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Abstract

We give a relatively short, almost self-contained proof of the fact that the partition function
of the suitably renormalised Φ

4
3 measure admits an asymptotic expansion, the coefficients

of which converge as the ultraviolet cut-off is removed. We also examine the question of
Borel summability of the asymptotic series. The proofs are based on Wiener chaos expan-
sions, Hopf-algebraic methods, and bounds on the value of Feynman diagrams obtained
through BPHZ renormalisation.
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1 Introduction

The Φ
4
d

model, defined on the d-dimensional torus with d ∈ {1,2,3}, is probably one of the
simplest non-trivial models in Euclidean quantum field theory. Here non-trivial means that
the model can be proven to behave differently from a Gaussian field. In dimension d = 4, it has
been shown that the Φ

4
d

model is indeed trivial [1].
Despite it being simpler than other models, the analysis of the Φ

4 model is by no means
easy. The earliest works by Glimm and Jaffe and by Feldman approached the problem via a
detailed combinatorial analysis of Feynman diagrams [22, 23, 20, 24], entailing very long and
technical proofs. Over the years, the analysis of the model has been gradually simplified. The
works [3, 4] introduced the idea of using a renormalisation group approach, consisting in a
decomposition of the covariance of the underlying Gaussian reference field into scales, which
then allows to integrate sucessively over one scale after the other. This method was further
perfected in [11], using polymers to control error terms, an approach based on ideas from sta-
tistical physics [26].

In another direction, the approach provided in [12, 13] allows to bound correlation func-
tions (or n-point functions) without having to compute the partition function explicitly, by
using it as a generating function. This involves the derivation of skeleton inequalities, which
were obtained up to third order in [12], and later extended to all orders in [9]. As an applica-
tion, the latter work contains another proof for the asymptotic nature of perturbation theory
for the Φ

4
d

model in dimensions d ∈ {2,3}, a result that had earlier been obtained by different
methods in [21] when d = 3 and [17] when d = 2. In fact, based upon earlier work in [25], the
article [17] establishes this result for more general polynomial P(Φ)2 models. A relatively com-
pact derivation of bounds on the partition function based on the Boué–Dupuis formula was
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recently obtained in [2]. Besides, novel techniques based on singular stochastic PDEs have led
to a new proof that the perturbative expansion for Φ4

2 is asymptotic [36].
In this review, we argue that there is still room for improvement in the analysis of the

Φ
4
3 model, taking advantage of quite recent developments in more algebraic approaches. We

will present a rather compact argument which shows that, after suitable renormalisation, all
the terms in the perturbatively expanded partition function of the Φ

4
3 model are uniformly

bounded in the cut-off parameter. This is the main contribution of our work.
It is well-known that the perturbative series does not converge [29], but that it can be re-

summed using the theory of Borel transforms; Sokal’s theorem [37] provides two sufficient con-
ditions under which that resummation procedure works. We will demonstrate that our setup
provides a convenient framework to check one of these conditions, the remainder bounds, in a
systematic way.—However, we are only able to present a complete proof under a fairly strong
moment bound assumption which seems highly non-trivial to check on its own part. We do not

make any statement about (local) analyticity, the second condition, and instead only assume
its validity.

Important sources of inspiration for our approach are the monograph [33] by Peccati and
Taqqu on Wiener chaos and cumulant expansions, the article [18] by Ebrahimi-Fard et al. on
deformations of Hopf algebras, and Hairer’s overview [27] of BPHZ renormalisation.

This article is organized as follows. In Section 2, we introduce the set-up, including a defi-
nition of the renormalised Φ

4
3 measure with cut-off N . In Section 3, we give a relatively concise

proof of the fact that the partition function of the model admits a perturbative expansion in
terms that converge as the cut-off N is sent to infinity. Finally, in Section 4, we address the
question of Borel resummation of the perturbative expansion and explain how our approach
allows to systematize parts of its proof.

Acknowledgements: Both authors thank the Erwin Schrödinger International Institute for
Mathematics and Physics (ESI) of the University of Vienna for its kind hospitality and financial
support during the Masterclass and Workshop of the Graduate School on “Higher Structures
Emerging from Renormalisation” (8 to 19 November 2021). NB was partly supported by the
ANR project PERISTOCH, grant ANR–19–CE40–0023. TK additionally thanks the Institut Denis
Poisson in Orléans for its generous financial support and the warm hospitality during his visit
in June 2022. The article at hand has been completed while TK was employed at TU Berlin. Both
authors thank the two anonymous referees whose comments helped improve the presentation
in this article.

2 Set-up

We are interested in the invariant measure of the massiveΦ
4
3 model on the torusΛ=T

3 = (R/Z)3,
which can be formally defined as

µ
Φ

4
3
(dφ) =

1

Z (ε)
exp

{

−
∫

Λ

(
1

2

∥
∥∇φ(x)

∥
∥2 +

m2

2
φ(x)2 +

ε

4
φ(x)4

)

dx

}

dφ , (2.1)

where the partition function Z (ε) is the normalisation making µ
Φ

4
3

a probability measure. In
what follows, we will consider for convenience the case m2 = 1. However, there is no difficulty
in extending the results to any m2 > 0 by a Gaussian change of measure. In fact, even negative
values of m2 can be considered: they appear in the stochastic Allen–Cahn equation, see for
instance [7, 5].

As such, the measure (2.1) is ill-defined, because there is no Lebesgue measure dφ on L2(Λ).
This issue can be solved in several steps, the first of which consists in considering a regularised

2



version of the problem. Here it will be convenient to use a spectral Galerkin approximation with
ultra-violet cut-off N . For k ∈Z

3, we write ek (x) = exp(2π ik · x) for the Fourier basis functions
of L2(Λ), and set

HN := span
{

ek : k ∈KN

}

, KN :=
{

k ∈Z
3 : |k | := |k1|+ |k2|+ |k3|6 N

}

.

For any finite N , (2.1) defines a probability measure on HN . In particular, the partition function
can be written as

ZN (ε) = ZN (0) EµN

[

exp
{

−
ε

4

∫

Λ

φ(x)4 dx
}]

,

where µN is the Gaussian measure on HN with covariance function [−∆+1]−1.
The limit N →∞ of this sequence of measures is not well-defined, which is why a renormal-

isation procedure is required. The first step of this procedure is called Wick renormalisation. It
consist in replacing (2.1) for finite N by

µWick
Φ

4
3,N

(dφ)=
1

ZN (ε)
exp

{

−
∫

Λ

(
1

2

∥
∥∇φ(x)

∥
∥2 +

1

2
φ(x)2 +

ε

4
:φ(x)4:

)

dx

}

dφ , (2.2)

where we write
:φ(x)n : := Hn

(

φ(x),C (1)
N

)

.

Here Hn(·,C ) denotes the nth Hermite polynomial with variance C , and

C (1)
N

:=
1

|Λ|
Tr

(

(−∆+1)−1)

is a counterterm which diverges like N .
In the case of the two-dimensional torus, the analogue of the measure (2.2) is known to con-

verge to a well-defined limit. However, in the three-dimensional case, additional counterterms
are required. The highly non-trivial result is that three additional such terms are sufficient. The
correctly renormalised measure takes the form (see for instance [3, p. 145])

µBPHZ
Φ

4
3,N

(dφ) =
1

ZN (ε)
exp

{

−
∫

Λ

(
1

2

∥
∥∇φ(x)

∥
∥2

+
1

2

[

1−ε2C (2)
N

]

φ(x)2 +
ε

4
:φ(x)4:+ε2C (3)

N −ε3C (4)
N

)

dx

}

dφ ,

where the new counterterms are defined as follows. We write GN for the truncated Green func-
tion given by

GN (x, y)=GN (x − y) :=
∑

k∈KN

1

λk +1
ek (x)ek (y)
︸ ︷︷ ︸

=ek (x−y)

, (2.3)

where −λk = (2π)2 ‖k‖2 are the eigenvalues of the Laplacian on Λ. Then we have

C (2)
N := 3!

∫

Λ

GN (x)3 dx =O (log N ) ,

C (3)
N

:=
4!

2!42

∫

Λ

GN (x)4 dx =O (N ) , (2.4)

C (4)
N

:=
23

3!43

(

4

2

)3 ∫

Λ

∫

Λ

GN (x)2GN (y)2GN (x − y)2 dx dy =O (log N ) .
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Our aim in the following is to provide a compact partial proof of this result, based on recent
developments in combinatorics in the Wiener chaos, on Hopf-algebraic methods, and on ana-
lytic bounds for BPHZ renormalisation. More precisely, we are going to address the question of
convergence of the truncated partition function ZN (in the sense of formal power series) in the
limit N →∞.

It will be useful to introduce some additional notation. We will use the symbols

X = :=
∫

T3
:φ(x)4:dx , Y = :=

∫

T3
:φ(x)2: dx (2.5)

for Wick powers, as well as the shorthands

α :=
ε

4
, β :=

1

2
ε2C (2)

N
, γ := ε2C (3)

N
−ε3C (4)

N
. (2.6)

In this way, the ratio of partition functions can be written as

ZN (ε)

ZN (0)
= E

[

e−αX−βY −γ]= e−γE
[

e−αX−βY
]

.

Integrals as in (2.4) can be conveniently expressed as Feynman diagrams (more precisely, vac-
uum diagrams). If Γ = (V ,E ) is a multigraph with vertex set V and edge set E (multiple edges
between vertices are allowed), then the valuation ΠN is the map defined by

ΠN (Γ) :=
∫

ΛV

∏

e∈E

GN (xe+ −xe−)dx ,

where e± denote the vertices connected by the edge e (GN being even, their order does not
matter here). In particular, we have the expressions

C (1)
N =ΠN , C (2)

N = 3!ΠN ,

C (3)
N

=
4!

2!42
ΠN , C (4)

N
=

23

3!43

(

4

2

)3

ΠN

for the counterterms. The graphical notation emphasizes how these expressions are a conse-
quence of Wick calculus, which states in particular that the expectation of a product of Wick
powers can be written as a sum over all pairings of their “legs”, also called contractions, see for
instance [33] as well as Example 3.4 below.

There are two different questions that one may want to address:

1. Show that the partition function (or its logarithm) admits a perturbative expansion in
powers of ε with coefficients that converge to finite limits as N →∞.

2. Analyse the Borel summability of the perturbative series. Indeed, it is known that the per-
turbative expansion of the partition function will remain divergent, even after removing
all divergences in terms of N . Nonetheless, Borel summation allows to recover informa-
tion on the partition function from its Borel transform.

We present a complete answer to the first question in Section 3. We address the second ques-
tion in Section 4 and present some new ideas that help simplify some aspects in the proof of
Borel resummability.
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3 Perturbative expansion

3.1 Cumulant expansion

Define the centred moments

µn := (−1)n
E

[(

α +β
)n]

= (−1)n
n∑

m=0

(

n

m

)

αmβn−m Anm , Anm := E

[ m n−m
]

.

As already alluded to, the coefficients Anm can be computed using the properties of Wick cal-
culus, by summing over all contractions, that is, all pairings of legs of different diagrams (see
Example 3.4 for more details). For instance, we have

µ2 =α24!ΠN +β22!ΠN ,

µ3 =−α3

(

4

2

)3

23
ΠN −3α2β(42 ·2 ·3!)ΠN

−3αβ24!ΠN −8β3
ΠN .

We see that each Anm has the form of a combinatorial numerical constant times the value of a
Feynman diagram, obtained by performing all possible contractions. In general, Anm may be a
linear combination of Feynman diagrams, and these diagrams need not all be connected. For
instance, A44 contains the term

3 · (4!)2
(

ΠN

)2
, (3.1)

where the combinatorial factor 3 counts the number of pairings of the 4 four-vertex diagrams,
and each factor 4! counts the number of pairwise matchings of the legs within each pair.

The cumulant expansion reads

− logE[e−αX−βY −γ] =γ−
∞∑

n=2

κn

n!
, (3.2)

where the coefficients κn can be computed recursively with the Leonov–Shiraev relation

κn =µn −
n−2∑

m=2

(

n −1

m

)

κmµn−m .

It will be useful to write

κn = (−1)n
n∑

m=0

(

n

m

)

αmβn−mBnm ,

where the coefficients Bnm are again linear combinations of Feynman diagrams. The first few
cumulants are

κ2 =µ2 ,

κ3 =µ3 ,

κ4 =µ4 −3µ2
2 ,

κ5 =µ5 −10µ2µ3 .
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An important observation is that κn −µn is always either zero, or a sum of products of at least
two factors. In terms of Feynman diagrams, this means that κn −µn is a linear combination of
non-connected graphs.

In particular, we see that the term −3µ2
2 kills exactly the non-connected term (3.1) of µ4.

Therefore, κ4 is represented by a linear combination of connected Feynman diagrams. The fact
that this generalises to all cumulants is well known in the quantum field theory literature as the
linked cluster theorem. We refer the reader to the articles [10, Sec. 3] and [34, Sec. 4.2] as well as
the monograph [35, Sec. 2].

Proposition 3.1 (Linked cluster theorem). Every κn is obtained by projecting µn onto the space

spanned by connected Feynman diagrams.

There are many ways in which one can prove the previous proposition. We will follow the
Peccati–Taqqu approach [33] in which Feynman diagrams naturally arise from so-called “dia-
gram formulae” that are well-known in Wiener chaos theory. We believe that this approach is
particularly appealing to a probabilistically minded audience and give more details in the next
subsection.

3.2 A combinatorial “proof” of Proposition 3.1

With X and Y as introduced in (2.5), we set

X ≡ ≡
∫

T3
:φ(x)4:dx =:

∫

T3
X (x)dx , X (x) := x

,

Y ≡ ≡
∫

T3
:φ(x)2:dx =:

∫

T3
Y (x)dx , Y (x) := x

,

and by µN we always denote the Gaussian Free Field (GFF) at cut-off level N , i.e. the centered
Gaussian measure on L2(Λ) with covariance kernel GN (x, y)=GN (x − y) given in (2.3).

We also define

G̃N (x) :=
∑

k∈KN

1
√

λk +1
ek (x)

so that (G̃N ∗G̃N )(x) = GN (x) when ∗ denotes convolution, as can be verified by a straightfor-
ward calculation.

Whenever no explicit measure is mentioned, the reference measure is always that of spatial
white noise on L2(Λ), i.e., the centred Gaussian measure with covariance given by the Dirac
kernel δ(x − y). Accordingly, we write φ∼µ as

φ(x) = I1
(

G̃N (x −·)
)

=:

∫

Λ

G̃N (x − z)ξ(dz) , (3.3)

where I1 is the first Wiener-Itô isometry with respect to spatial white noise, see for example the
textbook by Nualart [32]. Note that this is consistent with the calculation

E
µN

(

φ(x)φ(y)
)

=GN (x − y)= (G̃N ∗G̃N )(x − y) =
∫

Λ

G̃N (z)G̃N (z − (x − y))dz

=
∫

Λ

G̃N (x − z)G̃N (y − z)dz = E

(

I1
(

G̃N (x −·)
)

I1
(

G̃N (y −·)
))

,

where we have used that GN is even, i.e. GN (x) = GN (−x), and translation invariance in the
penultimate step.
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It is well-known that products of stochastic integrals such as φ in (3.3) produce correction
terms in lower order Wiener-Itô chaoses (see e.g. [32, Prop. 1.1.3]) — but the Wick product is
the projection onto the highest component, so we have

X (x) = :φ(x)4:= I4(G̃N (x −·)⊗4) , Y (x) = :φ(x)2: = I2(G̃N (x −·)⊗2) .

Recall that

κ(X1, . . . , Xn) :=
∂n

∂t1 . . .∂tn
logE

(

exp
( n∑

ℓ=1

tℓXℓ

))
∣
∣
∣
∣
∣

t1=...tn=0

denotes the cumulant functional. With κn(X ) = κ(X , . . . , X ) where κ has n entries, we will use
the well-known binomial-type formula

κn(αX +βY ) =
n∑

k=0

(

n

k

)

αkβn−kκ(X , . . . , X
︸ ︷︷ ︸

k times

, Y , . . . ,Y
︸ ︷︷ ︸

(n−k) times

) .

Multi-linearity of κ also gives

κ(X , . . . , X
︸ ︷︷ ︸

k times

, Y , . . . ,Y
︸ ︷︷ ︸

(n−k) times

) =
∫

Λn
κ
(

X (x1), . . . , X (xk ),Y (xk+1), . . . ,Y (xn)
)

dx1:n

where dx1:n := dx1 . . .dxn . The following theorem implies the validity of Proposition 3.1.

Theorem 3.2. The identity

κ(X , . . . , X
︸ ︷︷ ︸

k times

, Y , . . . ,Y
︸ ︷︷ ︸

(n−k) times

) =
∑

Γ∈G

ΠNΓ

holds, where G =G (k ,n) denotes the set of connected multigraphs without self-loops that corre-

spond to pairwise matchings.

We will not introduce all the terminology in the previous statement abstractly, but rather
illustrate it in a specific case. As the reader will see, the arguments easily generalise to all com-
binations of k and n and thus lead to a “proof by example.”

Remark 3.3. Essentially, the previous theorem is a direct consequence of [33, Coro. 7.3.1], a
generalisation of Wick’s theorem followed by a projection onto “connected diagrams” to ac-
count for the cumulant. Since the whole book [33] is written in the language of set-partition
combinatorics, we hope our example aids the reader in seeing the connections clearly. ♦

Example 3.4 (k = 2,n = 3: “Proof” of Theorem 3.2). We consider

X (x1) = x1 = I4(G̃N (x1 −·)⊗4

︸ ︷︷ ︸

=: f1(x1; ·)

) _ n1 = 4 ,

X (x2) = x2 = I4(G̃N (x2 −·)⊗4

︸ ︷︷ ︸

=: f2(x2; ·)

) _ n2 = 4 ,

Y (x3) = x3 = I2(G̃N (x3 −·)⊗2

︸ ︷︷ ︸

=: f3(x3; ·)

) _ n3 = 2 .

(1) In a first step, we convert the legs of the diagrams X (xi ), i = 1,2, and Y (x3) into nodes
and keep the label xi on the left side of the row. Accordingly, we have n =

∑3
i=1 ni = 10

nodes in the following diagram:

7



x1
_

x2
_

x3
_

x1

x2

x3

(2) We form pairwise matchings of these nodes, signified by lines between two nodes, abi-
ding by the following rules:

(i) One must not match two nodes that are in the same row. This would correspond to
self-loops in the associated graphs. Peccati and Taqqu call these matchings “non-
flat.”

(ii) The resulting matchings must be such that one cannot divide the rows without in-
tersecting one line that symbolises a matching of two nodes. Otherwise, one could
partition the rows into two or more subsets of rows and form pairwise matchings
within each subset. This would correspond to disconnected graphs.

The set that contains all of these matchings is called M2([n],π⋆) by Peccati and Taqqu,
see point (4) below for the definition of π⋆ in our context.

We denote the specific matching in the following diagram by σ:

x1

x2

x3

1 2

3

4 5

(3) One converts back these matchings into pairings of the legs of the variables X (x1), X (x2),
and Y (x3). For the specific matching σ above, this leads to the following multigraph (or
vacuum Feynman diagram):

x1 x2 x3

4

5

2

1

3

≡ x1 x2

x3

1
2

3

4

5

(4) There is an analytical expression corresponding to this multi-graph respectively the mat-
ching that leads to it. Let us illustrate how this can be obtained using the result of Peccati
and Taqqu [33, Coro. 7.3.1].

(4.1) Note that
( 3⊗

k=1

fk (xk , ·)
)

(z1:n) = f1(x1, z1:4) f2(x2, z5:8) f3(x3, z9:10) . (3.4)

8



The partition π⋆ in Peccati’s and Taqqu’s book corresponds exactly to the partition-
ing of the indices of the zi ’s:

π⋆ =
{

{1, . . . ,n1}, {n1 +1, . . . ,n1 +n2}, {n1 +n2 +1, . . . ,n1 +n2 +n3}
}

=
{

{1, . . . ,4}, {5, . . . ,8}, {9,10}
}

.

(4.2) The function fσ,ℓ ≡ fσ,3 built from (3.4) is obtained by simply identifying the vari-
ables that are matched via σ. In precise terms, this means that

fσ,3(z1:5)= G̃N (x1 − z1)G̃N (x1 − z2)G̃N (x1 − z4)G̃N (x1 − z5)

×G̃N (x2 − z2)G̃N (x2 − z3)G̃N (x2 − z4)G̃N (x2 − z5)

×G̃N (x3 − z1)G̃N (x3 − z3) .

(4.3) We then find

∫

Λ5
fσ,3(z1:5)dz1:5 =GN (x2 −x1)3GN (x3 −x1)GN (x3 −x2) = x1 x2

x3

by repeatedly using the identity (G̃N ∗G̃N )(x) =GN (x).

(4.4) Integrating over all the xi ’s (above called the valuation ΠN ) we then find

∫

Λ3

∫

Λ5
fσ,3(z1:5)dz1:5 dx1:3

=
∫

Λ3
GN (x2 −x1)3GN (x3 −x1)GN (x3 −x2)dx1:3

=
∫

Λ|V |

∏

e∈E

GN (xe+ −xe− )dx =ΠNΓ

for

Γ= .

In the literature, the previous drawing sometimes symbolises Γ ∈G and sometimes
denotes ΠNΓ ∈R. We follow the former convention.

The above procedure clearly generalises to arbitrary values of n and k and to different match-
ings that produce Γ∈G =G (k ,n). Therefore, Theorem 3.2 follows by the same route. �

3.3 BPHZ renormalisation

We now examine the cumulant expansion (3.2) in more detail. Each coefficient Anm and Bnm

is a linear combination of Feynman diagrams Γ(k)
nm having each

• m vertices of degree 4,

• n −m vertices of degree 2,

• n +m edges.

9



We associate with a multigraph Γ= (V ,E ) a degree given by

deg(Γ) = 3(|V |−1)−|E | ,

so that deg(Γ(k)
nm) = 2n −m −3 for all k . We call a diagram Γ divergent if degΓ6 0.

For small divergent diagrams, one can check that their value diverges like N−deg(Γ), possibly
with logarithmic corrections. This is however not true for many larger diagrams, because of the
presence of divergent subdiagrams. In fact, there is only one possible divergent subdiagram in
our situation, namely the “bubble”

,

the value of which diverges like log N .
BPHZ renormalisation, named after Bogoliubov, Parasiuk, Hepp and Zimmermann [8, 28,

39] provides a way of dealing with these divergent subdiagrams. It can be formulated in a con-
venient way by using the Connes–Kreimer extraction-contraction coproduct on graphs [15, 16],
given by

∆(Γ) = Γ⊗1+1⊗Γ+
∑

1 6=Γ(Γ

Γ⊗ (Γ/Γ) , (3.5)

where 1 denotes the empty graph, the sum ranges over all divergent subdiagrams, and Γ/Γ is
obtained by contracting all edges in Γ to one vertex. We further define a (twisted) antipode A

as the linear map satisfying A (1) = 1, and extended inductively by

A (Γ) =−M (A ⊗ id)(∆Γ−Γ⊗1)

=−Γ−
∑

1 6=Γ(Γ

A (Γ) · (Γ/Γ) , (3.6)

where the product · denotes the disjoint union of graphs, and M (Γ1⊗Γ2)= Γ1 ·Γ2. For instance,

∆

( )

= ⊗1+1⊗ + ⊗ ,

A

( )

=− + · . (3.7)

A character is by definition a linear form g : G → R, Γ 7→ 〈g ,Γ〉 which is also multiplicative, in
the sense that

〈g ,Γ1 ·Γ2〉 = 〈g ,Γ1〉〈g ,Γ2〉 ∀Γ1,Γ2 ∈G .

To such a character, we can associate a renormalisation transformation, given by the linear
map M g : G →G defined by

M g (Γ) := (g ⊗ id)∆Γ .

The BPHZ character is given by

〈g BPHZ,Γ〉 :=
{

ΠN A (Γ) if degΓ6 0 ,

0 otherwise .

We then define

Π
BPHZ
N (Γ) =ΠN M g BPHZ

(Γ)

= (g BPHZ ⊗ΠN )∆Γ .

10



A compact way of writing this is to introduce the map Ã defined by

Ã (Γ) :=A (Γ)1degΓ60 , (3.8)

which implies

Π
BPHZ
N (Γ) = (ΠN ⊗ΠN )(Ã ⊗ id)∆Γ

= (ΠN Ã ⊗ΠN )∆Γ .

The following commutative diagram summarises the situation:

G R

G ⊗G R

G

ΠN

(Ã⊗id)∆
Π

BPHZ
N

M g BPHZ=(ΠN Ã⊗id)∆
ΠN⊗ΠN

ΠN⊗id
ΠN

The interest of this construction is that one can show that ΠBPHZ
N (Γ) is bounded uniformly

in N if Γ is non-divergent, and otherwise diverges like N−deg(Γ), possibly with logarithmic cor-
rections [27, 6].

The aim of the remainder of this section is to give a mostly algebraic proof of the following
combinatorial result.

Theorem 3.5. For 06 m 6n, write

Bnm =
∑

k

b(k)
nmΠN

(

Γ
(k)
nm

)

,

where each sum runs over finitely many k, the b(k)
nm are combinatorial coefficients, and each Γ

(k)
nm

is a connected Feynman diagram with m vertices of degree 4, n−m vertices of degree 2, and n+m

edges. Then
∞∑

n=2

κn

n!
=−

∞∑

p=2

1

p !
(−α)p

∑

k

b(k)
ppΠ

BPHZ
N

(

Γ
(k)
pp

)

,

where equality is in the sense of formal power series.

Corollary 3.6. All terms in the perturbative cumulant expansion (3.2) are bounded uniformly in

the cut-off N .

PROOF: Since deg(Γ(k)
pp ) = p −3, the only divergent Γ(k)

pp are those with p ∈ {2,3}. The choice of γ
in (2.6) precisely compensates these two terms. The result follows at once.

3.4 Zimmermann’s forest formula

A first step in proving Theorem 3.5 is to obtain a simpler expression than (3.6) for the twisted
antipode. This is provided by Zimmermann’s forest formula [39, 27], which reads

A (Γ) =−
∑

F

(−1)|F |
CFΓ .

11



Here the sum ranges over all forests F not containing Γ, where a forest is a set of subgraphs
of Γ which are pairwise either included in one another, or vertex-disjoint. The operator CF

extracts all subgraphs in F from Γ (for a forest, this operation is independent of the order of
the elements of F ).

In our simple situation, forests are just unions of disjoint bubbles. The forest formula thus
takes the following form: if Γ contains g bubbles, then

A (Γ) =−
∑

S⊂{1,...,g }

(−1)|S| |S|
CSΓ ,

where we write CS for the operation consisting in contracting all bubbles labelled by an element
of S (for an arbitrary fixed labelling of the bubbles).

As a result, using the fact that

ΠN

( )

=
β

3ε2
=

β

48α2
, (3.9)

we obtain

Π
BPHZ
N

(

Γ
(k)
pp

)

=−
∑

S⊂{1,...,g }

(

−
β

48α2

)|S|
ΠN

(

CSΓ
(k)
pp

)

,

where CSΓ
(k)
pp is a diagram with p −|S| vertices, |S| of which are of degree 2.

3.5 A Hopf-algebra-flavoured proof

As we have already alluded to in the last sections, it is well-known that the triple (G , ·,∆) can
canonically be turned into a Hopf algebra, itself isomorphic to the Connes–Kreimer Hopf al-

gebra [14] of rooted trees. Therefore, it is natural to expect that a particularly elegant proof of
Theorem 3.5 may be achieved if one were to interpret X = and Y = as monomials in
a polynomial Hopf algebra. Indeed, such a construction has been performed by Ebrahimi-Fard
et al. [18]: In this section, we describe how to adapt it for our purposes.1

We let X := (X ,Y ) and for each n = (n1,n2) ∈N
2 then define

Xn := X n1 Y n2 , X(0,0) := 1 , H := span
{

Xn : n ∈N
2} .

Remark 3.7. In [18], the authors allow for X = (Xa : a ∈ I ) where I is some (possibly infinite)
index set and then consider the set

M (I )=
{

B : I →N : B (a) 6= 0 for finitely many a ∈A
}

.

In our setting |I | = 2, so we can identify M (I ) ≃N
2, i.e. we just consider B =n ∈N

2. In particular,
we still consider polynomials Xn as above and, contrary to [18], do not base our analysis on the
(isomorphic) vector space freely generated from M (I ).

We repeat some of the constructions in [18], albeit in a way slightly adapted to our setting.
For n,m,k ∈N

2
0, we define

M (Xn ⊗Xm ) := Xn ·Xm := Xn·m , k ·m := (k1 +m1,k2 +m2),

∆̂Xn :=
∑

k,m∈N2
0

k ·m=n

(

n

m,k

)

Xk ⊗Xm ,

(

n

m,k

)

:=
2∏

i=1

ni !

mi !ki !
,

with a slight abuse of notation for the product · . It is proved in [18] that ∆ defines a coproduct
on H . ♦

1Note that X and Y do satisfy the assumptions in that article: They have moments of all orders because proba-
bilistic Lp -norms coincide in all homogeneous Wiener-Itô chaoses [30, Thm. 3.50].
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In the previous sections, we have seen that the (twisted) antipode A (resp. Ã ) plays a cru-
cial role in the renormalisation of multigraphs Γ ∈ G . In this section, we want to define a cor-
responding map Âη acting on H , as well as a map P that sends H to G , such that the two
diagrams in figure 1 between spaces respectively objects commute.

13



H G R

H ⊗H G ⊗G R

H G

P

χη=(Âη⊗id)∆̂

ΠN

(Ã⊗id)∆
Π

BPHZ
N

M

ΠN⊗ΠN

ΠN⊗id

P

ΠN

e−αX
∑

n,k

(−α)n

n! b(k)
nnΓ

(k)
nn

∑

n

(−α)n

n! Bnn

∑

n,m

(−α)n (−η)m

(n−2m)!m! Y m ⊗X n−2m
∑

n,k ,S

(−α)n

n! b(k)
nnÃ

( |S|)⊗CSΓ
(k)
nn

∑

n

(−α)n−m (−β)m

(n−m)!m! Bnm

e−αX−βY
∑

n,m,k

(−α)n−m (−β)m

m!(n−m)! b(k)
nmΓ

(k)
nm

P

χη=(Âη⊗id)∆̂

ΠN

(Ã⊗id)∆

Π
BPHZ
N

M

ΠN⊗ΠN

ΠN⊗id

P

ΠN

Figure 1: Commutative diagrams between spaces (top) and objects (bottom).

14



The following definition introduces the desired maps Âη and P . Recall that

(2ℓ−1)!! :=
ℓ∏

i=1

(2i −1) =
(2ℓ)!

2ℓℓ!
. (3.10)

Definition 3.8. We define the linear map Âη : H → H by

ÂηXn :=
{

(2ℓ−1)!!(−2ηY )ℓ if n1 = 2ℓ, n2 = 0 ,

0 otherwise,
(3.11)

Note that the condition on the first line is satisfied precisely if Xn = X 2ℓ for some ℓ ∈N0 and, in

particular, implies that Âη1 = 1. We also decree that Âη is linear w.r.t. infinite sums and define

χη : H → H ⊗H , χη(Xn) := (Âη⊗ id)∆̂Xn ,

as well as the operation P : H →G by

P Xn :=
∑

Γ∈G (n1,n1+n2)

Γ ,

for G (n1,n1+n2) as given in Theorem 3.2. Note that this corresponds exactly to Xn = X n1 Y n2 . In

other words, P coincides with κ up to taking the valuation ΠN .

Remark 3.9. The previous definition might seem somewhat “ad-hoc”, so let us explain the mo-
tivation behind it. Essentially, we want to mirror the down-facing arrows in the middle of the
two diagrams contained in Figure 1, respectively. We neglect combinatorial factors which are
accounted for by the binomial coefficient.

(1) We know that the extraction-contraction co-product ∆ given in (3.5) extracts divergent
subgraphs of some connected graph Γ.

The only divergent diagrams in our setting are , , and the bubble — but
all the vertices of the first two graphs have valence 4, so they cannot be subgraphs of Γ
because it is connected, see also Section 3.4.

(2) The bubble, however, is produced by pairing three of the legs of X = with three legs

of another instance of X ; extracting a bubble then locally produces · , i.e. ηY

for η≃ β/α2. Because “two instances of X produce Y ”, the latter should count double for
the argument to be correct; that is the reason for the action of Âη on even powers of X .

(3) Encoding the factor η in Âη (and not ∆̂) seemed more convenient in computations and
resembles the action of A in (3.7) more closely.

(4) The factor (2ℓ−1)!! counts all possible ways to pair the 2ℓ four-vertex diagrams.

(5) The map Âη should act trivially on non-divergent diagrams, so it sends all monomials
that are not even powers of X to 0. ♦

The following proposition proves that the two leftmost down-facing arrows in the diagrams
contained in Figure 1 correspond to well-defined operations:

Proposition 3.10. The identity (M ◦χη)e−αX = e−αX−βY holds in the sense of formal power se-

ries.
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PROOF: Observe that X n = Xn for n = (n1,n2) = (n,0). By definition, we thus have

(M ◦χη)X n =
∑

m,k∈N2

m·k=n

(

n

m,k

)

Âη(Xm )Xk ,

and since n2 = 0, the condition m · k = n implies that m2 + k2 = 0. As m2,k2 ∈ N0, we then
find m2 = k2 = 0 and the preceding formula simplifies to

(M ◦χη)X n =
∑

m,k∈N
m+k=n

n!

m!k !
Âη(X m)X k =

n∑

m=0

n!

m!(n −m)!
Âη(X m)X n−m .

Accounting for the definition of the antipode in (3.11), we arrive at the identity

(M ◦χη)X n =
⌊n/2⌋∑

ℓ=0

n!

(2ℓ)!(n −2ℓ)!
Âη(X 2ℓ)X n−2ℓ

=
⌊n/2⌋∑

ℓ=0

n!

(2ℓ)!(n −2ℓ)!
(2ℓ−1)!!(−2ηY )ℓX n−2ℓ (3.12)

=
⌊n/2⌋∑

ℓ=0

n!

ℓ!(n −2ℓ)!
(−ηY )ℓX n−2ℓ.

Next, we expand the exponential function

e−αX =
∞∑

n=0

(−1)n

n!
αn X n

so that the previous computation and η= β/α2 implies that

(M ◦χη)e−αX =
∞∑

n=0

(−1)n

n!

⌊n/2⌋∑

ℓ=0

n!

(n −2ℓ)!ℓ!
(−βY )ℓ(αX )n−2ℓ .

We now set p := n −ℓ and q :=n −2ℓ so that

ℓ= p −q , n = 2p −q , (−1)n = (−1)n−2ℓ(−1)2ℓ = (−1)q for ℓ= 0, . . . ,⌊n/2⌋ ,

and then reorganise the series accordingly to get

(M ◦χη)e−αX =
∞∑

p=0

p∑

q=0

1

q !(p −q)!
(−βY )p−q (−αX )q

=
∞∑

p=0

1

p !

p∑

q=0

(

p

q

)

(−βY )p−q (−αX )q = e−αX+βY .

The proof is complete.

Remark 3.11. If one formally identifies

X ←→ Z ∼N (0,1), 2ηY ←→ E [Z 2] = 1,

it is interesting to observe that the RHS of (3.12) reads

⌊n/2⌋∑

ℓ=0

(

n

2ℓ

)

(2ℓ−1)!!(−1)ℓZ n−2ℓ = Hn(Z ,1)
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where Hn(·,1) is the n-th Hermite polynomial defined w.r.t. the Gaussian measure of variance 1
in the convention of [33, Remark on p. 146]. In other words: We see that the map M◦χη formally

behaves like a Wick product when acting on polynomials in X . We leave further investigations
of this observation for future work. ♦

It remains to check that the diagrams are indeed commutative. This is the content of the
next section.

3.6 Combinatoric proof of the diagram’s commutativity

To complete the proof of Theorem 3.5, we need to show that the identity

P ◦M ◦χη = (ΠN ⊗ id)◦ (Ã ⊗ id)∆◦P (3.13)

= (ΠN Ã ⊗ id)∆◦P

holds on the space spanned by all monomials X n . This is equivalent to showing that the fol-
lowing diagram commutes:

X n
∑

k

b(k)
nnΓ

(k)
nn

∑

n,m

n!(−η)m

(n−2m)!m! Y
m X n−2m

∑

k ,S

b(k)
nn

(−η
48

)|S|
CSΓ

(k)
nm

P

M◦χη (ΠN⊗id)(Ã⊗id)∆

P

(3.14)

We have already obtained in the proof of Proposition 3.10 the expression

(M ◦χη)(X n) =
⌊n/2⌋∑

m=0

n!

(n −2m)!m!
(−η)mY m X n−2m .

On the other hand, recalling that η= β/α2, we get

(ΠN Ã ⊗ id)∆Γ=−
⌊n/2⌋∑

m=0

(
η

48

)m ∑

S : |S|=m

CSΓ ,

where the second sum runs over all sets of m bubbles (if Γ has fewer than m bubbles, the last
sum is zero by definition). Comparing the last two expressions, we see that (3.13) holds if

P (Y m X n−2m) =
(n −2m)!m!

48mn!

∑

S : |S|=m

CS(P X n ) (3.15)

for any n > 1. Recall that both sides of this relation involve in general a sum over several Feyn-
man diagrams. There is, however, a natural identification between these diagrams, so that we
may lighten the notation by pretending that there is only one diagram in each sum.

We now observe that P (Y m X n−2m) is a (sum of) diagram(s) having m vertices of degree
2, n −m vertices of degree 4, and 2n −m edges. To produce the corresponding term on the
right-hand side, we argue that instead of extracting bubbles on the right-hand side, we can also
insert bubbles on the left-hand side. This amounts to inserting 2m four-vertex diagrams at the
vertices of degree 2 of P (Y m X n−2m). To do that, there are

•
( n

2m

)

ways of selecting the 2m four-vertex diagrams;
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• (2m −1)!! ways to pair the 2m four-vertex diagrams;

• 42 · 3! = 96 ways of matching six pairs of legs of each set of two four-vertex diagrams,
amounting to 96m matchings;

• and finally, m! ways of inserting the resulting bubbles at the m vertices of index 2.

Multiplying all the above combinatorial factors, by (3.10) we arrive at

48m n!

m!(n −2m)!

ways of inserting the four-vertex diagrams. This is indeed compatible with the desired rela-
tion (3.15). The proof of Theorem 3.5 is complete.

We close this section with an example that deals with mixed monomials.

Example 3.12. As we have seen, it suffices for the purposes of this article that the diagram
in (3.14) commutes for the base monomial X n . However, the following example gives us hope
that the commutativity might still be true for monomials containing non-trivial powers of Y .

Let Xn = X 2Y , i.e. n = (n1,n2) = (2,1). We find

∆̂(X 2Y ) = X 2Y ⊗1+1⊗X 2Y +X 2 ⊗Y +Y ⊗X 2 +2X Y ⊗X +2X ⊗X Y ,

χη(X 2Y ) = 1⊗X 2Y +Âη(X 2)⊗Y ,

and then
(M ◦χη)(X 2Y ) = X 2Y −2ηY 2 .

Next, note that

P (X 2Y ) = 42 ·2! ·3! , P (Y 2) = 2! , (3.16)

where the combinatorial factor in the first expression counts the 42 ways of choosing one leg in
each four-vertex diagram, the 2! ways of matching these with the legs of the two-vertex diagram,
and the 3! pairwise matchings of the remaining legs. From the equalities in (3.7), (3.8), as well
as (3.9), we obtain

(ΠN ⊗ id)(Ã ⊗ id)∆ = −ΠN · = −
η

48
.

Applying the expressions (3.16) of P to X 2Y and X 2Y −2ηY 2, we see that the commutativity
relation (3.13) is indeed satisfied. We expect that the same conclusion holds for other mixed
monomials, modulo a suitable encoding of the combinatorics in the definition of the map Âη

from Definition 3.8. �

4 Borel resummation

In this section, we examine the question of whether the perturbative expansion (3.2), though
not convergent, can nevertheless be related to a convergent quantity. A positive answer to this
question can be given thanks to the theory of Borel summation. This fact has been known in
quantum field theory for quite a while, though first proofs of Borel summability for the Φ

4
2 and

Φ
4
3 model [19, 31] were quite difficult. In fact, to the best of our knowledge, this question is still

open in the case of Φ4
3 in infinite volume.
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Here we show that modern analytical tools, which combine Hopf-algebraic methods and a
decomposition originally obtained by Hepp in [28], allow for a clean formulation and simplified
proof of the remainder bounds, the first from a set of two sufficient conditions in an improved
Borel summation result by Sokal [37]. However, as already mentioned in the introduction, our
proof requires a relatively strong moment bound, see Remark 4.4 below. The second condi-
tion for Sokal’s result, local analyticity, is assumed true to begin with. Our arguments for the
remainder bounds are strongly based on the presentation in [27] which was made more quan-
titative in [6]. We start in Section 4.1 by presenting the main ideas of Borel summation, in par-
ticular Sokal’s result, and then apply it in Section 4.2 to the zero-dimensional Φ4 model, whose
partition function is simply an integral over R. See also [34] for a more detailed account of var-
ious resummation techniques for that model. Then we show in Section 4.3 how some of these
ideas can be extended to the three-dimensional case, using in particular methods introduced
by Hepp.

4.1 Watson’s and Sokal’s theorems

Certain divergent series can be resummed by a procedure known as Borel summation. Con-
sider a formal power series

A(ε) =
∑

n>0

anε
n .

We can rewrite it as

A(ε) =
∑

n>0

anε
n Γ(n +1)

n!
=

∑

n>0

anε
n

n!

∫∞

0
t n e−t dt .

Define the Borel-transformed power series by interchanging the sum and the integral, that is

ABorel(ε) :=
∫∞

0
e−t

∑

n>0

anε
n t n

n!
dt =

∫∞

0
e−t

BA(εt )dt ,

which is the Laplace transform of the Borel sum

BA(t ) :=
∑

n>0

an

n!
t n .

Watson’s theorem [38] gives conditions under which ABorel(ε) admits the asymptotic series
A(ε). In particular, A should be analytic in a sector |argε| < π/2+δ, |ε| < R for strictly positive
δ,R . In [37], Sokal has proved the following improvement of Watson’s theorem.

Theorem 4.1 (Sokal). Let A be analytic on the disk DR = {ε : Reε−1 > R−1} for some R > 0. As-

sume further that A admits the asymptotic expansion

A(ε) =
n−1∑

k=0

akε
k +Rn(ε) , (4.1)

where

|Rn(ε)|6C r nn!|ε|n (4.2)

for some C ,r > 0, uniformly in n and ε in DR . Then BA(t ) converges for |t | < 1/r , and has an

analytic continuation to a 1/r -neighbourhood of the positive real axis. Furthermore, A can be

represented by the absolutely convergent integral

A(ε) =
1

ε

∫∞

0
e−t /ε

BA(t )dt

for any ε ∈ DR .
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Imε

R
2

Watson

Sokal

Figure 2: A graphical representation of the analyticity requirements in Watson’s and Sokal’s
theorems.

4.2 The case of the Φ
4
0 model

The Φ
4
0 model is simply the Φ

4 model for a field φ defined at a single point. Its potential is

V (φ) =
1

2
φ2 +

ε

4
φ4 ,

and its partition function is given by

Z (ε) =
∫∞

−∞
e−V (φ) dφ=

∫∞

−∞
e−φ

2/2 e−εφ
4/4 dφ .

The integral is clearly well-defined for ε > 0. It can also be extended to complex values of ε,
at least if Reε > 0, and possibly to other complex values. However, the integral is clearly not
convergent for real ε< 0. Therefore, Z is not analytic in a neighbourhood of ε= 0, and does not
admit a convergent expansion in powers of ε.

If we nevertheless expand the exponential, we obtain

Z (ε) ≍
∑

n>0

1

n!

(

−
ε

4

)n
∫∞

−∞
φ4n e−φ

2/2 dφ ,

where the symbol ≍ denotes an asymptotic expansion. We can interpret e−φ
2/2 as the density

of a Gaussian measure (up to normalisation), which yields

Z (ε)≍
p

2π
∑

n>0

1

n!

(

−
ε

4

)n

E
µ
[

φ4n
]

=
p

2π
∑

n>0

(

−
ε

4

)n (4n −1)!!

n!
,

where (4n−1)!! is defined in (3.10), and we have used the Isserlis–Wick theorem to compute the
moments of the normal law. Recalling that n!= Γ(n +1) and using (3.10), we get

Z (ε)≍
p

2π
∑

n>0

(

−
ε

16

)n Γ(4n +1)

Γ(2n +1)Γ(n +1)
.

The general term of this formal series can be analysed by using Legendre’s duplication formula
for the Gamma function

Γ(2z) =
1
p
π

22z−1
Γ(z)Γ(z + 1

2 ) ,
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which yields

Γ(4n +1) = 4nΓ(4n) =
2
p
π

n24n
Γ(2n)Γ(2n + 1

2 ) .

Therefore

Z (ε)≍ 2
p

2
∑

n>0

(−ε)n
nΓ(2n)Γ(2n + 1

2 )

Γ(n +1)Γ(2n +1)

=
p

2
∑

n>0

(−ε)n
Γ(2n + 1

2 )

Γ(n +1)
(4.3)

=
1
p
π

∑

n>0

(−4ε)n
Γ(n + 1

4 )Γ(n + 3
4 )

Γ(n +1)
, (4.4)

where we used 2nΓ(2n) = Γ(2n +1) to get the second line. Stirling’s formula implies

Γ(z +α) = zα
Γ(z)

[

1+O

(α−1

z

)]

,

showing that the general term in the series (4.4) diverges like Γ(n). Therefore, the series is
indeed divergent.

Remark 4.2. A more direct way of obtaining the asymptotic expansion (4.3) is to notice that

Z (ε) = 2

∫∞

0
e−φ

2/2 e−εφ
4/4 dφ=

p
2

∫∞

0
e−t e−εt 2

p
t

dt ,

where we have used the change of variables φ=
p

2t . Expanding the exponential, we obtain

Z (ε)≍
p

2
∑

n>0

(−ε)n

n!

∫∞

0
t 2n− 1

2 e−t dt =
p

2
∑

n>0

(−ε)n
Γ(2n + 1

2 )

n!

which agrees with (4.3). ♦

Applying the Borel transform to the expansion (4.4) we find

BZ (t )=
1
p
π

∑

n>0

bn t n , (4.5)

where

bn = (−4)n
Γ(n + 1

4 )Γ(n + 3
4 )

Γ(n +1)2
=

(−4)n

n

(

1+O

( 1

n

))

.

The series (4.5) has radius of convergence 1
4 , with a pole located at −1

4 . One can thus expect that
it admits an analytic continuation to a domain including all positive reals, so that its Laplace
transform indeed converges.

To apply Sokal’s Theorem 4.1, we write

Z (ε)
p

2π
=

n−1∑

k=0

1

k !

(

−
ε

4

)n

E
[

φ4k
]

+E

[

e−εφ
4/4−

n−1∑

k=0

1

k !

(

−
ε

4

)k

φ4k

]

.

We then use the fact that for any n ∈N, one has the Taylor expansion

e−z =
n−1∑

k=0

(−z)k

k !
+ (−z)n

∫1

0

∫t1

0
· · ·

∫tn−1

0
e−tn z dtn . . .dt1

=
n−1∑

k=0

(−z)k

k !
+ (−z)n

∫1

0

∫1

0
· · ·

∫1

0
sn−1

1 sn−2
2 . . . sn−1 e−s1...sn z dsn . . .ds1 ,
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showing that for any z with positive real part,
∣
∣
∣
∣e

−z −
n−1∑

k=0

1

k !
(−z)k

∣
∣
∣
∣6

1

n!
|z|n .

This implies that Z (ε)/
p

2π satisfies (4.1) with a remainder Rn such that

|Rn(ε)|6
1

n!

( |ε|
4

)n

E
[

φ4n
]

.

By the above computations, the remainder indeed meets Sokal’s conditions.

4.3 The case of the Φ
4
3 model

As mentioned above, Borel summability of the perturbation expansions of correlation func-
tions (or Schwinger functions) of the Φ

4
d

model has been proved in [19] in the case d = 2, both
in finite and infinite volume, and in [31] in the finite volume case when d = 3. The proofs are
based on cluster expansion techniques from statistical physics and are quite technical.

Here we outline a comparatively clean proof of the remainder bounds—albeit under a rela-
tively strong moment bound assumption. Together with local analyticity of the partition func-
tion (which, again, we do not prove, but assume) this implies Borel summability of its expan-
sion via Sokal’s theorem. The essential and non-trivial analytical ingredient for our proof is a
bound on the value of BPHZ-renormalised Feynman diagrams, explained in [27], and made
more quantitative in [6].

The main result in this subsection is the following:

Proposition 4.3. Let R > 0 and assume that the following two statements are true.

(i) The map

ε 7→
ZN (ε)

ZN (0)
= E

[

e−αX−βY −γ]

is analytic on DR .

(ii) The following bound holds:

|(ΠBPHZ
N ◦P )(X n e−θαX )|. (2n)! for all n ≥ 4, θ ∈ [0,1] . (4.6)

Then, the function ε 7→ log ZN (ε)
ZN (0) is Borel summable.

Remark 4.4. We emphasise that both the statements in (i) and (ii) in the previous proposi-
tion are non-trivial assumptions that require considerable effort (and perhaps a different set
of tools) to be checked. However, although we have not been able to prove that, we believe
that our framework should allow us to obtain a bound of type (4.6) with an unspecified con-
stant C (n). This would allow us to strengthen the statement of our main result, Theorem 3.5, to
say that the “logarithmic partition function of the Φ

4
3 theory admits an asymptotic expansion”

and to prove that claim within our framework. ♦

Recall from Figure 1 that we have the following commutative diagram:

e−αX

e−αX−βY logE[e−αX−βY ]

M◦χη

Π
BPHZ
N ◦P

ΠN◦P

(4.7)

The following observation allows us to subtract divergent terms:
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Lemma 4.5. For

F (X ) :=
∞∑

p=4

(−α)p

p !
X p

we have

logE
[

e−αX−βY −γ]= (ΠBPHZ
N ◦P )F (X ).

As a consequence, the following diagram commutes as well:

F (X )

e−αX−βY −γ logE[e−αX−βY −γ] ≡ log ZN (ε)
ZN (0)

M◦χη

Π
BPHZ
N ◦P

ΠN◦P

PROOF: We write

eαX =P(X )+F (X ) , P(X ) =
3∑

p=0

(−α)p

p !
X p .

Then,
logE

[

e−αX−βY −γ]=−γ+ logE
[

e−αX−βY
]

=−γ+ (ΠBPHZ
N ◦P )e−αX

where the last equality is true by commutativity of the diagram in (4.7). Furthermore, by linear-
ity we have

(ΠBPHZ
N ◦P )P(X ) =

3∑

p=0

(−α)p

p !
(ΠBPHZ

N ◦P )X p

where
(ΠBPHZ

N ◦P )1 = 0 = (ΠBPHZ
N ◦P )X

and

(ΠBPHZ
N ◦P )X 2 = 4!ΠN , (ΠBPHZ

N ◦P )X 3 = 23

(

4

2

)3

ΠN .

Recalling that α= ε/4, we thus find that

(ΠBPHZ
N ◦P )P(X ) =

ε2

422!
4!ΠN +

ε3

433!
23

(

4

2

)3

ΠN

= ε2C (3)
N +ε3C (4)

N = γ .

Note that the last equality is just the definition of γ, see (2.6). In summary, we have

logE
[

e−αX−βY −γ]= (ΠBPHZ
N ◦P )[e−αX −P(X )] = (ΠBPHZ

N ◦P )F (X ).

The addendum follows immediately from the commutativity of the diagram in (4.7).

In order to analyse Borel summability, we decompose

F (X ) =
n−1∑

p=4

(−α)p

p !
X p +

∞∑

p=n

(−α)p

p !
X p =: Sn +Rn

and then get the following result for Sn :
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Lemma 4.6. We have

(ΠBPHZ
N ◦P )Sn ≍

n−1∑

p=4
O (p !)εp .

PROOF: Recall that
(ΠBPHZ

N ◦P )X p =
∑

k

b(k)
pp Π

BPHZ
N (Γ(k)

pp ) .

where the terms b(k)
pp and Γ

(k)
pp were introduced in Theorem 3.5 above. A straightforward exten-

sion of [6, Prop. 6.1] shows that whenever Γ has strictly positive degree, one has

|ΠBPHZ
N Γ|6 K |E (Γ)|

where |E (Γ)| is the number of edges of Γ, and K is a constant depending only on the Green
function G = limN→∞GN . We recall that deg(Γ(k)

pp ) = p −3 and Γ
k
pp has 2p edges. Since p ≥ 4 in

our case, we have
|ΠBPHZ

N Γ
(k)
pp |.K 2p for all p ≥ 4

and thus obtain the bound

|(ΠBPHZ
N ◦P )X p |. K 2p

∑

k

b(k)
pp .K 2p (4p −1)!! .

Note that we have bounded
∑

k b(k)
pp , the number of possibilities to pair the 4p vertices of X p

(1) without self-interactions and

(2) such that the resulting Feynman diagram is connected

by disregarding these two constraints, which gives (4p −1)!! possibilities. Finally, we have

|(ΠBPHZ
N ◦P )Sn |.

n−1∑

p=4
αp K 2p (4p −1)!!

p !
≍

n−1∑

p=4
O (p !)εp ,

where the last asymptotic equality follows similarly as in the Φ
4
0 case, cf. (4.4).

Finally, the formula for the Taylor remainder of e−αX in conjunction with the intermediate
value theorem implies the existence of some θ ∈ [0,1] such that

Rn =
(−α)n

n!
X n e−αθ(X )X . (4.8)

Therefore, we are now ready to give the proof of the main result in this subsection.

PROOF: (of Proposition 4.3) We aim to apply Sokal’s theorem. Observe that

(1) Lemmas 4.5 and 4.6 prove the first condition (4.1) and

(2) the equality in (4.8) together with the moment bound assumption (4.6) establish (4.2).

Since we have assumed analyticity of ZN (ε)
ZN (0) , we conclude by Sokal’s result, Theorem 4.1.
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