We
introduce the corresponding property in the finite sums setting. This property is already implicit
in Hindman’s original proof [15] and was called apartness by the first author in [4]. Let n ∈ N+.
If n = 2t1 + · · ·+2tp with 0 ≤ t1 < · · · < tp let λ(n) = t1 and µ(n) = tp (the notation is from [2]).
We set λ(0) = µ(0) = 0.

Definition 8 (Apartness Condition). A set X satisfies the apartness condition if for all x, x′ ∈
X such that x < x′, we have µ(x) < λ(x′). If X satisfies the apartness condition we say that X
is apart.

If P is a Hindman-type principle, we denote by P with apartness or P[ap], the principle P

with the apartness condition imposed on the solution set.
In Hindman’s original proof the apartness condition is ensured by a simple counting argu-

ment (Lemma 2.2 in [14]) on any solution to the Finite Sums Theorem, i.e., an infinite H ⊆ N
such that FS(H) is monochromatic (Lemma 2.3 in [14]). As noted in [2], the proof shows that
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a solution satisfying the apartness condition can be obtained computably in any such solution.
In the Reverse Mathematics setting, one needs to be slightly more careful to establish that HT

implies HT with apartness over RCA0.
We first check that Lemma 2.2 in [14] holds in RCA0.

Lemma 1. The following is provable in RCA0: For all ℓ, for all k, for all finite sets X, if X
has cardinality 2k and is such that λ(x) = ℓ for all x ∈ X, then there exists Y ⊆ X such that
λ(
∑

y∈Y y) ≥ ℓ + k.

Proof. The Lemma is established by a straightforward induction on k. We give the details for
completeness.

For the base case, let k = 0 and let X = {x} be a finite set of cardinality 20 such that
λ(x) = ℓ. Obviously choosing Y = X gives the desired solution.

For the inductive step, let k ≥ 0 and let X be a set of cardinality 2k+1 such that for all
x ∈ X we have λ(x) = ℓ. Let A and B be two disjoint subsets of X each of cardinality 2k.
By inductive hypothesis there exists A′ ⊆ A such that λ(

∑
a∈A′ a) ≥ ℓ + k and there exists

B′ ⊆ B such that λ(
∑

b∈B′ b) ≥ ℓ+k. We distinguish the following cases. If λ(
∑

a∈A′ a) = ℓ+k
and λ(

∑
b∈B′ b) = ℓ + k then λ(

∑
c∈A′∪B′ c) ≥ ℓ + k + 1. If either λ(

∑
a∈A′ a) > ℓ + k or

λ(
∑

b∈B′ b) > ℓ + k then we are done.
The argument can be carried out in RCA0 since quantification over finite sets formally means

quantification over their numerical codes and the set Y is a finite subset of the finite set X,
so that the existential quantifier over Y is bounded. The induction predicate is then Π0

1, and
Π0

1-induction holds in RCA0.

The following Lemma appears as Lemma 9.9.6 in Dzhafarov and Mummert [12]. As pointed
out by one of the reviewers of the present paper, there is an error in the proof in [12] (where
it is assumed that the element denoted by x2 is in FS(I)). We give an alternative argument,
using Lemma 1.

Lemma 2. The following is provable in RCA0 + RT1: For every m ∈ N and every infinite
I ⊆ N, there exists x ∈ FS(I) with λ(x) ≥ m.

Proof. Fix m and I and suppose that every x ∈ FS(I) satisfies λ(x) < m. In particular this
implies that every x ∈ I satisfies λ(x) < m, since I ⊆ FS(I). By RT1 there exists an ℓ < m and
an infinite set J ⊆ I such that λ(x) = ℓ for all x ∈ J .

Since ℓ < m there exists k such that ℓ + k = m. Pick a subset X ⊆ J of cardinality 2k.
Then by Lemma 1 there exists a Y ⊆ X such that λ(

∑
y∈Y y) ≥ ℓ + k = m. This contradicts

the hypothesis that λ(x) < m for all x ∈ FS(I) .

As a corollary one obtains the following Proposition, which will be used to show that HT

self-strengthens to HT[ap] over RCA0.

Proposition 2.

1. The following is provable in RCA0 +RT1: For every infinite set I ⊆ N, there is an infinite
set J such that J is apart and FS(J) ⊆ FS(I).

2. For all infinite set I ⊆ of natural numbers there exists an infinite set J of natural numbers
computable in I such that J is apart and FS(J) ⊆ FS(I).

6



Proof. Define a sequence of elements x0 < x1 < · · · in FS(I) recursively as follows. Let
x0 = min(I). Given xi for some i ∈ N, let xi+1 be the least element of FS(I \ [0, xi]) such that
λ(xi+1) > µ(xi). The existence of xi+1 follows from Lemma 2. Let J = {xi : i ∈ N}. By
construction J is apart and FS(J) ⊆ FS(I).

Proposition 2 is close in both statement and proof to Corollary 9.9.8 in [12] but ensures
FS(J) ⊆ FS(I) rather than J ⊆ FS(I) as in [12]. This stronger condition is indeed needed in
the proof of the following corollary, which appears as Theorem 9.9.9 in [12]. The proof of the
latter contains an error when it is claimed that J ⊆ FS(I) implies FS(J) ⊆ FS(I).

Corollary 1. HT implies HT[ap] over RCA0. Moreover HT ≥sW HT[ap].

Proof. From Proposition 2 and the fact that HT trivially implies RT1 over RCA0. Let c : N → k.
Let I be a solution to HT for c. By Proposition 2 there exists an infinite J such that FS(J) ⊆
FS(I) and J is apart.

It is clear from the proof of Proposition 2 that there is a Turing functional that computes
J from I uniformly. This is sufficient to establish the claimed strong Weihrauch reduction.

It is natural to ask whether Taylor’s Theorem satisfies a similar self-strengthening with
respect to the apartness condition. A positive answer is expected by considering the finite
unions version of the theorem. Yet to establish the result in RCA0 the situation has to be
analyzed more closely as we have done above for Hindman’s Theorem. As observed by one of
the reviewers of the present paper, the above argument does not immediately apply to the case of
Taylor’s Theorem. Indeed, what the min-term (or max-term) of a number is depends on whether
that number is seen as a sum of elements of I or as a sum of elements of J , in the notation of
Proposition 2 above. Nevertheless Taylor’s Theorem does imply its own self-strenghtening with
apartness, as we next prove.

Theorem 2. canHT implies canHT[ap] over RCA0. Moreover, canHT ≥sW canHT[ap].

Proof. Given c : N → N, let H = {h0 < h1 < · · · } be a solution to canHT for c. Let
H ′ = {h′1 < h′2 < · · · } be an infinite apart set such that FS(H ′) ⊆ FS(H) (defined as the set J
in the proof of Proposition 2.

For each i ∈ N, let Ai ∈ FIN(N) be such that
∑

a∈Ai
ha = h′i and hmin(Ai) > h′i−1 if i > 0.

A non-empty set with these properties exists by definition of H ′. We fix a uniform computable
method to select Ai if more than one choice exists (for instance, we take the set A that satisfies
the conditions above and that minimizes

∑
a∈A 2a). Then, we can state the following three

Claims.

Claim 1. For any set of indexes I = {i0 < i1 < · · · < im} ∈ FIN(N), the following properties
hold:

(i) Ai0 < Ai1 < · · · < Aim .

(ii) min(
⋃

i∈I Ai) = min(Ai0).

(iii) max(
⋃

i∈I Ai) = max(Aim).

(iv)
∑

i∈I h
′
i =

∑
s∈

⋃
i∈I Ai

hs.

Proof. (i) derives from the fact that, for any s ∈ (0,m], hmin(Ais )
> h′is−1 ≥ h′is−1

≥ hmax(Ais−1
),

which implies min(Ais) > max(Ais−1
) because H is enumerated in increasing order.

(ii), (iii), and (iv) are trivial consequences of (i).

7



Claim 2. For any I = {i0 < i1 < · · · < im} ∈ FIN(N) and J = {j0 < j1 < · · · < jn} ∈ FIN(N),
min(I) = min(J) if and only if min(

⋃
i∈I Ai) = min(

⋃
j∈J Aj).

Proof. (=⇒) By hypothesis, i0 = j0, hence Ai0 = Aj0 and min(Ai0) = min(Aj0). Then, by
Claim 1.(ii), min(

⋃
i∈I Ai) = min(

⋃
j∈J Aj).

(⇐=) By hypothesis, min(
⋃

i∈I Ai) = min(
⋃

j∈J Aj) so, by Claim 1.(ii), min(Ai0) = min(Aj0)
and then hmin(Ai0

) = hmin(Aj0
). Thus, we can show that i0 = j0, i.e., min(I) = min(J). Assume

otherwise, and suppose i0 < j0 (the case i0 > j0 is analogous). By definition of Aj0 , we can
derive hmin(Aj0

) > h′j0−1 ≥ h′i0 ≥ hmin(Ai0
), hence contradicting hmin(Ai0

) = hmin(Aj0
).

Claim 3. For any I = {i0 < i1 < · · · < im} ∈ FIN(N) and J = {j0 < j1 < · · · < jn} ∈ FIN(N),
max(I) = max(J) if and only if max(

⋃
i∈I Ai) = max(

⋃
j∈J Aj).

Proof. (=⇒) By hypothesis, im = jn, hence Aim = Ajn and max(Aim) = max(Ajn). Then, by
Claim 1.(iii), max(

⋃
i∈I Ai) = max(

⋃
j∈J Aj).

(⇐=) By hypothesis, max(
⋃

i∈I Ai) = max(
⋃

j∈J Aj) so, by Claim 1.(iii), max(Aim) =
max(Ajn) and then hmax(Aim ) = hmax(Ajn )

. Thus, we can show that im = jn, i.e., max(I) =
max(J). Assume otherwise, and suppose im < jn (the case im > jn is analogous). By definition
of Ajn , we can derive hmax(Ajn ) ≥ hmin(Ajn )

> h′jn−1 ≥ h′im ≥ hmax(Aim ), hence contradicting
hmax(Aim ) = hmax(Ajn )

.

Now we can show that H ′ is a solution to canHT for c by analyzing each case of Definition 7.

Case 1. For any I, J ∈ FIN(N), by homogeneity of H and by Claim 1.(iv), c(
∑

i∈I h
′
i) =

c(
∑

s∈
⋃

i∈I Ai
hs) = c(

∑
t∈

⋃
j∈J Aj

ht) = c(
∑

j∈J h
′
j).

Case 2. Let I, J ∈ FIN(N). If I = J , then c(
∑

i∈I h
′
i) = c(

∑
j∈J h

′
j). Now assume I 6= J ,

as witnessed by w ∈ I \ J (the case w ∈ J \ I is analogous). By Claim 1.(i) applied to J ∪ {w},
we have that Aw ∩Aj = ∅ for all j ∈ J , therefore

⋃
i∈I Ai 6=

⋃
j∈J Aj .

Then, c(
∑

i∈I h
′
i) = c(

∑
s∈

⋃
i∈I Ai

hs) 6= c(
∑

t∈
⋃

j∈J Aj
ht) = c(

∑
j∈J h

′
j), where the two equal-

ities hold by Claim 1.(iv), while the inequality holds by Case 2 of Definition 7, since c is applied
to sums of different elements in H on the two sides of the equality, as we noted above.

Case 3. Let I, J ∈ FIN(N). If min(I) = min(J), then c(
∑

i∈I h
′
i) = c(

∑
s∈

⋃
i∈I Ai

hs) =

c(
∑

t∈
⋃

j∈J Aj
ht) = c(

∑
j∈J h

′
j), where the first and the last equality hold by Claim 1.(iv), while

the second equality holds by Case 3 of Definition 7, since in both sides of the equality, c is
applied to sums of elements in H having the same minimum term by Claim 2. Similarly, if
min(I ′) 6= min(J ′), we have c(

∑
i∈I h

′
i) = c(

∑
s∈

⋃
i∈I Ai

hs) 6= c(
∑

t∈
⋃

j∈J Aj
ht) = c(

∑
j∈J h

′
j).

Case 4. The proof is similar to the proof of Case 3, but using Claim 3 in place of Claim 2.

Case 5. The proof is analogous to the proof of Cases 3 and 4.

As observed in [25], when the Canonical Ramsey’s Theorem is applied to regressive functions
the Regressive Ramsey’s Theorem is obtained. Similarly, a regressive version of Hindman’s
Theorem follows from Taylor’s Theorem. We introduce the suitable versions of the notions of
regressive function and min-homogeneous set.

Definition 9 (λ-regressive function). A function c : N → N is called λ-regressive if and only
if, for all n ∈ N, c(n) < λ(n) if λ(n) > 0 and c(n) = 0 if λ(n) = 0.
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Obviously every λ-regressive function is regressive since λ(n) < n for n ∈ N+.

Definition 10 (Min-term-homogeneity for FS). Let c : N → N and H = {h0 < h1 < · · · } ⊆ N.
We call FS(H) min-term-homogeneous for c if and only if, for all I, J ∈ FIN(N), if min(I) =
min(J) then c(

∑
i∈I hi) = c(

∑
j∈J hj).

The following is an analogue of Kanamori-McAloon’s Regressive Ramsey’s Theorem in the
spirit of Hindman’s Theorem.

Definition 11 (Regressive Hindman’s Theorem). We denote by λregHT the following principle.
For all λ-regressive c : N → N there exists an infinite H ⊆ N such that FS(H) is min-term-
homogeneous.

For technical convenience we will always assume that H ⊆ N+. In this paper we do not
investigate optimal upper bounds on canHT and λregHT.

We start by observing how Taylor’s Theorem implies the Regressive Hindman’s Theorem
just as the Canonical Ramsey’s Theorem implies the Kanamori-McAloon Regressive Ramsey’s
Theorem.

Proposition 3. canHT implies λregHT over RCA0. Moreover, canHT ≥sW λregHT.

Proof. Let c : N → N be a λ-regressive function. By canHT there exists an infinite set H ⊆ N+

such that one of the five canonical cases occurs for FS(H). It is easy to see that, since c is
λ-regressive, only case (1) and case (3) of Definition 7 can occur. Thus FS(H) is min-term-
homogeneous for c.

Similarly to Hindman’s Theorem and Taylor’s Theorem, the Regressive Hindman’s Theorem
self-improves to its own version with apartness, as shown below. We first show that λregHT
implies the Infinite Pigeonhole Principle.

Lemma 3. λregHT implies RT1 over RCA0.

Proof. Given f : N → k, with k ≥ 1, let g : N → N be defined as follows:

g(n) =

{
λ′(n) if λ′(n) < k,

f(n) otherwise,

where λ′(n) = λ(n) − 1 if λ(n) > 0, otherwise λ′(n) = 0.
Clearly, g is f -computable and λ-regressive, so let H = {h0 < h1 < · · · } be a solution to

λregHT for g. First, we prove the following Claim.

Claim. There exists an infinite H ′ = {h′0 < h′1 < · · · } ⊆ H such that λ′(h′n1
+h′n2

+h′n3
+h′n4

) ≥
k for all n1 < n2 < n3 < n4.

Proof. Let us define J = {j ∈ H | λ′(j) < k}. If J contains finitely many elements, then (H \J)
witnesses the existence of H ′. Thus, let us assume J = {j0 < j1 < · · · } is infinite.

Notice that the sequence λ′(j0), λ′(j1), . . . never decreases: suppose otherwise by way of
contradiction, and let j, j′ ∈ J be such that j < j′ and λ′(j) > λ′(j′). Then we have g(j) =
λ′(j) > λ′(j′) = λ′(j + j′) = g(j + j′); this contradicts the min-term-homogeneity of FS(H).
Hence λ′ on J is a bounded non-decreasing function on an infinite set.

Then we have two cases. Either for any j ∈ J there exists j′ > j in J such that λ′(j′) > λ′(j),
or there exists j ∈ J such that, for any j′ > j in J , λ′(j) ≥ λ′(j′). The former case can not
hold, since by definition of J , λ′(j) < k for any j ∈ J .
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In the latter case, instead, we have some m ∈ J such that λ′(m) ≥ λ′(j) for any j in
J . Since λ′(j0), λ′(j1), . . . is non-decreasing, λ′(j) = λ′(m) holds for each j in the infinite set
J ′ = J \ [0,m). Finally, we can show that J ′ witnesses the existence of H ′. Assume otherwise
by way of contradiction. Then, there exist j, j′, j′′, j′′′ ∈ J ′ such that j < j′ < j′′ < j′′′ and
λ′(j + j′ + j′′ + j′′′) < k. Thus g(j + j′ + j′′ + j′′′) = λ′(j + j′ + j′′ + j′′′) by definition of g.
On the other hand, since j ∈ J ′ ⊆ J , λ′(j) < k and therefore g(j) = λ′(j) by definition of
g. Moreover, λ′(j) = λ′(j′) = λ′(j′′) = λ′(j′′′) since j, j′, j′′, j′′′ ∈ J ′. Therefore we have the
following inequality

g(j + j′ + j′′ + j′′′) = λ′(j + j′ + j′′ + j′′′) > λ′(j) = g(j),

contradicting the min-term-homogeneity of FS(H). This completes the proof of the Claim.
Notice that, while λ(x) = λ(y) implies λ(x+ y) > λ(x) for any x, y ∈ N+, the same implication
does not hold when using λ′: hence, sums of 4 elements are required in the argument above.

In order to prove the lemma, let H ′ = {h′0 < h′1 < · · · } be as in the previous Claim. Then,
for any n0 < n1 < n2 in N+, we have

f(h′0 + h′n0
+ h′n1

+ h′n2
) = g(h′0 + h′n0

+ h′n1
+ h′n2

)

= g(h′0 + h′1 + h′2 + h′3)

= f(h′0 + h′1 + h′2 + h′3),

where the first and the last equalities hold by the previous Claim and by definition of g,
while the second equality holds by min-term-homogeneity of FS(H).

Hence {(h′0 + h′n0
+h′n1

+h′n2
) | 0 < n1 < n2 < n3} is an infinite homogeneous set for f .

Proposition 4. λregHT implies λregHT[ap] over RCA0. Moreover, λregHT ≥sW λregHT[ap].

Proof. The proof of Theorem 2 adapts verbatim to the case of λregHT. Lemma 3 takes care of
the use of RT1 in that proof, which is only needed for the implication over RCA0.

It is easy to see that the proof of Lemma 3 uses only sums of at most 4 terms. However, this
does not help in extending the previous Proposition to some restriction of λregHT (see section
4), since the proof of Theorem 2 still requires sums of arbitrary length.

The following proposition shows that the Regressive Hindman’s Theorem implies Hindman’s
Theorem.

Proposition 5. λregHT implies HT over RCA0.

Proof. Given f : N → k, with k ≥ 1, and let g : N → k be as follows:

g(n) =

{
f(n) if f(n) < λ(n),

0 otherwise.

The function g is λ-regressive by construction and obviously f -computable. Let H = {h0 <
h1 < · · · } ⊆ N+ be an infinite set such that FS(H) is min-term-homogeneous for g. By
Proposition 4 we can assume that H is apart. Let i be the minimum such that λ(hi) > k.
Let H− = H \ {h0, . . . , hi}. By choice of H−, g behaves like f on FS(H−). Let g− be the
k-colouring of numbers induced by g on H−.
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By RT1
k (which we can assume by Lemma 3) let H ′ = {h′0 < h′1 < · · · } be an infinite subset

of H− homogeneous for g−. Then, for {s1, . . . , sm} and {t1, . . . , tn} non-empty subsets of H ′,
we have

f(s1 + · · · + sm) = g(s1 + · · · + sm)

= g(s1) = g−(s1)

= g−(t1) = g(t1)

= g(t1 + · · · + tn)

= f(t1 + · · · + tn),

since FS(H−) is min-term-homogeneous for g and g coincides with f on FS(H−).

We do not know if the implication in Proposition 5 can be reversed. In the next section we
will observe that RT1

k can be Weihrauch-reduced to some restriction of λregHT with apartness
– hence, a fortiori, it can be Weihrauch-reduced to λregHT (see Proposition 6 infra).

4 Restrictions of the Regressive Hindman’s Theorem

Restrictions of Hindman’s Theorem relaxing the monochromaticity requirement to particular
families of finite sums received substantial attention in recent years (see [6] for an overview
and bibliography). Two natural families of restrictions of Hindman’s Theorem are obtained
by restricting the number of terms in the monochromatic sums. We introduce the needed
terminology. For X ⊆ N and n ∈ N+ we denote by FS≤n(X) the set of all non-empty sums
of at most n distinct elements of X; we denote by FS=n(X) the set of all sums of exactly n
distinct elements of X.

Definition 12 (Bounded Hindman’s Theorems). Let n, k ∈ N+. We denote by HT
≤n
k (resp.

HT=n
k ) the following principle. For every c : N → k there exists an infinite set H ⊆ N such

that FS≤n(H) (resp. FS=n(H)) is monochromatic for c.
We use HT≤n (resp. HT=n) to denote (∀k ≥ 1)HT≤n

k (resp. (∀k ≥ 1)HT=n
k ).

Note that HT
≤1
k , HT=1

k and RT1
k are all equivalent and strongly Weihrauch inter-reducible

(by identity).
To formulate analogous restrictions of λregHT we extend the definition of min-term-homogeneity

in the natural way. For n ≥ 1, we denote by FIN≤n(N) (resp. FIN=n(N)) the set of all non-
empty subsets of N of cardinality at most n (resp. of cardinality n).

Definition 13 (Min-term-homogeneity for FS≤n,FS=n). Let n ∈ N+. Let c : N → N be a
colouring and H = {h0 < h1 < · · · } an infinite subset of N. We call FS≤n(H) (resp. FS=n(H))
min-term-homogeneous for c if and only if, for all I, J ∈ FIN≤n(N) (resp. I, J ∈ FIN=n(N)),
if min(I) = min(J) then c(

∑
i∈I hi) = c(

∑
j∈J hj).

We can then formulate the natural restrictions of the Regressive Hindman’s Theorem ob-
tained by relaxing the min-term-homogeneity requirement from FS(H) to FS≤n(H) or FS=n(H).
For example, λregHT≤n is defined as λregHT with FS≤n(H) replacing FS(H).

Definition 14 (Bounded λ-Regressive Hindman’s Theorems). Let n ∈ N+. We denote by
λregHT≤n (resp. λregHT=n) the following principle. For all λ-regressive c : N → N there exists
an infinite H ⊆ N such that FS≤n(H) (resp. FS=n) is min-term-homogeneous for c.
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Note that λregHT≤1 and λregHT=1 are trivial. We also point out the following obvious
relations: λregHT yields λregHT≤n which yields λregHT=n for all n (both in RCA0 and by
strong Weihrauch reductions) and similarly for the versions with the apartness condition. Also,
for m > n, λregHT≤m obviously yields λregHT≤n, while λregHT=m yields λregHT=n if m is a
multiple of n (see the analogous results for Hindman’s Theorem for sums of exactly n terms
in [5], Proposition 3.5).

4.1 Bounded regressive Hindman’s Theorems and Ramsey-type principles

We compare the bounded versions of our regressive Hindman’s Theorem with other prominent
Ramsey-type and Hindman-type principles.

We start with the following simple Lemma showing that, for every n ≥ 2, λregHT=n[ap]
implies RT1. Note that in Lemma 3 we established that λregHT without apartness implies RT1

and we later used this result to show that λregHT implies λregHT[ap] (Proposition 4).

Lemma 4. Let n ≥ 2. Over RCA0, λregHT
=n[ap] implies RT1. Moreover, for any k ∈ N+, we

have RT1
k ≤sW λregHT=n[ap].

Proof. We give the proof for n = 2 for ease of readability. Let f : N → k be given, with k ≥ 1.
Define g : N → k as follows.

g(m) =

{
0 if λ(m) ≤ k,

f(µ(m)) otherwise.

Clearly g is λ-regressive and f -computable in a uniform way. Let H = {h0 < h1 < · · · } ⊆ N+

be an infinite apart set of positive integers such that FS=2(H) is min-term-homogeneous for g.
By the apartness condition, for all h ∈ H \ {h0, h1, . . . , hk} we have g(h) = f(µ(h)). Then

it is easy to see that M = {µ(hk+2), µ(hk+3), . . .} is an infinite f -homogeneous set of colour
f(µ(hk+2)) since, for any i, f(µ(hk+2+i)) = g(hk+1 + hk+2+i) = g(hk+1 + hk+2) = f(µ(hk+2)).

The following proposition relates the principles λregHT=n[ap] (respectively λregHT≤n[ap])
with the principles HT=n

k [ap] (respectively HT
≤n
k [ap]). The proof is essentially the same as the

proof of Proposition 5.

Proposition 6. Let n ≥ 2.

1. λregHT=n[ap] implies HT=n[ap] over RCA0. Moreover, for any k ∈ N+, λregHT=n[ap] ≥c

HT=n
k [ap].

2. λregHT≤n[ap] implies HT≤n[ap] over RCA0. Moreover, for any k ∈ N+, λregHT≤n[ap] ≥c

HT
≤n
k [ap].

Proof. We prove the second point, the proof of the first point being completely analogous. Given
f : N → k, with k ∈ N+, let g : N → k be as follows:

g(m) =

{
f(m) if f(m) < λ(m),

0 otherwise.

The function g is λ-regressive and f -computable. By λregHT≤n[ap] let H = {h0 < h1 <
· · · } ⊆ N+ be an infinite apart set such that FS≤n(H) is min-term-homogeneous for g. Let
g′ : H \ {h0, . . . , hk−1} → k be defined as g′(hi) = g(hi + hi+1 + · · · + hi+n−1).
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By RT1
k, let H ′ ⊆ H be an infinite homogeneous set for g′. For the sake of establishing the

implication over RCA0, recall that RT1 follows from λregHT=2[ap] by Lemma 4 and therefore also
from λregHT≤n[ap] for any n ≥ 2. For the sake of the computable reduction result, just notice
that for each fixed k ∈ N+, RT1

k is computably true. Then, for {s1, . . . , sp} and {t1, . . . , tq}
non-empty subsets of H ′, with p, q ≤ n and s1 < · · · < sp, t1 < · · · < tq, we have

f(s1 + · · · + sp) = g(s1 + · · · + sp)

(∗)
= g(s1) = g′(s1)

= g′(t1) = g(t1)

(∗∗)
= g(t1 + · · · + tq)

= f(t1 + · · · + tq),

where the equalities dubbed by (∗) and (∗∗) hold by the min-term-homogeneity of FS≤n(H)
for g. This shows that H ′ is an apart solution to HT

≤n
k for f .

Remark 1. The previous proof gives us a hint as how to extend the reduction to HT≤n[ap], i.e.
to the universally-quantified principles (∀k ≥ 1) HT

≤n
k [ap]. In that case, the number of colours

is not given as part of the instance, and it cannot be computably inferred from the instance
X of the principle HT≤n[ap] (see the discussion in [12] p. 54 for more details on this issue).
Nevertheless, we can easily obtain a computable reduction by just observing that the proof of
Proposition 6 provides us, for any k ≥ 1, with both an X-computable procedure giving us an
instance X̂ of λregHT≤n[ap], and an (X ⊕ Ŷ )-computable procedure transforming a solution Ŷ
for X̂ to a solution for X: so, even if we do not know the actual value of k, we know that the
two procedures witnessing the computable reduction do exist. Thus, we can conclude that for
any n ≥ 2, λregHT≤n[ap] ≥c HT≤n[ap]. It is not straightforward to improve this result to a
Weihrauch reduction.

The same argument also applies to the case of λregHT=n[ap], so that we have that for any
n ≥ 2, λregHT=n[ap] ≥c HT

=n[ap].

Also, we point out that a proof of λregHT≤2 that does not also prove HT (or, more technically,
a separation over RCA0 of these two principles) would answer Question 12 from [16].

It is worth noticing that a further slight adaptation of the proof of Proposition 6 gives a direct
proof of RTn from regRTn and also shows that regRTn ≥c RTn

k . The following definition can
be used for computably reducing RTn

k to regRTn (for n ≥ 2 and k ∈ N+). Given c : [N]n → k,
with k ∈ N+, let c+ : [N]n → k be as follows:

c+(x1, . . . , xn) =

{
0 if x1 ≤ k,

c(x1, . . . , xn) otherwise.

We can thus state the following Proposition.

Proposition 7. For any n ≥ 2 and k ∈ N+, RTn
k ≤c regRT

n.

Note that by HT=n
k [ap] ≤sW RTn

k (see [5]), the above also implies HT=n
k [ap] ≤c regRTn for

any n ≥ 2 and k ∈ N+.

Equivalents of ACA0. Proposition 6, coupled with the fact that HT=3
2 [ap] implies ACA0

(Theorem 3.3 in [5]), yields the following corollary.

Corollary 2. λregHT=3[ap] implies ACA0 over RCA0.
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Proof. From Theorem 3.3 in [5] and Proposition 6 above.

We have the following reversal, showing that λregHT=3[ap] is a “weak yet strong” restriction
of Taylor’s Theorem in the sense of [4]. The result is analogous to the implication from RTn

k to
HT=n

k (see [5]).

Theorem 3. Let n ∈ N+. ACA0 proves λregHT=n[ap]. Moreover, λregHT=n[ap] ≤sW regRTn.

Proof. We give the proof for n = 2 for ease of readability.
Let f : N → N be λ-regressive. Let g : [N]2 → N be defined as follows: g(x, y) = f(2x+2y).

The function g is regressive since f is λ-regressive. Recall that regRT2 is provable in ACA0. Let
H ⊆ N+ be a min-homogeneous solution to regRT2 for g. Let Ĥ = {2h : h ∈ H}. Obviously
Ĥ is apart. It is easy to see that FS=2(Ĥ) is min-term-homogeneous for f : let 2h < 2h

′

< 2h
′′

be elements of Ĥ. Then

f(2h + 2h
′

) = g(h, h′) = g(h, h′′) = f(2h + 2h
′′

).

We do not know if the reduction in Theorem 3 can be reversed.
We next show that λregHT=2[ap] already implies Arithmetical Comprehension. The proof

is reminiscent of the proof that HT≤2
2 [ap] implies ACA0 in [5], but the use of λ-regressive colour-

ings allows us to avoid the parity argument used in that proof. As happens in the proofs of
independence of combinatorial principles from Peano Arithmetic [25], in the present setting the
use of regressive colourings simplifies the combinatorics.

Let RAN be the Π1
2 principle stating that for every injective function f : N → N the range

of f (denoted by ρ(f)) exists. It is well-known that RAN is equivalent to ACA0 (see [31]).

Theorem 4. Let n ≥ 2. λregHT=n[ap] implies ACA0 over RCA0. Moreover,

λregHT=n[ap] ≥W RAN.

Proof. We give the proof for n = 2. The easy adaptation to larger values is left to the reader.
Let f : N → N be injective. For technical convenience and without loss of generality we

assume that f never takes the value 0. We show, using λregHT=2[ap], that ρ(f) (the range of
f) exists.

Define c : N → N as follows. If m is a power of 2 then c(m) = 0. Else c(m) = the
unique x such that x < λ(m) and there exists j ∈ [λ(m), µ(m)) such that f(j) = x and for all
j < j′ < µ(m), f(j′) ≥ λ(m). If no such x exists, we set c(m) = 0.

Intuitively c checks whether there are values below λ(m) in the range of f restricted to
[λ(m), µ(m)). If any, it returns the latest one, i.e., the one obtained as image of the maximal
j ∈ [λ(m), µ(m)) that is mapped by f below λ(m)). In other words, x is the “last” element
below λ(m) in the range of f restricted to [λ(m), µ(m)).

The function c is computable in f and λ-regressive.
Let H = {h0 < h1 < · · · } ⊆ N+ be an apart solution to λregHT=2 for c. Without loss of

generality we can assume that λ(h0) > 1, since H is apart. Let hi ∈ H.
We claim that if x < λ(hi) and x is in the range of f then x is in the range of f restricted

to [0, µ(hi+1)).
We prove the claim as follows. Suppose, by way of contradiction, that there exist hi ∈ H

and x < λ(hi) such that x ∈ ρ(f) but x /∈ f([0, µ(hi+1)). Let b be the true bound for the
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elements in the range of f smaller than λ(hi), i.e., b is such that if n < λ(hi) and n ∈ ρ(f), then
n < b. The existence of b follows in RCA0 from strong Σ0

1-bounding (see [31], Exercise II.3.14):

∀n∃b∀i < n(∃j(f(j) = i) → ∃j < b(f(j) = i)),

where we take n = λ(hi).
Let hj in H be such that hj > hi+1 and µ(hj) ≥ b. Such an hj exists since H is infinite.
Then, by min-term-homogeneity of FS=2(H), c(hi + hi+1) = c(hi + hj). But by choice of

hi, x and hj , and the definition of c, it must be the case that c(hi + hi+1) 6= c(hi + hj). To see
this, first note that, by apartness of H, the following equalities hold:

λ(hi + hi+1) = λ(hi) = λ(hi + hj), µ(hi + hi+1) = µ(hi+1), µ(hi + hj) = µ(hj).

Then observe that c(hi+hj) > 0: by hypothesis f−1(x) ∈ [µ(hi+1), b) (recall that f is injective),
therefore x is a value of f below λ(hi+hj) whose pre-image under f is in [λ(hi +hj), µ(hi +hj)),
i.e. in [λ(hi), µ(hj)). Suppose now that c(hi + hi+1) = z > 0. Then, by definition of c, it must
be the case that z < λ(hi+hi+1), i.e., z < λ(hi), and f−1(z) is in [λ(hi+hi+1), µ(hi+hi+1)), i.e.
in [λ(hi), µ(hi+1)). This z cannot be the value of c(hi + hj), since by hypothesis and by choice
of b, we have x < λ(hi) and f−1(x) is in [µ(hi+1), b), hence in [λ(hi + hj), µ(hi + hj)). Thus z
cannot be the value of f below λ(hi) with maximal pre-image under f in [λ(hi +hj), µ(hi +hj))
as the definition of c(hi +hj) requires, since f−1(z) < µ(hi+1) ≤ f−1(x) and f is injective. This
concludes our reasoning by way of contradiction and hence establishes the claim that values in
the range of f below λ(hi) appear as values of f applied to arguments smaller than µ(hi+1).

In view of the just established claim it is easy to see that the range of f can be decided
computably in H as follows. Given x, pick any hi ∈ H such that x < λ(hi) and check whether
x appears in f([0, µ(hi+1)).

Theorem 4 for the case of n = 2 should be contrasted with the fact that HT=2
2 [ap] follows

easily from RT2
2 and is therefore strictly weaker than ACA0, while HT=3

2 [ap] implies ACA0 as
proved in [5]. The situation matches the one among regRT2, RT3

2 and RT2
2 (see Theorem 1).

The proof of Theorem 4 can be recast in a straightforward way to show that there exists a
computable λ-regressive colouring such that all apart solutions to λregHT=2 for that colouring
compute the first Turing Jump ∅′. Analogously, the reduction can be cast in terms of the Π1

2-
principle ∀X∃Y (Y = (X)′) expressing closure under the Turing Jump, rather than in terms of
RAN.

The next theorem summarizes the implications over RCA0 for the Regressive Hindman’s
theorems for sums of exactly n elements, compared with other prominent Ramsey-theoretic
principles (see Figure 2).

Theorem 5. The following are equivalent over RCA0.

1. ACA0.

2. regRTn, for any fixed n ≥ 2.

3. RTn
k , for any fixed n ≥ 3, k ≥ 2.

4. HT=n
k [ap], for any fixed n ≥ 3, k ≥ 2.

5. λregHT=n[ap], for any fixed n ≥ 2.

Proof. The equivalences between point (1), (2) and (3) are as in Theorem 1. The equivalence
of (1) and (4) is from Proposition 3.4 in [5]. Then the equivalence of (5) with points from (1)
to (4) follows from Theorem 3, Theorem 4 and Proposition 6.
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canHT canHT[ap]

λregHT λregHT[ap] HT[ap] HT

λregHT≤n[ap] HT≤n[ap]

regRTn, n ≥ 2 λregHT=n[ap], n ≥ 2 ACA0 HT=n
k [ap], n ≥ 3 RTn

k , n ≥ 3

HT=2
k [ap] RT2

k

Figure 2: Implications over RCA0. Double arrows indicate strict implications. The equivalence
of canHT[ap] and canHT is from Theorem 2. The implication from canHT to λregHT is from
Proposition 3 and similarly for the versions with apartness. The equivalence between λregHT
and λregHT[ap] is from Proposition 4. The implication from λregHT to HT is from Proposition
5. The implication from λregHT≤n[ap] to HT≤n[ap] is from Proposition 6. The equivalence of
λregHT=n[ap] with ACA0 (for n ≥ 2) is from Theorem 3 and Theorem 4. The equivalence of
HT=n

k [ap] with ACA0 (for n ≥ 3, k ≥ 2) is from [5]. The equivalence of RTn
k with ACA0 (for

n ≥ 3, k ≥ 2) is a classical result of Simpson, see Theorem III.7.6 in [31].

In terms of computable reductions we have the following, for n ≥ 2 and k ∈ N+:

RT2n−1
2 ≥sW regRTn ≥c RT

n
k ,

where the first inequality is due to Hirst [20] and the second inequality is from Proposition 7.
Furthermore we have that

regRTn ≥W λregHT=n[ap] ≥c HT
=n
k [ap],

from Theorem 3 and Proposition 6.
Moreover, whereas λregHT=n[ap] ≥W RAN for any n ≥ 2 (Theorem 4), we have that

HT=n
k [ap] ≥W RAN only for n ≥ 3 and k ≥ 2 (by an easy adaptation of the proof of Theo-

rem 3.3 in [5]). Also note that RTn
k ≥sW HT=n

k [ap] by a straightforward reduction (see [5]).
Some non-reducibility results can be gleaned from the above and known non-reducibility

results from the literature. First, Dorais, Dzhafarov, Hirst, Mileti, and Shafer showed that
RTn

k 6≤sW RTn
j (Theorem 3.1 of [11]). Then RTn

k 6≤W RTn
j was proved by Brattka and Rako-

toniaina [3] and, independently, by Hirschfeldt and Jockusch [18]. Patey further improved this
result by showing that the computable reduction does not hold either [29]; i.e., RTn

k 6≤c RT
n
j for

all n ≥ 2, k > j ≥ 2. We can derive, among others, the following corollaries.

Corollary 3. For each n, k ≥ 2, regRTn 6≤c RT
n
k .

Proof. From Proposition 7 we know that RTn
k+1 ≤c regRTn, so if we had regRTn ≤c RTn

k we
could transitively obtain RTn

k+1 ≤c RTn
k , hence contradicting the fact that RTn

k+1 6≤c RTn
k

proved by Patey [29].
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Corollary 4. RT3
3 6≤c λregHT

=2[ap].

Proof. It is known from [29] that RT3
3 6≤c RT

3
2. On the other hand λregHT=2[ap] ≤W RT3

2, since
λregHT=2[ap] ≤W regRT2 (Theorem 3) and regRT2 ≤sW RT3

2 (from the proof of Theorem 6.14
in [20]) and since the involved reducibilities satisfy the following inclusions and are transitive:
≤sW⊆≤W⊆≤c.

As proved in [5], restrictions of Hindman’s Theorem have intriguing connections with the
so-called Increasing Polarized Ramsey’s Theorem for pairs IPT2

2 of Dzhafarov and Hirst [10].
For example, HT=2

2 [ap] ≥W IPT2
2 (Theorem 4.2 in [5]). By this result and Proposition 6 we have

the following corollary.

Corollary 5. IPT2
2 ≤c λregHT

=2[ap].

Note that IPT2
2 is the strongest known lower bound for HT=2

2 [ap] in terms of reductions.
Some interesting lower bounds on HT=2 without apartness are in [8]. We haven’t investigated
λregHT=n without the apartness condition; we conjecture that the lower bounds on HT=2 (with-
out apartness) from [8] can be adapted to λregHT=2.

4.2 Bounded regressive Hindman’s Theorem and Well-ordering Principles

Let (X , <X ) be a linear ordering. We denote by ωX the collection of finite sequences of the
form (x1, x2, . . . , xs) such that, for all i ∈ [1, s], xi ∈ X and, for all i, j ∈ [1, s] such that i < j,
xi ≥X xj . We call the xis the components of σ. We denote by |σ| the length of σ, i.e. |σ| = s.
We order ωX lexicographically. Then, if σ, τ ∈ ωX and σ strictly extends τ , we have σ > τ . If
j is least such that xj = σ(j) 6= τ(j) = x′j and xj >X x′j then σ > τ . Otherwise τ ≥ σ.

If (X , <X ) is a well-ordering, then the just defined ordering on ωX is also a well-ordering
(provably in sufficiently strong theories). In this case we can then identify an element σ =
(x1, x2, . . . , xs) of ωX with the ordinal ωx1 + ωx2 + · · · + ωxs . The lexicographic ordering of ωX

coincides with the usual ordering of ordinals in Cantor Normal Form.
The well-ordering preservation principle (or well-ordering principle) for base-ω exponentia-

tion is the following Π1
2-principle:

∀X (WO(X ) → WO(ωX )),

where WO(Y ) is the standard Π1
1-formula stating that Y is a well-ordering. We abbreviate the

above well-ordering preservation principle by WOP(X 7→ ωX ).
It is known that WOP(X 7→ ωX ) is equivalent to ACA0 by results of Girard and Hirst (see

[21]). A direct combinatorial proof from RT3
3 to WOP(X 7→ ωX ) in RCA0 was given by Carlucci

and Zdanowski [7] (the proof yields a Weihrauch reduction as clear by inspection). On the other
hand, we proved in Theorem 4 that, for any n ≥ 2, λregHT=n[ap] implies ACA0 over RCA0.
Therefore in RCA0 we have that, for n ≥ 2, λregHT=n with apartness implies WOP(X 7→ ωX ).
However, we can not use the same arguments to derive an analogous chain of reductions. In
the next theorem we show that WOP(X 7→ ωX ) is Weihrauch-reducible to λregHT=n[ap], while
also giving a direct proof of the implication in RCA0. This result relates for the first time, to
the best of our knowledge, Hindman-type theorems and transfinite well-orderings.

To make the principle WOP(X 7→ ωX ) amenable to questions of reducibility it is natural
to consider its contrapositive form: an instance is an infinite descending sequence in ωX and
a solution is an infinite descending sequence in X (in fact, one might require that the solution
consists of terms already occurring as subterms of the elements of the instance sequence, as is
the case in our argument below).
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We briefly describe the idea in the proof of Theorem 6 below. Let X be a linear ordering.
Let α = (αi)i∈N be an infinite decreasing sequence in ωX . We show, using λregHT=2[ap], that
there exists an infinite decreasing sequence in X . The proof uses ideas from our proof of the fact
that λregHT=2 with apartness implies ACA0 (Theorem 4) adapted to the present context, based
on the following analogy between deciding the first Turing jump ∅′ and computing an infinite
descending sequence in X . Given an enumeration of ∅′ and a number n, RCA0 knows that there
is a b such that all numbers in ∅′ below n appear within b steps of the enumeration, but is not
able to compute this b. Similarly, given an ordinal α in an infinite decreasing sequence in ωX ,
RCA0 knows that there is a b such that if a term of α ever decreases, it will do so by the b-th
term of the infinite descending sequence, but is unable to compute such a b. More precisely,
while one can computably run through the given infinite descending sequence to find the first
point at which an exponent of a component of α is decreased, we can not locate computably the
leftmost such component. An appropriately designed colouring will ensure that the information
about such a b can be read off from the elements of any apart solution to λregHT=n.

We start with the following simple Lemma. For technical convenience in the rest of this
section we index infinite sequences and sets starting from 1.

Lemma 5. The following is provable in RCA0: If α = (αi)i∈N+ is an infinite descending
sequence in ωX , then

∀n ∃n′ ∃m ≤ |αn|
(
n′ > n ∧m ≤ |αn′ | ∧ αn,m >X αn′,m

)
,

where αi,j denotes the j-th component of αi for j ∈ [1, |αi|] and is otherwise undefined.

Proof. Assume by way of contradiction that the statement is false, as witnessed by n, and recall
that for any distinct σ, τ ∈ ωX , we have σ < τ if and only if either (1.) σ is a proper initial
segment of τ , or (2.) there exists m such that σ(m) <X τ(m) and σ(m′) = τ(m′) for each
m′ < m. Then we can show that:

∀p (p ≥ n → (αp+1 is a proper initial segment of both αp and αn))

by ∆0
1-induction.

The case p = n is trivial, since αn >X αn+1 and (2.) cannot hold by assumption.
For p > n, by induction hypothesis we know that αp is a proper initial segment of αn. Since

αp+1 <X αp, αp+1 must be a proper initial segment of αp, otherwise the leftmost component
differing between αp+1 and αp – i.e. the component of αp+1 with index m witnessing (2.) –
would contradict our assumption, for we would have m ≤ |αp| and αp+1,m <X αp,m = αn,m.

So αp+1 must be a proper initial segment of αp and, by our assumption, it must be a proper
initial segment of αn as well.

The previous statement implies that:

∀p (p ≥ n → |αp| > |αp+1|),

which contradicts WO(ω). This concludes the proof.

Theorem 6. Let n ≥ 2. λregHT=n[ap] implies WOP(X 7→ ωX ) over RCA0. Moreover,
λregHT=n[ap] ≥W WOP(X 7→ ωX ).

Proof. Let α = (αn)n∈N+ be an infinite descending sequence in ωX . We say that αn,m is
decreasible if there exists a n′ > n such that αn′,m <X αn,m. In this case we say that αn′,m

decreases αn,m. With this terminology Lemma 5 says that RCA0 knows that for all i ≥ 1 there
exists j ∈ [1, |αi|] such that αi,j is decreasible. If αn′,m decreases αn,m and no αk,m with k < n′

decreases αn,m we call αn′,m the least decreaser of αn,m.
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Now suppose that f : N → N is a function with the following property:

Property P: For all i ∈ N+ for all j ∈ [1, |αi|] if αi,j is decreasible then αi,j is decreased by
αk,j for some k ≤ f(i).

We first show that given such an f we can compute (in f and α) an infinite descending
sequence (σi)i∈N+ in X as follows.

Step 1. Pick the leftmost decreasible component of α1 (which exists by Lemma 5). This
can be done by inspecting all components in α up through αf(1), since f has Property P .

Let p1 be the position of the leftmost decreasible component of α1. Pick the smallest
d1 ≤ f(1) such that αd1,p1 decreases α1,p1 . We set σ1 = αd1,p1 and observe that all decreasible
components in αd1 occur at positions ≥ p1. Suppose otherwise and let 1 ≤ p∗ < p1 be such
that αd1,p∗ is decreasible. Let d∗ > d1 such that αd∗,p∗ decreases αd1,p∗. Then αd∗,p∗ <X αd1,p∗

by definition of decreasible. On the other hand, by choice of d1 and p1, and since p∗ < p1, it
must be the case that αd1,p∗ = α1,p∗. Hence α1,p∗ is a decreasible component in α1 on the left
of position p1, which contradicts the choice of p1.

Step i + 1 (i > 0). Suppose di, pi, σi are defined so that σi = αdi,pi , (σj)1≤j≤i is decreasing
in X and all decreasible components in αdi occur at positions ≥ pi.

Pick the leftmost decreasible component in αdi (which exists by Lemma 5). This can be
done by inspecting all components in α up to αf(di), since f has Property P . Let αdi,ℓ be the
chosen component. Set pi+1 = ℓ and note that necessarily pi+1 ≥ pi.

Pick d ≤ f(di) minimal such that αd,pi+1
decreases αdi,pi+1

. Set di+1 = d. Let σi+1 =
αdi+1,pi+1

. Obviously σi >X σi+1, since σi = αdi,pi ≥ αdi,pi+1
>X αdi+1,pi+1

= σi+1 (note that
pi ≤ pi+1).

We observe that also the last part of the inductive invariant is guaranteed, since no de-
creasible component in αdi+1

occurs on the left of pi+1. Suppose otherwise as witnessed by
1 ≤ p∗ < pi+1. Let d∗ > di+1 such that αd∗,p∗ decreases αdi+1,p∗. Then αd∗,p∗ also decreases
αdi,p∗ since αdi+1,p∗ = αdi,p∗, where the latter is due to the fact that α is decreasing and p∗ is less
than pi+1, which is the position of the leftmost decreasible component in αdi . This contradicts
the choice of pi+1.

We next show how to obtain a function satisfying Property P from a solution of λregHT=n[ap]
for a suitable colouring. The argument is similar to the proof of Theorem 4.

For this purpose it is convenient to use a sequence β of all the components of the terms αn

in α, enumerated in order of appearance: more precisely, (βh)h∈N+ is the ordered sequence
α1,1, α1,2, . . . , α1,|α1|, α2,1, α2,2, . . . , α2,|α2|, . . . . This sequence is obviously easily computable
from α. Formally we construct such a sequence by first defining a function ι : N+ ×N+ → N+

as follows: ι(n,m) =
∑

1≤k<n |αk|+m, for all n ∈ N+ and all m ∈ [1, |αn|], while ι(n,m) = 0 in
all other cases. We correspondigly fix functions t : N+ → N+ and p : N+ → N+ such that for
each n ∈ N+ we have ι(t(n), p(n)) = n. The sequence (βh)h∈N+ of all components appearing
in α is then defined by setting βh = αt(h),p(h).

Define c : N → N as follows: c(x) = the unique i < λ(x) satisfying the following conditions:

1. There exists j such that λ(x) ≤ j < µ(x) and βj is the least decreaser of βi, and

2. For all j′ such that j < j′ < µ(x), if βj′ is the least decreaser of βi′ then i′ ≥ λ(x).

If no such i exists, we set c(x) = 0.
The function c is computable in α and λ-regressive. Let H = {h1 < h2 < h3 < . . . } be an

apart solution to λregHT=n for c. The following Claim ensures the existence of an (α ⊕ H)-
computable function with Property P .
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Claim 4. For each hk ∈ H and each αℓ,m such that ι(ℓ,m) < λ(hk), if there exists αℓ′,m such
that αℓ′,m decreases αℓ,m then there exists such an αℓ′,m with ι(ℓ′,m) < µ(hk+n−1).

Proof of Claim 4. Assume by way of contradiction that there is some hk ∈ H and some αℓ,m

with ι(ℓ,m) = i < λ(hk) such that αℓ,m is decreasible but not by any αℓ′,m with ι(ℓ′,m) <
µ(hk+n−1).

Let b be such that if αℓ′′,m is decreasible and ι(ℓ′′,m) < λ(hk), then there exists ℓ′,m such
that ι(ℓ′,m) < b and αℓ′,m decreases αℓ′′,m. The existence of b can be proved in RCA0 using the
following instance of strong Σ0

1-bounding (similarly as in the proof of Theorem 4):

∀n∃b∀i < n(∃j(αt(j),p(j) decreases αt(i),p(i)) → ∃j < b(αt(j),p(j) decreases αt(i),p(i)).

Since H is infinite, there is an hk′ ∈ H such that hk′ > hk+n−1 and µ(hk′) ≥ b. Then, by
min-term-homogeneity, c(hk + · · · + hk+n−1) = c(hk + · · · + hk+n−2 + hk′). But by choice of hk,
hk′ and the definition of c, we can show that c(hk + · · · + hk+n−1) 6= c(hk + · · ·+ hk+n−2 + hk′),
yielding a contradiction.

To see this we reason as follows. First observe that, by apartness of H, the following
identities hold:

λ(hk + · · · + hk+n−1) = λ(hk + · · · + hk+n−2 + hk′) = λ(hk),

and
µ(hk + · · · + hk+n−2 + hk′) = µ(hk′).

Let j ∈ [µ(hk+n−1), µ(hk′)) be such that αt(j),p(j) is the least decreaser of αℓ,m. Such a j exists by
choice of αℓ,m, hk and hk′ . In fact, by hypothesis, αℓ,m is decreasible but not by any component
with ι-index below µ(hk+n−1). By choice of h′k the least decreaser of αℓ,m must have ι-index
smaller than µ(hk′), since ι(ℓ,m) < λ(hk).

First note that c(hk + · · · + hk+n−2 + hk′) cannot be 0, since this occurs if and only if there
is no i∗ < λ(hk) such that for some j∗ ∈ [λ(hk), µ(hk′)), αt(j),p(j) decreases αt(i∗),p(i∗); but the
latter is false by choice of hk and hk′ .

If c(hk + · · · + hk+n−1) takes some non-zero value i∗ < λ(hk), then this same value cannot
be taken by c(hk + · · · + hk+n−2 + hk′) under our assumptions. If it were, it would mean that
αt(i∗),p(i∗) is decreased for the first time by some αt(j∗),p(j∗) with j∗ < µ(hk′) such that j∗ is
also maximal below µ(hk′) such that αt(j∗),p(j∗) is the least decreaser of some αt(q),p(q) with
q < λ(hk). This is impossible since the least decreaser of αt(i∗),p(i∗), by the hypothesis that
c(hk + · · · + hk+n−1) = i∗, occurs earlier in the sequence of the βh’s than the least decreaser of
αt(i),p(i) since, by the definition of c, it must be that j∗ < µ(hk+· · ·+hk+n−1) and the latter value,
by apartness, equals µ(hk+n−1), as noted above. On the other hand, j is in [µ(hk+n−1), µ(hk′)),
so that j∗ < j. Thus j∗ cannot be maximal below µ(hk′) such that αt(j∗),p(j∗) is the least
decreaser of some αℓ′′,m with ι(ℓ′′,m) below λ(hk), as required by the definition of c, since
αt(j),p(j) is such a least decreaser of αt(i),p(i), and i < λ(hk).

This proves the Claim.

Now it is sufficient to observe that the (α ⊕ H)-computable function f defined as follows
has the Property P : on input n, pick the least k such that

∑
1≤n′≤n |αn′ | < λ(hk) and let f(n)

be the α-index of the µ(hk+n−1)-th element in the sequence β of all components appearing in
α, i.e., f(n) = t(µ(hk+n−1)). That this choice of f satisfies Property P is implied by Claim 4
above. This concludes the proof of the theorem.

The proof of Proposition 1 in [7] shows that WOP(X → ωX ) ≤W RT3
3. The proof of Theorem

6 can be adapted to show that WOP(X → ωX ) ≤W HT=3
2 [ap]. Details will be reported elsewhere.

The main reductions between restrictions of HT, restrictions of λregHT and other principles
of interest are visualized in Figure 3.
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λregHT≤n[ap] HT
≤n
k [ap]

regRTn λregHT=n[ap] HT=n
k [ap] RTn

k

WOP(X → ωX ) RAN

sW

c

sW

sW

c

W

c

W(n≥2)

W(n≥3)

sW

Figure 3: Diagram of reductions. HT≤n[ap] ≤c λregHT
≤n[ap] is from Proposition 6. That the

versions with sums of exactly n terms reduce to the corresponding versions for sums of ≤ n terms
is a trivial observation. The reduction WOP(X → ωX ) ≤W λregHT=n for n ≥ 2 is Theorem 6.
The reduction RAN ≤W λregHT=n for n ≥ 2 is Theorem 4. The reduction RAN ≤W HT=n

k [ap]
for n ≥ 3, k ≥ 2 is from [5]. The reduction RTn

k ≤c regRT
n is from Proposition 7. The reduction

HT=n
h ≤sW RTn

k is folklore.

5 Conclusion and open questions

In analogy with Kanamori-McAloon’s Regressive Ramsey’s Theorem [25] we obtained a Re-
gressive Hindman’s Theorem as a straightforward corollary of Taylor’s Canonical Hindman’s
Theorem [32] restricted to a suitable class of regressive functions and relative to an appropriate
variant of min-homogeneity. We studied the strength of this principle and of its restrictions in
terms of provability over RCA0 and computable reductions.

In particular we showed that the seemingly weakest (non-trivial) restriction of our Regressive
Hindman’s Theorem (λregHT=2), with a natural apartness condition on the solution set, is
equivalent to ACA0. This restriction ensures that sums of two numbers from the solution set
get the same colour if they have the same minimum term. For the restrictions of the standard
Hindman’s Theorem to sums of exactly n elements, the level of ACA0 is reached only when
we consider sums of exactly 3 elements. This situation is analogous to that of regRT2 when
compared to RT3

2. Furthermore, we proved that the well-ordering preservation principle that
characterizes ACA0 (WOP(X → ωX )) is Weihrauch-reducible to λregHT=2 with apartness.

Many open questions remain concerning the strength of the Regressive Hindman’s Theorem,
of its restrictions, and of related principles. Here are some natural ones.

Question 1. What are the optimal upper bounds for canHT, for λregHT and for λregHT≤n?

Question 2. Is λregHT implied by/reducible to HT (and similarly for bounded versions)?

Question 3. What is the strength of λregHT=2 without apartness? More generally, how do the
bounded Regressive Hindman’s Theorems behave with respect to apartness?

Question 4. Can the reductions in Proposition 6 and Theorem 6 be improved to stronger
reductions?
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Very recently, Hirschfeldt and Reitzes [19] investigated Hindman-type variants of the Thin
Set Theorem which, as is the case for our Regressive Hindman’s Theorem, deals with colourings
with unboundedly many colours. It would be interesting to investigate possible relations between
the two families.

Acknowledgments We thank the anonymous referees for pointing out some inaccuracies
in previous versions of the paper. Their further suggestions led to a significant improvement of
the presentation, to the addition of Theorem 2.
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