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ON THE CASTELNUOVO–MUMFORD REGULARITY OF

SQUAREFREE POWERS OF EDGE IDEALS

S. A. SEYED FAKHARI

Abstract. Assume that G is a graph with edge ideal I(G) and matching num-
ber match(G). For every integer s ≥ 1, we denote the s-th squarefree power of
I(G) by I(G)[s]. It is shown that for every positive integer s ≤ match(G), the
inequality reg(I(G)[s]) ≤ match(G) + s holds provided that G belongs to either of
the following classes: (i) very well-covered graphs, (ii) semi-Hamiltonian graphs,
or (iii) sequentially Cohen-Macaulay graphs. Moreover, we prove that for every
Cameron-Walker graph G and for every positive integer s ≤ match(G), we have
reg(I(G)[s]) = match(G) + s

1. Introduction

Let K be a field and S = K[x1, . . . , xn] be the polynomial ring in n variables over
K. Suppose that M is a graded S-module with minimal free resolution

0 −→ · · · −→
⊕

j

S(−j)β1,j(M) −→
⊕

j

S(−j)β0,j(M) −→ M −→ 0.

The integer βi,j(M) is called the (i, j)th graded Betti number ofM . The Castelnuovo–
Mumford regularity (or simply, regularity) of M , denoted by reg(M), is defined as

reg(M) = max{j − i| βi,j(M) 6= 0},

and it is an important invariant in commutative algebra and algebraic geometry.
There is a natural correspondence between quadratic squarefree monomial ideals of

S and finite simple graphs with n vertices. To every simple graph G with vertex set
V (G) =

{

x1, . . . , xn

}

and edge set E(G), we associate its edge ideal I = I(G) defined
by

I(G) =
(

xixj : xixj ∈ E(G)
)

⊆ S.

Computing and finding bounds for the regularity of edge ideals and their powers have
been studied by a number of researchers (see for example [1], [2], [3], [4], [7], [8], [13],
[15], [17], [18], [19], [21], [23], [24] and [26]).

In [9], Erey, Herzog, Hibi and Saeedi Madani studied the squarefree powers of edge
ideals. Recall that for a squarefree monomial ideal I, the s-th squarefree power of
I, denoted by I [s] is the ideal generated by squarefree monomials belonging to Is.
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2 S. A. SEYED FAKHARI

Clearly, for an edge ideal I(G), we have I(G)[s] = 0, for s ≥ match(G) + 1, where
math(G) denotes the matching number of G which is the size of the largest matching
in G. It is known by [12, Theorem 6.7] that

reg(I(G)) ≤ match(G) + 1.

In [9, Theorem 2.1], it is proven that

reg(I(G)[2]) ≤ match(G) + 2.

As a generalization of the above inequalities, Erey et al. [9] asked the following
question.

Question 1.1 ([9], Question 2.3). Let G be a graph. Is it true that for every positive

integer s ≤ match(G), the inequality

(†) reg(I(G)[s]) ≤ match(G) + s

holds?

In [5], Bigdeli et al. proved that for any graph G, the ideal I(G)[match(G)] has a
linear resolution. In particular, inequality † is true for s = match(G). When G is a
forest, Erey and Hibi [10] provided a sharp upper bound for reg(I(G)[s]) in terms of
the so-called s-admissable matching number of G. It follows from their result that
inequality † is true for any forest.

The goal of this paper is to prove inequality † for several classes of graphs. More
precisely, it is shown in Theorem 3.5 that for every graph G and for each positive
integer s ≤ match(G),

(‡) reg(I(G)[s]) ≤ s+ ⌊n/2⌋.

As a consequence, we will see in Corollaries 3.6 and 3.7 that inequality † is true if G
is either a very well-covered or a semi-Hamiltonian graph. Moreover, we will see in
Corollary 3.8 that inequality † also holds for every graph G with at most nine vertices.

When G is a bipartite graph, we prove a strengthened version of inequality ‡.
Indeed, we show in Theorem 3.9 that for any bipartite graph G with bipartition
V (G) = X ∪ Y and for every positive integer s ≤ match(G),

reg(I(G)[s]) ≤ min{|X|, |Y |}+ s.

As a consequence, inequality † is true for any sequentially Cohen-Macaulay bipartite
graph (see Corollary 3.10).

In Section 4, we compute the regularity of squarefree powers of edge ideals of
Cameron-Walker graphs (see Section 2 for the definition of Cameron-Walker graphs).
As the main result of that section, we prove in Theorem 4.3 that for any Cameron-
Walker graph and for every positive integer s with s ≤ match(G), we have

reg(I(G)[s]) = match(G) + s.
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2. Preliminaries

In this section, we provide the definitions and basic facts which will be used in the
next sections.

All graphs in this paper are simple, i.e., have no loops and no multiple edges. Let G
be a graph with vertex set V (G) =

{

x1, . . . , xn

}

and edge set E(G). We identify the
vertices (resp. edges) of G with variables (resp. corresponding quadratic monomials)
of S. For a vertex xi, the neighbor set of xi is NG(xi) = {xj | xixj ∈ E(G)}. We
set NG[xi] = NG(xi) ∪ {xi}. The degree of xi, denoted by degG(xi) is the cardinality
of NG(xi). A vertex of degree one is called a leaf. An edge e ∈ E(G) is a pendant

edge, if it is incident to a leaf. A pendant triangle of G is a triangle T of G, with
the property that exactly two vertices of T have degree two in G. A star triangle is
the graph consisting of finitely many triangles sharing exactly one vertex. For every
subset U ⊂ V (G), the graph G \U has vertex set V (G \U) = V (G) \U and edge set
E(G \ U) = {e ∈ E(G) | e ∩ U = ∅}. A subgraph H of G is called induced provided
that two vertices of H are adjacent if and only if they are adjacent in G. A subset
C of V (G) is called a vertex cover of G if every edge of G is incident to at least one
vertex of C. A vertex cover C is called a minimal vertex cover of G if no proper
subset of C is a vertex cover of G. A graph G without isolated vertices is said to be
very well-covered if |V (G)| is an even integer and every minimal vertex cover of G has
cardinality |V (G)|/2. A Hamiltonian cycle (resp. a Hamiltonian path) of G is a cycle
(resp. a path) which visits every vertex of G. The graph G is a Hamiltonian graph

if it has a Hamiltonian cycle. If G has a Hamiltonian path, then we say that G is a
semi-Hamiltonian graph. In particular, every Hamiltonian graph is semi-Hamiltonian.

Let G be a graph. A subset M ⊆ E(G) is a matching if e∩ e′ = ∅, for every pair of
edges e, e′ ∈ M . The cardinality of the largest matching of G is called the matching

number of G and is denoted by match(G). If every vertex of G is incident to an edge
in M , then M is a perfect matching of G. A matching M of G is an induced matching

of G if for every pair of edges e, e′ ∈ M , there is no edge f ∈ E(G)\M with f ⊂ e∪e′.
The cardinality of the largest induced matching of G is the induced matching number

of G and is denoted by ind-match(G). It is clear that for every positive integer s, the
ideal I(G)[s] is generated by monomials of the form e1 . . . es, where {e1, . . . , es} is a
matching of G.

A graph is said to be a Cameron-Walker graph if match(G) = ind-match(G). It is
clear that a graph is Cameron-Walker if and only if all its connected components are
Cameron-Walker. By [6, Theorem 1] (see also [16, Remark 0.1]), a connected graph
G is a Cameron-Walker graph if and only if

• it is a star graph, or
• it is a star triangle, or
• it consists of a connected bipartite graph H by vertex partition V (H) = X ∪ Y

with the property that there is at least one pendant edge attached to each vertex of
X and there may be some pendant triangles attached to each vertex of Y .
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Definition 2.1. Let G be a graph. Two vertices u and v (u may be equal to v) are
said to be even-connected with respect to an s-fold product e1 . . . es of edges of G, if
there is an integer r ≥ 1 and a sequence p0, p1, . . . , p2r+1 of vertices of G such that
the following conditions hold.

(i) p0 = u and p2r+1 = v.
(ii) p0p1, p1p2, . . . , p2rp2r+1 are edges of G.
(iii) For all 0 ≤ k ≤ r − 1, {p2k+1, p2k+2} = ei for some i.
(iv) For all i, | {k | {p2k+1, p2k+2} = ei} |≤| {j | ei = ej} |.

If the above conditions are satisfied, then we say that u and v are even-connected
with respect to e1 . . . es. Moreover, the sequence p0, p1, . . . , p2r+1 is called an even-
connection between u and v with respect to e1 . . . es.

Let G be a graph and suppose that e1 . . . es is an s-fold product of edges of G.
Banerjee [2, Theorems 61 and 6.7] proved that (I(G)s+1 : e1 . . . es) is generated by
quadratic monomials uv (it is possible that u = v) such that either uv ∈ E(G) or u
and v are are even-connected with respect to e1 . . . es.

Let M be a finitely generated graded S-module and let βi,j(M) denote the (i, j)th
graded Betti number of M . Then M is said to have a linear resolution, if for some
integer d, βi,i+t(M) = 0 for all i and every integer t 6= d.

Let u be a monomial in S. The support of u, denoted by supp(u) is the set of
variables dividing u. For a pair of monomials u and v, the greatest common divisor
of u and v will be denoted by gcd(u, v). If I is monomial ideal, then G(I) is the set
of minimal monomial generators of I.

3. Upper bound for the regularity of squarefree powers

In this section, we prove that inequality † is true for several classes of graphs. To
this end, we determine some upper bounds for the regularity of squarefree powers of
edge ideals, Theorems 3.5 and 3.9. In order to prove these theorems, we first provide a
strategy, inspired by Banerjee’s idea [2], to bound the regularity of squarefree powers
of edge ideals, Theorem 3.2.

We first need to find a suitable ordering for the minimal monomial generators of
squarefree powers of edge ideals.

Proposition 3.1. Assume that G is a graph and s ≤ math(G) − 1 is a positive

integer. Then the monomials in G(I(G)[s]) can be labeled as u1, . . . , um such that for

every pair of integers 1 ≤ j < i ≤ m, one of the following conditions holds.

(i) (uj : ui) ⊆ (I(G)[s+1] : ui); or
(ii) there exists an integer r ≤ i− 1 such that (ur : ui) is generated by a variable,

and (uj : ui) ⊆ (ur : ui).

Proof. Using [2, Theorem 4.12], the elements of G(I(G)s) can be labeled as v1, . . . , vt
such that for every pair of integers 1 ≤ j < i ≤ t, one of the following conditions
holds.
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(1) (vj : vi) ⊆ (I(G)s+1 : vi); or
(2) there exists an integer k ≤ i− 1 such that (vk : vi) is generated by a variable,

and (vj : vi) ⊆ (vk : vi).

Since G(I(G)[s]) ⊆ G(I(G)s), there exist integers ℓ1, . . . , ℓm such that G(I(G)[s]) =
{vℓ1 , . . . , vℓm}. For every integer k with 1 ≤ k ≤ m, set uk := vℓk . We claim that
this labeling satisfies the desired property. To prove the claim, we fix integers i and
j with 1 ≤ j < i ≤ m. Based on properties (1) and (2) above, we divide the rest of
the proof into two cases.

Case 1. Assume that (vℓj : vℓi) ⊆ (I(G)s+1 : vℓi). Remind that that vℓi and vℓj are
squarefree monomials. Therefore, (vℓj : vℓi) = (u), for some squarefree monomial u
with gcd(u, vℓi) = 1. Thus, uvℓi is a squarefree monomial and since u ∈ (I(G)s+1 : vℓi),
we conclude that uvℓi ∈ I(G)[s+1]. Consequently,

(uj : ui) = (vℓj : vℓi) = (u) ⊆ (I(G)[s+1] : vℓi) = (I(G)[s+1] : ui).

Case 2. Assume that there exists an integer k ≤ ℓi − 1 such that (vk : vℓi) is
generated by a variable, and (vℓj : vℓi) ⊆ (vk : vℓi). Hence, (vk : vℓi) = (xp), for some
integer p with 1 ≤ p ≤ n. It follows from the inclusion (vℓj : vℓi) ⊆ (vk : vℓi) that xp

divides vℓj/gcd(vℓj , vℓi). Since, vℓj is a squarefree monomial, we deuce that xp does
not divide vℓi . As deg(vk) = deg(vℓi), it follows from (vk : vℓi) = (xp) that there is a
variable xq dividing vℓi such that vk = xpvℓi/xq. This implies that vk is a squarefree
monomial. Hence, vk = vℓr = ur, for some integer r with 1 ≤ r ≤ m. Using k ≤ ℓi−1,
we have ℓr ≤ ℓi − 1. Therefore, r ≤ i− 1 and

(uj : ui) ⊆ (ur : ui) = (xp).

This completes the proof. �

Using Proposition 3.1, we obtain the following result which provides a method to
bound the regularity of squarefree powers of edge ideals.

Theorem 3.2. Assume that G is a graph and s ≤ math(G)− 1 is a positive integer.

Let G(I(G)[s]) = {u1, . . . , um} denote the set of minimal monomial generators of

I(G)[s]. Then

reg(I(G)[s+1]) ≤ max

{

reg
(

I(G)[s+1] : ui

)

+ 2s, 1 ≤ i ≤ m, reg
(

I(G)[s]
)

}

.

Proof. Without loss of generality, we may assume that the labeling u1, . . . , um of
elements of G(I(G)[s]) satisfies conditions (i) and (ii) of Proposition 3.1. This implies
that for every integer i ≥ 2,

(

(I(G)[s+1], u1, . . . , ui−1) : ui

)

= (I(G)[s+1] : ui) + (some variables).

Hence, we conclude from [2, Lemma 2.10] that

(1) reg
(

(I(G)[s+1], u1, . . . , ui−1) : ui

)

≤ reg(I(G)[s+1] : ui).
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For every integer i with 0 ≤ i ≤ m, set Ii := (I(G)[s+1], u1, . . . , ui). In particular,
I0 = I(G)[s+1] and Im = I(G)[s]. Consider the exact sequence

0 → S/(Ii−1 : ui)(−2s) → S/Ii−1 → S/Ii → 0,

for every 1 ≤ i ≤ m. It follows that

reg(Ii−1) ≤ max
{

reg(Ii−1 : ui) + 2s, reg(Ii)
}

.

Therefore,

reg(I(G)[s+1]) = reg(I0) ≤ max
{

reg(Ii−1 : ui) + 2s, 1 ≤ i ≤ m, reg(Im)
}

= max
{

reg(Ii−1 : ui) + 2s, 1 ≤ i ≤ m, reg(I(G)[s])
}

.

The assertion now follows from inequality (1). �

Using Theorem 3.2, in order to bound the regularity of squarefree powers of edge
ideals, we need to study colon ideals of the form (I(G)[s+1] : u), where u is a mono-
mial in G(I(G)[s]). In the following lemma, we show that these ideals are squarefree
quadratic monomial ideals.

Lemma 3.3. Assume that G is a graph and s ≤ math(G) − 1 is a positive integer.

Then for every monomial u ∈ G(I(G)[s]), the ideal (I(G)[s+1] : u) is a squarefree

monomial ideal generated in degree two.

Proof. As I(G)[s+1] is a squarefree monomial ideal, (I(G)[s+1] : u) is a squarefree
monomial ideal, too. Let w be a squarefree monomial in the set of minimal monomial
generators of (I(G)[s+1] : u). In particular, uw is a squarefree monomial. Since

w ∈ (I(G)[s+1] : u) ⊆ (I(G)s+1 : u),

it follows from [2, Theorem 6.1] that there is a quadratic monomial v ∈ (I(G)s+1 : u)
which divides w. Since uv divides uw, we deduce that uv is a squarefree monomial
and therefore, v ∈ (I(G)[s+1] : u). Thus, we conclude from w ∈ G(I(G)[s+1] : u) that
w = v. Hence, (I(G)[s+1] : u) is a quadratic squarefree monomial ideal. �

The following corollary is a consequence of Lemma 3.3 and determines the set of
minimal monomial generators of the ideal (I(G)[s+1] : u).

Corollary 3.4. Let G be a graph and s ≤ math(G)−1 be a positive integer. Also, let

u = e1 . . . es be a monomial in G(I(G)[s]). Then there is a simple graph H with vertex

set V (H) = V (G) \ supp(u) such that I(H) = (I(G)[s+1] : u). Moreover, two vertices

xi, xj ∈ V (H) are adjacent in H if and only if one of the following conditions holds.

(i) xi and xj are adjacent in G; or

(ii) xi and xj are even-connected in G with respect to e1 . . . es.

Proof. By Lemma 3.3, there is a graph H with I(H) = (I(G)[s+1] : u). Since the
variables in supp(u) do not divide the minimal monomial generators of the ideal
(I(G)[s+1] : u), we have V (H) = V (G) \ supp(u) (where some of the vertices might
be isolated). To determine the edges of H , assume that xi, xj ∈ V (H) satisfy one of
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the conditions (i) and (ii) mentioned above. By [2, Theorem 6.5], we have uxixj ∈
I(G)s+1. On the other hand, since xi, xj ∈ V (H) = V (G) \ supp(u), we conclude that
uxixj is a squarefree monomial which implies that xixj ∈ (I(G)[s+1] : u). This proves
the ”if” part.

To prove the ”only if” part, suppose xi, xj ∈ V (H) are adjacent in H and assume
that xixj /∈ E(G). Since

xixj ∈ (I(G)[s+1] : u) ⊆ (I(G)s+1 : u),

we conclude from [2, Theorem 6.7] that xi and xj are even-connected in G with respect
to e1 . . . es. �

We are now able to prove the first main result of this paper which provides a
combinatorial upper bound for the regularity of squarefree powers of edge ideals.

Theorem 3.5. Assume that G is a graph with n vertices and let s ≤ math(G) be a

positive integer. Then

reg(I(G)[s]) ≤ s+ ⌊n/2⌋.

In particular, the answer of Question 1.1 is positive when G has a matching of size

⌊n/2⌋.

Proof. We prove the assertion by induction on s. For s = 1, we know from [12,
Theorem 6.7] that

reg(I(G)) ≤ 1 + match(G) ≤ 1 + ⌊n/2⌋.

Thus, suppose s ≥ 2. Let G(I(G)[s−1]) = {u1, . . . , um} denote the set of minimal
monomial generators of I(G)[s−1]. It follows from Theorem 3.2 that

reg(I(G)[s]) ≤ max

{

reg
(

I(G)[s] : ui

)

+ 2(s− 1), 1 ≤ i ≤ m, reg
(

I(G)[s−1]
)

}

.

Using the above inequality and the induction hypothesis, it is enough to prove that

reg
(

I(G)[s] : ui

)

≤ ⌊n/2⌋ − s+ 2,

for every integer i with 1 ≤ i ≤ m. We conclude from Corollary 3.4 that for every
integer i with 1 ≤ i ≤ m, there is a graph Hi with V (Hi) = V (G)\ supp(ui) such that
I(Hi) = (I(G)[s] : ui). In particular, every Hi has n− 2(s− 1) vertices. Therefore, we
deduce from [12, Theorem 6.7] that

reg
(

I(G)[s] : ui

)

≤ 1 + match(Hi) ≤ 1 +

⌊

|V (Hi)|

2

⌋

= 1 +
⌊n− 2(s− 1)

2

⌋

=
⌊n

2

⌋

− s+ 2.

This completes the proof. �

As a consequence of Theorem 3.5, we will see in the following corollaries that
inequality † is true for very well-covered graph and for every semi-Hamiltonian graph.
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Corollary 3.6. Let G be a very well-covered graph. Then for every positive integer s
with s ≤ match(G), we have

reg(I(G)[s]) ≤ match(G) + s.

Proof. We know from [11, Theorem 1.2] that every very well-covered graph has a
perfect matching. Thus, the assertion follows from Theorem 3.5. �

Corollary 3.7. Let G be a semi-Hamiltonian graph. Then for every positive integer

s with s ≤ match(G), we have

reg(I(G)[s]) ≤ match(G) + s.

Proof. Suppose V (G) = {x1, . . . , xn} is the vertex set of G. Without loss of generality,
we may assume that x1, x2, . . . , xn is a Hamiltonian path of G.

• If n is even, then the set {x1x2, x3x4, . . . , xn−1xn} of edges of G form a matching
of size n/2.

• If n is odd, then the the set {x1x2, x3x4, . . . , xn−2xn−1} of edges of G form a
matching of size (n− 1)/2 in G.

In both cases G has a matching of size ⌊n/2⌋. Hence, the assertion follows from
Theorem 3.5. �

The following corollary shows that inequality † is true for every graph with at most
nine vertices.

Corollary 3.8. Let G be a graph with at most nine vertices. Then for every positive

integer s with s ≤ match(G), we have

reg(I(G)[s]) ≤ match(G) + s.

Proof. For s = 1, the above inequality follows from [12, Theorem 6.7]. For s = 2,
the assertion is known by [9, Theorem 2.11]. Also, for s = match(G), the above
inequality is known by [5, Theorem 5.1]. So, there is nothing to prove if match(G) ≤ 3.
Consequently, suppose that |V (G)| ∈ {8, 9} and match(G) = 4. In this case the
assertion follows from Theorem 3.5. �

When G is a bipartite graph, we are able to improve the inequality obtained in
Theorem 3.5.

Theorem 3.9. Let G be a bipartite graph and suppose that V (G) = X ∪Y is a bipar-

tition for the vertex set of G. Then for every positive integer s with s ≤ match(G),
we have

reg(I(G)[s]) ≤ min{|X|, |Y |}+ s.

Proof. We prove the assertion by induction on s. For s = 1, we know from [12,
Theorem 6.7] that

reg(I(G)) ≤ 1 + match(G) ≤ 1 + min{|X|, |Y |}.
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Thus, suppose s ≥ 2. Let G(I(G)[s−1]) = {u1, . . . , um} denote the set of minimal
monomial generators of I(G)[s−1]. It follows from Theorem 3.2 that

reg(I(G)[s]) ≤ max

{

reg
(

I(G)[s] : ui

)

+ 2(s− 1), 1 ≤ i ≤ m, reg
(

I(G)[s−1]
)

}

.

Using the above inequality and the induction hypothesis, it is enough to prove that

reg
(

I(G)[s] : ui

)

≤ min{|X|, |Y |} − s+ 2,

for every integer i with 1 ≤ i ≤ m. We conclude from Corollary 3.4 that for every
integer i with 1 ≤ i ≤ m, there is a graph Hi with V (Hi) = V (G) \ supp(ui) such
that I(Hi) = (I(G)[s] : ui). Set Xi := X \ supp(ui) and Yi := Y \ supp(ui). As ui is
the product of s− 1 disjoint edges of G, we have

|X ∩ supp(ui)| = |Y ∩ supp(ui)| = s− 1.

Consequently
|Xi| = |X| − (s− 1) and |Yi| = |Y | − (s− 1).

Since G is a bipartite graph, it easily follows from the definition of even-connection
that two distinct vertices ofX can not be even-connected with respect to ui. Similarly,
two distinct vertices of Y can not be even-connected with respect to ui. This means
that Hi is a bipartite graph and V (Hi) = Xi ∪ Yi is a bipartition for its vertex set.
Therefore, we deduce from [12, Theorem 6.7] that

reg
(

I(G)[s] : ui

)

≤ 1 + match(Hi) ≤ 1 + min{|Xi|, |Yi|}

= 1 +min{|X|, |Y |} − (s− 1)

= min{|X|, |Y |} − s+ 2.

This completes the proof. �

Recall that a graph G is a sequentially Cohen-Macaulay graph if the ring S/I(G)
has the same property. The following corollary shows that inequality † is true for any
sequentially Cohen-Macaulay bipartite graph.

Corollary 3.10. Let G be a sequentially Cohen-Macaulay bipartite graph. Then for

every positive integer s with s ≤ match(G), we have

reg(I(G)[s]) ≤ match(G) + s.

Proof. Let V (G) = X ∪ Y be a bipartition for the vertex set of G. Using induction
on |V (G)|, we prove that

match(G) = min{|X|, |Y |}.

Then the assertion follows from Theorem 3.9.
To prove the claim, it follows from [25, Corollary 3.11] that G has a vertex x of

degree one such that G \NG[x] is sequentially Cohen-Macaulay. Let y be the unique
unique neighbor of x. We deduce from the induction hypothesis that G \NG[x] has a
matching of size min{|X|, |Y |}− 1. This matching together with the edge xy forms a
matching of size min{|X|, |Y |} in G. �
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4. Cameron-Walker graphs

As the main result of this section, we compute the regularity of squarefree powers
of edge ideals of Cameron-Walker graphs, Theorem 4.3. We first need the following
simple lemmas. In the first lemma, we determine the matching number of Cameron-
Walker bipartite graphs.

Lemma 4.1. Let G be a Cameron-Walker bipartite graph and assume that V (G) =
X ∪ Y is a bipartition for the vertex set of G. Then

match(G) = min{|X|, |Y |}.

Proof. Without loss of generality, we may suppose that G is a connected graph. Then
the claim easily follows from the structure of Cameron-Walker connected graphs,
mentioned in Section 2. �

The following lemma helps us to use induction for computing the regularity of
squarefree powers of edge ideals of Cameron-Walker graphs.

Lemma 4.2. Let G be a graph and assume that T is a triangle of G, with vertex set

V (T ) = {x, y, z}. Suppose that degG(x) = degG(y) = 2. Set H := G \ {x, y}. Then

for every integer s ≥ 2,
(

I(G)[s] : xy
)

= I(H)[s−1].

Proof. The inclusion ”⊇” is trivial. To prove that reverse inclusion, let u be a mono-
mial in the set of minimal monomial generators of (I(G)[s] : xy). Then uxy is a
squarefree monomial and there exist disjoint edges e1, . . . , es ∈ E(G) such that e1 . . . es
divides uxy. If either x or y does not divide e1 . . . es, then clearly, u ∈ I(H)[s−1]. So,
suppose that x and y divide e1 . . . es. If there is an integer k with 1 ≤ k ≤ s such that
ek = xy, then e1 . . . ek−1ek+1 . . . es divides u. Thus, u ∈ I(H)[s−1]. Consequently, we
assume that for every integer k with 1 ≤ k ≤ s, we have ek 6= xy. This yields that x
and y appear in distinct edges ei and ej with 1 ≤ i, j ≤ s. Both of these edges must
be incident to z which is a contradiction, as the edges e1, . . . , es are disjoint. �

We are now ready to prove the main result of this section.

Theorem 4.3. Let G be a Cameron-Walker graph. Then for every positive integer s
with s ≤ match(G), we have

reg(I(G)[s]) = match(G) + s.

Proof. It follows from [9, Theorem 2.1] that for every positive integer s ≤ match(G),

reg(I(G)[s]) ≥ ind-match(G) + s = match(G) + s.

Therefore, it is enough to prove that

reg(I(G)[s]) ≤ match(G) + s

for every positive integer s ≤ match(G). We use induction on |E(G)|. If G is bipartite,
then the above inequality follows from Theorem 3.9 and Lemma 4.1. So, suppose G
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is not a bipartite graph. In particular, it follows from the construction of Cameron-
Walker graphs, mentioned in Section 2, that G contains a triangle T with vertex set
V (T ) := {x, y, z} such that degG(x) = degG(y) = 2. Using [12, Theorem 6.7], we may
assume that s ≥ 2. Consider the following short exact sequence.

0 −→
S

(I(G)[s] : xy)
(−2) −→

S

I(G)[s]
−→

S

I(G)[s] + (xy)
−→ 0

Let H1 be the graph which is obtained from G by deleting the edge xy. Note that

I(G)[s] + (xy) = I(H1)
[s] + (xy).

Set H2 := G \ {x, y}. It follows from Lemma 4.2 and the above exact sequence that

(2) reg(I(G)[s]) ≤ max
{

reg(I(H2)
[s−1]) + 2, reg(I(H1)

[s], xy)
}

.

It is obvious from the structure of Cameron-Walker graphs that H2 is a Cameron-
Walker graph. Moreover, match(H2) = match(G)−1. Therefore, we deduce from the
induction hypothesis that

(3) reg(I(H2)
[s−1]) ≤ match(H2) + s− 1 = match(G) + s− 2.

Now, consider the following short exact sequence.

0 −→
S

(

(I(H1)[s], xy) : xz
)(−2) −→

S

(I(H1)[s], xy)
−→

S

(I(H1)[s], xy, xz)
−→ 0

Let H3 be the graph obtained from H1 by deleting the edge xz and note that

(I(H1)
[s], xy, xz) = (I(H3)

[s], xy, xz).

Set H4 := H1 \ {x, y, z}. Clearly, xz is a pendant edge of H1. Hence, we conclude
from [10, Lemma 22] that

(

(I(H1)
[s], xy) : xz

)

= (I(H1)
[s] : xz) + (xy : xz)

= I(H1 \ {x, z})
[s−1] + (y) = I(H4)

[s−1] + (y).

Thus, it follows from the above exact sequence that

(4) reg(I(H1)
[s], xy) ≤ max

{

reg(I(H4)
[s−1] + (y)) + 2, reg(I(H3)

[s], xy, xz)
}

.

It is easy to see that H4 is a Cameron-Walker graph and match(H4) = match(G)− 1.
Therefore, using [22, Theorem 20.2] and the induction hypothesis, we have

(5) reg
(

I(H4)
[s−1] + (y)

)

≤ match(H4) + s− 1 = match(G) + s− 2.

Consider the following short exact sequence.

0 −→
S

(

(I(H3)[s], xy, xz) : yz
)(−2) −→

S

(I(H3)[s], xy, xz)

−→
S

(I(H3)[s], xy, xz, yz)
−→ 0



12 S. A. SEYED FAKHARI

Let H5 be the graph obtained from H3 by deleting the edge yz and note that

(I(H3)
[s], xy, xz, yz) = (I(H5)

[s], xy, xz, yz).

Clearly, yz is a pendant edge of H3. Hence, we conclude from [10, Lemma 22] that
(

(I(H3)
[s], xy, xz) : yz

)

= (I(H3)
[s] : yz) +

(

(xy, xz) : yz
)

= I(H3 \ {y, z})
[s−1] + (x) = I(H4)

[s−1] + (x).

Thus, it follows from the above exact sequence that
(6)

reg(I(H3)
[s], xy, xz) ≤ max

{

reg(I(H4)
[s−1] + (x)) + 2, reg(I(H5)

[s], xy, xz, yz)
}

.

Remind that H4 is a Cameron-Walker graph with match(H4) = match(G)−1. There-
fore, we conclude from [22, Theorem 20.2] and the induction hypothesis that

(7) reg
(

I(H4)
[s−1] + (x)

)

≤ match(H4) + s− 1 = match(G) + s− 2.

Note that H5 is a Cameron-Walker graph with match(H5) = match(G) − 1. Hence,
using [14, Corollary 3.2] (see also [20, Theorem 1.2]) and the induction hypothesis,
we have

reg(I(H5)
[s], xy, xz, yz) ≤ reg(I(H5)

[s]) + reg(xy, xz, yz)− 1

≤ match(H5) + s+ 2− 1 = match(G)− 1 + s+ 1

= match(G) + s.

The assertion follows by combining the above inequality with inequalities (2), (3), (4),
(5), (6) and (7). �

The following corollary is an immediate consequence of Theorem 4.3.

Corollary 4.4. Let G be a Cameron-Walker graph and suppose that s ≤ match(G)
is a positive integer. Then I(G)[s] has a linear resolution if and only if s = match(G).
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[4] S. Beyarslan, H. T. Hà, T. N. Trung, Regularity of powers of forests and cycles, J. Algebraic

Combin. 42 (2015), 1077–1095.
[5] M. Bigdeli, J. Herzog, R. Zaare-Nahandi, On the index of powers of edge ideals, Comm. Algebra,

46 (2018), 1080–1095.
[6] K. Cameron, T. Walker, The graphs with maximum induced matching and maximum match-

ingthe same size, Discrete Math. 299 (2005), 49–55.
[7] H. Dao, C. Huneke, J. Schweig, Bounds on the regularity and projective dimension of ideals

associated to graphs, J. Algebraic Combin. 38 (2013), 37–55.
[8] N. Erey, Powers of ideals associated to (C4, 2K2)-free graphs, J. Pure Appl. Algebra 223 (2019),

3071–3080.



REGULARITY OF SQUAREFREE POWERS OF EDGE IDEALS 13

[9] N. Erey, J. Herzog, T. Hibi, S. Saeedi Madani, Matchings and squarefree powers of edge ideals,
J. Combin. Theory, Ser. A 188 (2022), 105585.

[10] N. Erey, T. Hibi, Squarefree powers of edge ideals of forests, Electron. J. Combin., 28 (2021),
no. 2, Research Paper P2.32.

[11] O. Favaron, Very well covered graphs, Discrete Math. 42 (1982), 177–187.
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[13] H. T. Hà, Regularity of squarefree monomial ideals, In S.M. Copper and S. Sather-Wagstaff(Ed.)

Connections Between Algebra, Combinatorics, and Geometry. Springer Proceedings in Mathe-
matics Statistics 76 (2014), 251–276.

[14] J. Herzog, A generalization of the Taylor complex construction, Comm. Algebra 35 (2007),
1747–1756.

[15] J. Herzog, T. Hibi, An upper bound for the regularity of powers of edge ideals, Math. Scand.

126 (2020), 165–169.
[16] T. Hibi, A. Higashitani, K. Kimura, A. B. O’Keefe, Algebraic study on Cameron-Walker graphs,

J. Algebra 422 (2015), 257–269.
[17] A. V. Jayanthan, S. Selvaraja, Upper bounds for the regularity of powers of edge ideals of

graphs, J. Algebra 574 (2021), 184–205.
[18] A. V. Jayanthan, N. Narayanan, S. Selvaraja, Regularity of powers of bipartite graphs, J.

Algebraic Combin., 47 (2018), 17–38.
[19] M. Katzman, Characteristic-independence of Betti numbers of graph ideals, J. Combin. Theory,

Ser. A 113 (2006), 435–454.
[20] G. Kalai, R. Meshulam, Intersections of Leray complexes and regularity of monomial ideals, J.

Combin. Theory Ser. A 113 (2006), 1586–1592.
[21] M. Moghimian, S. A. Seyed Fakhari, S. Yassemi, Regularity of powers of edge ideal of whiskered

cycles, Comm. Algebra, 45 (2017), 1246–1259.
[22] I. Peeva, Graded syzygies, Algebra and Applications, vol. 14, Springer-Verlag London Ltd.,

London, 2011.
[23] S. A. Seyed Fakhari, S. Yassemi, Improved bounds for the regularity of edge ideals of graphs,

Collect. Math. 69 (2018), 249–262.
[24] S. A. Seyed Fakhari, S. Yassemi, Improved bounds for the regularity of powers of edge ideals of

graphs, J. Commut. Algebra, to appear.
[25] A. Van Tuyl, R. Villarreal, Shellable graphs and sequentially Cohen-Macaulay bipartite graphs,

J. Combin. Theory, Ser. A 115 (2008), 799–814.
[26] R. Woodroofe, Matchings, coverings, and Castelnuovo-Mumford regularity, J. Commut. Algebra

6 (2014), 287–304.

S. A. Seyed Fakhari, School of Mathematics, Statistics and Computer Science,

College of Science, University of Tehran, Tehran, Iran.

Email address : aminfakhari@ut.ac.ir


	1. Introduction
	2. Preliminaries
	3. Upper bound for the regularity of squarefree powers
	4. Cameron-Walker graphs
	References

