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Generalization of some commutative perturbation

results

Zakariae Aznay, Abdelmalek Ouahab, Hassan Zariouh

Abstract

We study the stability of certain spectra under some algebraic conditions weaker than the
commutativity and we generalize many known commutative perturbation results.

1 Introduction

In [6], the authors investigated how to explicitly express the Drazin inverse of the sum (P +Q) of

two complex matrices P and Q, under the conditions PQ ∈ comm(P ) and QP ∈ comm(Q), which

are weaker than the commutativity of P with Q. A few years later, Huihui Zhu et al. [13] obtained

the representations for the pseudo Drazin inverse of the sum and the product of two elements of

a complex Banach algebra, under the same conditions. Recently, H. Zou et al. [14] extended the

known expressions for the generalized Drazin inverse of the product and the sum of two elements

of a complex Banach algebra by considering the same conditions.

In this paper, we study these conditions and other in a ring A, that are ab ∈ comm(a), ba ∈

comm(b), ab ∈ comm(b) and ba ∈ comm(a). After giving some algebraic results, we focus on the

Banach algebra of bounded linear operators L(X) acting on the complex Banach algebra X. We

generalize some commutative perturbation spectral results, in particular, if N is nilpotent and

N ∈ commr(T ) (i.e. NT ∈ comm(T ) and TN ∈ comm(N)), then σ∗(T ) \ {0} = σ∗(T +N) \ {0},

where σ∗ ∈ {σp, σ
0
p, σa}. If in additionN ∈ commw(T ) (i.e. N ∈ commr(T ) andN∗ ∈ commr(T

∗)),

then we deduce by duality that σ∗(T ) = σ∗(T +N), where σ∗ ∈ {σp, σ
0
p, σa, σs, σ}. This allows us

to show that if K is a power compact operator and K ∈ commw(T ), then σ∗(T ) = σ∗(T + K),

where σ∗ ∈ {σuf , σuw , σub, σe, σw , σb}. Note that here we lose quite a few commutative properties,

for example if S 6∈ comm(T ) and S ∈ commw(T ), then S 6∈ commw(T − λI) for every λ 6= 0.

2 Terminology and preliminaries

Let A be a ring and let a ∈ A. Denote by comm(a) the set of all elements that commute with a,

by comm2(a) = comm(comm(a)) and by Nil(A) the nilradical of A. If in addition A is a complex

Banach algebra with unit e, then we means by σ(a), accσ(a), r(a) and exp(a), the spectrum, the

accumulation point of σ(a), the spectral radius of a and the exponential of a, respectively. We
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say that a is quasi-nilpotent if r(a) = 0. In the case of A = L(X), the algebra of all bounded

linear operators acting on an infinite dimensional complex Banach space X, T ∗, α(T ) and β(T )

means respectively, the dual of the operator T ∈ A, the dimension of the kernel N (T ) and the

codimension of the range R(T ). Denote further R(T∞) :=
⋂

n≥0

R(T n) and N (T∞) :=
⋃

n≥0

N (T n).

The ascent and the descent of T are defined by p(T ) = inf{n ∈ N : N (T n) = N (T n+1)} (with

inf∅ = ∞) and q(T ) = inf{n ∈ N : R(T n) = R(T n+1)}. A subspace M of X is T -invariant if

T (M) ⊂ M and the restriction of T on M is denoted by TM . (M,N) ∈ Red(T ) if M, N are

closed T -invariant subspaces and X = M ⊕ N (M ⊕ N means that M ∩ N = {0}). Let n ∈ N,

denote by T[n] = TR(Tn) and by mT = inf{n ∈ N : inf{α(T[n]), β(T[n])} < ∞} the essential degree

of T. T is called upper semi-B-Fredholm (resp., lower semi-B-Fredholm) if the essential ascent

pe(T ) := inf{n ∈ N : α(T[n]) < ∞} < ∞ and R(T pe(T )+1) is closed (resp., the essential descent

qe(T ) := inf{n ∈ N : β(T[n]) < ∞} < ∞ and R(T qe(T )) is closed). If T is an upper or a lower (resp.,

upper and lower) semi-B-Fredholm then T it is called semi-B-Fredholm (resp., B-Fredholm) and its

index is defined by ind(T ) = α(T[mT ])− β(T[mT ]). T is said to be an upper semi-B-Weyl (resp., a

lower semi-B-Weyl, B-Weyl, left Drazin invertible, right Drazin invertible, Drazin invertible) if T is

an upper semi-B-Fredholm with ind(T ) ≤ 0 (resp., T is a lower semi-B-Fredholm with ind(T ) ≥ 0,

T is a B-Fredholm with ind(T ) = 0, T is an upper semi-B-Fredholm and p(T[mT ]) < ∞, T is

a lower semi-B-Fredholm and q(T[mT ]) < ∞, p(T[mT ]) = q(T[mT ]) < ∞). If T is upper semi-

B-Fredholm (resp., lower semi-B-Fredholm, semi-B-Fredholm, B-Fredholm, upper semi-B-Weyl,

lower semi-B-Weyl, B-Weyl, left Drazin invertible, right Drazin invertible, Drazin invertible) with

essential degree mT = 0, then T is said to be an upper semi-Fredholm (resp., lower semi-Fredholm,

semi-Fredholm, Fredholm, upper semi-Weyl, lower semi-Weyl, Weyl, upper semi-Browder, lower

semi-Browder, Browder) operator. T is said to be bounded below if T is upper semi-Fredholm

with α(T ) = 0.

σp(T ): point spectrum of T

σ0
p(T ) := {λ ∈ σp(T ) : α(T − λI) < ∞}

σa(T ): approximatif spectrum of T

σs(T ): surjectif spectrum of T

σe(T ): essential spectrum of T

σuf (T ): upper semi-Fredholm spectrum of T

σlf (T ): lower semi-Fredholm spectrum of T

σw(T ): Weyl spectrum of T

σuw(T ): upper semi-Weyl spectrum of T

σlw(T ): lower semi-Weyl spectrum of T

σb(T ): Browder spectrum of T

σub(T ): upper semi-Browder spectrum of T

σlb(T ): lower semi-Browder spectrum of T

σgd(T ) = accσ(T ) is the generalized Drazin spectrum of T

σgzd(T ) = acc accσ(T ) is the gz-invertible spectrum of T [2]
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3 Generalization of Newton formula

We start this section by the next preliminary lemma that will be play a crucial role in the sequel.

Lemma 3.1. Let A be a ring and a, b ∈ A. The following statements hold:

(I) If ab ∈ comm(a), then

(i) anb ∈ comm(am) for every integers n,m ≥ 1.

(ii) (ab)n = anbn and (ba)n = banbn−1 = (ba)(ab)n−1 = ban−1bn−1a for every integer n ≥ 2.

(iii) a(a+ b) ∈ comm(a).

(II) If ab ∈ comm(b), then

(i) abn ∈ comm(bm) for every integers n,m ≥ 1.

(ii) (ab)n = anbn and (ba)n = an−1bna = (ab)n−1(ba) = ban−1bn−1a for every integer n ≥ 2.

(iii) (a+ b)b ∈ comm(b).

(III) If ab ∈ comm(a) and ba ∈ comm(b), then

(i) anbm ∈ comm(ak) for every strictly positive integers n,m and k.

(ii) an − bn + ban−1 − an−1b = (an−1 + ban−2 + b2an−3 + · · · + bn−2a + bn−1)(a − b) and

an− bn+ bn−1a−abn−1 = (an−1+an−2b+an−3b2+ · · ·+abn−2+ bn−1)(a− b) for every

integer n ≥ 2.

(iii) (a+ b)a ∈ comm(a+ b) and b(a+ b) ∈ comm(b).

(IV) If ab ∈ comm(b) and ba ∈ comm(a), then

(i) anbm ∈ comm(bk) for every strictly positive integers n,m and k.

(ii) an − bn + abn−1 − bn−1a = (a − b)(an−1 + ban−2 + b2an−3 + · · · + bn−2a + bn−1) and

an− bn+an−1b− ban−1 = (a− b)(an−1+an−2b+an−3b2+ · · ·+abn−2+ bn−1) for every

integer n ≥ 2.

(iii) a(a+ b) ∈ comm(a+ b) and (a+ b)b ∈ comm(b).

Proof. (I) (i) Let’s use induction with the following statement

Pm : anb ∈ comm(am) for every integer n ≥ 1.

Let n ≥ 1 be an integer such that anba = an+1b. Then an+1ba = a(anba) = a(an+1b) = an+2b.

So P1 holds. Assume that Pm holds for some integer m ≥ 1. Let n ≥ 1 be an integer, then

(anb)am+1 = ((anb)am)a = (am(anb))a = am((anb)a) = am(a(anb)) = am+1(anb). So Pm+1 holds.

Consequently, anb ∈ comm(am) for every integers n,m ≥ 1.

(ii) The equality (ab)n = anbn is obvious. Let us prove by induction that (ba)n = banbn−1 for every

integer n ≥ 2. For n = 2 the equality holds. Assume that (ba)n = banbn−1 for some integer n ≥ 2,

then we get from the first point (i) that (ba)n+1 = (ba)(ba)n = b(aban)bn−1 = b(an+1b)bn−1 =

ban+1bn. Consequently, the equality holds for every integer n ≥ 2. On the other hand, since

(ba)n = b(ab)n−1a is always true, then (ba)n = banbn−1 = (ba)(ab)n−1 = b(ab)n−1a = ban−1bn−1a

for every integer n ≥ 2. The point (iii) is trivial.

(II) The proof is identical to that of (I).
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(III) (i) Let’s use induction with the following statement

Pk : anbm ∈ comm(ak) for every strictly positive integers n and m.

P1 is holds. Indeed, we consider the following statement

Qm : anbm ∈ comm(a) for every strictly positive integer n.

From the point (i) of the statement (I), Q1 holds. Assume now that Qm holds for some strictly

integer m and let n be a strictly positive integer. Since bab = b2a, we conclude that a(anbm+1) =

(a(anbm))b = ((anbm)a)b = an(bmab) = an(bm+1a) = (anbm+1)a. So Qm+1 holds.

Suppose that Pk holds for some strictly positive integer k and let n andm be two strictly positive in-

tegers. The statement P1 implies that (anbm)ak+1 = ((anbm)ak)a = (ak(anbm))a = ak((anbm)a) =

ak(a(anbm)) = ak+1(anbm). Thus Pk+1 holds and this completes the proof.

The point (ii) is an immediate consequence of (i), and the point (iii) is trivial.

(IV) Goes similarly with (III).

Throughout this paper we consider on a ring A the sets defined as follows

comml(a) = {b ∈ A : ab ∈ comm(a) and ba ∈ comm(b)},

commr(a) = {b ∈ A : ab ∈ comm(b) and ba ∈ comm(a)},

commw(a) = comml(a) ∩ commr(a).

Example 3.2. Let A be a ring. Then for every a, b ∈ A we have

a ∈ comm(b) =⇒ b ∈ commw(a) =⇒ b2 ∈ comm(a) and a2 ∈ comm(b)

However, we show by the following examples that the reverse of these implications are not true in

general.

(i) In the matrix space M2(A), where A is a ring with non-null unit e, the elements P =

Å

0 e
0 0

ã

and Q =

Å

0 e
0 e

ã

satisfy PQP = P 2Q = QP 2 = QPQ = Q2P 6= PQ2, but PQ 6= QP. On

the other hand, if we consider S =

Å

0 0
e 0

ã

, then S ∈ comm(P 2) and P ∈ comm(S2), but

PS does not commute neither with P nor with S, and SP does not commute neither with

P nor with S.

(ii) Hereafter ℓ2 denotes the Hilbert space ℓ2(N). We consider in the Banach algebra L(ℓ2),

the operators T and S defined by T (x1, x2, . . . ) = (x1, x1, x3, x4, . . . ) and S(x1, x2, . . . ) =

(x1, 0, . . . ). Then S ∈ comml(T ), but ST does not commute with T and TS does not commute

with S. On the other hand, S∗ ∈ commr(T
∗), but T ∗S∗ does not commute with T ∗ and S∗T ∗

does not commute with S∗. This shows that the conditions assumed in the statements (I) and

(II) of Lemma 3.1 are independent. As another example, consider in M2(A), M =

Å

e e
0 0

ã
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and N =

Å

a a
b b

ã

. Then M ∈ comml(N) for every a, b ∈ A such that b 6= 0 and a 6= −b. But

NM does not commute with M and MN does not commute with N.

(iii) Let T and N be the operators defined on ℓ2 by T (x1, x2, . . . ) = (x2, 0, . . . ), N(x1, x2, . . . ) =

(0, x1, 0, . . . ). Then T ∈ comm(S2) and S ∈ comm(T 2). But TN /∈ comm(T ) ∪ comm(N)

and NT /∈ comm(T ) ∪ comm(N).

(iv) For the operatorsN1 andN2 defined on ℓ2 byN1(x1, x2, . . . ) = (0, x1, x2, 0, . . . ), N2(x1, x2, . . . ) =

(0,−x1, 0, . . . ), we have N1 ∈ commw(N2), but N1 /∈ comm(N2).

(v) In M3(C), P =

Ñ

0 0 0
1
2 0 0

0 1
3 0

é

and Q =

Ñ

0 0 0

− 1
2 0 0

0 0 0

é

satisfy PQP = P 2Q = QP 2 =

QPQ = Q2P = PQ2 = 0, so that P ∈ commw(Q), but PQ 6= QP.

A simple check, one can easily obtain the dressed results in the following remark.

Remark 3.3. Let A be a ring with unit e. For a, b ∈ A and µ, λ ∈ C, the following statements

hold:

(i) If ab ∈ comm(a), then (a− λe)(b − µe) ∈ comm(a− λe) if and only if a ∈ comm(b) or λ = 0.

(ii) If ba ∈ comm(a), then (b − µe)(a− λe) ∈ comm(a− λe) if and only if a ∈ comm(b) or λ = 0.

(iii) If b ∈ commw(a), then an ∈ comm(bm) for every integers n,m ≥ 1 such that nm ≥ 2.

(iv) If b ∈ comml(a) (resp., b ∈ commr(a), b ∈ commw(a)), then (a + b) ∈ comml(b) (resp.,

(a+ b) ∈ commr(b), (a+ b) ∈ commw(b)).

(v) If aba = a2b = ba2, then an ∈ comm(bm) for every m ≥ 1 and n ≥ 2.

Let A be a unital complex Banach algebra and B ⊂ A. The exponential of a ∈ A is defined by

exp(a) =
∞
∑

n=0

an

n!
. In the next we denote by

C1(B) = {a ∈ A : ∀b ∈ B, a ∈ comm(ab) ∪ comm(ba) or b ∈ comm(ba)},

C2(B) = {a ∈ A : ∀b ∈ B, a ∈ comm(ab) ∪ comm(ba) or b ∈ comm(ab)},

C3(B) = {a ∈ A : ∀b ∈ B, b ∈ comm(ab) ∪ comm(ba)}.

Theorem 3.4. If A is a unital complex Banach algebra and A = Ci(A), i=1, 2 or 3, then A is

commutative.

Proof. Let a, b ∈ A and let λ ∈ C. Consider xλ = exp(λa) and yλ = exp(−λa)b. Assume that

A = C1(A), then bexp(λa) = xλyλxλ ∈ {x2
λyλ, yλx

2
λ} = {exp(λa)b, exp(−λa)bexp(2λa)} or

exp(−λa)b2 = yλxλyλ = y2λxλ = exp(−λa)bexp(−λa)bexp(λa). Hence b2 = bexp(−λa)bexp(λa)

for all λ ∈ C. Moreover,

bexp(λa)bexp(−λa) = b

∞
∑

n=0

λn

n!

(

n
∑

k=0

Ck
na

kb(−a)n−k

)

=

∞
∑

n=0

λn

n!
b(δa)

n(b),
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where Ck
n =

n!

k! (n− k)!
and δa(b) = ab − ba. Thus bab = b2a for every a, b ∈ A. By the similar

arguments, we get b = exp(λa)bexp(−λa) =

∞
∑

n=0

λn

n!

(

n
∑

k=0

Ck
na

kb(−a)n−k

)

=

∞
∑

n=0

λn

n!
(δa)

n(b), for

all λ ∈ C. Therefore ab = ba and A is commutative. The case of A = C2(A) is analogous. For

the case of A = C3(A), it suffices to use that same arguments with xλ = exp(λa) and yλ =

bexp(−λa).

Theorem 3.5. Let A be a ring. For every a, b ∈ A we have

(i) If b ∈ commr(a), then for every integer n > 0, (a+ b)n =
n
∑

k=1

Ck−1
n−1

(

an−kbk + bn−kak
)

.

(ii) If b ∈ comml(a), then for every integer n > 0, (a+ b)n =

n
∑

k=1

Ck−1
n−1

(

akbn−k + bkan−k
)

.

Where a0 designates the unit element of A.

Proof. (i) For n = 1 the statement holds. Assume that the statement holds for some integer n ≥ 1,

then

(a+ b)n+1 = (a+ b)(a+ b)n = (a+ b)

(

n
∑

k=1

Ck−1
n−1

(

an−kbk + bn−kak
)

)

= a

(

n
∑

k=1

Ck−1
n−1

(

an−kbk + bn−kak
)

)

+ b

(

n
∑

k=1

Ck−1
n−1

(

an−kbk + bn−kak
)

)

=

n
∑

k=1

Ck−1
n−1

(

an+1−kbk + abn−kak
)

+

n
∑

k=1

Ck−1
n−1

(

ban−kbk + bn+1−kak
)

=

n
∑

k=1

Ck−1
n−1

(

an+1−kbk + bn+1−kak
)

+

n
∑

k=1

Ck−1
n−1

(

abn−kak + ban−kbk
)

=

n
∑

k=1

Ck−1
n−1

(

an+1−kbk + bn+1−kak
)

+

n
∑

k=1

Ck−1
n−1

(

bn−kak+1 + an−kbk+1
)

(see Lemma 3.1)

=

n
∑

k=1

Ck−1
n−1

(

an+1−kbk + bn+1−kak
)

+

n+1
∑

k=2

Ck−2
n−1

(

bn+1−kak + an+1−kbk
)

=

n
∑

k=2

Ä

Ck−2
n−1 + Ck−1

n−1

ä

(

an+1−kbk + bn+1−kak
)

+ (anb+ bna) +
(

an+1 + bn+1
)

=
n+1
∑

k=1

Ck−1
n

(

an+1−kbk + bn+1−kak
)

.

So the statement holds for n+ 1. Consequently, (a+ b)n =

n
∑

k=1

Ck−1
n−1

(

an−kbk + bn−kak
)

for every

integer n > 0.

(ii) The second statement can be proved similarly.

Note that the second point of the previous theorem was firstly proved for complex matrices in
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[6, Lemma 2.3]. This result has been extended by Huihui Zhu et al. and Honglin Zou et al. to a

Banach algebra, see [13, Lemma 2.3] and [14, Lemma 2.9].

The next corollary gives a generalization to the known Binomial theorem.

Corollary 3.6. Let A be a ring. If a, b ∈ A such that b ∈ commw(a), then for every positive

integer n 6= 2, the following statements hold:

(i) (a+ b)n =

n
∑

k=0

Ck
na

kbn−k =

n
∑

k=0

Ck
nb

kan−k.

(ii) an−bn = (a−b)

n−1
∑

k=0

akbn−k−1 =

(

n−1
∑

k=0

akbn−k−1

)

(a−b) = (a−b)

n−1
∑

k=0

bn−k−1ak =

(

n−1
∑

k=0

bn−k−1ak

)

(a−

b).

Proof. (i) The cases n = 0 and n = 1 are trivial. For n ≥ 3, as b ∈ commw(a) then Theorem 3.5

and Remark 3.3 imply that

(a+ b)n =

n
∑

k=1

Ck−1
n−1

(

an−kbk + bn−kak
)

=

n
∑

k=1

Ck−1
n−1a

n−kbk +

n
∑

k=1

Ck−1
n−1b

n−kak

=

n
∑

k=1

Ck−1
n−1a

n−kbk +

n−1
∑

k=0

Cn−k−1
n−1 bkan−k

=

n−1
∑

k=1

(Ck−1
n−1 + Cn−k−1

n−1 )an−kbk + an + bn

=
n
∑

k=0

Ck
na

kbn−k =
n
∑

k=0

Ck
nb

kan−k

(ii) Follows directly from Lemma 3.1 and Remark 3.3.

Let A be a Banach algebra with unit e. It is well known that exp(a + b) = exp(a)exp(b) for

every a ∈ comm(b). But this identity can fail for noncommuting a and b. The next corollary shows

that if b ∈ commw(a), then this identity remains true if and only if a ∈ comm(b).

Corollary 3.7. Let A be a Banach algebra with unit e and let a, b ∈ A such that b ∈ commw(a).

Then exp(a)exp(b)− exp(a+ b) =
ab− ba

2
. In particular, exp(a)exp(b)− exp(b)exp(a) = ab− ba.



Generalization of some commutative perturbation results 8

Proof. The Cauchy product implies that

exp(a)exp(b) =

(

∞
∑

n=0

an

n!

)(

∞
∑

n=0

bn

n!

)

=
∞
∑

n=0

(

n
∑

k=0

ak

k!

bn−k

(n− k)!

)

= e+ (a+ b) +
a2 + 2ab+ b2

2
+

∞
∑

n=3

(

n
∑

k=0

ak

k!

bn−k

(n− k)!

)

= e+ (a+ b) +
a2 + 2ab+ b2

2
+

∞
∑

n=3

(a+ b)n

n!

=

∞
∑

n=0

(a+ b)n

n!
+

ab− ba

2

= exp(a+ b) +
ab− ba

2
.

Recall that an element x of a ring A is called nilpotent if xn = 0 for some positive integer n. If

so then the integer d(x) = min{n ∈ N : xn = 0} is called the degree of x. And the nilradical Nil(A)

A is the set consisting of all nilpotent elements of A, that is, Nil(A) := {a ∈ A | a is nilpotent}.

Lemma 3.8. Let A be a ring and let a, b ∈ A. The following assertions hold:

(i) If b ∈ Nil(A) and ab ∈ comm(a) ∪ comm(b) or ba ∈ comm(a) ∪ comm(b), then ab and ba both

belong to Nil(A). Furthermore, in the first case we have d(ab) ≤ d(b) and d(ba) ≤ d(b) + 1, and in

the second case we have d(ba) ≤ d(b) and d(ab) ≤ d(b) + 1.

(ii) If a, b ∈ Nil(A) and b ∈ comml(a) ∪ commr(a), then a+ b ∈ Nil(A) and

max{d(a), d(b)} −min{d(a), d(b)} ≤ d(a+ b) ≤ d(a) + d(b).

(iii) If b ∈ comml(a)∩comm(an) for some integer n > 0, then am−bm = (am−1+bam−2+b2am−3+

· · · + bm−2a + bm−1)(a − b) for all integer m > n. Analogously, if a ∈ commr(b) ∩ comm(bn) for

some integer n > 0, then am − bm = (a− b)(am−1 + bam−2 + b2am−3 + · · ·+ bm−2a+ bm−1) for all

integer m > n.

Proof. (i) Let n > 0 be an integer such that bn = 0. If ab ∈ comm(a), then Lemma 3.1 implies that

(ab)n = anbn = 0 and (ba)n+1 = ban+1bn = 0. And if ba ∈ comm(a), we obtain again by Lemma

3.1 that (ba)n = bnan = 0 and (ab)n+1 = bnanb = 0. The other cases go similarly.

(ii) Let n,m ≥ 1 two integers such that an = 0 and bm = 0. If b ∈ comml(a), from Theorem 3.5 we

get (a+ b)n+m =

n+m
∑

k=1

Ck−1
n+m−1

(

akbn+m−k + bkan+m−k
)

. Thus if k ≥ n, then ak = 0 and if k ≤ n,

then n+m−k ≥ m and so bn+m−k = 0. If k ≥ m, then bk = 0 and if k ≤ m, then n+m−k ≥ n, so

an+m−k = 0. Hence (a+b)n+m = 0 and consequently d(a+b) ≤ d(a)+d(b). On the other hand, we

have from Remark 3.3 that (a+b) ∈ comml(b). Hence max{d(a), d(b)}−min{d(a), d(b)} ≤ d(a+b).

The proof of the case b ∈ commr(a) goes similarly.

(iii) Is an immediate consequence of Lemma 3.1.
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Let a be an element of a Banach algebra A with unit e. The spectral radius r(a) of a can be

expressed by the formula r(a) = inf{M > 0 :
(

( a
M
)n
)

n
is bounded}.

Proposition 3.9. Let A be a complex Banach algebra with unit e and let a, b ∈ A. The following

assertions hold:

(i) If ab ∈ comm(a) ∪ comm(b), then r(ab) ≤ r(a)r(b).

(ii) If a ∈ commr(b) ∪ comml(b), then r(a+ b) ≤ r(a) + r(b).

Proof. Let M > r(a), N > r(b). (i) From Lemma 3.1 we have (ab)n = anbn. Since the product

of two bounded sequences is bounded, then the sequence {( apbq

MpNq )}p,q is bounded. In particular,

{( ab
MN

)n}n is bounded and hence r(ab) ≤ r(a)r(b).

(ii) Assume that a ∈ commr(b) (the other case goes similarly). From Theorem 3.5, we have

Å

a+ b

M +N

ãn

=

n
∑

k=1

Ck−1
n−1

Ç

Mn−kNk

(M +N)n
an−kbk

Mn−kNk
+

Nn−kMk

(M +N)n
bn−kak

Nn−kMk

å

.

Hence {( a+b
M+N

)n}n is bounded and thus r(a + b) ≤ r(a) + r(b).

Corollary 3.10. Let A be a complex Banach algebra with unit e and let a, b ∈ A. The following

assertions hold:

(i) If a or b is quasi-nilpotent and ab ∈ comm(a) ∪ comm(b), then ab is quasi-nilpotent.

(ii) If a and b are quasi-nilpotent and a ∈ commr(b) ∪ comml(b), then a+ b is quasi-nilpotent.

4 Perturbation results

Throughout this section, we focus on the stability of some spectra of bounded linear operators in

the Banach algebra A = L(X). We start first with some preliminaries results.

Proposition 4.1. Let S, T ∈ L(X). The following statements hold:

(i) TS ∈ comm(T ) if and only if S∗T ∗ ∈ comm(T ∗).

(ii) TS ∈ comm(T ) if and only if R(ST − TS) ⊂ N (T ), and ST ∈ comm(T ) if and only if

R(T ) ⊂ N (ST − TS).

Proof. Obvious.

Corollary 4.2. Let S, T ∈ L(X). The following statements hold:

(i) If T is one-to-one, then TS ∈ comm(T ) if and only if S ∈ comm(T ).

(ii) If T is onto, then ST ∈ comm(T ) if and only if S ∈ comm(T ).

(iii) Moreover, if T and S are self-adjoint Hilbert space operators, then TS ∈ comm(T ) if and only

if ST ∈ comm(T ).

Example 4.3. Note that if an operator T is not onto and ST ∈ comm(T ), then we cannot

guarantee that S commutes with T even if T is one-to-one. For this, consider the unilateral right

shift R and the nilpotent operator N defined on the Hilbert space ℓ2 by Rx = (0, x1, x2, . . . ),



Generalization of some commutative perturbation results 10

Nx = (0,−x1, 0, . . . ), where x = (xn)n≥1 ∈ ℓ2. R is one-to-one and not onto, and NR ∈ comm(R).

But NR 6= RN. This entails also from Proposition 4.1 that the condition of the injectivity of T

assumed in the first assertion of Corollary 4.2 is crucial.

Recall that the degree of stable iteration of an operator T is defined by dis(T ) = inf∆(T ),

where

∆(T ) = {m ∈ N : α(T[m]) = α(T[r]), ∀r ∈ N r ≥ m}.

T is said to be semi-regular if R(T ) is closed and dis(T ) = 0, and T is said to be essentially

semi-regular if R(T ) is closed and there exists a finite-dimensional subspace F such that N (T ) ⊂

R(T∞) + F. For more details about these definitions, one can see [7, 8].

Proposition 4.4. Let S, T ∈ L(X) such that S ∈ commr(T ). The following assertions hold:

(i) If dis(TS) = 0, then dis(S) = 0 and dis(T ) ≤ 1.

(ii) If TS is semi-regular, then S is semi-regular.

(iii) If TS is essentially semi-regular, then S is essentially semi-regular.

Proof. (i) As S ∈ commr(T ) we then get from Lemma 3.1 that (TS)n = T nSn = ST 2S(TS)n−2

for all integer n ≥ 2. Moreover, dis(TS) = 0 implies that dis((TS)m) = 0 for every m ≥ 1. Hence

N (Sm) ⊂ N ((TS)m) ⊂
⋂

n R((TS)nm) ⊂ R(S) for all m ≥ 1. Hence dis(S) = 0. Let n ≥ 1.

As dis(TS) = 0, then N (T n+1) ⊂ N (ST n+1) = N (TST n) ⊂ N (T n) + R(TSn+1). Therefore,

N (T n+1) ⊂ N (T n) +R(T ) and then dis(T ) ≤ 1. The points (ii) and (iii) are consequences of [7,

Lemme 4.15], [8, Corollary 3.4, Theorem 3.5] and the fact that S(T 2S) = (TS)2 = (T 2S)S.

The next corollary extends [8, Theorem 3.5] and [7, Proposition 3.7, Lemme 4.15].

Corollary 4.5. If T, S ∈ L(X) such that S ∈ commw(T ) and TS is semi-regular (resp., essentially

semi-regular), then ST, T and S are also semi-regular (resp., essentially semi-regular).

Proof. As S ∈ commw(T ) then (TS)2 = (ST )2. Hence TS is semi-regular (resp., essentially semi-

regular) if and only if (TS)2 is semi-regular (resp., essentially semi-regular) if and only if (ST )2

is semi-regular (resp., essentially semi-regular) if and only if ST is semi-regular (resp., essentially

semi-regular). The rest of the proof follows directly from Proposition 4.4.

Proposition 4.6. Let T ∈ L(X) and N ∈ Nil(L(X)). The following holds:

(i) If N ∈ commr(T ), then T is onto if and only if T +N is onto.

(ii) If N ∈ comml(T ), then T is bounded below if and only if T +N is bounded below.

Proof. Under conditions assummed, Corollary 4.2 implies that N ∈ comm(T ). And the results are

already done.

Lemma 4.7. Let T, S ∈ L(X) such that ST ∈ comm(T ) and let λ 6= 0. Then M := N (T − λI)

is S-invariant and SM ∈ comm(TM ). If in addition TS ∈ comm(S), then B := N (T + S − λI) is

S-invariant and SB ∈ comm(TB).
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Proof. Let x ∈ M, then (T − λI)S(λx) = (T − λI)ST (x) = ST (T − λI)(x) = 0. Thus M is

S-invariant. On the other hand, as TM is invertible and ST ∈ comm(T ), then SM ∈ comm(TM ).

If in addition TS ∈ comm(S), then S(T + S) ∈ comm(T + S) and thus B is S-invariant and

T -invariant. Therefore SB ∈ comm(TB).

Theorem 4.8. Let T ∈ L(X) and N ∈ Nil(L(X)) such that T ∈ comm(NT ). Then

σp(T ) \ {0} ⊂ σp(T +N) \ {0}.

Proof. Let λ 6= 0 and let x ∈ N (T −λI). We show by induction that ((T +N)−λI)n(x) = Nn(x)

for any n ∈ N. Indeed, ((T + N) − λI)(x) = N(x). Assume that ((T + N) − λI)n(x) = Nn(x)

for some positive integer n. Then ((T + N) − λI)n+1(x) = ((T + N) − λI)(Nn(x)) = TNn(x) +

Nn+1(x)−λNn(x). Furthermore, Lemma 4.7 implies that TNm(x) = λNmx for all m ∈ N. Hence

((T +N)− λI)n+1(x) = Nn+1(x). Let p ≥ 1 such that Np = 0, then ((T +N)− λI)p(x) = 0 and

thus x ∈ N (((T +N)− λI)p). This yields N (T − λI) ⊂ N ((T +N)− λI)p). Hence σp(T ) \ {0} ⊂

σp(T +N) \ {0}.

From the proof of Theorem 4.8, we obtain the next proposition.

Proposition 4.9. Let T,N ∈ L(X) such that T ∈ comm(NT ) and Np = 0 for some strictly

positive integer p. Then for every λ 6= 0, we have N (T − λI) ⊂ N ((T +N)− λI)p). If in addition

N ∈ comm(TN), then N ((T +N)− λI) ⊂ N ((T − λI)p).

Note that in the case of NT ∈ comm(T ) and N2 = 0, the following proposition shows (without

the condition TN ∈ comm(N)) that N ((T +N)−λI) ⊂ N ((T −λI)2), which implies in turn that

the inclusion proved in Theorem 4.8 becomes equality.

Proposition 4.10. Let T ∈ L(X) and N ∈ Nil(L(X)) such that NT ∈ comm(T ) and N2 = 0.

Then σp(T ) \ {0} = σp(T +N) \ {0} and σ0
p(T ) \ {0} = σ0

p(T +N) \ {0}.

Proof. Let λ 6= 0 and let us to show that N (T +N−λI) ⊂ N ((T −λI)2). Let x ∈ N (T +N −λI),

then (T +N)x = λx. So λ2(T − λI)2x = λ2(T − λI)(−N)x = λ2(−TNx+N(λx)) = λ2(−TNx+

N(T +N)x) = λ2(N2x+ (NT −TN)x). Moreover, we have λNTx = NT 2x+NTNx = TNTx+

NTNx = TN(λI−N)x+NTNx = λTNx−TN2x+NTNx and λNTNx = NTNTx+NTN2x =

N2T 2x + NTN2x. Hence λ2(T − λI)2x = λ2N2x + N2T 2x + NTN2x − λTN2x = 0 and then

x ∈ N ((T−λI)2). On the other hand, from proposition 4.9, we haveN (T+N−λI) ⊂ N ((T−λI)2).

Hence σp(T ) \ {0} = σp(T +N) \ {0} and σ0
p(T ) \ {0} = σ0

p(T +N) \ {0}.

Corollary 4.11. Let T ∈ L(X) and N ∈ Nil(L(X)). The following assertions hold:

(i) If T ∈ comm(NT ) ∩ comm(TN), then σp(T ) \ {0} ⊂ σp(T + N) \ {0} and σp(T
∗) \ {0} ⊂

σp(T
∗ +N∗) \ {0}.

(ii) If N ∈ commr(T ), then σp(T ) \ {0} = σp(T +N) \ {0} and σ0
p(T ) \ {0} = σ0

p(T +N) \ {0}.

Proof. (i) is obvious and (ii) is a consequence of Proposition 4.9.
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The condition assumed in assertions (ii) of the previous corollary cannot guarantee that σp(T ) =

σp(T +N) or σ0
p(T ) = σ0

p(T +N), as the following examples shows.

Example 4.12. Let T,N ∈ L(ℓ2) be the operators defined by T (x) = (0, x1

2 , x2

3 , . . . ), N(x) =

(0, −x1

2 , 0, . . . ) for every x = (xn)n≥1 ∈ ℓ2. Clearly, T and T +N are quasi-nilpotent and compact,

N is nilpotent. Moreover, TNT = NT 2 = NT = N2T = NTN = TN2 6= T 2N and σp(T ) =

σ0
p(T ) = ∅ 6= {0} = σ0

p(T +N) = σp(T +N). If we take the nilpotent operator Q ∈ L(ℓ2) defined

by Q(x) = (0, −x1

2 , 0, −x3

4 , 0, −x5

6 , . . . ), then (T + Q)2 = 0, TQT = QT 2 = QT = Q2T = QTQ =

TQ2 6= T 2Q and σp(T ) = σ0
p(T ) = σ0

p(T +Q) = ∅ 6= {0} = σp(T +Q).

Remark 4.13. Let T ∈ L(X). It is well known that σp(T ) = σp(T +N) for every operator N ∈

comm(T )∩Nil(L(X)). This result cannot be extended for operatorN ∈
[

comm(T 2) ∩ Nil(L(X))
]

∪
[

Nil(L(X)) ∩N−1(comm(T ))
]

, as the following shows. The nilpotent operators T andN defined in

the point (iii) of the Example 3.2 satisfy ∅ = σp(T )\{0} = σp(N)\{0} 6= {−1, 1} = σp(T+N)\{0},

although TN2 = N2T = NT 2 = T 2N = 0. Note also that σp(S) = σa(S) = σs(S) = σ(S) for all

S ∈ {T,N, T +N}.

To give further information about the approximate point spectrum of sums of operators we

need to introduce the Berberian-Quisley extension [3, 11]. Consider ℓ∞(X) the Banach space of all

bounded sequences x = (xn) of X by imposing term-by-term linear combination and the supremum

norm ‖x‖ = sup‖xn‖. Then the quotient space X0 = ℓ∞(X)/c0(X) is a Banach space, where

c0(X) = {(xn) ⊂ X : lim ‖xn‖ = 0}. Any operator T ∈ L(X) generates an operator T 0 ∈ L(X0)

defined by T 0(x+ c0(X)) = (Txn)n + c0(X) for every x = (xn) ∈ ℓ∞(X). The mapping T −→ T 0

of L(X) into L(X0) is an isometric isomorphism and σa(T ) = σa(T
0) = σp(T

0).

Proposition 4.14. Let T ∈ L(X) and let N ∈ Nil(L(X)). The following assertions hold:

(i) If T ∈ comm(NT ), then σa(T ) \ {0} ⊂ σa(T + N) \ {0}, and if in addition N2 = 0, then

σa(T ) \ {0} = σa(T +N) \ {0}. While if T ∈ comm(TN), then σs(T ) \ {0} ⊂ σs(T +N) \ {0}, and

if in addition N2 = 0, then σs(T ) \ {0} = σs(T +N) \ {0}.

(ii) If T ∈ comm(NT )∩comm(TN), then σ∗(T )\{0} ⊂ σ∗(T +N)\{0}, and if in addition N2 = 0,

then σ∗(T ) \ {0} = σ∗(T +N) \ {0}, where σ∗ ∈ {σa, σs, σ}.

(iii) If N ∈ commr(T ), then σa(T ) \ {0} = σa(T +N) \ {0}.

(iv) If N ∈ comml(T ), then σs(T ) \ {0} = σs(T +N) \ {0}.

(v) If N ∈ commw(T ), then σ∗(T ) = σ∗(T +N), where σ∗ ∈ {σp, σ
0
p, σa, σs, σ}.

Proof. (i) Since T ∈ comm(NT ) then T 0N0T 0 = (TNT )0 = (NT 2)0 = N0(T 0)2. So T 0 ∈

comm(N0T 0). Moreover, ‖(N0)p‖ = ‖(Np)0‖ = 0 and then N0 is nilpotent. From Theorem 4.8,

σa(T ) \ {0} = σp(T
0) \ {0} ⊂ σp(T

0 + N0) \ {0} = σp((T + N)0) \ {0} = σa(T + N) \ {0}. If in

addition N2 = 0, then we deduce from Corollary 4.10 that σa(T ) \ {0} = σa(T +N) \ {0}. While if

T ∈ comm(TN), then T ∗ ∈ comm(N∗T ∗) and thus σs(T )\{0} = σa(T
∗)\{0} ⊂ σa(T

∗+N∗)\{0} =

σa((T+N)∗)\{0} = σs(T+N)\{0}, and if in addition N2 = 0, then σs(T )\{0} = σs(T+N)\{0}.

The point (ii) follows directly from the first.

(iii) As N ∈ commr(T ) then T ∈ comm(NT ) and (T + N) ∈ comm(−N(T + N)). So the first
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point gives the desired result. The proof of (iv) goes similarly with (i), while the proof of (v) is a

consequence of (iii), (iv) and Proposition 4.6.

Corollary 4.15. Let A be an arbitrary unital complex Banach algebra and let x ∈ A and a ∈

Nil(A). The following statements hold:

(i) If x ∈ comm(ax) ∩ comm(xa), then σ(x) \ {0} ⊂ σ(x + a) \ {0}. If in addition a2 = 0, then

σ(x) \ {0} = σ(x + a) \ {0}.

(ii) If x ∈ commw(a), then σ(x) = σ(x + a).

Proof. Consider the operators La(y) = ay and Lx(y) = xy. We have Lx ∈ L(A), La ∈ Nil(L(A))

and σ(x) = σ(Lx). Remark that if a2 = 0, then L2
a = La2 = 0. And if x ∈ comm(ax) ∩ comm(xa)

(resp., x ∈ commw(a)), then Lx ∈ comm(LaLx) ∩ comm(LaLx) (resp., Lx ∈ commw(La)). By

applying Proposition 4.14, we get the desired results.

In this paragraph we present the Construction of Sadovskii/Buoni, Harte, Wickstead [4, 9, 12],

which will play an important role in the next. The space m(X) consisting of the relatively compact

sequences of X is a closed subspace of ℓ∞(X). Consider P (T ) ∈ L(P(X)) the operator defined by

P (T )(x +m(X)) = (Txn)n + m(X), where x = (xn) ∈ ℓ∞(X) and P(X) = ℓ∞(X)/m(X). The

mapping T −→ P (T ) of L(X) into L(P(X)) is a unital homomorphism with kernel K(X) and

induces a norm decreasing monomorphism from L(X)/K(X) to L(X). Moreover, ‖P (T )‖ ≤ ‖T ‖,

σuf (T ) = σa(P (T )), σlf (T ) = σs(P (T )) and σe(T ) = σ(P (T )).

Proposition 4.16. Let T,K ∈ L(X) such that K is a power compact operator. The following

assertions hold:

(i) If T ∈ comm(KT ), then σ∗(T ) \ {0} ⊂ σ∗(T + K) \ {0}, where σ∗ ∈ {σuf , σuw}, and if in

addition K2 is compact, then σ∗∗(T ) \ {0} = σ∗∗(T +K) \ {0}, where σ∗∗ ∈ {σuf , σuw, σub}. While

if T ∈ comm(TK), then σ+(T ) \ {0} ⊂ σ+(T +K) \ {0}, where σ+ ∈ {σlf , σlw}, and if in addition

K2 is compact, then σ++(T ) \ {0} = σ++(T +K) \ {0}, where σ++ ∈ {σlf , σlw , σlb}.

(ii) If T ∈ comm(KT )∩comm(TK), then σ∗(T )\{0} ⊂ σ∗(T+K)\{0}, where σ∗ ∈ {σuf , σuw , σlf , σlw ,

σe, σw}, and if in addition K2 is compact, then σ∗∗(T ) \ {0} = σ∗∗(T + K) \ {0}, where σ∗∗ ∈

{σuf , σuw , σub, σlf , σlw , σlb, σe, σw, σb}.

(iii) If K ∈ commr(T ), then σ∗(T ) \ {0} = σ∗(T +K) \ {0}, where σ∗ ∈ {σuf , σuw , σub}.

(iv) If K ∈ comml(T ), then σ∗(T ) \ {0} = σ∗(T +K) \ {0}, where σ∗ ∈ {σlf , σlw, σlb}.

(v) If K ∈ commw(T ), then σ∗(T ) = σ∗(T +K), where σ∗ ∈ {σe, σw, σb, σgd, σgzd}.

Proof. (i) T ∈ comm(KT ) implies that P (T ) ∈ comm(P (K)P (T )). Let p ≥ 1 such that Kp is

compact, we have P (0) = P (Kp) = P (K)p, and so P (K) is nilpotent. From [4, Theorem 2] and

Proposition 4.14, σuf (T )\{0} = σa(P (T ))\{0} ⊂ σa(P (T )+P (K))\{0} = σa(P (T +K))\{0} =

σuf (T +K) \ {0}. Let λ /∈ σuw(T +K) \ {0}, then λ /∈ σuf (T ) \ {0}. By using the same argument

as Oberai in [10, Lemma 2], we get that ind(T +K−λI) = ind(T −λI) and thus λ /∈ σuw(T )\{0}.

Therefore σuw(T ) \ {0} ⊂ σuw(T +K) \ {0}. Since σub(T ) = σuw(T )∪ isoσa(T ) then if in addition

K2 is compact, σub(T ) \ {0} = σub(T +K) \ {0}. The rest of the proof is clear and is left to the

reader.
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We recall that T ∈ L(X) is said to have the SVEP at λ ∈ C if for every open neighborhood Uλ

of λ, the function f ≡ 0 is the only analytic solution of the equation (T − µI)f(µ) = 0 ∀µ ∈ Uλ.

Lemma 4.17. Let T ∈ L(X). Then T is quasi-nilpotent if and only if σ∗(T ) = {0}, where

σ∗ ∈ {σa, σs}.

Proof. Since ∂σ(T ) ⊂ σ∗, then the proof follows from [1, Theorem 2.97, Theorem 2.98] and the

fact that T and T ∗ have the SVEP on the boundary ∂σ(T ).

Recall that T ∈ L(X) is Riesz if T − λI is Browder for all non-zero complex λ, which is

equivalent to say that π(T ) := T + K(X) is quasi-nilpotent in the Calkin algebra L(X)/K(X),

where K(X) is the ideal of all compact operators.

Proposition 4.18. Let T,R ∈ L(X) such that R is Riesz. The following statements hold:

(i) If T ∈ comm(RT ) ∩ comm(TR) and T is Fredholm, then σe(T ) = σe(T + R) and σw(T ) =

σw(T +R).

(ii) If T ∈ comm(TR) and T is upper semi-Fredholm, then σuf (T ) = σuf (T + R) and σuw(T ) =

σuw(T +R).

(iii) If T ∈ comm(RT ) and T is lower semi-Fredholm, then σlf (T ) = σlf (T + R) and σlw(T ) =

σlw(T +R).

Proof. (i) Assume that T is Fredholm. By Atkinson theorem we get that π(T ) is invertible in the

Calkin algebra. As TRT ∈ {T 2R,RT 2} then π(T )π(R) = π(R)π(T ) and thus TR−RT ∈ K(X).

Since R is Riesz then π(R) is quasi-nilpotent, and hence σe(T ) = σ(π(T )) = σ(π(T + R)) =

σe(T +R). And thus σw(T ) = σw(T +R).

(ii) If T is upper semi-Fredholm, then from [4] the operator P (T ) ∈ ℓ∞(X)/m(X) defined above

is bounded below. As TRT = T 2R, from Corollary 4.2, P (T )P (R) = P (R)P (T ). Thus P (TR −

RT ) = P (0), so that TR − RT ∈ K(X). On the other hand, since R is Riesz then σa(P (R)) =

σuf (R) = {0} and this implies from Lemma 4.17 that P (R) is quasi-nilpotent. Hence σuf (T ) =

σa(P (T )) = σa(P (T + R)) = σuf (T + R). Let λ /∈ σuw(T ), then λ /∈ σuf (T ) = σuf (T + µR)

for all µ ∈ C. From [5, Theorem V.I.8], we deduce that α(T − λI) = α((T + µR) − λI) and

β(T −λI) = β((T +µR)−λI) for all µ ∈ C. Hence ind(T −λI) = ind((T +R)−λI) for all µ ∈ C.

Consequently, λ /∈ σuw(T +R). The point (iii) goes similarly.
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