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GEOMETRIC VERTEX DECOMPOSITION, GRÖBNER BASES, AND FROBENIUS SPLITTINGS

FOR REGULAR NILPOTENT HESSENBERG VARIETIES

SERGIO DA SILVA AND MEGUMI HARADA

ABSTRACT. We initiate a study of the Gröbner geometry of local defining ideals of Hessenberg varieties by study-
ing the special case of regular nilpotent Hessenberg varieties in Lie type A, and focusing on the affine coordinate
chart on Flags(Cn) ∼= GLn(C)/B corresponding to the longest elementw0 of the Weyl group Sn of GLn(C). Our
main results are as follows. Let h be an indecomposable Hessenberg function. We prove that the local defining
ideal Iw0,h in the w0-chart of the regular nilpotent Hessenberg variety Hess(N, h) associated to h has a Gröbner
basis with respect to a suitably chosen monomial order. Our Gröbner basis consists of a collection {fw0

k,ℓ
} of gener-

ators of Iw0,h obtained by Abe, DeDieu, Galetto, and the second author. We also prove that Iw0,h is geometrically
vertex decomposable in the sense of Klein and Rajchgot (building on work of Knutson, Miller, and Yong). We give
two distinct proofs of the above results. We make this unconventional choice of exposition because our first proof
introduces and utilizes a notion of a triangular complete intersection which is of independent interest, while our
second proof using liaison theory is more likely to be generalizable to the general w-charts for w 6= w0. Finally,
using our Gröbner analysis of the fw0

k,ℓ
above and for p > 0 any prime, we construct an explicit Frobenius splitting

of the w0-chart of Flags(Cn) which simultaneously compatibly splits all the local defining ideals of Iw0,h, as h
ranges over the set of indecomposable Hessenberg functions. This last result is a local Hessenberg analogue of a
classical result known for Flags(Cn) and the collection of Schubert and opposite Schubert varieties in Flags(Cn).

1. INTRODUCTION

Hessenberg varieties are subvarieties of the full flag variety Flags(Cn), and the investigation of their
properties lies in the fruitful intersection of algebraic geometry, representation theory, and combinatorics,

among other research areas.1 First introduced to the algebraic geometry community by De Mari, Procesi,
and Shayman [6], they have recently garnered attention due in part to their connection to the well-known
and unresolved Stanley-Stembridge conjecture in combinatorics (see e.g. [10] for a leisurely account of
some of the history). However, there are many other reasons aside from the Stanley-Stembridge conjecture
that Hessenberg varieties are of interest; for instance, they arise in the study of quantum cohomology of
flag varieties, they are generalizations of the Springer fibers which arise in geometric representation theory,
total spaces of families of suitable Hessenberg varieties support interesting integrable systems [1], and the
study of some of their cohomology rings suggests that there is a rich Hessenberg analogue to the theory of
Schubert calculus on Flags(Cn) [11].

It is this last point of view of Schubert calculus, or more specifically the geometry of Schubert varieties,
which motivates the present paper. Specifically, in this manuscript we study local patches of Hessenberg
varieties - i.e. intersections of these Hessenberg varieties with certain choices of affine Zariski-open sub-
sets of Flags(Cn). To be more specific, the main results of this manuscript concern the local Hessenberg
patch ideal, denoted Iw0,h, for the special case of a regular nilpotent Hessenberg variety (to be defined in
Section 2.2), intersected with the affine coordinate chart w0U

−B of Flags(Cn) ∼= GLn(C)/B centered at the
permutation flag corresponding to the maximal element in Sn. (It is possible to consider the intersection
with the chart wU−B for arbitrary permutations w, but we mostly restrict to the longest permutation w0 in
this manuscript. Details are in Section 2.)

The analogous study of local patches of Schubert varieties is a classical topic and a great deal is known
about the corresponding (local defining) ideals, from which properties of Schubert varieties can be deduced.

Date: April 21, 2023.
2010 Mathematics Subject Classification. Primary: 14M17, 13P10; Secondary: 14M06 .
Key words and phrases. Hessenberg variety, flag variety, geometric vertex decomposition, Gröbner bases, Frobenius splitting.
1In this manuscript, we restrict to the case of Lie type A, i.e., when the flag variety corresponds to the group GLn(C) (or SLn(C)).

Much can be said about other Lie types, but we do not delve into that here.
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For example, on these local patches, Schubert varieties can be degenerated to a square-free monomial ideal
which is associated to a subword complex, which gives another proof that Schubert varieties are Cohen-
Macaulay [18]. We view the present manuscript as a first step in this direction in the context of Hessenberg
varieties, in the sense that we initiate a study of the Gröbner geometry associated to local defining ideals
of local patches of Hessenberg varieties. This being said, we emphasize that we are not the first to consider
these local patches; Insko and Yong studied the special case of the Peterson variety using such local patches
in [13], and in some cases, the results of [2] give a set of generators for such ideals, which can be used to
show reducedness. (Further details are in Section 2.)

Another motivation for the present paper is to introduce the theory of geometric vertex decomposability
(GVD) to the study of the geometry of Hessenberg varieties. Geometric vertex decompositions were first
defined and studied by Knutson, Miller, and Yong in their influential work [19], where they used their new
theory to study Schubert determinantal ideals. More recently, the theory of geometric vertex decompos-
ability, the definition of which is inherently inductive (recursive), has been linked to liaison theory and has
been useful for understanding when a variety is in the Gorenstein liaison class of a complete intersections
(i.e. “glicci”). Briefly, geometric vertex decompositions can be a powerful tool for demonstrating the glicci
property [15].

This theory is relevant in our Hessenberg context because being GVD gives a convenient inductive set-up
for proving that a certain set of polynomials is a Gröbner basis. Indeed, in Section 6, we use these ideas
to show that a certain set of generators form a Gröbner basis for local patch ideals for regular nilpotent
Hessenberg varieties in the w0-patch.

On the other hand, for the special case of the w0-patch, which is our main focus in this manuscript, it
turns out there is a way to build a Gröbner basis without using liaison theory which is both simpler and
more general. By this we mean that our argument is valid whenever one has an ideal I = 〈f1, . . . , fn〉 which
is a triangular complete intersection in a sense we make precise in Definition 3.3. The reader may then ask
why we bother with the GVD theory; the answer is that our simple argument for triangular complete
intersections will not apply to the w-charts for w 6= w0. Hence we have opted to present the argument
using triangular complete intersections in Section 3 and Section 4 below, but we also present an alternative
proof using geometric vertex decomposition in Section 6. At present, we expect that a full analysis of the
general w 6= w0 will need to rely on the GVD techniques.

We now turn to a discussion of our main results. Precise statements are in Corollary 4.15 and Corol-
lary 4.16. A Hessenberg function h : [n] → [n] is a function satisfying h(i) ≥ i for all i and h(1) ≤ h(2) ≤
· · · ≤ h(n). We refer to Definition 3.2 for a precise definition of geometric vertex decomposability. The
polynomials fw0

k,ℓ are defined in Definition 2.6.

Theorem. Let n be a positive integer with n ≥ 3. Let h : [n] → [n] be a Hessenberg function satisfying h(i) ≥
i+1 for all 1 ≤ i ≤ n− 1. Then the set of polynomials {fw0

k,ℓ} form a Gröbner basis for the Hessenberg patch

ideal Iw0,h of Hess(N, h) in the w0-coordinate chart with respect to an appropriately chosen monomial order,
and its initial ideal is an ideal of indeterminates. Furthermore, Iw0,h is geometrically vertex decomposable.

We remark that, as mentioned above, we obtain the above theorem by first proving analogous results
in the more general setting of triangular complete intersections. We expect these to also be of independent
interest.

In addition to our Gröbner basis results above, we initiate a study of Frobenius splittings in the context
of Hessenberg varieties in Section 5. It is known that there exists a Frobenius splitting of the flag variety
Flags(Cn) which is compatible in a suitable sense with all Schubert and opposite Schubert varieties [3]; this
has a geometric interpretation in terms of the anticanonical divisor class of Flags(Cn). Thus, it is natural
to ask whether there is a Hessenberg analogue of this theory, namely, we may ask whether there exists a
Frobenius splitting of Flags(Cn) which simultaneously compatibly splits all regular nilpotent Hessenberg
varieties for (indecomposable) Hessenberg functions. It is known that a Frobenius splitting on an ambient
variety restricts to a Frobenius splitting on an open dense affine coordinate chart, so if such a statement
were true, then it would also hold true on a coordinate chart. Our last main result in this manuscript is to
show that for a specific and explicit choice of Frobenius splitting on the w0-coordinate chart, this necessary
condition holds. A precise version of what follows is contained in Corollary 5.9 and Corollary 5.15.
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Theorem. Let p > 0 be a prime. There is an explicit Frobenius splitting ϕ of the coordinate ring of the
w0-chart of Flags(Cn) with respect to which the local Hessenberg patch ideal Iw0,h,p is compatibly split. In
particular, there is a partially ordered set (ordered by inclusion) of ideals {Iw0,h,p}, indexed by the set of
(indecomposable) Hessenberg functions h, which are simultaneously compatibly split with respect to ϕ.

Again, we remark that our approach to the proof of the above theorem is to first prove an analogous
general result for triangular complete intersections.

Finally, in Section 6, we give the alternate proof of the Gröbner basis and GVD result for Iw0,h using
liaison theory instead of relying on the specific setting of triangular complete intersections.

Much of the discussion above has focused exclusively on the w0-chart. It is natural to ask what happens
to the other coordinate charts for w 6= w0. We have some computational evidence that suggests that, for
w 6= w0, the restriction of the local Hessenberg patch ideals Iw,h to the coordinates corresponding to the
Schubert cell has computationally convenient properties. We also have preliminary evidence suggesting
that there are conditions on h and w (and an appopriate choice of monomial order) such that the initial
ideal of Iw,h possesses a square-free monomial degeneration. (See also Remark 4.17.) We expect to explore
these questions further in future work.

Acknowledgements. The first author was supported in part by a Natural Sciences and Engineering Re-
search Council Postdoctoral Fellowship of Canada. The second author was supported in part by the Natu-
ral Sciences and Engineering Research Council Discovery Grant 2019-06567 and a Canada Research Chair
Tier 2 Award. Both authors express gratitude to Patricia Klein and Jenna Rajchgot for many useful conver-
sations and to Mike Cummings for his patient Macaulay 2 computations and for providing the examples
which form the basis of Remark 4.17. Finally, we thank the anonymous referee for many helpful substantive
comments which significantly improved the paper.

2. BACKGROUND

In this section we briefly recall some background and notation necessary for the discussion that follows.

2.1. The flag variety Flags(Cn). The full flag variety Flags(Cn) is the set of nested sequences of subspaces

Flags(Cn) := {V• = (0 ( V1 ⊆ V2 ( · · · ( Vn−1 ( Vn = Cn) | dimC(Vi) = i}
in Cn. By representing V• by an n × n matrix (whose leftmost i many columns span Vi), we may identify
Flags(Cn) as the homogeneous space GLn(C)/B. Here, B is the Borel subgroup of GLn(C) consisting of
upper-triangular invertible matrices. Let U− denote the subgroup in GLn(C) consisting of lower-triangular
matrices with 1’s along the diagonal. Then U−B ⊂ GLn(C)/B is the set of left cosets uB with u ∈ U−. This
is an open dense subset of GLn(C)/B ∼= Flags(Cn) and can be profitably viewed as a “coordinate chart” on
GLn(C)/B.

Let Sn denote the symmetric group on n letters and w ∈ Sn a permutation. We can identify Sn with the
set of permutation flags in Flags(Cn) and view it as a subgroup of GLn(C) by taking w to the associated
permutation matrix. By abuse of notation we will often denote by the same w the element in Sn, its asso-
ciated flag, and its associated permutation matrix. Translating the coordinate chart U−B by multiplication
by w on the left, we can define

(2.1) Nw := wU−B ⊆ GLn(C)/B,

which is an open cell (i.e., a coordinate chart) in GLn(C)/B containing the permutation flag w. (Note that
our Nw are translates of the standard open dense Bruhat cell Bw0B/B in GLn(C)/B.) It is well-known
that Flags(Cn) ∼= GLn(C)/B can be covered by these n! many coordinate charts, each centered around a
permutation flag w.

In fact, each Nw is isomorphic to a complex affine space of dimension n(n−1)
2 . To see this, let

(2.2) M :=















1
⋆ 1
...

...
. . .

⋆ ⋆ · · · 1
⋆ ⋆ · · · ⋆ 1
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denote an element in U− where the ⋆’s represent arbitrary complex numbers, and consider the map M 7→
wMB ∈ GLn(C)/B. Since U− ∩ B = {e}, it is not difficult to check that this defines an embedding U− ∼=
An(n−1)/2

∼=→ Nw ⊂ Flags(Cn) parametrizing the coordinate chart Nw. A point in Nw can be uniquely
identified with the w-translate of an element M in U−, and thus a point in Nw is uniquely determined by a
matrix wM = (xi,j) satisfying

xw(j),j = 1 for j ∈ [n] and xw(i),j = 0 for i, j ∈ [n], j > i.

Thus the coordinate ring of Nw, which we denote by C[xw], is isomorphic to the polynomial ring in the
n(n− 1)/2 variables not specified by the above relations.

For instance, let w0 be the Bruhat-longest element in Sn, so in one-line notation,

w0 = [n n− 1 n− 2 · · · 2 1].

Then for any positive integer n, the coordinate chart Nw0
can be parametrized by matrices of the form

(2.3) w0M =















x1,1 x1,2 · · · x1,n−2 x1,n−1 1
x2,1 x2,2 · · · x2,n−2 1 0

...
...

...
xn−1,1 1 · · · 0 0

1 0 · · · 0 0















,

where we think of the variables xi,j in the matrix above as indeterminates (i.e., coordinates), taking values
in C. For a different choice of permutation w, these indeterminates will be located at different places within
the matrix, but the idea is similar.

2.2. Regular nilpotent Hessenberg varieties. Our notation and conventions largely follow the discussion
in [2] so we will be brief. Let n be a positive integer. We call a function h : [n] := {1, 2, · · · , n} → [n] :=
{1, 2, · · · , n} a Hessenberg function if it satisfies the conditions h(i) ≥ i for all i and h(i + 1) ≥ h(i) for
1 ≤ i ≤ n− 1. We say that a Hessenberg function is indecomposable if h(i) ≥ i+1 for all 1 ≤ i ≤ n− 1. Let
A : Cn → Cn be a linear operator and let h : [n] → [n] be an indecomposable Hessenberg function. Then we
define the Hessenberg variety associated to A and h to be the closed subvariety of Flags(Cn) given by

(2.4) Hess(A, h) := {V• = (Vi) ∈ Flags(Cn) | AVi ⊆ Vh(i), ∀i} ⊂ Flags(Cn).

(Hessenberg varieties can be defined in more generality, in arbitrary Lie types, but for simplicity we restrict
to Lie type A in this paper.)

In this manuscript, we further focus on the special case when A is a regular nilpotent operator. Specifi-
cally, define

(2.5) N :=



















0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
...

...
0 0 0 0 0 1
0 0 0 0 0 0



















to be the matrix with 0’s everywhere except the 1’s immediately above the diagonal entries. (In other words,
N has a single Jordan block with eigenvalue 0.) Hessenberg varieties Hess(A, h) defined (as in (2.4)) by A
which conjugate to N are called regular nilpotent Hessenberg varieties. In this case, we may restrict our
attention to the case A = N since Hess(A, h) ∼= Hess(gAg−1, h) for g ∈ GLn(C).

We now describe “local defining equations” for Hess(N, h) following the method of [2]. By “local” we
mean that for each choice of permutation w ∈ Sn we focus on the local coordinate chart Nw ⊆ Flags(Cn)
centered at w and ask for the defining equations for Nw ∩ Hess(N, h) in the affine space Nw. The method
for deriving these equations is explained in detail in [2, Section 3], to which we refer the reader; here we
will only briefly recall the results therein. Following [2, Definition 3.3] we define certain polynomials fw

k,ℓ

in C[xw] as follows.
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Definition 2.6. Let w ∈ Sn and let k, ℓ ∈ [n] with k > h(ℓ). We define the polynomial fw
k,ℓ ∈ C[xw] by

fw
k,ℓ := ((wM)−1

N(wM))k,ℓ,

where some matrix entries of the matrix wM are viewed as variables, as described above.

We also define, using the polynomials fw
k,ℓ defined above, the following ideals

(2.7) Iw,h := 〈fw
k,ℓ | k > h(ℓ)〉 ⊆ C[xw],

which we call Hessenberg patch ideals. In other words, Iw,h is the ideal generated by the (k, ℓ)-th matrix
entries of ((wM)−1N(wM)) where k > h(ℓ). Examples of Iw,h are computed in [2, Section 3]. We also have
the following result from [2].

Lemma 2.8. The ideal Iw,h is the defining ideal of the affine variety Hess(N, h) ∩ Nw. In particular, it is radical.

Remark 2.9. It is shown in [2, Lemma 3.1] that Hess(N, h) is a local complete intersection. Therefore, to show
that Hess(N, h) is reduced, it is enough to show that it is generically reduced, which can be checked in a
single chart, e.g. the w0-chart. (Each chart is open and dense in Hess(N, h).)

Example 2.10. Let n = 5 and w0 = [5 4 3 2 1]. We can compute the matrix (w0M)−1N(w0M) to obtain













0 0 0 0 0
1 0 0 0 0

fw0

3,1 1 0 0 0
fw0

4,1 fw0

4,2 1 0 0
fw0

5,1 fw0

5,2 fw0

5,3 1 0













where the fk,ℓ ∈ C[xw0
] are defined by the following formulas:

fw0

5,1 = −x1,2 + x1,3(x3,2 − x4,1) + x1,4(x2,2 − x2,3x3,2 + x2,3x4,1 − x3,1) + x2,1

fw0

5,2 = −x1,3 + x1,4(x2,3 − x3,2) + x2,2

fw0

5,3 = −x1,4 + x2,3

fw0

4,1 = −x2,2 + x2,3(x3,2 − x4,1) + x3,1

fw0

4,2 = −x2,3 + x3,2

fw0

3,1 = −x3,2 + x4,1.

Therefore, if h1 = (2, 3, 4, 5, 5) and h2 = (3, 4, 4, 5, 5), then we have

Iw0,h1
= 〈fw0

3,1 , f
w0

4,1 , f
w0

4,2 , f
w0

5,1 , f
w0

5,2 , f
w0

5,3〉
and

Iw0,h2
= 〈fw0

4,1 , f
w0

5,1 , f
w0

5,2 , f
w0

5,3〉.
In what follows, it will be useful to have inductive formulas for the polynomials fw

k,ℓ which generate the
ideals Iw,h. We go into more detail in Section 4 but it may be helpful to see an example here. In particular,
there are some indexing conventions that need careful attention. Again we follow the exposition of [2].
Here, and for much of the remainder of the manuscript, we restrict to the simplest case, namely, the w = w0

chart. We begin by recalling an example [2, Example 3.13] which can serve to orient the reader.

Example 2.11. Let n = 4 and h = (3, 3, 4, 4). The longest element of S4 is the permutation w0 = [4 3 2 1]. The
coordinate ring of Nw0

is

C[xw0
] ∼= C[x1,1, x1,2, x1,3, x2,1, x2,2, x3,1],

and a point in Nw0
is determined by a matrix

w0M =









x1,1 x1,2 x1,3 1
x2,1 x2,2 1 0
x3,1 1 0 0
1 0 0 0









.
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The inverse must then have the form

(w0M)−1 =









0 0 0 1
0 0 1 y3,1
0 1 y2,2 y2,1
1 y1,3 y1,2 y1,1









(2.12)

for some yi,j . Note that the indexing is such that yi,j is the (n + 1 − i, n + 1 − j)-th entry in the inverse
matrix. It is possible to obtain expressions for the yi,j in terms of the xi,j by starting from the matrix
equality (w0M)−1(w0M) = 14×4 (the 4× 4 identity matrix) and comparing entries. For example,

y1,3 = −x1,3,

y1,2 = −x1,2 − y1,3x2,2 = −x1,2 + x1,3x2,2.

Alternatively, the yi,j can also be expressed using the standard adjoint formula for inverses of matrices, and
thus can be computed using certain minors of the original matrix w0M . We will mainly stick to the latter
point of view in the arguments that follow.

In fact, the above discussion for the case n = 4 readily generalizes to all n. Indeed, we have for general
n that

(w0M)−1 =















1
1 yn−1,1

...
...

1 . . . y2,2 y2,1
1 y1,n−1 . . . y1,2 y1,1















(2.13)

where again the yi,j are polynomials in the xw0
variables. There is an inductive procedure to compute the

yi,j which we won’t recount in detail here, but some facts about the yi,j will be useful and are recorded
below.

Lemma 2.14. Let yi,j denote the relevant entries of the inverse (w0M)−1 as above.

(1) yi,j only depends on the variables xi′,j′ for i′ ≥ i, j′ ≥ j.
(2) yi,j = 1 if i+ j = n+ 1.
(3) Suppose i+ j < n+1. When expressed as a polynomial in the xw0

variables, yi,j contains no constant terms,
i.e., all monomials appearing in yi,j have degree ≥ 1.

Proof. The first claim is observed in [2, cf. the discussion in proof of Lemma 3.12]. The second claim is also
in [2]. The third claim follows from a straightforward induction argument which we now briefly sketch.
Since (w0M)−1(w0M) = 1n×n (the identity matrix), it is immediate that yi,j = −xi,j if i+ j = n. If i+ j < n,
it also follows from (w0M)−1(w0M) = 1n×n that yi,j is a polynomial in the variables xi′,j′ and yi′,j′ for
i′ + j′ ≥ i + j, which by a simple induction argument has no constant term. The base case i + j = n yields
the result. �

The following formula for the fw0

k,ℓ from [2] will be useful in our later arguments.

Lemma 2.15. [2, Equation (3.6), with different indexing conventions] Let k, ℓ be such that k > ℓ. Then

(2.16) fw0

k,ℓ = xn+2−k,ℓ +

n−ℓ
∑

s=n+2−k

xs+1,ℓ yn+1−k,n+1−s.

2.3. A torus action on Hess(N, h) and C[xw0
]. In order to apply some of the results from [15] that relate

liaison theory to geometric vertex decomposition in Section 6, we need a homogeneity condition. However,
the fw

k,ℓ are not in general homogeneous with respect to the standard grading on C[xw]. This turns out to

not be a problem since there is a circle action on Hess(N, h) which gives a non-standard grading of C[xw]
for which the fw

k,ℓ are in fact homogeneous.

We now describe this circle action on Hess(N, h). Consider the circle subgroup S ∼= C∗ of the maximal
torus of GLn(C)

S := {t := diag(g, g2, . . . , gn) | g ∈ C∗}.
6



It is straightforward to check that S preserves Hess(N, h). In fact one can compute (for the diagonal matrix
t = diag(g, . . . , gn)) that

tNt−1 = gN,

so the conjugation action becomes multiplication by the scalar g. We can also explicitly compute the action
of S on the local coordinate patch Nw. For concreteness, here we will focus on the w0-chart, where the
action is given as follows. The standard maximal torus action on GL(n,C)/B is given by left multiplication
on left cosets. More precisely, given a matrix w0M representing a flag [w0M ] ∈ GL(n,C)/B, we have

t · [w0M ] = [t(w0M)].

It is not difficult to compute t(w0M) directly. To read off the action in terms of the coordinate chart Nw0

we must now find a matrix M ′ of the form (2.2) such that tw0M = w0M
′, and it is not hard to see from

[t(w0M)] = [t(w0M)t̃] for t̃ = diag(g−n, g−n+1, · · · , g−1) that we obtain

w0M
′ =















g1−nx1,1 g2−nx1,2 · · · g−2x1,n−2 g−1x1,n−1 1
g2−nx2,1 g3−nx2,2 · · · g−1x2,n−2 1 0

...
...

...
g−1xn−1,1 1 · · · 0 0

1 0 · · · 0 0















.

This torus action induces an S-action on C[xw] given by t · xi,j = gi+j−n−1xi,j . We can use this action to
define a (positive) Z-grading on C[xw] where a polynomial f(xw) is homogeneous of degree d ≥ 0 if

(2.17) gd f(t · xw) = f(xw).

Furthermore, since the fw0

k,ℓ are defined as entries of the matrix (w0M)−1N(w0M), then t · fw0

k,ℓ can be

computed as the entries of the matrix

(t(w0M)t̃)−1
N(t(w0M)t̃) = t̃−1((w0M)−1gN(w0M))t̃

showing that t · fw0

k,ℓ = g1+ℓ−kfw0

k,ℓ . The above discussion can be summarized as follows.

Lemma 2.18. The fw0

k,ℓ are homogeneous with respect to the non-standard positive Z-grading of C[xw0
] defined

in (2.17).

Remark 2.19. A straightforward similar computation shows that in the other charts Nw for w 6= w0, the
S-action also induces a nonstandard Z-grading on C[xw] with respect to which the ideal Iw,h is homoge-
neous, and the generators fw

k,ℓ are homogeneous. However, in the general w case with w 6= w0, it will not

necessarily be true that this Z-grading on C[xw] is positive, i.e., it can happen that a non-constant element
in Iw,h may have degree zero.

3. GEOMETRIC VERTEX DECOMPOSITION AND GRÖBNER BASES FOR TRIANGULAR COMPLETE

INTERSECTIONS

In this section, we prove some results concerning Gröbner bases and geometric vertex decomposition
for certain complete intersection ideals which we call triangular (see Definition 3.3). Our main assertions
are Theorem 3.5 and Corollary 3.7 below. We believe that these statements are well-known to experts,
but we were unable to locate the statements in the literature, so we prove them here. Our motivation
for these results stems from particular examples of Hessenberg varieties, but they are also of independent
interest. Specifically, in Section 4 we use the general results below to construct Gröbner bases for the local
Hessenberg patch ideals Iw0,h by showing that they are triangular complete intersections.

We begin by briefly recalling the notion of a geometric vertex decomposition. For this section, let K be
an arbitrary field, and let R denote a polynomial ring over K with a finite and fixed set of indeterminates
which we denote by x. (In our setting of the local defining ideals Iw0,h of regular nilpotent Hessenberg
varieties, the set of indeterminates will be the set xw0

as given in Section 2.2.) Now let I be an ideal in R.
Suppose y ∈ x is one of the indeterminates in x. The initial y-form inyf of f ∈ R is the sum of all terms of
f having the highest power of y. In particular, if y does not divide any term of f , then iny(f) = f . We say
a monomial order < on R is y-compatible if it satisfies in<(f) = in<(iny(f)) for every f ∈ R. With respect
to such a y-compatible monomial order, suppose G = {ydiqi + ri | 1 ≤ i ≤ m} is a Gröbner basis for I ,
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where y does not divide any qi and iny(y
diqi + ri) = ydiqi. In this situation it is straightforward to see that

iny(I) = 〈ydiqi | 1 ≤ i ≤ m〉. We have the following.

Definition 3.1. ([15, Definition 2.3]) In the setting above, define Cy,I := 〈qi | 1 ≤ i ≤ m〉 and Ny,I := 〈qi |
di = 0〉. If iny(I) = Cy,I ∩ (Ny,I + 〈y〉), then we call this decomposition a geometric vertex decomposition
of I with respect to y. A geometric vertex decomposition is degenerate if Cy,I = Ny,I or if Cy,I = 〈1〉, and
non-degenerate otherwise.

For further motivation and history surrounding these ideas see [15]. For the purposes of this paper it is
important to have an inductive framework for geometric vertex decompositions, in the sense that the ideals
Ny,I and Cy,I can also be equipped with such decompositions. This idea is made precise in Definition 3.2
below. Recall that I is said to be unmixed if dim(R/P ) = dim(R/I) for all P ∈ Ass(I). In particular, the
affine variety defined by an unmixed ideal I will not contain any embedded components and will have
equidimensional irreducible components.

Definition 3.2. ([15, Definition 2.6]) Let I be an ideal in R. We say I is geometrically vertex decomposable
(or GVD) if I is unmixed and if

(1) I = 〈1〉, or, I is generated by a (possibly empty) list of indeterminates, or,
(2) for some fixed indeterminate y of R, iny(I) = Cy,I ∩(Ny,I+〈y〉) is a geometric vertex decomposition

and the contractions of Ny,I and Cy,I to K[x \ y] are geometrically vertex decomposable.

From the point of view of Gröbner geometry, one motivation for asking for geometric vertex decompos-
ability of a homogeneous ideal I is that if such a decomposition exists with respect to a fixed monomial
order < of R, then there is an associated degeneration of I , from which it is possible to construct Gröbner
bases of I . In a different direction, possessing a geometric vertex decomposition has consequences relating
the ideals in the decomposition as in [19, Theorem 2.1], such as providing a recursive formulation for the
Hilbert series of R/I . In this manuscript, however, we take the point of view that if a set of generators of an
ideal has a certain form with respect to a monomial order, then we can conclude both that the generators
form a Gröbner basis, and that the ideal is GVD. We have the following.

Definition 3.3. Let K be a field and I ⊆ R = K[x1, . . . , xN ] be an ideal and suppose that ht(I) = n. Suppose
there exists an ordered list of generators {f1, . . . , fn} of I in R, a monomial order < on R, and a list of
indeterminates {xi1 , xi2 , . . . , xin} such that

(1) for each j with 1 ≤ j ≤ n, the initial term in<(fj) is a multiple ujxij of xij for some uj ∈ K∗, and
(2) the indeterminate xij does not appear in any term of fm for m > j.

Then we say that the ideal I is a triangular complete intersection of height n with respect to <. When the
monomial order < is understood from context, we say I is a triangular complete intersection of height n.

Example 3.4. As a simple example, suppose S = C[x1, x2, x3, x4] and suppose we use the lexicographic
order with x1 > x2 > x3 > x4. Suppose also that f1 = x1 + x2

2 + x2x3 and f2 = x2 + x3x4 and f3 = x3 + x2
4.

We claim that I = 〈f1, f2, f3〉 has height 3 (this can be verified by Macaulay 2 or by noting that {f1, f2, f3}
defines a regular sequence in S). It is straightforward to check that in<(fi) = xi does not appear in any
term of any fj with j > i, for i = 1, 2, 3. Hence this is an example of a triangular complete intersection.

Theorem 3.5. Suppose that I ⊂ R = K[x1, . . . , xN ] is a triangular complete intersection of height n with respect
to a monomial order < on R. Let {f1, . . . , fn} be an ordered list of polynomials in R satisfying the conditions of
Definition 3.3. Then in<(I) is an ideal of indeterminates, and {f1, . . . , fn} defines a Gröbner basis of I with respect
to <.

Proof. By assumption, since they are (non-zero constant multiples of) distinct indeterminates, in<(fi) and
in<(fj) are relatively prime for all i 6= j. By [4, Chapter 2.9, Proposition 4], the S-polynomials S(fi, fj)
reduce to zero for all i 6= j, so by [4, Chapter 2.9, Theorem 3], {f1, . . . , fn} is a Gröbner basis with respect to
< for the ideal it generates. In particular, it is immediate that in<(I) is an ideal of indeterminates. �

In addition to obtaining Gröbner bases, we can also conclude that a triangular complete intersection
ideal is GVD, because – as we have just seen – its initial ideal is generated by indeterminates. To justify this,
we need the notion of an ideal being <-compatibly geometric vertex decomposable [15, Definition 2.11].
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This concept is similar to Definition 3.2 but different in the following way. Note that in the definition of
geometric vertex decomposability, the monomial order < with respect to which Ny,I and Cy,I are also GVD
(in part (b) of Definition 3.2) is not specified, so in particular, they may vary. However, for an ideal which
is <-compatibly GVD in the sense of [15, Definition 2.11], the monomial order < is fixed once and for all,
and the contractions of Ny,I and Cy,I are required to also be <-compatibly GVD with respect to the induced
monomial order of the fixed < on the smaller ring K[x \ y]. We have the following.

Lemma 3.6. Let I ⊆ R = K[x1, . . . , xN ] be an ideal and < a lexicographic monomial order on R. If in<(I) is an
ideal of indeterminates, then I is geometrically vertex decomposable.

Proof. The Stanley-Reisner complex associated to an ideal of indeterminates is a single (possibly empty)
simplex. In particular, it is vertex decomposable in the classical sense of simplicial complexes. In fact, it
is not hard to see that it is <-compatibly geometrically vertex decomposable. Now the result immediately
follows from [15, Proposition 2.14] (which is valid over an arbitrary field K). �

The following is immediate.

Corollary 3.7. If I ⊂ R = K[x1, . . . , xN ] is a triangular complete intersection of height n with respect to a lexico-
graphic order <, then it is GVD.

Proof. We saw in Theorem 3.5 that if I is a triangular complete intersection of height n with respect to <,
then in<(I) is an ideal of indeterminates. Now the result follows from Lemma 3.6. �

Remark 3.8. It turns out that an ideal I which is generated by {f1, . . . , fn} satisfying conditions (1) and
(2) of Definition 3.3 is automatically a complete intersection. Indeed, by Lemma 3.6, in<(I) is an ideal
of indeterminates and hence a complete intersection, so it follows that I is also a complete intersection
[9, Corollary 19.3.8]. Additionally, if I is a homogeneous ideal (with respect to any grading of R), then
we could also conclude that the height of I and in<(I) are equal by [7, Section 8.2.3 and Theorem 15.26].
Homogenization of I (see [7, Section 1.8] for details) would yield a similar result for non-homogeneous
ideals.

4. THE CASE OF THE REGULAR NILPOTENT HESSENBERG VARIETY

The goal of this section is to show that the polynomials fw0

k,ℓ defining the Hessenberg patch ideal Iw0,h

(i.e., the ideal of local defining equations for the Hessenberg variety in the w0-chart) obey certain recursive
relationships. These observations will allow us to show that the patch ideal Iw0,h is a triangular complete
intersection in the sense of Definition 3.3. From this, we obtain our main results, namely, that the {fw0

k,ℓ}
form a Gröbner basis for Iw0,h (Corollary 4.15) and that Iw0,h is GVD (Corollary 4.16).

4.1. Recursively defining fw0

k,ℓ . In this section, we work solely in the w0-chart. For this reason, and for

notational simplicity, in this section we denote fw0

k,ℓ by fk,ℓ and w0M by M ′.

We first note that the matrix entries yi,j of (M ′)−1 in (2.13) can be expressed in terms of cofactors, via
the well-known formula for matrix inverses. Indeed, let M ′

n+1−j,n+1−i denote the (n − 1) × (n − 1) matrix
obtained from the n×n matrix M ′ in (2.3) by deleting the (n+1− j)-th row and (n+1− i)-th column. The
following lemma is immediate.

Lemma 4.1.

yi,j = (−1)n(n−1)/2(−1)i+j detM ′
n+1−j,n+1−i.

Here the (−1)n(n−1)/2 represents the determinant of M ′, and the factor (−1)i+j is the sign that comes
from the cofactors in the standard matrix inverse formula.

Now recall that we visualize the polynomial fk,ℓ as being associated to the (k, ℓ)-th entry of the matrix
(M ′)−1NM ′. Our next observation is that the fk,ℓ which lie immediately below the main diagonal are
particularly simple. Note that these particular fk,ℓ are not generators for Iw0,h when h is indecomposable,
but they do appear in the recursive expression of Proposition 4.5, which is why this lemma is useful as a
base case.

Lemma 4.2. Let ℓ ∈ Z with 1 ≤ ℓ ≤ n− 1. Then fℓ+1,ℓ = 1.
9



Proof. From Lemma 2.15 and by appropriate substitutions of variables we know that

(4.3) fℓ+1,ℓ = xn−ℓ+1,ℓ +

n−ℓ
∑

s=n−ℓ+1

xs+1,ℓ yn−ℓ,n+1−s.

We can see that the summation in the second term of the RHS of (4.3) is actually an empty sum, so fℓ+1,ℓ =
xn−ℓ+1,ℓ. We also know from the form of the matrix M ′ that xn−ℓ+1,ℓ = 1, completing the proof. �

The next result gives an important inductive relationship between different fk,ℓ. This is our main tech-
nical tool for the remainder of the arguments concerning Iw0,h. The point of the formula is that a given
generator fk,ℓ with k > ℓ+ 1 can be expressed in terms of certain fs,ℓ’s with ℓ+ 1 ≤ s ≤ k − 1.

Remark 4.4. In fact, we do not actually use the full strength of this recursion result in the current paper. It
would be interesting to explore the recursion further, especially for other w-charts with w 6= w0. We leave
this open for future work.

Proposition 4.5. Let n ∈ Z, n ≥ 3. For 1 ≤ k, ℓ ≤ n and k > ℓ + 1, let fk,ℓ be the (k, ℓ)-th entry of the matrix
(M ′)−1NM ′ as above, considered as an element of C[xw0

]. Then

(4.6) fk,ℓ = xn+2−k,ℓ −





k−1
∑

p=ℓ+1

xn+1−k,pfp,ℓ



 .

Before proving Proposition 4.5 we introduce some notation. In the exposition above, we denoted the
(n− 1)× (n− 1) minor of M ′ obtained by deleting the s-th row and p-th column by the symbol M ′

s,p. Here
and below we denote the (n − 2) × (n − 2) minor of M ′, obtained by deleting the s-th and s′-th rows and
the p-th and p′-th columns, by the symbol M ′

{s,s′},{p,p′}, where we assume that s 6= s′, p 6= p′. Using this

notation, we can further expand the determinant detM ′
s,n as follows. Suppose for instance that s ≥ 2. In

this case, we know that the matrix M ′
s,n has a top row of the form (x1,1, x1,2, · · · , x1,n−1). We may compute

detM ′
s,n by expanding along this top row, obtaining

(4.7) detM ′
s,n =

n−1
∑

p=1

(−1)p+1x1,p detM
′
{1,s},{p,n}.

We have the following.

Lemma 4.8. Let n ∈ Z, n ≥ 3, and s, p ∈ Z with 2 ≤ s ≤ n and 1 ≤ p < n. If s+p ≤ n then detM ′
{1,s},{p,n} = 0.

Proof. Consider the p × (n − 2) submatrix A of M ′
{1,s},{p,n} consisting of the bottom p many rows. Since

s ≤ n−p by assumption, the bottom p rows of M ′
{1,s},{p,n} are the same as the bottom p rows of M ′ with the

p-th and n-th columns removed. From this point of view, it is easier to see that the top row of A does not
contain an entry of 1, and only contains indeterminates and 0’s. Moreover, this top row is clearly a linear
combination of the p− 1 many rows below it (when p = 1, A is just the zero row matrix). Since M ′

{1,s},{p,n}

contains p rows which are linearly dependent, detM ′
{1,s},{p,n} = 0 as claimed. �

With these preliminaries, we can prove the Proposition.

Proof of Proposition 4.5. We first prove the case k = n. From Lemmas 2.15 and 4.1 and 4.8, it follows that

fn,ℓ = x2,ℓ + (−1)n(n−1)/2
n−ℓ
∑

s=2

(−1)n−sxs+1,ℓ

(

n−1
∑

p=1

(−1)p+1x1,p detM
′
{1,s},{p,n}

)

.
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On the other hand, from Lemma 4.8 we know that some of the detM ′
{1,s},{p,n} are equal to 0. Hence we

obtain

fn,ℓ = x2,ℓ + (−1)n(n−1)/2
n−ℓ
∑

s=2

n−1
∑

p=n+1−s

(−1)n−s(−1)p+1x1,pxs+1,ℓ detM
′
{1,s},{p,n}

= x2,ℓ + (−1)n(n−1)/2
n−1
∑

p=ℓ+1

n−ℓ
∑

s=n+1−p

(−1)n−s(−1)p+1x1,pxs+1,ℓ detM
′
{1,s},{p,n}

= x2,ℓ +
n−1
∑

p=ℓ+1

x1,p

(

(−1)n(n−1)/2
n−ℓ
∑

s=n+1−p

(−1)p+1(−1)n−sxs+1,ℓ detM
′
{1,s},{p,n}

)

(4.9)

where the second equality follows from reorganizing the summation of the indices s and p. Our next step
is to analyze the expressions detM ′

{1,s},{p,n} appearing in (4.9). Since p ≤ n− 1 and s ≥ 2, it follows that the

(n − 1) × (n − 1) minor M ′
s,p of M ′ has as its rightmost column the standard basis vector (1, 0, 0, · · · , 0)T .

Expanding detMk,s along this column we see that

detM ′
s,p = (−1)n detM ′

{1,s},{p,n}.

Thus we can rewrite (4.9) as

fn,ℓ = x2,ℓ +
n−1
∑

p=ℓ+1

x1,p

(

(−1)n(n−1)/2
n−ℓ
∑

s=n+1−p

(−1)s+p+1xs+1,ℓ detM
′
s,p

)

.

In the above expression, we now analyze the term corresponding to s = n+1−p. Note that the (n+1−p, p)-
th entry in the matrix M ′ lies on the main antidiagonal and is equal to 1. Deleting the (n+1−p)-th row and
p-th column from M ′ we see that the minor M ′

n+1−p,p is again a matrix with 1’s along the main antidiagonal
and 0’s below it. This means

detM ′
n+1−p,p = (−1)(n−1)(n−2)/2

so we have (−1)n(n−1)/2(−1)n+2xn+2−p,ℓ(−1)(n−1)(n−2)/2 = −xn+2−p,ℓ(−1)(n−2)(n+1) = −xn+2−p,ℓ. There-
fore

fn,ℓ = x2,ℓ +

n−1
∑

p=ℓ+1

x1,p

(

−xn+2−p,ℓ + (−1)n(n−1)/2
n−ℓ
∑

s=n+2−p

(−1)s+p+1xs+1,ℓ detM
′
s,p

)

,

which is equal to

x2,ℓ −
n−1
∑

p=ℓ+1

x1,p

(

xn+2−p,ℓ + (−1)n(n−1)/2
n−ℓ
∑

s=n+2−p

(−1)s+pxs+1,ℓ detM
′
s,p

)

after factoring out −1. The portion in brackets is exactly fp,ℓ by Lemmas 2.15 and 4.1, so we have proven
the desired result for the case k = n.

Now we wish to prove the case for general k. From the form of the matrix M ′ and its inverse (M ′)−1, it
is clear that the upper-right square submatrix of (M ′)−1 of size k × k for k < n is an inverse to the lower-
left k × k submatrix of M ′. It follows that the upper-left k × k submatrix of (M ′)−1NM ′ can be identified,
upon suitable re-naming of coordinates, with the polynomials fa,b which would appear in the construction
for Hessenbergs in Flags(Ck) where k < n. Thus, applying our arguments above for fn,ℓ except with k
replacing the value n, we obtain the desired result by induction. �

Example 4.10. Explicitly, for the case k = n, Proposition 4.5 says that

fn,ℓ = −x1,n−1fn−1,ℓ − x1,n−2fn−2,ℓ − x1,n−3fn−3,ℓ − · · · − x1,ℓ+1fℓ+1,ℓ + x2,ℓ.
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4.2. Iw0,h is a triangular complete intersection. We now use the inductive description of the fk,ℓ’s obtained
in Section 4.1 to prove our main results. In fact, by the results in Section 3, all we need to show is that a
certain choice of ordering on fw0

k,ℓ , together with a certain choice of monomial order on C[xw0
], satisfy the

conditions to make Iw0,h a triangular complete intersection in the sense of Definition 3.3. This is what we
do below.

Let n be fixed. We begin with a definition of a specific monomial order on C[xw0
]. We have the following.

Definition 4.11. We define a monomial order <n on C[xw0
] as follows: first, we order the variables in xw0

by
xi,j >n xi′,j′ if i < i′, or, if i = i′ and j < j′.

Then, we define <n to be the lexicographic ordering on monomials induced by the above ordering on the
variables.

In other words, the leading term is the one with the highest power of x1,1, followed by the highest power
of x1,2 to break ties, followed by (in order, reading from left to right) the other variables in the top row of
w0M , so x1,1 >n x1,2 >n x1,3 >n · · · , followed by the variables (also reading from left to right) in the
second row, and so on. For example, when n = 4, then the ordering of the variables is x1,1 >4 x1,2 >4

x1,3 >4 x2,1 >4 x2,2 >4 x3,1.
To determine whether Iw0,h is a triangular complete intersection, we also need an ordering on a chosen

set of generators. For this purpose, we will sequentially order the polynomials fw0

k,ℓ in the following way:

(4.12) fw0

n,1, f
w0

n,2, · · · , fw0

n,n−1, f
w0

n−1,1, f
w0

n−1,2, · · ·
i.e. when we visualize the fw0

k,ℓ as entries in a matrix, we “read from the bottom row to the top row, and

left to right along rows”. This ordering of the polynomials, together with the choice of monomial order <n,
makes Iw0,h a triangular complete intersection. We have the following.

Lemma 4.13. Let k, ℓ ∈ Z, 1 ≤ k, ℓ ≤ n and k > ℓ+ 1. Then:

(1) With respect to the monomial order >n as above, we have

in<n
(fw0

k,ℓ) = −xn+1−k,ℓ+1.

(2) The variable xn+1−k,ℓ+1 does not appear in any polynomial fw0

k′,ℓ′ appearing after fw0

k,ℓ in the sequence (4.12).

(3) The variable xn+1−k,ℓ+1 appears precisely once in the polynomial fw0

k,ℓ , and all other variables xi,j which

appear in fw0

k,ℓ have the property that either i = n+ 1− k and j > ℓ+ 1, or, i > n+ 1− k.

Remark 4.14. It follows from Remark 3.8 that the height of Iw0,h is equal to the number of fw0

k,ℓ generating it.

The claims (1) and (2) of Lemma 4.13 therefore imply, according to Definition 3.3, that Iw0,h is a triangular
complete intersection.

Proof of Lemma 4.13. From Proposition 4.5 we see that the summand in the expression on the RHS of (4.6)
corresponding to the index p = ℓ + 1 is of the form −xn+1−k,ℓ+1 · fw0

ℓ+1,ℓ. From Lemma 4.2 we know that

fw0

ℓ+1,ℓ = 1, so the p = ℓ + 1 summand is in fact exactly −xn+1−k,ℓ+1, the claimed initial term. To show that

this is indeed the initial term, it would suffice to see that both xn+2−k,ℓ - the first expression in the RHS
of (4.6) – and all summands corresponding to ℓ+ 2 ≤ p ≤ k − 1 contain only variables xi,j satisfying either
i > n+1−k, or, i = n+1−k and j > ℓ+1. By definition of the monomial order <n, this would mean that all
other variables appearing are strictly less than xn+1−k,ℓ+1 and hence the initial term as claimed. First, the
variable xn+2−k,ℓ has first index n+2−k > n+1−k, so xn+2−k,ℓ < xn+1−k,ℓ+1 as desired. Next we analyze
the expression xn+1−k,p · fp,ℓ for ℓ + 2 ≤ p ≤ k − 1. Since p > ℓ + 1 by assumption, xn+1−k,p < xn+1−k,ℓ+1

as desired. Finally, we analyze the variables appearing in fp,ℓ for ℓ + 2 ≤ p ≤ k − 1. From Lemma 2.15,
equation (2.16) (replacing k with p), and Lemma 2.14(1), it is then straightforward to see that the variables
xi,j appearing in fp,ℓ all satisfy i > n+ 1− k, so are less than xn+1−k,ℓ+1 as desired. This proves (1).

The statement (3) follows immediately from the proof of (1). So it remains to show the statement (3). We
have just seen that for a given fw0

k,ℓ , the only variables xi,j which appear are xn+1−k,ℓ+1 and those which

are smaller than xn+1−k,ℓ+1 with respect to <n. For any fw0

k′,ℓ′ with either k′ = k and ℓ′ > ℓ, or, k′ < k, it is

straightforward to see that xn+1−k,ℓ+1 cannot appear. This proves (3). �

It now follows easily that we have a Gröbner basis. The precise statement is below.
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Corollary 4.15. Let n ∈ Z, n ≥ 3. Let h : [n] → [n] be an indecomposable Hessenberg function. Let {fw0

k,ℓ | k >

h(ℓ)} be the generators of Iw0,h in C[xw0
]. Then the {fw0

k,ℓ | k > h(ℓ)} form a Gröbner basis for Iw0,h with respect

to the monomial order <n of Definition 4.11.

Proof. Lemma 4.13 and Remark 4.14 shows that Iw0,h is a triangular complete intersection with respect to
the subsequence of generators fw0

k,ℓ of

fw0

n,1, f
w0

n,2, · · · , fw0

n,n−1, f
w0

n−1,1, f
w0

n−1,2, · · ·
which satisfy k > h(ℓ), and our choice of monomial order <n. The claim follows immediately from Theo-
rem 3.5.

�

We can also conclude that Iw0,h is GVD.

Corollary 4.16. In the same setting as above, Iw0,h is geometrically vertex decomposable.

Proof. Since Iw0,h is a triangular complete intersection with respect to <n, the claim follows immediately
from Corollary 3.7. �

Remark 4.17. The results above show that the initial ideal of Iw0,h with respect to the chosen monomial
order is an ideal of indeterminates. In particular, it is a square-free monomial ideal. While we do not
expect this to hold true in all w-charts for w 6= w0, we find it natural to ask the following: for which pairs
(h,w) of Hessenberg functions and permutations w is it true that there exists a choice of monomial order
< on C[xw] such that in<(Iw,h) is a square-free monomial ideal (i.e. a Stanley-Reisner ideal)? Preliminary
results from some Macaulay2 computations (for cases with small values of n) tentatively suggest that for
any Hessenberg function h, there do exist some w 6= w0 and some choices of monomial order such that the
initial ideal of Iw,h is square-free. For instance, when n = 4, we have found the following. We say that a
permutation is [3, 2, 1]-embedding if w = [a1 a2 a3 a4] in one-line notation where there exists some choice
of 1 ≤ i < j < k ≤ 4 such that ai > aj > ak. Our numerical explorations for this case have shown that if w
is [3, 2, 1]-embedding, then there exists a lexicographic monomial order < on C[xw] such that in<(Iw,h) is a
square-free monomial ideal. We leave further exploration of the general case to future work.

5. FROBENIUS SPLITTINGS AND TRIANGULAR COMPLETE INTERSECTIONS

In this section, we provide an application of our results on triangular complete intersections to the study
of Frobenius splittings. Since we saw in the previous section that Hessenberg patch ideals for the w0-patch
are triangular complete intersections, our observations immediately apply also to this case.

Before stating our results, we take a moment to recall some of the context and motivation. Recall that
the notion of a Frobenius splitting is defined in the setting of schemes defined over characteristic p > 0;
however, they are also useful in the study of schemes in characteristic 0. For instance, Frobenius splittings
were used by Brion and Kumar in [3] to prove that Schubert varieties in G/B are reduced, normal, and
Cohen-Macaulay. This is also why we are interested in Frobenius splittings in this manuscript.

One motivation for the considerations in this section is the following. It is known that there exists a
Frobenius splitting of G/B which compatibly splits all Schubert and opposite Schubert varieties [3, The-
orem 2.2.5]. In fact, the union of the Schubert and opposite Schubert divisors defines an anticanonical
divisor of G/B, and this is related to the fact that the above Frobenius splitting is defined by sections of the
(p−1)-st power of an anticanonical bundle [3, Section 1.3]. It is natural to ask whether there is an analogous
statement that remains true for Hessenberg varieties, leading us to the following.

Question 5.1. Does there exist a Frobenius splitting of G/B which simultaneously compatibly splits all of the
Hessenberg varieties Hess(N, h) for indecomposable h? If so, can we construct an explicit such Frobenius
splitting?

Unfortunately, the approach to the above question regarding G/B and its Schubert and opposite Schu-
bert varieties as explained in [3] (which synthesizes results from various authors), constructs Frobenius
splittings using Bott-Samelson varieties – a technique which does not easily generalize to our setting of
Hessenberg varieties. On the other hand, there is also a local theory of Frobenius splittings, as discussed by
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Knutson in [16, 17]; this local theory is better suited for studying our local patches Hess(N, h) ∩ Nw0
. This

is the route we take below. In particular, a Frobenius splitting will restrict to open sets, in the sense that if
there is a Frobenius splitting on an ambient space, then it must restrict to a Frobenius splitting on an open
dense affine coordinate chart. Hence, a necessary condition for Question 5.1 to have a positive answer is that
there exists a Frobenius splitting of Nw0

which simultaneously compatibly splits Hess(N, h) ∩ Nw0
for all

indecomposable h. We answer this positively in Corollaries 5.9 and 5.15 below.
We now shift our attention to the results we prove in this section. Our approach is similar to that of

Sections 3 and 4; namely, we first prove general statements about triangular complete intersections in Sec-
tion 5.1, and then apply these general results to the Hessenberg setting in Section 5.2. More precisely, let
R = K[x1, . . . , xN ] be a polynomial ring over K a field of positive characteristic p and suppose R is equipped
with a monomial order <. Suppose that an ideal I ⊆ R is a triangular complete intersection with respect to
the given monomial order.

In this setting, in Section 5.1 we first construct an explicit Frobenius splitting ϕf of I . Secondly, we
show that, with respect to this explicit Frobenius splitting ϕf , there is a natural family of compatibly split
varieties, with respect to our Frobenius splitting ϕf . These compatibly split ideals are naturally related to
one another by the partial order given by inclusion. In Section 5.2 we apply these general results to the case
of local Hessenberg patches to obtain results in characteristic 0. (An analogous method would also apply to
general triangular complete intersections, but we have restricted to Hessenberg patches for our discussion.)

5.1. Frobenius splittings of triangular complete intersections. We begin with a very brief account of the
theory of Frobenius splittings, mainly to introduce terminology and establish notation. Recall that a com-
mutative ring R is reduced if the map x → xn sends only 0 to 0 for any positive integer n. When R is an
Fp-algebra for p a prime, then the p-th power map (also called the Frobenius map) is Fp-linear, and if R
is reduced, then the kernel of the Frobenius map x 7→ xp is equal to 0, i.e., the Frobenius map is injective.
Note that when this injectivity holds, there exists a one-sided linear inverse to the Frobenius map; such an
inverse can be roughly interpreted as a sort of “p-th root” map. This motivates the next definition [3].

Definition 5.2. A Frobenius splitting of an Fp-algebra R is a function ϕ : R → R which satisfies:

(1) ϕ(a+ b) = ϕ(a) + ϕ(b),
(2) ϕ(apb) = aϕ(b), and
(3) ϕ(1) = 1.

Remark 5.3. Note that by taking b = 1, conditions (2) and (3) of Definition 5.2 together imply that ϕ(ap) = a.
Thus a Frobenius splitting ϕ as in Definition 5.2 is a one-sided inverse to the Frobenius map, as suggested
above. Moreover, since ap = a for a ∈ Fp, we also see from (1) and (2) that ϕ is Fp-linear.

Remark 5.4. In fact, Definition 5.2 can be generalized to schemes, but this is not necessary for the purposes
of this manuscript.

We also say that an ideal I ⊂ R is compatibly (Frobenius) split with respect to a given Frobenius
splitting ϕ if ϕ(I) ⊂ I . Such ideals have useful properties, detailed more fully in [16]. For example, I + J
and I∩J are compatibly split if I and J are. Note that if I is compatibly split, then the quotient R/I inherits
an induced Frobenius splitting ϕ, so any affine variety defined by a compatibly split ideal is itself Frobenius
split (i.e., its coordinate ring is Frobenius split).

We now focus on the case where R := K[x1, . . . , xn] with K a field of positive characteristic p. The
standard splitting ϕstd of R is one of the first and most straightforward examples of a Frobenius splitting
and is defined as follows. On a monomial m in R, we define

ϕstd(m) :=

{

p
√
m if m is a p-th power (i.e. there exists y with yp = m)

0 otherwise.

The map ϕstd is then extended linearly to all of R. It is not difficult to check that the resulting map ϕstd :
R → R satisfies all the conditions of being a Frobenius splitting. (We note that the ideals that are compatibly
split by the standard splitting are precisely the Stanley-Reisner ideals [3, Example 1.1.5].) Building on this
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idea, we define the trace map Tr(·) as follows. First, on a monomial m, we define

Tr(m) :=











p
√

m
∏n

i=1 xi
∏n

i=1 xi
if m

∏n
i=1 xi is a p-th power

0 otherwise

where the product
∏n

i=1 xi appearing above is the product of all the indeterminates in the ring R. Second,
we define Tr(·) : R → R by extending linearly to all of R. This trace map is not necessarily a Frobenius
splitting (however, it is known to be a near splitting, which by definition means that it satisfies the first two
conditions of Definition 5.2 [3, Section 1.3.1]). The trace map can nevertheless be used to build Frobenius
splittings, in the following sense: if it is known that if Tr(f) = 1 for some f ∈ R, then the map

(5.5) ϕf (g) := Tr(fg)

defines a Frobenius splitting of R [3, Section 1.3.1]. (In fact, it turns out that every Frobenius splitting of
R is of this form [3, Section 1.3.1] when K is a perfect field over Fp.) As an example, the reader can easily

check that for f =
∏n

i=1 x
p−1
i , then ϕf = ϕstd is the standard splitting.

With the above example as motivation and by looking at initial terms, we come to the following lemma.

Lemma 5.6. Let g ∈ R = K[x1, . . . , xn] where K a field of positive characteristic p and < be a lexicographic
monomial order on R such that in<(g) =

∏n
i=1 xi. Let f := gp−1. Then ϕf defines a Frobenius splitting of R.

Proof. Since ϕf is a near-splitting, it suffices to check that ϕf (1) = Tr(f) = 1. Since in<(g) =
∏n

i=1 xi, we

must have that in<(f) = in<(g
p−1) =

∏n
i=1 x

p−1
i . Therefore, for any other term m of gp−1, we must have

m <
∏n

i=1 x
p−1
i . But then m

∏n
i=1 xi is not a p-th power, so Tr(m) = 0. On the other hand Tr(

∏n
i=1 x

p−1
i ) = 1,

proving that Tr(gp−1) = Tr(f) = ϕf (1) = 1, as required. �

With Lemma 5.6 in hand, we now show that triangular complete intersections in R = K[x1, . . . , xN ] can
be Frobenius split. Let I = 〈f1, . . . , fn〉 ⊂ K[x1, . . . , xN ] be a triangular complete intersection with respect
to a monomial order <. By a suitable reordering of coordinates, we may assume without loss of generality
that in<(fj) = ujxj for 1 ≤ j ≤ n and some non-zero constants uj ∈ K. Define the polynomial FI by

(5.7) FI :=
(

∏

i>n

xi

)(

∏

j≤n

u−1
j fj

)

∈ K[x1, . . . , xN ].

It is not difficult to see that in<(FI) =
∏N

i=1 xi, i.e., FI is defined so that the initial term of FI is the
product of all the indeterminates in K[x1, . . . , xN ]. It follows immediately from Lemma 5.6 that we can
construct an explicit Frobenius splitting as follows.

Theorem 5.8. Let K a field of positive characteristic p. Let I be a triangular complete intersection in K[x1, . . . , xN ]
with respect to a monomial order < and assume in<(fj) = ujxj for 1 ≤ j ≤ n ≤ N . Let FI be the polynomial

defined by (5.7). Then ϕFp−1

I

:= Tr(F p−1
I ·) is a Frobenius splitting of K[x1, . . . , xN ].

Proof. We have just seen that in<(FI) is the product of all the indeterminates appearing in K[x1, · · · , xN ].

Setting g = FI and f := gp−1 = F p−1
I in Lemma 5.6 yields the claim. �

From Theorem 5.8, it now follows that for any nonempty subset L ⊆ [n], the ideal IL := 〈fi|i ∈ L〉 is
compatibly split with respect to ϕFp−1

I

. We have the following.

Corollary 5.9. Let K a field of positive characteristic p. Let I be a triangular complete intersection in K[x1, . . . , xN ]
with respect to a monomial order < and assume in<(fj) = ujxj for 1 ≤ j ≤ n ≤ N . Let FI be the polynomial
defined by (5.7). Let L be a non-empty subset of [n]. Then IL := 〈fj|j ∈ L〉 is a compatibly split ideal with respect to

ϕFp−1

I

= Tr(F p−1
I ·).

Proof. We use the properties of Frobenius splittings as shown in [3, Section 1.2] (or [16, Section 1] for the
same statements except without the assumption that K is algebraically closed). First we claim that 〈FI〉
is compatibly split with respect to ϕFp−1

I

, which (by definition of compatibly split ideals) is equivalent

to ϕFp−1

I

(〈FI〉) ⊆ 〈FI〉. This can be seen by noticing that if rFI ∈ 〈FI〉, then ϕFp−1

I

(rFI) := Tr(rF p
I ) =

FI · Tr(r) ∈ 〈FI〉 where the last equality uses the fact that Tr(·) is a near-splitting (see Definition 5.2). Next
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we claim that each principal ideal 〈fi〉 is compatibly split with respect to ϕFp−1

I

. This is because prime

components of a compatibly split ideal are also compatibly split [3, Proposition 1.2.1]. Since fi is a factor
of Fn, so is any irreducible factor of fi, and the principal (prime) ideal generated by such an irreducible
factor is compatibly split. Thus the intersection of these prime ideals, which is 〈fi〉, is also compatibly split,
because it is also known that intersections of compatibly split ideals are compatibly split [3, Proposition
1.2.1]. Finally, it is shown in [3, Proposition 1.2.1] that any sum of compatibly split ideals is compatibly
split. Since each IL is obtained by the taking a sum of the principal ideals 〈fi〉, the result follows. �

Remark 5.10. It is worth noting that the ideals IL are examples of Knutson ideals, which are certain collec-
tions of ideals that are closed under addition, intersection, and ideal quotients (see [21, Definition 1]). In
specific cases, the poset of compatibly split ideals of ϕf can be explicitly described using these ideal oper-
ations (as in [16, Theorems 2 and 6]). Additionally, it is possible to concatenate Gröbner bases of Knutson

ideals when in<(f) =
∏N

i=1 xi (see [21, Theorem 1.1]).

5.2. From positive characteristic to characteristic zero. As mentioned above, although Definition 5.2 is
given in the positive characteristic setting, Frobenius splittings can also provide information about schemes
defined over characteristic 0 (cf. [3, Section 1.6] for more details). Our goal in this section is to apply the
constructions in Section 5.1 to obtain results for Hessenberg varieties. More specifically, in Corollary 5.9
and Corollary 5.15, we will give a (local) positive answer to Question 5.1 in the w0-chart.

We begin by illustrating some of how this works in the study of reducedness. In particular, we recover -
using Frobenius techniques - a result from [2] that Hess(N, h) is reduced in Proposition 5.11. While this result
is not new, it demonstrates the utility of these techniques, and allows us to establish some terminology and
notation.

Let X be a separated scheme of finite type over Spec(Z), and let XQ and XFp
denote the fibers over

〈0〉 and 〈p〉 respectively. Further, we denote the base change of each to the algebraic closure by X
Q

and
X

Fp
respectively. Then by [3, Proposition 1.6.5], if X

Fp
is reduced for all sufficiently large primes p, then

X
Q

is also reduced. Since Frobenius split schemes are reduced by [3, Proposition 1.2.1]), this hypothesis is
implied when X

Fp
admits a Frobenius splitting for sufficiently large primes p. Finally, recall that if a scheme

is reduced over a perfect field – such as a field of characteristic 0 – then it is also reduced over any extension
of that field [12, Section II Exercise 3.15(b)]. Thus if X

Q
is reduced, then so is XC. In other words, the above

discussion shows that there is a criterion, phrased in terms of existence of Frobenius splittings in positive
characteristic, for a scheme over C to be reduced.

In the setting of Hessenberg varieties, since the fw0

k,ℓ have integer coefficients, we may consider the scheme

over Spec(Z) defined as X := Spec(Z[xw0
]/I ′w0,h

) where I ′w0,h
is generated by the same fw0

k,ℓ as in the pre-

vious sections, except that we view them as elements in Z[xw0
]. By the discussion above, we could prove

that XC = Spec(C[xw0
]/Iw0,h) is reduced by showing that there exist appropriate Frobenius splittings for

sufficiently large primes. (As mentioned briefly above, there are similar results for other geometric proper-
ties of schemes over C, e.g. being Cohen-Macaulay [3, Proposition 1.6.4].) These considerations lead to the
following.

Proposition 5.11. The Hessenberg local patches Hess(N, h) ∩ Nw0
are reduced, and hence Hess(N, h) is reduced.

Proof. It is known that if Y is a smooth affine algebraic variety defined over an algebraically closed field of
characteristic p > 0, then Y can be Frobenius split, i.e., there exists a Frobenius splitting ϕ of its affine coordi-
nate ring A(Y ) [3, Proposition 1.1.6]. We next claim that (Hess(N, h)∩Nw0

)
Fp

is smooth for sufficiently large

p. Indeed, since the fw0

k,ℓ have integer coefficients, the general S-polynomial reduction will involve at worst

rational coefficients. Thus, after clearing denominators and for p >> 0, no terms in any of the polynomials
fw0

k,ℓ nor any S-polynomials appearing in the Buchberger algorithm would vanish modulo p. In other words,

for p >> 0 the {fw0

k,ℓ} (for appropriate k, ℓ) would remain a Gröbner basis of Iw0,h,p with respect to <n.

Hence for p sufficiently large, in<n
(Iw0,h,p) is an ideal of indeterminates, and hence the corresponding va-

riety is smooth. Now consider the flat family given by the Gröbner degeneration of Iw0,h,p to in<n
(Iw0,h,p).

Since being smooth is an open condition in flat families, if R/in<n
(Iw0,h,p) is regular (i.e. the corresponding

variety is smooth), then R/Iw0,h,p is regular too, i.e., (Hess(N, h) ∩ Nw0
)Fp

is smooth for sufficiently large

p, as desired. From this it follows that for any p >> 0, there exists a Frobenius splitting of the scheme
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(Hess(N, h) ∩ Nw0
)
Fp

, i.e., there exists a Frobenius splitting map ϕp : Fp[xw0
]/Iw0,h,p → Fp[xw0

]/Iw0,h,p,

where Iw0,h,p is the ideal defined by the same polynomials fw0

k,ℓ as in Section 2.2 but interpreted as elements

of Fp[xw0
]. Now the argument given in the discussion before the statement of the Proposition yields the

claim. �

The reducedness of Hess(N, h) is not a new result, as mentioned in Remark 2.9, since it was originally
shown in [2]; the point of the above discussion is that it is possible to give an alternative proof using
Frobenius splittings. A drawback of the considerations so far, however, is that the above considerations
yields the existence of Frobenius splittings, but we do not obtain concrete information (e.g. a formula) for
it. In the setting of local Hessenberg patches, we can remedy this situation using the constructions given in
Section 5.1.

Theorem 5.8 suggests that one method for explicitly constructing Frobenius splittings is to search for
polynomials whose initial term is the product of all the indeterminates of the relevant polynomial ring.
This is precisely the strategy that we follow for our Hessenberg patch ideals in C[xw0

], which is the general
construction from the previous section used in Equation 5.7. It will be convenient to begin the discussion
with the “largest” local Hessenberg patch ideal at w0 (in the sense that it contains the largest number of
generators fw0

k,ℓ ). This case corresponds to the so-called Peterson Hessenberg function. Specifically, let n be

a fixed positive integer with n ≥ 3. The Peterson Hessenberg function is defined by h̄ := (2, 3, . . . , n, n),

i.e., h̄(i) = i + 1 for 1 ≤ i < n and h̄(n) = n. We consider the (Fp-version of the) w0-patch of the Peterson

variety, namely (Hess(N, h) ∩ Nw0
)
Fp

defined by the ideal Iw0,h̄,p ⊂ Fp[xw0
] where p is any prime p > 0.

There are (n− 1)(n− 2)/2 many generators fw0

k,ℓ of Iw0,h̄,p, where the indices must satisfy k > h̄(ℓ) = ℓ+ 1.

By Lemma 4.13, we know in<n
(fw0

k,ℓ) = −xn+1−k,ℓ+1. Note that the indeterminate xi,1 does not appear as

the initial term of any fw0

k,ℓ for 1 ≤ i ≤ n− 1. With these observations in mind we define the polynomial

(5.12) Fn := (−1)(n−1)(n−2)/2
(

∏

1≤i≤n−1

xi,1

)(

∏

k>h̄(ℓ)

fw0

k,ℓ

)

∈ Fp[xw0
].

It is not difficult to see that, more or less by construction, in<n
(Fn) =

∏

1≤j≤n−i

xi,j , i.e., the initial term

is the product of all the indeterminates in Fp[xw0
]. It follows immediately from Lemma 5.6 that we can

construct an explicit Frobenius splitting as follows.

Theorem 5.13. Let p be any prime, p > 0. Let Fn be the function defined by (5.12). Then ϕFp−1

n
:= Tr(F p−1

n ·) is a

Frobenius splitting of Fp[xw0
].

In fact, by the same arguments in Section 4, the ideals Iw0,h,p are also triangular complete intersections

in Fp[xw0
]. From Theorem 5.8, it now readily follows that all Hessenberg patch ideals, for different choices

of Hessenberg function h, are compatibly split with respect to ϕFp−1

n
. We have the following.

Corollary 5.14. Let h be an indecomposable Hessenberg function for a fixed n. Then the Hessenberg patch ideal
Iw0,h,p is a compatibly split ideal with respect to ϕFp−1

n
= Tr(F p−1

n ·).

Proof. In the notation surrounding the discussion of Corollary 5.9, observe that each Iw0,h,p is some IL for a
suitable choice of L. An application of Corollary 5.9 to this choice of L yields the result. �

We have just seen that the Hessenberg patch ideals are compatibly split. In fact, we have just shown that
there is a whole family of ideals, related to each other in a natural way, all of which are compatibly split by
the same explicit Frobenius splitting ϕFp−1

n
above. Indeed, the following is immediate from the arguments

previously given.

Corollary 5.15. Let p > 0 be a prime. There is a partially ordered set (ordered by inclusion) of ideals {Iw0,h,p},
indexed by the set of (indecomposable) Hessenberg functions h, which are all compatibly split with respect to the
Frobenius splitting ϕFp−1

n
.

Corollary 5.14 and Corollary 5.15 answer Question 5.1 positively in the local patch near w0. It is still an
open question whether the same holds in other w-charts for w 6= w0 and whether these Frobenius splittings
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arise as the restriction of a single Frobenius splitting of Flags(Cn) which simultaneously compatibly splits
the regular nilpotent Hessenberg varieties Hess(N, h). We leave this open for future work.

6. ALTERNATIVE PROOF OF MAIN RESULTS VIA LIAISON

In this section, we present an alternative proof of our main results concerning Hessenberg patch ideals
(Corollary 4.15 and Corollary 4.16) using liaison theory. Our main motivation for this section is that we
expect these methods to be useful for an analysis of the w-charts of Hess(N, h) for w 6= w0, because the
local Hessenberg patch ideals for w 6= w0 are not (necessarily) triangular complete intersections. Hence, the
arguments given in the previous sections will not apply, and new ideas will be needed. Moreover, another
subtlety arising in analyzing the general case is that the natural grading on the polynomial ring C[xw] for
w 6= w0 is not necessarily positive (see Remark 2.19). We expect that, in order to handle the general case, the
perspectives and tools discussed in this section will be relevant. In particular, we note that in this section,
we use liaison theory and an inductive argument (which allows for non-standard gradings) in order to first
prove that the ideals are GVD, and from that we deduce that the fw0

k,ℓ generators form a Gröbner basis. This

is in contrast to Section 3 and Section 4, where we first show that the fw0

k,ℓ form a Gröbner basis, and then

conclude GVD-ness.

6.1. Background on liaison theory. We begin with some background. First we quote a result of Klein and
Rajchgot which gives a criterion for an ideal having a geometric vertex decomposition. We say that I is
square-free in a variable y if there is a generating set G of I such that y2 does not divide any term of any
element of G. Note that, in the statement of the theorem below, there is no requirement for homogeneity.
We comment on this further, below.

Theorem 6.1. ([15, Theorem 6.1]) Let I , C, and N ⊆ I ∩ C be ideals of R = C[x1, . . . , xn], and let < be a y-
compatible term order for some y ∈ {x1, . . . , xn}. Suppose that I is square-free in y and that no term of any element of

the reduced Gröbner basis of N is divisible by y. Suppose further that there exists an isomorphism ϕ : C/N
f/g−−→ I/N

of R/N -modules for some f, g ∈ R not zero-divisors in R/N , and iny(f)/g = y. Then inyI = C ∩ (N + 〈y〉) is a
geometric vertex decomposition of I .

As mentioned above, in this section we first find geometric vertex decompositions, and then use them to
find Gröbner bases. The idea is that if we are in the setting of Theorem 6.1, then we can obtain a Gröbner
basis for I by using Gröbner bases for C and N . Lemma 6.3 below makes this idea precise. We note that this
result is essentially already contained in the proof of [15, Corollary 4.13], but we chose to state it explicitly
in this form for the following reason. In the statement of [15, Corollary 4.13], Klein and Rajchgot give
alternate criteria which guarantees the existence of an R/N -module isomorphism ϕ : C/N → I/N (which
is a necessary hypothesis in Theorem 6.1 above). However, in our arguments below, we have other explicit
methods to prove the existence of the necessary isomorphisms, so we restate the result in a form best suited
for our purposes.

Another preliminary remark is in order. The proof of [15, Corollary 4.13] (and hence Lemma 6.3 below)
relies on [15, Lemma 4.12], which is itself a restatement of a result from liaison theory [8, Lemma 1.12].
The original result in [8], commonly called constructing a Gröbner basis via linkage, is phrased in terms
of liaison-theoretic constructions. To avoid the technical liaison-theoretic setup, we instead opt for the
graded isomorphism phrasing found in Lemma 6.2 below [20], which additionally allows for non-standard
gradings. This last point is important for us, since (as we have seen in Section 2.3) our rings have non-
standard gradings.

Recall that a Zd-grading on a polynomial ring R is said to be positive, or equivalently we say that the
polynomial ring R is positively graded, if the only elements in R of degree 0 are the constants.

Lemma 6.2. ([20, Lemma 3.4]) Let R be a positively Zd-graded polynomial ring over an arbitrary field K. Let I, C
and N be homogeneous ideals with respect to the given Zd-grading, such that N ⊆ I ∩ C. Let A be a monomial
ideal of R such that A ⊆ in<(I) and in<(N) ⊆ A for some monomial order <. Suppose that there exists e ∈ Zd

such that (I/N)ℓ ∼= (C/N)ℓ−e and (A/in<(N))ℓ ∼= (in<(C)/in<(N))ℓ−e as K-vector spaces for all ℓ ∈ Zd. Then
A = in<(I).
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We are almost ready to state and prove Lemma 6.3, but there are two final things to note. Firstly, in the

situation in which we wish to apply Lemma 6.2, the monomial ideal A will be an ideal Ĩ generated by the
initial terms of a proposed Gröbner basis. Applying Lemma 6.2 will then allow us to conclude that the
proposed basis is in fact Gröbner. Secondly, to apply Lemma 6.2, we can see from its hypotheses that two
separate isomorphisms are needed. The isomorphism between the graded pieces of C/N and I/N arises
from the isomorphism ϕ mentioned in Theorem 6.1, and while Theorem 6.1 does not require that ϕ be
graded or that I, C and N be homogeneous, Lemma 6.2 does; in our case, ϕ does respect the appropriate

grading. The isomorphisms between the (shifted) graded pieces of in<(C)/in<(N) and Ĩ/in<(N), on the
other hand, must be explicitly constructed, and this occupies much of our proof below.

Lemma 6.3. Let R = C[x1, . . . , xn] be a positively Zd-graded polynomial ring over C. Let I, C and N be homo-
geneous ideals with respect to the given Zd-grading, such that N ⊆ I ∩ C. Let < be a y-compatible term order for
some y ∈ {x1, . . . , xn} and assume that y is a homogeneous element in R. Suppose further that I is square-free in y
and that no term of any element of the reduced Gröbner basis of N is divisible by y. Also assume that there exists an

isomorphism ϕ : C/N
f/g→ I/N of R/N -modules for some f, g ∈ R not zero-divisors in R/N , where iny(f)/g = y,

and which shifts degrees by deg(y). In the notation of Theorem 6.1, suppose that {q1, . . . , qk, h1, . . . , hℓ} and
{h1, . . . , hℓ} are Gröbner bases for C and N respectively, with respect to the y-compatible monomial order <. Sup-
pose ri for 1 ≤ i ≤ k are polynomials in R which do not contain any y’s, and such that yqi + ri ∈ I . Then
{yq1 + r1, . . . , yqk + rk, h1, . . . , hℓ} is a Gröbner basis for I with respect to <.

Proof. Let Ĩ := 〈in<(yq1 + r1), . . . , in<(yqk + rk), in<(h1), . . . , in<(hℓ)〉 ⊆ in<(I). To prove the desired

conclusion of the lemma, it would suffice to show Ĩ = in<(I). By assumption, we know

in<(C) = 〈in<(q1), . . . , in<(qk), in<(h1), . . . , in<(hℓ)〉
and

in<(N) = 〈in<(h1), . . . , in<(hℓ)〉.
Since < is a y-compatible monomial order, we have in<(yqi + ri) = y · in<(qi) for 1 ≤ i ≤ k. Since
in<(C)/in<(N) is generated by 〈in<(q1), . . . , in<(qk)〉 (where we slightly abuse notation and use the same

symbols to denote elements in in<(C) and their equivalence classes in the quotient) and similarly Ĩ/in<(N)
is generated by 〈in<(yq1 + r1), . . . , in<(yqk + rk)〉, the equality in<(yqi + ri) = y · in<(qi) implies that the

graded R/in<(N)-module map [in<(C)/in<(N)](−deg(y)) → Ĩ/in<(N) defined by multiplication by y is
an isomorphism, where deg(y) ∈ Zd is the degree of y in the given Zd-grading.

By assumption, we have the necessary isomorphisms of graded pieces of C/N and I/N , so we may

now apply Lemma 6.2 with A = Ĩ and e = deg(y) to conclude that Ĩ = in<(I). This proves that {yq1 +
r1, . . . , yqk + rk, h1, . . . , hℓ} is a Gröbner basis for I with respect to <, as was to be shown. �

We will use Theorem 6.1 and Lemma 6.3 in the arguments below in an inductive process. More precisely,
in order to prove that a certain set of generators for our Hessenberg patch ideals is a Gröbner basis, we will
build a sequence of choices of y, C,N etc., where at each stage we can show the relevant isomorphism, thus
enabling us to apply the above results inductively to prove that our generating set is Gröbner.

Finally, we record here – for future use – a version of a result of Klein and Rajchgot for the case of non-
standard gradings. In fact, we could have used the result below in order to prove the results in the later
sections, but we chose to use Lemma 6.3 instead.

Proposition 6.4. Let R be a positively Zd-graded polynomial ring over an arbitrary field K. Let I = 〈yq1 +
r1, . . . , yqk + rk, h1, . . . , hℓ〉 be a homogeneous ideal of R with respect to the given Zd-grading, with y = xj some
variable of R and y not dividing any term of any qi for 1 ≤ i ≤ k nor of any hj for 1 ≤ j ≤ ℓ. Fix a term order <, and
suppose that GC = {q1, . . . , qk, h1, . . . , hℓ} and GN = {h1, . . . , hℓ} are Gröbner bases for the ideals they generate,
which we call C and N , respectively. Assume that in<(yqi + ri) = y · in<(qi) for all 1 ≤ i ≤ k. Assume also that

ht(I), ht(C) > ht(N) and that N is unmixed. Let M =

(

q1 · · · qk
r1 · · · rk

)

. If the ideal of 2-minors of M is contained

in N , then the given generators of I are a Gröbner basis.

Proof. Follow the proof of [15, Corollary 4.13] line-by-line, using Lemma 6.2 in place of [15, Lemma 4.12]
and changing the degree shifts from 1 to deg(y). �
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6.2. Induction for regular nilpotent Hessenberg varieties. As we mentioned above, our liaison-theoretic
argument proceeds by an induction on n. Before the generalities, we present an example which will illus-
trate the idea.

Example 6.5. Let n = 5 and h = (2, 3, 4, 5, 5). Recall that we visualize the polynomials fw0

k,ℓ as the (k, ℓ)-th

matrix entries in a 5× 5 matrix as follows:












0 0 0 0 0
1 0 0 0 0

fw0

3,1 1 0 0 0
fw0

4,1 fw0

4,2 1 0 0
fw0

5,1 fw0

5,2 fw0

5,3 1 0













Since h = (2, 3, 4, 5, 5) and the ideal Iw0,h is generated by the polynomials fw0

k,ℓ with k > h(ℓ), we have

Iw0,h = 〈fw0

3,1 , f
w0

4,1 , f
w0

4,2 , f
w0

5,1 , f
w0

5,2 , f
w0

5,3〉.
Now we can visualize a sequence of ideals Iw0,h(m) by considering a sequence of matrices with “crossed
out” entries as follows













0 0 0 0 0
1 0 0 0 0

fw0

3,1 1 0 0 0
fw0

4,1 fw0

4,2 1 0 0

✚
✚❩
❩

fw0

5,1 ✚
✚❩
❩

fw0

5,2 ✚
✚❩
❩

fw0

5,3 1 0













−→













0 0 0 0 0
1 0 0 0 0

fw0

3,1 1 0 0 0
fw0

4,1 fw0

4,2 1 0 0

✚
✚❩
❩

fw0

5,1 ✚
✚❩
❩

fw0

5,2 fw0

5,3 1 0













−→













0 0 0 0 0
1 0 0 0 0

fw0

3,1 1 0 0 0
fw0

4,1 fw0

4,2 1 0 0

✚
✚❩
❩

fw0

5,1 fw0

5,2 fw0

5,3 1 0













−→













0 0 0 0 0
1 0 0 0 0

fw0

3,1 1 0 0 0

fw0

4,1 fw0

4,2 1 0 0
fw0

5,1 fw0

5,2 fw0

5,3 1 0













We can now define the ideals Iw0,h(m) where the integer m indicates the number of crossed-out entries, and
Iw0,h(m) is generated by the subset of generators of Iw0,h which are not crossed out. Thus for instance the
left-most matrix above, with 3 crossed-out entries, corresponds to the ideal Iw0,h(3) generated by fw0

3,1 , f
w0

4,1

and fw0

4,2 . It is evident from this description that the 4 matrices above corresponds to an increasing sequence
of ideals

Iw0,h(3) ⊂ Iw0,h(2) ⊂ Iw0,h(1) ⊂ Iw0,h(0)

and that Iw0,h(0) = Iw0,h.

We now formalize the construction given in Example 6.5. Suppose that n ∈ Z and n ≥ 3. Let h : [n] → [n]
be an indecomposable Hessenberg function. To avoid the trivial case in which the Hessenberg variety is
equal to the whole flag variety, we additionally assume throughout this section that h 6= (n, n, . . . , n). In
particular, there exists some L ∈ [n] such that h(L) < n. Then

(6.6) µ(h) := max{L | h(L) < n}
is well-defined. Suppose now that m is an integer such that 0 ≤ m ≤ µ(h). Next we define

(6.7) H(h,m) := {(k, ℓ) ∈ [n]× [n] | h(ℓ) < k < n} ⊔ {(k, ℓ) ∈ [n]× [n] : k = n, h(ℓ) < n, ℓ > m}
and also define

(6.8) Iw0,h(m) := 〈fw0

k,ℓ | (k, ℓ) ∈ H(h,m)〉.
Notice that if m < µ(h) then there is at least one pair (k, ℓ) which is contained in the second set described
in the RHS of (6.7), whereas if m = µ(h) then the second set is empty. Put another way, if m < µ(h) then
Iw0,h(m) contains at least one polynomial fw0

k,ℓ for which the first index k is equal to n, while there is no such

generator for Iw0,h(m = µ(h)). Furthermore, it is easy to see that Iw0,h = Iw0,h(0).

Example 6.9. Continuing in the n = 5 setting of Example 6.5, we see that µ(h) = 3 in that case. Moreover,
as observed above, the ideal Iw0,h(3) contains no generators of the form fw0

n,ℓ = fw0

5,ℓ for any ℓ, because all

such generators have been “crossed off”. It is also easy to see that Iw0,h(0), Iw0,h(1), Iw0,h(2) still contain
generators of the form fw0

5,ℓ .

As we just saw, the generators fw0

n,ℓ do not appear in Iw0,h(m) when m = µ(h). This allows us to make an

inductive argument connecting Iw0,h(m) with an analogous ideal for the n − 1 case, and it is the recursive
structure of these ideals which allows us to prove our main results. We make this more precise in the next
lemma.

20



Lemma 6.10. Suppose that m = µ(h) and n > 3. Let h̄ : [n − 1] → [n− 1] be the Hessenberg function on [n − 1]
defined by h̄(ℓ) = h(ℓ) if h(ℓ) < n and h̄(ℓ) = n− 1 otherwise. Denote the longest element of Sn−1 by w0. Then

(1) the injective ring homomorphismϕn−1,n : C[xw0
] → C[xw0

] which sends xi,j to xi+1,j satisfies ϕn−1,n(f
w0

k,ℓ) =

fw0

k,ℓ and

(2) the generators of Iw0,h(m) lie in the image of ϕn−1,n and the ideal generated in C[xw0
] by their (unique)

preimages under ϕn−1,n is the ideal Iw0,h̄ corresponding to the smaller Hessenberg function h̄.

Proof. Claim (1) is straightforward to see from the explicit descriptions of the generators fw0

k,ℓ given in Sec-

tion 2.2. Claim (2) then follows from Claim (1) from the definition of ϕn−1,n and the assumption that
m = µ(h). �

The identification of the generators for Iw0,h(m) ⊆ C[xw0
] with those of Iw0,h̄ ⊆ C[xw0

] as described in
Lemma 6.10 will be a key component of our arguments. We give a simple example to illustrate the idea.

Example 6.11. For the purpose of this example, let w0 denote the longest element in S5 and w0 denote the

longest element in S4. We can compare the polynomials fw0

k,ℓ and fw0

k,ℓ explicitly in this case. For n = 4 we

can compute that fw0

3,1 = x3,1 − x2,2, f
w0

4,1 = x2,1 − x1,2 − x1,3(x3,1 − x2,2) and fw0

4,2 = x2,2 − x1,3, whereas for
n = 5 we have fw0

3,1 = x4,1 − x3,2, f
w0

4,1 = x3,1 − x2,2 − x2,3(x4,1 − x3,2) and fw0

4,2 = x3,2 − x2,3. This illustrates
the claim of the above lemma that if the variables xi,j for the n = 4 case get sent to xi+1,j in the n = 5 case

then the polynomials fw0

k,ℓ map to fw0

k,ℓ .

We also need the following result of the first author, Cummings, Rajchgot, and Van Tuyl [5].

Theorem 6.12. ([5, Theorem 2.9]) Let I ( R = k[x1, . . . , xn] and J ( S = k[y1, . . . , ym] be two proper ideals.
Then I and J are geometrically vertex decomposable if and only if I + J is geometrically vertex decomposable in
R⊗k S = k[x1, . . . , xn, y1, . . . , ym].

We can now state and prove the first main result of this section.

Theorem 6.13. Let n be a positive integer with n ≥ 3. Let h : [n] → [n] be an indecomposable Hessenberg function,
and let 0 ≤ m ≤ µ(h). Then the ideal Iw0,h(m) is geometrically vertex decomposable.

Proof. Let r := |H(h,m)|, i.e., the number of generators fw0

k,ℓ defining Iw0,h(m). We will prove the result

using a double induction argument on n ≥ 3 and on r := |H(h,m)|.
First, we show that the claim of the theorem is true for r = 1 and any n ≥ 3. To do this, we must check

the conditions of Definition 3.2. We first address the unmixedness condition. In the case r = 1, the ideal
Iw0,h(m) is principal, generated by a single element fw0

k,ℓ . Being a principal ideal, it is immediate in this case

that Iw0,h(m) is a complete intersection and hence unmixed (see [7, Proposition 18.13 & Corollary 18.14]).
Next, we need to show that Iw0,h(m) satisfies either condition (1) or (2) of Definition 3.2. Since Iw0,h(m) is
neither 〈1〉 nor generated by indeterminates, we must show that it satisfies condition (2). To do this, note
that the only way that r = 1 can occur is if either m = µ(h) − 1 and the unique generator is fw0

n,µ(h), or,

m = µ(h) and the unique generator is fw0

n−1,1. In either case, we note that the ideal being principal implies
that the generator also forms a Gröbner basis with respect to <n.

We take cases. Suppose m = µ(h) − 1 and the unique generator is fw0

n,µ(h). By Lemma 4.13 we know

in<n
(fw0

n,µ(h)) = −x1,µ(h)+1. (Note that µ(h) < n − 1 since we assume h is indecomposable. Hence

µ(h) + 1 < n and thus x1,µ(h)+1 is a valid variable in xw0
.) This implies that if we choose y = x1,µ(h)+1 in

the construction outlined in Section 3, then the corresponding ideals are Cy,Iw0,h(m) = 〈1〉 and Ny,Iw0,h(m) =

〈0〉, both of which are geometrically vertex decomposable. Moreover, in<n
(Iw0,h(m)) = 〈x1,µ(h)+1〉 =

Cy,Iw0,h(m) ∩ (Ny,Iw0,h(m) + 〈y = x1,µ(h)+1〉), so we obtain a geometric vertex decomposition by Defini-

tion 3.2. (Note that since fw0

n,m+1 is square-free in y, this also follows from [19, Theorem 2.1]). Now we take
the other case; suppose the unique generator of Iw0,h(m) is fw0

n−1,1. Note that by assumption on indecom-
posability, this case can only occur if n − 1 = k > ℓ + 1 = 2, i.e., n > 3. Now by Lemma 4.13 we know
in<n

(fw0

n−1,1) = x2,2 which is a valid variable in xw0
since n > 3. Choosing y = x2,2 and proceeding with the

argument as in the previous case yields the desired claim. This concludes the proof for the cases in which
r = 1, for any n ≥ 3.
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We now proceed with the inductive argument. Let r ≥ 2 and fix an n ≥ 3. We assume that the claim
holds for any n ≥ 3 and for r − 1. Suppose h and m are such that |H(h,m)| = r and consider the ideal
Iw0,h(m). Unlike the base cases, we do not a priori have a Gröbner basis for Iw0,h(m), so checking the
conditions of a geometric vertex decomposition using the Gröbner basis construction of Definition 3.1 is
not as immediate. Thus, instead of working directly with Gröbner bases, we will use the result of Klein and
Rajchgot recorded in Theorem 6.1 to construct a geometric vertex decomposition.

We consider two cases. Suppose first that m ≤ µ(h) − 1 and set I = Iw0,h(m). We define C := 〈1〉
and N := Iw0,h(m + 1). Clearly N ⊂ C ∩ Iw0,h(m) as C = R = C[xw0

]. Since h is indecomposable, we
have µ(h) ≤ n − 2, and since m ≤ µ(h) − 1 by assumption we have m + 2 < n. Hence x1,m+2 ∈ C[xw0

]
and we can set y := x1,m+2. We know from its definition that Iw0,h(m) contains a generator of the form
fw0

n,m+1 where fw0

n,m+1 6= 1 (since n > (m + 1) + 1 = m + 2). In this situation, by Lemma 4.13, Iw0,h(m)

is square-free in y = x1,m+2, and the generator fw0

n,m+1 is the only element in the set of generators fw0

k,ℓ of

Iw0,h(m) in which the variable y appears. Therefore, it follows from the standard constructions of Gröbner
bases that no term of any element of the reduced Gröbner basis of N = Iw0,h(m + 1) with respect to
<n is divisible by y. Moreover, we can see that I/N is a rank one R/N -module generated by fw0

n,m+1,
and it is a free module since fw0

n,m+1 contains a y whereas no generator in N contains a y (ie. fw0

n,m+1 is
not a zero-divisor in R/N ). We can also see that C/N is the rank one R/N -module generated by 1. It
follows that multiplication by −fw0

n,m+1 defines an isomorphism R/N ∼= C/N → I/N , where we know that
iny(−fw0

n,m+1) = y. Applying Theorem 6.1, we conclude that these choices of y, C,N define a geometric
vertex decomposition iny(Iw0,h(m)) = C ∩ (N + 〈y〉) of Iw0,h(m). Now note that N corresponds to an
ideal with r − 1 generators, so by induction on r, N is geometrically vertex decomposable, and C = 〈1〉
is geometrically vertex decomposable by definition. To complete the proof that Iw0,h(m) is geometrically
vertex decomposable, the only thing that remains to prove is that Iw0,h(m) is unmixed.

To see that Iw0,h(m) is unmixed, observe that iny(Iw0,h(m)) = C ∩ (N + 〈y〉) is a degenerate geometric
vertex decomposition since C = 〈1〉. By the discussion in [15] before [15, Proposition 2.4], this implies that
there is a unique element in the reduced Gröbner basis of I of the form uy+g where u is a unit and g does not
contain y. In particular this means that y can be written in terms of the other variables, and thus R/Iw0,h(m)
is isomorphic to R/(〈y〉+N). Now observe that since N is geometrically vertex decomposable by induction,
it must be unmixed. Furthermore, y does not divide any term of its reduced Gröbner basis. Therefore, if
∩iPi is a primary decomposition of N , then ∩i(Pi + 〈y〉) is a primary decomposition of N + 〈y〉. But in
this case the dimension conditions for unmixedness remain true, so N + 〈y〉 is also unmixed. Therefore,
Iw0,h(m) is unmixed as well.

We take a moment to note that, since h is indecomposable, the pairs (k, ℓ) that correspond to potential
generators fw0

k,ℓ for the ideals Iw0,h(m) for any value of m must satisfy k > ℓ + 1. Hence for a given value

of n (with n ≥ 3), the values of r that can occur – for any value of m – have an a priori upper bound of
n(n − 1)/2. Therefore, we may proceed by showing that the claim of the theorem holds for any allowed
value of r for both n = 3 and n = 4, and then induct on both the value of n and on r. In particular, in the
argument that follows, we can assume that the claim is true for n − 1 and for any allowed value of m for
n− 1.

Let us now consider the remaining case, when m = µ(h). In this case, the ideal Iw0,h(m) = Iw0,h(µ(h))
does not contain any generators of the form fw0

n,ℓ for any ℓ. By Lemma 6.10, we know that the generators

of Iw0,h(m = µ(h)) are precisely the images under the map ϕn−1,n : C[xw0
] → C[xw0

] of the analogous

generators fw0

k,ℓ of the ideal Iw0,h̄. Note that Iw0,h̄ is a special case of an ideal of the form Iw0,h̄(m), and it is

associated to a smaller value of n, since h̄ is a Hessenberg function on [n−1], not [n]. Thus, by the induction
hypothesis on n, we may assume that Iw0,h̄ is geometrically vertex decomposable in C[xw0

]. Now, by
applying Theorem 6.12 to the case I = Iw0,h̄ and J = 0, where R = C[xw0

] and S is the polynomial ring
generated by xw0

\ ϕn−1,n(xw0
), we may conclude that the ideal Iw0,h(µ(h)) is also geometrically vertex

decomposable in C[xw0
]. This completes the induction step and hence the proof. �

Since the ideals Iw0,h are special cases of the ideals Iw0,h(m), the following is immediate.

Corollary 6.14. Let n be a positive integer with n ≥ 3. Let h : [n] → [n] be an indecomposable Hessenberg function.
Then the Hessenberg patch ideal Iw0,h of Hess(N, h) in the w0-chart is geometrically vertex decomposable.
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Example 6.15. Continuing with Example 2.10, we take n = 5, h = (2, 3, 4, 5, 5) and w0 = [5 4 3 2 1]. Set
R = C[xw0

]. We outline in more detail how our proof above shows that Iw0,h = Iw0,h(0) is geometri-
cally vertex decomposable, assuming that we have shown geometric vertex decomposability for the n = 4
cases. We begin the explanation by constructing a geometric vertex decomposition for Iw0,h(2). The matrix
(w0M)−1

N(w0M) is of the form












0 0 0 0 0
1 0 0 0 0

fw0

3,1 1 0 0 0
fw0

4,1 fw0

4,2 1 0 0

∗ ∗ fw0

5,3 1 0













where

fw0

5,3 = −x1,4 + x2,3

fw0

4,1 = −x2,2 + x2,3(x3,2 − x4,1) + x3,1

fw0

4,2 = −x2,3 + x3,2

fw0

3,1 = −x3,2 + x4,1.

and by definition we have Iw0,h(2) = 〈fw0

3,1 , f
w0

4,1 , f
w0

4,2 , f
w0

5,3〉. Following the inductive procedure suggested by
the above discussion and the proof of Theorem 6.13, we start by taking the initial term of −fw0

5,3 which is
y2 := x1,4 and we define the ideals

N2 := Iw0,h(3) := 〈fw0

3,1 , f
w0

4,1 , f
w0

4,2〉 and

C2 := 〈1〉.
Since C2 = 〈1〉 = C[xw0

] and hence Iw0,h(2)∩C2 = Iw0,h(2), it immediately follows that N2 ⊂ Iw0,h(2)∩C2.
Moreover, Iw0,h(2) is square-free in y2, and no term of the reduced Gröbner basis for N2 with respect to <5

is divisible by y2. Next, observe that
Iw0,h(2)/N2

∼= fw0

5,3R/N2

since the only generator of Iw0,h(2) not contained in N2 is fw0

5,3 . It is also free (of rank 1) as an R/N2-module
since there is a term in fw0

5,3 which contains the variable y2, and thus (the equivalence class of) fw0

5,3 is not
a zero-divisor in R/N2. Since C2 = R, we clearly have C2/N2 = R/N2, so there exists an isomorphism
C2/N2 → Iw0,h(2)/N2

∼= fw0

5,3R/N2 given by multiplication by −fw0

5,3 . Since in<5
(−fw0

5,3) = y2, we can now
apply Theorem 6.1 to conclude that

iny2
(Iw0,h(2)) = C2 ∩ (N2 + 〈y2〉)

defines a geometric vertex decomposition of Iw0,h(2).
To see that Iw0,h(2) is geometrically vertex decomposable, we must show next that the contractions of C2

and N2 to C[xw0
\ y2] = C[xw0

\ {x1,4}] are both geometrically vertex decomposable. Since C2 = 〈1〉 = R,
it follows that its contraction is also the unit ideal, so it is geometrically vertex decomposable. We now
observe that, upon changing variable labels as explained in Example 6.11, N2 = Iw0,h(3) can be interpreted
as the Hessenberg patch ideal of the regular nilpotent Hessenberg variety with h̄ = (2, 3, 4, 4) in the w0-
chart where n = 4. Interpreted in this way, N2 is geometrically vertex decomposable by induction on n.
Applying Theorem 6.12 to I = N2 (interpreted in C[xw0

]) and J = 0 as in the proof of Theorem 6.13, we
see that N2 (interpreted in C[xw0

]) is geometrically vertex decomposable. From this we may conclude that
Iw0,h(2) is geometrically vertex decomposable.

We may now repeat this process as follows to show that Iw0,h(1) is geometrically vertex decompos-
able. Namely, we may choose y1 = x1,3 and N1 = Iw0,h(2) and C1 = 〈1〉. By analogous arguments,
iny1

(Iw0,h(1)) = C1 ∩ (N1 + 〈y1〉), and C1 (being the unit ideal) is geometrically vertex decomposable. Also,
we just showed N1 is geometrically vertex decomposable.

Finally, following the same procedure, we can see that Iw0,h = Iw0,h(0) is geometrically vertex decom-
posable by taking y0 = x1,2, N0 = Iw0,h(1) and C0 = 〈1〉.

We have just seen that the ideals Iw0,h are GVD and gone through a specific example. Lemma 6.3 now
allows us to conclude that we have a Gröbner basis.
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Theorem 6.16. Let n ≥ 3 be a positive integer, and let h : [n] → [n] be an indecomposable Hessenberg function.
Then the set of elements fw0

k,ℓ , which generate the Hessenberg patch ideal Iw0,h of Hess(N, h) in the w0-chart, form a

Gröbner basis for Iw0,h with respect to the monomial order <n. Moreover, in<n
(Iw0,h) is the ideal of indeterminates

given by
in<n

(Iw0,h) = 〈xn−i+1,j+1|(i, j) ∈ H(h, 0)〉.
Proof. In the proof of Theorem 6.13 we have checked all the hypotheses of Lemma 6.3. Hence by Theo-
rem 6.13 and Lemma 6.3, we may conclude that fw0

k,ℓ ∈ Iw0,h define a Gröbner basis with respect to <n. The

second statement follows from the fact that in<n
(fw0

k,ℓ ) = −xn−k+1,ℓ+1. �
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