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ON CERTAIN STAR VERSIONS OF THE SCHEEPERS PROPERTY

DEBRAJ CHANDRA∗, NUR ALAM∗

Abstract. The star versions of the Scheepers property, namely star-Scheepers, strongly star-Scheepers
and new star-Scheepers property have been introduced. We explore further ramifications concerning
critical cardinalities. Quite a few interesting observations are obtained while dealing with the Isbell-
Mrówka spaces, Niemytzki plane and Alexandroff duplicates. The properties like monotonically normal,
locally countable cellularity (which is introduced here) play an important role in our investigation. We
study games corresponding to the classical and star variants of the Scheepers property which have not
been investigated in prior works. Some open problems are also posed.

Key words and phrases: Scheepers property, star-Scheepers, strongly star-Scheepers, new star-Scheepers.

1. Introduction

The systematic study of selection principles and the corresponding games in topology was initiated
by Scheepers [26] (see also [18]) and in the last twenty five years it has become one of the most active
research areas of set theoretic topology. Various topological properties have been defined or characterized
in terms of selection principles. The selection principles also have various applications in several branches
of Mathematics. Generalizing the idea of selection principles, in 1999 Kočinac [19] introduced star
selection principles and also mentioned the corresponding games. Since then the study of star selection
principles has attracted many researchers and recently a lot of investigations have been explored to
enrich this area. The idea of new star selection principles was introduced in [5] and later some fascinating
investigations have been carried out in this emerging field. The seminal papers [18,26] set up a framework
for studying generalization of selection principles in numerous ways. Readers interested in star selection
principles and new star selection principles may consult the papers [1, 5, 6, 11–13, 19, 20, 25, 32] where
more references can be found. Note that one of the most important selection principle is Ufin(O,Ω),
nowadays called the Scheepers property (see [18,26]). In general, Scheepers property is stronger than the
Menger property [18, 26] and weaker than the Hurewicz property [18, 26]. For more information about
the Scheepers property see [33, 36].

In this paper we introduce and study the star versions of the Scheepers property Ufin(O,Ω), namely
star-Scheepers property U∗

fin(O,Ω), strongly star-Scheepers property SS∗fin(O,Ω) and new star-Scheepers
property ∗Ufin(O,Ω). In [25, Proposition 1.7], Sakai proved that every star-Lindelöf [39] (respectively,
strongly star-Lindelöf [39]) space of cardinality less than d is star-Menger [19] (respectively, strongly
star-Menger [19]). We improve this result by showing that every star-Lindelöf (respectively, strongly
star-Lindelöf) space of cardinality less than d is star-Scheepers (respectively, strongly star-Scheepers).
In [8], Bonanzinga and Matveev observed that the Isbell-Mrówka space Ψ(A) [22] is strongly star-Menger
if and only if |A| < d. Again we give an improvement of this result by showing that Ψ(A) is strongly
star-Scheepers if and only if |A| < d. We also show that similar result holds in the realm of the Niemytzki
plane [23].

Our investigation shows that the answers to the following problems are not affirmative.

(1) Is there a space X such that AD(X) is star-Scheepers, but X is not star-Scheepers?
(2) Is there a space X such that AD(X) is strongly star-Scheepers, but X is not strongly star-Scheepers?
(3) Is there a space X such that AD(X) satisfies ∗Ufin(O,Ω), but X does not satisfy ∗Ufin(O,Ω)?

In fact our observation further indicates that the answers to the similar problems posted in [28, 30] (for
Menger-kind) are not affirmative. The following is a summary of what has been done throughout.

(1) If each finite power of a space X is star-Menger (respectively, strongly star-Menger, ∗Ufin(O,O)),
then X has the star-Scheepers (respectively, strongly star-Scheepers, ∗Ufin(O,Ω)) property.

(2) A space X satisfies ∗Ufin(O,Ω) if and only if X satisfies ∗Ufin(O,Owgp).
(3) Every star-Alster (respectively, strongly star-Alster) space is star-Scheepers (respectively, strongly

star-Scheepers).
(4) If |A| < ℵω (respectively, |Y | < ℵω), then Ψ(A) (respectively, N(Y )) is star-Scheepers if and only if

Ψ(A) (respectively, N(Y )) is strongly star-Scheepers.
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(5) If X is a Lindelöf (respectively, star-Lindelöf) space which is union of less than d star-Hurewicz [6]
(respectively, Hurewicz) subspaces, then X is star-Scheepers.

(6) If X is a strongly star-Lindelöf space which is union of less than d Hurewicz subspaces, then X is
strongly star-Scheepers.

(7) If X is a Scheepers space, then AD(X) is strongly star-Scheepers (and hence star-Scheepers).
(8) If X is a star-Lindelöf regular P -space and Y is an infinite closed and discrete subset of X , then

|Y | < cof(Fin(w(X))N). Similar result holds if star-Lindelöf condition is replaced by the selection
hypothesis ∗Ufin(O,Ω).

(9) The games Gufin(O,Ω) and G∗
ufin(O,Ω) are equivalent in paracompact Hausdorff spaces.

(10) The games Gufin(O,Ω) and SG∗
fin(O,Ω) are equivalent in metacompact spaces.

The paper is organized as follows. In Section 3, we introduce certain star variations of the Scheepers
property. As in the case of Lindelöf, Menger and Scheepers properties, we show that under similar cardinal
assumptions the star and strongly star versions of these properties behave identically. Few interesting
observations in the context of Isbell-Mrówka space and Niemytzki plane are presented. In particular,
we give a combinatorial characterization of the Ψ-space having the star-Scheepers property. Later in
this section, we deal with Alexandroff duplicates and further investigate preservation like properties. In
Section 4, we introduce another variation of the star-Scheepers property ∗Ufin(O,Ω), which we call the new
star-Scheepers property. The relationship among the star selection principles and the new star selection
principles are outlined into an implication diagram (Figure 2). We also present several observations
related to local countable cellularity (introduced here) and monotonically normality. In Section 5, we
devote our attention to study games corresponding to the Scheepers property and its star variations. We
give another implication diagram (Figure 3) to summarize the relationship between the winning strategies
in the games considered here. In the final section, some open problems are posted.

2. Preliminaries

Throughout the paper (X, τ) stands for a topological space. For undefined notions and terminologies
see [16].

Let A and B be collections of open covers of a space X . Following [18, 26], we define
S1(A,B): For each sequence (Un) of elements of A there exists a sequence (Vn) such that for each n
Vn ∈ Un and {Vn : n ∈ N} ∈ B.

Sfin(A,B): For each sequence (Un) of elements of A there exists a sequence (Vn) such that for each n Vn

is a finite subset of Un and ∪n∈NVn ∈ B.

Ufin(A,B): For each sequence (Un) of elements of A there exists a sequence (Vn) such that for each n Vn

is a finite subset of Un and {∪Vn : n ∈ N} ∈ B or ∪Vn = X for some n.
For a subset A of a space X and a collection P of subsets of X , St(A,P) denotes the star of A with

respect to P , that is the set ∪{B ∈ P : A ∩ B 6= ∅}. For A = {x}, x ∈ X , we write St(x,P) instead of
St({x},P) [16].

In [19], Kočinac introduced star selection principles in the following way.
S∗1(A,B): For each sequence (Un) of elements of A there exists a sequence (Vn) such that for each n
Vn ∈ Un and {St(Vn,Un) : n ∈ N} ∈ B.

S∗fin(A,B): For each sequence (Un) of elements of A there exists a sequence (Vn) such that for each n Vn

is a finite subset of Un and ∪n∈N{St(V,Un) : V ∈ Vn} ∈ B.

U∗
fin(A,B): For each sequence (Un) of elements of A there exists a sequence (Vn) such that for each n Vn

is a finite subset of Un and {St(∪Vn,Un) : n ∈ N} ∈ B or St(∪Vn,Un) = X for some n.

SS∗1(A,B): For each sequence (Un) of elements of A there exists a sequence (xn) of elements of X such
that {St(xn,Un) : n ∈ N} ∈ B.

SS∗fin(A,B): For each sequence (Un) of elements of A there exists a sequence (Fn) of finite subsets of X
such that {St(Fn,Un) : n ∈ N} ∈ B.

Let O denote the collection of all open covers of X . An open cover U of X is said to be a γ-cover if
each element of X does not belong to at most finitely many members of U [20] (see also [18, 26]). We
use the symbol Γ to denote the collection of all γ-covers of X . An open cover U of X is said to be an
ω-cover if for each finite subset F of X there is a set U ∈ U such that F ⊆ U [18,26]. We use the symbol
Ω to denote the collection of all ω-covers of X . An open cover U of X is said to be large [26] if for each
x ∈ X the set {U ∈ U : x ∈ U} is infinite. The collection of all large covers of X is denoted by Λ. Note
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that Γ ⊆ Ω ⊆ Λ ⊆ O. An open cover U of X is said to be weakly groupable [7] if it can be expressed as
a countable union of finite, pairwise disjoint subfamilies Un, n ∈ N, such that for each finite set F ⊆ X
we have F ⊆ ∪Un for some n. The symbol Owgp denotes the collection of all weakly groupable covers of
X . Similarly the symbol Λwgp denotes the collection of all weakly groupable large covers of X .

A space X is said to have the Menger (respectively, Scheepers, Hurewicz) property if it satisfies the
selection hypothesis Sfin(O,O) (respectively, Ufin(O,Ω), Ufin(O,Γ)) [18, 26] (see also [33, 36]).

A space X is said to have the (1) star-Menger property, (2) strongly star-Menger property, (3) star-
Hurewicz property and (4) strongly star-Hurewicz property if it satisfies the selection hypothesis (1)
S∗fin(O,O), (2) SS∗fin(O,O), (3) U∗

fin(O,Γ) and (4) SS∗fin(O,Γ) respectively [6, 19] (see also [28, 30]).
A space X is said to be starcompact (respectively, star-Lindelöf) if for every open cover U of X there

exists a finite (respectively, countable) set V ⊆ U such that St(∪V ,U) = X . X is said to be strongly
starcompact (respectively, strongly star-Lindelöf) if for every open cover U of X there exists a finite
(respectively, countable) set A ⊆ X such that St(A,U) = X [19, 39].

A subset A of a space X is said to be regular-closed in X if Cl(IntA) = A.
A natural pre-order ≤∗ on the Baire space NN is defined by f ≤∗ g if and only if f(n) ≤ g(n) for all

but finitely many n. A subset A of NN is said to be bounded if there is a g ∈ NN such that f ≤∗ g for
all f ∈ A. Let b denote the smallest cardinality of an unbounded subset of NN. A subset D of NN is
said to be dominating if for each g ∈ NN there exists a f ∈ D such that g ≤∗ f . Let d be the minimum
cardinality of a dominating subset of NN and c be the cardinality of the set of reals. The value of d does
not change if one considers the relation ‘≤’ instead of ‘≤∗’ [38]. It is well known that ω1 ≤ b ≤ d ≤ c.
For any cardinal κ, κ+ denotes the smallest cardinal greater than κ.

Recall that a family A ⊆ P (N) is said to be an almost disjoint family if each A ∈ A is infinite and for
any two distinct elements B,C ∈ A, |B ∩ C| < ω. For an almost disjoint family A, let Ψ(A) = A ∪ N
be the Isbell-Mrówka space (or, Ψ-space) (see [22]). It is well known that Ψ(A) is pseudocompact if and
only if A is a maximal almost disjoint family. In general, when talking about Isbell-Mrówka space we do
not require almost disjoint family to be maximal or the space to be pseudocompact.

For a space X , e(X) = sup{|Y | : Y is a closed and discrete subspace of X} is said to be the extent of
X .

3. Star versions of the Scheepers property

3.1. Star-Scheepers and related spaces. We first introduce the following definition.

Definition 3.1. A space X is said to have the star-Scheepers (respectively, strongly star-Scheepers)
property if it satisfies the selection hypothesis U∗

fin(O,Ω) (respectively, SS∗fin(O,Ω)).

Also a space is called star-Scheepers if it has the star-Scheepers property, and similarly for the other.
The following implication diagram (Figure 1) of the star variations of the Hurewicz, Scheepers and

Menger properties can be easily verified.

U∗
fin(O,Γ) U∗

fin(O,Ω) S∗fin(O,O)

SS∗fin(O,Γ) SS∗fin(O,Ω) SS∗fin(O,O)

Ufin(O,Γ) Ufin(O,Ω) Sfin(O,O)

Figure 1. Diagram for star variations of the Hurewicz, Scheepers and Menger properties

We now present few examples to make distinction between the considered spaces. The spaceX = [0, ω1)
with the usual order topology is a Tychonoff countably compact space. Observe that every countably
compact space is strongly starcompact and every strongly starcompact space is strongly star-Hurewicz.
Also it is known that strongly starcompact and countably compact are equivalent for Hausdorff spaces [39].
Thus X is a Tychonoff strongly star-Scheepers space which is not Scheepers (as it is not Lindelöf).

Let aD be the one point compactification of the discrete space D with cardinality c and consider the
subspace X = (aD × [0, c+)) ∪ (D × {c+}) of the product space aD × [0, c+]. By [29, Example 2.2], X
is Tychonoff and starcompact which is not strongly star-Menger. Thus there is a star-Scheepers space
which is not strongly star-Scheepers.

With necessary modifications of [19, Theorems 2.4, 2.5] it follows that every metacompact strongly
star-Scheepers space is Scheepers and also every meta-Lindelöf strongly star-Scheepers space is Lindelöf.
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Similar to the other classical selective properties, the Scheepers property is also equivalent to any of its
star variations in paracompact Hausdorff spaces.

Proposition 3.2. For a paracompact Hausdorff space X the following assertions are equivalent.

(1) X is Scheepers.
(2) X is strongly star-Scheepers.
(3) X is star-Scheepers.

One can find examples of Hausdorff metacompact star-Scheepers spaces which are not strongly star-
Scheepers (and hence not Scheepers). Let κ be an infinite cardinal and D = {dα : α < κ} be the
discrete space of cardinality κ. Let aD = D ∪ {∞} be the one point compactification of D. In the
product space aD × (ω + 1), replace the local base of the point (∞, ω) by the family {U \ (D × {ω}) :
(∞, ω) ∈ U and U is an open set in aD × (ω + 1)}. Let X be the space obtained by such replacement.
By [25, Example 3.4], X is Hausdorff metacompact starcompact (i.e. star-Scheepers) but not strongly
star-Lindelöf (and hence not strongly star-Scheepers). Also by [35, Theorem 8.10], there is a set of reals
X which is Scheepers but not Hurewicz. With the help of Proposition 3.2 and [6, Proposition 4.1], we can
conclude that there exists a star-Scheepers (respectively, strongly star-Scheepers) space which is not star-
Hurewicz (respectively, strongly star-Hurewicz). By [33, Theorem 2.1], there is a set of reals X which is
Menger but not Scheepers. Thus Proposition 3.2 and [19, Theorem 2.8] together imply the existence of a
star-Menger (respectively, strongly star-Menger) space which is not star-Scheepers (respectively, strongly
star-Scheepers).

Theorem 3.3 (cf. [6, Theorem 2.1]). If each finite power of a space X is star-Menger, then X has the
star-Scheepers property.

Theorem 3.4 (cf. [6, Theorem 2.2]). For a space X the following assertions are equivalent.

(1) X is star-Scheepers.
(2) X satisfies U∗

fin(O,Owgp).

Theorem 3.5 (cf. [6, Theorem 3.1]). If each finite power of a space X is strongly star-Menger, then X
has the strongly star-Scheepers property.

Theorem 3.6 (cf. [6, Theorem 3.2]). For a space X the following assertions are equivalent.

(1) X is strongly star-Scheepers.
(2) X satisfies SS∗fin(O,Owgp).

From [2, 4] we recall the following definitions of covers.

G: The family of all covers U of the space X for which each element of U is a Gδ set.
GK : The family consisting of sets U where X is not in U , each element of U is a Gδ set, and for each

compact set C ⊆ X there is a U ∈ U such that C ⊆ U .

A space X is said to be Alster [2] if each member of GK has a countable subset that covers X .
By [3, Proposition 2.6], a space X is Alster if and only if X satisfies S1(GK ,G). The star versions of the
Alster property may be introduced as follows.

Definition 3.7. A space X is said to be star-Alster (respectively, strongly star-Alster) if X satisfies
S∗1(GK ,G) (respectively, SS∗1(GK ,G)).

If a space X has the Alster property, then X is Scheepers. A similar observation for the star versions
has been discussed in the following result.

Theorem 3.8.

(1) Every star-Alster space is star-Scheepers.
(2) Every strongly star-Alster space is strongly star-Scheepers.

Proof. We only provide proof for (1). To show that X is star-Scheepers we pick a sequence (Un) of open
covers of X . We may assume that for each n Un is closed for finite unions. Let {Nk : k ∈ N} be a
partition of N into infinite sets. For each k and each n ∈ Nk choose Wn = {Uk : U ∈ Un}. Now for
each k (Wn : n ∈ Nk) is a sequence of open covers of Xk. Fix k. Let U = {∩n∈Nk

Wn : Wn ∈ Wn}.
Obviously U ∈ GK for Xk. Without loss of generality we suppose that U = H1 ×H2 × · · · × Hk, where
for each 1 ≤ i ≤ k, Hi ∈ GK for X . Applying the star-Alster property of X , for each 1 ≤ i ≤ k, we get a
countable set Ci ⊆ Hi such that {St(V,Hi) : V ∈ Ci} ∈ G for X and subsequently we have a countable set
V = C1 × C2 × · · · × Ck ⊆ U such that St(∪V ,U) covers Xk. Put V = {∩n∈Nk

Wm
n : Wm

n ∈ Wn,m ∈ Nk}.
Later we choose V ′ = {Wn

n ∈ Wn : n ∈ Nk}. Clearly ∪V ⊆ ∪V ′ and so St(∪V ′,U) covers Xk. For each
n ∈ Nk let Vn = {U ∈ Un : Uk ∈ V ′}. The sequence (Vn) witnesses for (Un) that X is star-Scheepers. �
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Let Y be a subspace of a space X . We say that Y is star-Scheepers (respectively, strongly star-
Scheepers) in X if for each sequence (Un) of open covers of X there exists a sequence (Vn) (respectively,
(Fn)) such that for each n Vn is a finite subset of Un (respectively, Fn is a finite subset of X) and for
each finite set F ⊆ Y there exists a n such that F ⊆ St(∪Vn,Un) (respectively, F ⊆ St(Fn,Un)). It
is immediate that if Y is a star-Scheepers (respectively, strongly star-Scheepers) subspace of X , then
Y is star-Scheepers (respectively, strongly star-Scheepers) in X . Also X is star-Scheepers (respectively,
strongly star-Scheepers) if and only if X is star-Scheepers (respectively, strongly star-Scheepers) in X . If
Y is strongly star-Scheepers in X , then Y is star-Scheepers in X .

For a set Y ⊆ NN, maxfin(Y ) is defined as

maxfin(Y ) = {max{f1, f2, . . . , fk} : f1, f2, . . . , fk ∈ Y and k ∈ N} ,

where max{f1, f2, . . . , fk}(n) = max{f1(n), f2(n), . . . , fk(n)} for all n ∈ N.

Example 3.9. If Y is strongly star-Scheepers (respectively, star-Scheepers) in X , then Y need not be a
strongly star-Scheepers (respectively, star-Scheepers) subspace of X .
Assume ω1 < d. Let X = Ψ(A) be the Isbell-Mrówka space with |A| = ω1. We now show that A is strongly
star-Scheepers in X. First choose a sequence (Un) of open covers of X. Without loss of generality assume
that Un = {Un(A) : A ∈ A}∪{{n} : n ∈ N\∪A∈AUn(A)} for each n. We can further assume that to each
A ∈ A only one neighbourhood Un(A) ∈ Un is assigned. For each A ∈ A define a function fA : N → N
by fA(n) = min{m ∈ N : m ∈ Un(A)} for all n ∈ N. If Y = {fA : A ∈ A}, then maxfin(Y ) has
cardinality less than d. Thus there exist a g ∈ NN and a nF ∈ N for each finite set F ⊆ A such that
fF(nF) < g(nF ) with fF ∈ maxfin(Y ). We use the convention that if F = {A}, A ∈ A, then we write
fA instead of fF . For each n let Fn = {1, 2, . . . , g(n)}. We claim that the sequence (Fn) witnesses for
(Un) that A is strongly star-Scheepers in X. Let F be a finite subset of A. Choose a nF ∈ N such that
UnF

(A) ∩ FnF
6= ∅ for all A ∈ F . It follows that F ⊆ St(FnF

,UnF
). Thus A is strongly star-Scheepers

(and hence star-Scheepers) in X.
Since A is a discrete subspace of X with |A| = ω1, A is not star-Scheepers (and hence not strongly

star-Scheepers).

Theorem 3.10.

(1) If X is star-Lindelöf, then every subset of X of cardinality less than d is star-Scheepers in X.
(2) If X is strongly star-Lindelöf, then every subset of X of cardinality less than d is strongly star-

Scheepers in X.

Proof. Let X be star-Lindelöf and Y be a subset of X such that |Y | < d. Choose a sequence (Un) of open

covers of X . Using the hypothesis we can find for each n a countable subset Vn = {V
(n)
m : m ∈ N} of Un

such that X = St(∪Vn,Un). For each y ∈ Y choose a function fy ∈ NN such that St(y,Un) ∩ V
(n)
fy(n)

6= ∅

for all n ∈ N. Since the cardinality of Z = {fy : y ∈ Y } is less than d, maxfin(Z) is also of cardinality less
than d. Thus there exist a g ∈ NN and for each finite set F ⊆ Y a nF ∈ N such that fF (nF ) < g(nF ) with
fF ∈ maxfin(Z). We use the convention that if F = {y}, y ∈ Y , then we write fy instead of fF . For each

n let Wn = {V
(n)
i : i ≤ g(n)}. We now show that the sequence (Wn) witnesses for (Un) that Y is star-

Scheepers in X . Choose a finite subset F = {y1, y2, . . . , yk} of Y . We claim that F ⊆ St(∪WnF
,UnF

).

Let z ∈ F . Since St(z,Un) ∩ V
(n)
fz(n)

6= ∅ for all n ∈ N, we obtain a Uz ∈ UnF
containing z such that

Uz ∩ V
(nF )
fz(nF ) 6= ∅. Since fF (nF ) = max{fy1

(nF ), fy2
(nF ), . . . , fyk

(nF )}, we have fz(nF ) ≤ fF (nF ). It

follows that V
(nF )
fz(nF ) ∈ WnF

and hence z ∈ St(∪WnF
,UnF

). Thus F ⊆ St(∪WnF
,UnF

) and this completes

the proof. �

Corollary 3.11.

(1) Every star-Lindelöf space of cardinality less than d is star-Scheepers.
(2) Every strongly star-Lindelöf space of cardinality less than d is strongly star-Scheepers.

As a consequence, we obtain the following result of M. Sakai [25, Proposition 1.7].

Corollary 3.12.

(1) Every star-Lindelöf space of cardinality less than d is star-Menger.
(2) Every strongly star-Lindelöf space of cardinality less than d is strongly star-Menger.

We also obtain the following equivalent formulations.

Corollary 3.13. For a space X with cardinality less than d the following assertions are equivalent.

(1) X is star-Lindelöf.
(2) X is star-Menger.
(3) X is star-Scheepers.
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Corollary 3.14. For a space X with cardinality less than d the following assertions are equivalent.

(1) X is strongly star-Lindelöf.
(2) X is strongly star-Menger.
(3) X is strongly star-Scheepers.

3.2. On the Isbell-Mrówka space and Niemytzki plane. Let N(X) = (X ×{0})∪ (R× (0,∞)) be
the Niemytzki plane on a set X ⊆ R. The topology on N(X) is defined as follows. R × (0,∞) has the
Euclidean topology and the set X × {0} has the topology generated by all sets of the form {(x, 0)} ∪ U ,
where x ∈ X and U is an open disc in R × (0,∞) which is tangent to X × {0} at the point (x, 0). The
topology on N(X) is also called Niemytzki’s tangent disk topology. It is to be noted that Niemytzki
originally defined N(R) (see [23]).

We say that a space X is σ-starcompact (respectively, σ-strongly starcompact) if it can be written as
the countable union of starcompact (respectively, strongly starcompact) spaces.

Proposition 3.15. Let Y = Z ∪K be a subspace of X. If

(1) Z is star-Scheepers in X and K is σ-starcompact, then Y is star-Scheepers in X.
(2) Z is strongly star-Scheepers in X and K is σ-strongly starcompact, then Y is strongly star-Scheepers

in X.

Proof. Let Z be star-Scheepers in X and K be σ-starcompact. First we show that for any starcompact
subset C of X , Z ∪ C is star-Scheepers in X . Let (Un) be a sequence of open covers of X . For each
n choose a finite set Hn ⊆ Un such that C ⊆ St(∪Hn,Un). Since Z is star-Scheepers in X , there is a
sequence (Kn) such that for each n Kn is a finite subset of Un and for each finite set F ⊆ Z there is a n
such that F ⊆ St(∪Kn,Un). For each n choose Vn = Hn ∪ Kn. Clearly the sequence (Vn) witnesses for
(Un) that Z ∪C is star-Scheepers in X . Next without loss of generality assume that K = ∪n∈NCn, where
each Cn is a starcompact subset of X with Cn ⊆ Cn+1 for all n. Thus Z ∪ Cn ⊆ Z ∪ Cn+1 for all n. It
follows that Y is star-Scheepers in X .

The result similarly follows when Z is strongly star-Scheepers and K is σ-strongly starcompact. �

Corollary 3.16. Let X be a space of the form Y ∪ Z. If

(1) Y is star-Scheepers in X and Z is σ-starcompact, then X is star-Scheepers.
(2) Y is strongly star-Scheepers in X and Z is σ-strongly starcompact, then X is strongly star-Scheepers.
(3) Y is star-Scheepers and Z is σ-starcompact, then X is star-Scheepers.
(4) Y is strongly star-Scheepers and Z is σ-strongly starcompact, then X is strongly star-Scheepers.

Next result follows from [9, Lemma 3.4].

Lemma 3.17. Let X be a regular space of the form Y ∪Z with Y ∩ Z = ∅, where Y is a closed discrete
set and Z is a σ-compact subset of X. If X is strongly star-Scheepers, then |Y | < d.

In line of [9, Theorem 3.5], we obtain the following.

Theorem 3.18. Let X be a regular space of the form Y ∪Z with Y ∩Z = ∅, where Y is a closed discrete
set and Z is a σ-compact subset of X. If X is strongly star-Lindelöf, then |Y | < d if and only if X is
strongly star-Scheepers.

Proof. Assume that |Y | < d. By Theorem 3.10(2), Y is strongly star-Scheepers in X . Again by Corol-
lary 3.16(2), X is strongly star-Scheepers since Z is σ-strongly starcompact. Conversely if X is strongly
star-Scheepers, then by Lemma 3.17, |Y | < d. �

Corollary 3.19. The following assertions hold.

(1) The Isbell-Mrówka space Ψ(A) is strongly star-Scheepers if and only if |A| < d.
(2) The Niemytzki plane N(Y ) is strongly star-Scheepers if and only if |Y | < d.

Corollary 3.20. Assume MA+ ¬CH. The following assertions hold.

(1) If |A| < c, then Ψ(A) is strongly star-Scheepers.
(2) If |Y | < c, then N(Y ) is strongly star-Scheepers.

Proof. Since MA implies d = c, the proof follows from Corollary 3.19. �

By [25, Proposition 2.12], for every closed discrete subset Y of a normal star-Menger space X , we have
|Y | < d. Thus if X is a normal star-Scheepers space and Y is a closed discrete subset of X , then |Y | < d.
In combination with [9, Corollary 3.6(2)] we obtain the following.

Proposition 3.21. If N(Y ) is normal, then the following assertions are equivalent.

(1) N(Y ) is star-Menger.
(2) N(Y ) is strongly star-Menger.
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(3) N(Y ) is star-Scheepers.
(4) N(Y ) is strongly star-Scheepers.

If X = Y ∪Z, where Y is a closed discrete set and Z is a σ-compact subset of X , then X is Scheepers
if and only if |Y | < ω1. Thus we have the following.

Proposition 3.22.

(1) Ψ(A) is Scheepers if and only if |A| < ω1.
(2) N(Y ) is Scheepers if and only if |Y | < ω1.

Corollary 3.23. Assume ZFC + d = ω2.

(1) If |A| = ω1, then Ψ(A) is strongly star-Scheepers but not Scheepers.
(2) If |Y | = ω1, then N(Y ) is strongly star-Scheepers but not Scheepers.

In [8], Bonanzinga and Matveev introduced a cardinal dκ for an infinite cardinal κ. This cardinal dκ
is also studied in [25] and denoted by cof(Fin(κ)N). Throughout we use the symbol cof(Fin(κ)N) instead
of dκ. For an infinite set X let Fin(X) denote the set of all finite subsets of X . The set Fin(X)N of all
functions f : N → Fin(X) is partially ordered coordinate-wise: f ≤ g if f(n) ⊆ g(n) for all n ∈ N. The
cofinality of (Fin(X)N,≤) is denoted by cof(Fin(X)N).

The following lemma is required for our next observation.

Lemma 3.24 (cf. [8, Lemma 7]).

(1) cof(Fin(ω)N) = d.
(2) If ω ≤ κ ≤ c, then max{d, κ} ≤ cof(Fin(κ)N) ≤ c.
(3) If ω ≤ κ < ℵω, then cof(Fin(κ)N) = max{d, κ}.
(4) cof(Fin(c)N) = c.

If |A| = cof(Fin(|A|)N), then Ψ(A) is not star-Menger (and hence not star-Scheepers) (see [8, Propo-
sition 9]). By [9, Corollary 3.17], if |Y | = cof(Fin(|Y |)N), then N(Y ) is not star-Menger (and hence not
star-Scheepers) (see also [25]). Thus if |A| = c (respectively, |Y | = c), then Ψ(A) (respectively, N(Y )) is
not star-Menger (and hence not star-Scheepers).

Theorem 3.25.

(1) If |A| < ℵω, then Ψ(A) is star-Scheepers if and only if Ψ(A) is strongly star-Scheepers.
(2) If |Y | < ℵω, then N(Y ) is star-Scheepers if and only if N(Y ) is strongly star-Scheepers.

Proof. (1). Assume that |A| < d. Observe that Ψ(A) is strongly star-Scheepers. Next assume that
d ≤ |A| < ℵω. By Lemma 3.24(3), |A| = cof(Fin(|A|)N) and hence Ψ(A) is not star-Scheepers. Thus
Ψ(A) is not strongly star-Scheepers.

(2). If |Y | < d, then N(Y ) is strongly star-Scheepers. On the other hand, d ≤ |Y | < ℵω gives
|Y | = cof(Fin(|Y |)N) (see Lemma 3.24(3)) and hence N(Y ) is not star-Scheepers. Clearly N(Y ) is not
strongly star-Scheepers. �

We also obtain the following reformulation of the star-Scheepers property for Ψ(A) spaces. The proof
of the next result uses the technique of [37, Theorem 2.1] with necessary adjustments.

Theorem 3.26. The following assertions are equivalent.

(1) Ψ(A) has the star-Scheepers property.
(2) For each function A 7→ fA from A to NN there are finite sets F1,F2, · · · ⊆ A such that for each finite

set F ⊆ A there exists a n such that (A \ fA(n)) ∩
⋃

B∈Fn
(B \ fB(n)) 6= ∅ for all A ∈ F .

Proof. (1) ⇒ (2). Consider the sequence (Un) of open covers of Ψ(A), where Un = {{A} ∪ (A \ fA(n)) :
A ∈ A} ∪ {{m} : m ∈ N} for each n. Apply the star-Scheepers property of Ψ(A) to (Un) to obtain a
sequence (Vn) such that for each n Vn is a finite subset of Un and {St(∪Vn,Un) : n ∈ N} is an ω-cover
of Ψ(A). For each n and each {m} ∈ Vn we consider the following two situations. For the first case,
if there is an element B ∈ A for which m ∈ B \ fB(n), then replace {m} ∈ Vn by {B} ∪ (B \ fB(n)).
Otherwise if there is no such B, we then remove {m} from Vn. Next for each n define Fn = {A ∈ A :
{A}∪(A\fA(n)) ∈ Vn}. Let F be a finite subset ofA. Choose a n0 such that F ⊆ St(∪Vn0

,Un0
). It follows

that ({A}∪(A\fA(n0)))∩(∪Vn0
) 6= ∅ for all A ∈ F . Consequently (A\fA(n0))∩

⋃
B∈Fn0

(B\fB(n0)) 6= ∅

for all A ∈ F .
(2) ⇒ (1). Let (Un) be a sequence of open covers of Ψ(A). We may assume that for each A ∈ A and

each n there is a fA(n) ∈ N such that {A} ∪ (A \ fA(n)) ∈ Un. Let F1,F2, · · · ⊆ A be finite sets as in
(2). Later for each n we define a finite subset Vn = {{A} ∪ (A \ fA(n)) : A ∈ Fn} of Un. We claim
that {St(∪Vn,Un) : n ∈ N} is an ω-cover of Ψ(A). Let F be a finite subset of Ψ(A). We only consider
the case when F ⊆ A and other cases can be observed similarly. Choose a n0 corresponding to F as in
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(2). Then (A \ fA(n0)) ∩
⋃

B∈Fn0

(B \ fB(n0)) 6= ∅ for all A ∈ F . This gives us ({A} ∪ (A \ fA(n0))) ∩
⋃

B∈Fn0

({B}∪ (B \ fB(n0))) 6= ∅ and subsequently A ∈ St(∪Vn0
,Un0

). Thus F ⊆ St(∪Vn0
,Un0

) and the

proof is now complete. �

3.3. Preservation under topological operations. We now study the characteristics of the star Scheep-
ers and related properties under certain topological operations. Observe that the star versions of the
Scheepers property are invariants of continuous mappings and are inherited by clopen subsets. In view
of [27, Example 2.2], there exists a Tychonoff pseudocompact star-Scheepers space having a regular-closed
subset which is not star-Scheepers. We give another counterexample in this context.

Example 3.27. There exists a Tychonoff strongly star-Scheepers (and hence star-Scheepers) space having
a regular-closed Gδ subset which is not star-Scheepers (and hence not strongly star-Scheepers).
Assume that ω1 < d. Let X = Ψ(A) with |A| = ω1. By Corollary 3.19(1), X is Tychonoff and strongly
star-Scheepers. Let D = {dα : α < ω1} be the discrete space of cardinality ω1 and let aD = D ∪ {d} be
the one point compactification of D. Consider Y = (aD× [0, ω1])\{(d, ω1)} as a subspace of aD× [0, ω1].
To show that Y is not star-Scheepers, it is enough to show that Y is not star-Lindelöf. For each α < ω1

let Uα = {dα}× (α, ω1] and Vα = aD× [0, α). Clearly Uα ∩Uβ = ∅ for α 6= β and Uα ∩Vβ = ∅ for α > β.
Choose an open cover U of Y , where U = {Uα : α < ω1} ∪ {Vα : α < ω1}. Also choose a countable subset
V of U such that St(∪V ,U) = Y . We can find α0 and β0 < ω1 such that Uα /∈ V for all α > α0 and
Vβ /∈ V for all β > β0. Choose a γ < ω1 such that γ > max{α0, β0}. As a result Uγ ∩ (∪V) = ∅. Since Uγ

is the only member of U containing (dγ , ω1), we obtain (dγ , ω1) /∈ St(∪V ,U). Thus Y is not star-Lindelöf
(and hence not star-Scheepers).

Next assume that X ∩ Y = ∅. Let f : A → D × {ω1} be a bijection and Z be the quotient image
of the topological sum X ⊕ Y obtained by identifying A of X with f(A) of Y for every A ∈ A. Let
q : X ⊕ Y → Z be the quotient map. It is immediate that q(Y ) is a regular-closed Gδ subset of Z.
Since q(Y ) is homeomorphic to Y , q(Y ) is not star-Scheepers. Also since q(X) and q(aD × [0, ω1)) are
homeomorphic to X and aD× [0, ω1) respectively, q(X) is strongly star-Scheepers and q(aD× [0, ω1)) is
strongly starcompact. By Corollary 3.16(4), Z = q(X) ∪ q(aD × [0, ω1)) is strongly star-Scheepers.

Let Y = ∪k∈NXk ⊆ X with Xk ⊆ Xk+1 for all k ∈ N. Observe that for each k Xk is star-Scheepers
(respectively, strongly star-Scheepers) in X if and only if Y is star-Scheepers (respectively, strongly
star-Scheepers) in X . Next suppose that X = ∪k∈NXk with Xk ⊆ Xk+1 for all k ∈ N. If each Xk is star-
Scheepers (respectively, strongly star-Scheepers), then X is also star-Scheepers (respectively, strongly
star-Scheepers). The converse of this assertion is not true. For example, consider X = Ψ(A) with
|A| = ω1, under the assumption that ω1 < d. By Corollary 3.19(1), X is strongly star-Scheepers (and
hence X is star-Scheepers). We can write X = ∪n∈NXn, where Xn = A ∪ {1, 2, . . . , n} for each n.
Since each Xn is discrete and |Xn| = ω1, it follows that Xn is not star-Scheepers (and so not strongly
star-Scheepers) for any n.

On another note by [33, Theorem 2.5], there exist two Scheepers spaces of reals whose union is not
Scheepers (see also [18, Theorem 3.9]). As a consequence of Proposition 3.2, there exist two star-Scheepers
(respectively, strongly star-Scheepers) spaces whose union is not star-Scheepers (respectively, strongly
star-Scheepers).

Theorem 3.28.

(1) Let X be Lindelöf. If X is a union of less than d star-Hurewicz spaces, then X is star-Scheepers.
(2) Let X be star-Lindelöf. If X is a union of less than d Hurewicz spaces, then X is star-Scheepers.

Proof. We only present proof for (1). Let κ be a cardinal smaller than d and X = ∪α<κXα, where each
Xα is star-Hurewicz. Choose a sequence (Un) of open covers of X and without loss of generality assume

that each Un is countable, say Un = {U
(n)
m : m ∈ N}. For each α < κ there exists a sequence (V

(α)
n ) such

that for each n V
(α)
n is a finite subset of Un and each x ∈ Xα belongs to St(∪V

(α)
n ,Un) for all but finitely

many n. Next for each α < κ define fα : N → N by fα(n) = min{m ∈ N : V
(α)
n ⊆ {U

(n)
i : i ≤ m}}.

If we choose Y = {fα : α < κ}, then the cardinality of maxfin(Y ) is less than d. Thus there exists
a g ∈ NN such that for each finite subset A of κ we have g �∗ fA with fA ∈ maxfin(Y ). For each n

Vn = {U
(n)
i : i ≤ g(n)} is a finite subset of Un. We now show that the sequence (Vn) witnesses for

(Un) that X is star-Scheepers. Let F be a finite subset of X . Now choose a finite subset A of κ such

that F = ∪α∈AFα with Fα ⊆ Xα. For each α ∈ A consider a nα ∈ N such that Fα ⊆ St(∪V
(α)
n ,Un)

for all n ≥ nα. Choose n0 = max{nα : α ∈ A} and n1 ∈ N such that n1 > n0 and fA(n1) < g(n1).

Thus for each α ∈ A we have Fα ⊆ St(∪i≤fα(n1)U
(n1)
i ,Un1

) ⊆ St(∪i≤fA(n1)U
(n1)
i ,Un1

) and hence F ⊆

St(∪i≤g(n1)U
(n1)
i ,Un1

) ⊆ St(∪Vn1
,Un1

). Clearly such X is star-Scheepers. �

Similarly we obtain the following.
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Theorem 3.29. Let X be strongly star-Lindelöf. If X is a union of less than d Hurewicz spaces, then
X is strongly star-Scheepers.

Recall that the Alexandroff duplicate AD(X) of a space X (see [10,16]) is defined as follows. AD(X) =
X × {0, 1}; each point of X × {1} is isolated and a basic neighbourhood of (x, 0) ∈ X × {0} is a set of
the form (U × {0}) ∪ ((U × {1}) \ {(x, 1)}), where U is a neighbourhood of x in X .

Theorem 3.30. The following assertions are equivalent.
(1) X is Scheepers.
(2) AD(X) is Scheepers.

Proof. Let (Un) be a sequence of open covers of AD(X), where X is Scheepers. For each n and each

x ∈ X let W
(n)
x = (V

(n)
x × {0, 1}) \ {(x, 1)} be an open set in AD(X) containing (x, 0) such that

there is a U
(n)
x ∈ Un with W

(n)
x ⊆ U

(n)
x , where V

(n)
x is an open set in X containing x. For each n

Wn = {V
(n)
x : x ∈ X} is an open cover of X . Apply (1) to (Wn) to obtain a sequence (Fn) of finite

subsets of X such that ({V
(n)
x : x ∈ Fn}) witnesses the Scheepers property of X . For each n and each

x ∈ Fn choose a O
(n)
x ∈ Un with (x, 1) ∈ O

(n)
x . Observe that Vn = {U

(n)
x : x ∈ Fn} ∪ {O

(n)
x : x ∈ Fn} is a

finite subset of Un for each n. The sequence (Vn) witnesses that AD(X) is Scheepers.

Conversely choose a sequence (Un) of open covers of X , say Un = {U
(n)
x : x ∈ X}, where U

(n)
x is an

open set in X containing x for each n. Define Wn = {(U
(n)
x ×{0, 1})\{(x, 1)} : x ∈ X}∪{{(x, 1)} : x ∈ X}

for each n. Since (Wn) is a sequence of open covers of AD(X), there exists a sequence (Hn) such that
for each n Hn is a finite subset of Wn and each finite set F ⊆ AD(X) is contained in ∪Hn for some n.
Now (Hn) produces a sequence (Vn) of finite subsets of (Un) that fulfils the criterion. �

Corollary 3.31. If X is Scheepers, then AD(X) is strongly star-Scheepers and hence star-Scheepers.

Indeed, for many topological properties P the space AD(X) has P if and only if X has P . Such
properties are, for instance, Hausdorffness, regularity, Tychonoffness, normality, Lindelöfness, Menger,
Hurewicz, Scheepers (Theorem 3.30), paracompactness and compactness. For the star variations, the
above result is one directional. Consider X = Ψ(A) with |A| = ω1 under the hypothesis that ω1 < d. By
Corollary 3.19(1), X is Tychonoff and strongly star-Scheepers and hence star-Scheepers. But AD(X) is
not star-Scheepers and hence not strongly star-Scheepers.

Theorem 3.32.

(1) If AD(X) is star-Scheepers, then X is star-Scheepers.
(2) If AD(X) is strongly star-Scheepers, then X is strongly star-Scheepers.

Proof. Consider the case when AD(X) is star-Scheepers. Let (Un) be a sequence of open covers of X .
For each n Wn = {U × {0, 1} : U ∈ Un} is an open cover of AD(X). Apply the star-Scheepers property
of AD(X) to (Wn) to obtain a sequence (Hn) such that for each n Hn is a finite subset of Wn and
{St(∪Hn,Wn) : n ∈ N} is an ω-cover of AD(X). For each n choose Vn = {U ∈ Un : U × {0, 1} ∈ Hn}.
Now the sequence (Vn) witnesses for (Un) that X is star-Scheepers. �

The following problems were posed by Song in [28, 30].

Problem 3.33 (cf. [30, Remark 2.2]). Does there exist a space X such that AD(X) is star-Menger, but
X is not star-Menger?

Problem 3.34 (cf. [28, Remark 2.10]). Does there exist a space X such that AD(X) is strongly star-
Menger, but X is not strongly star-Menger?

In case of star-Scheepers and strongly star-Scheepers property, the answers to the above problems are
not affirmative (see Theorem 3.32). Likewise it can be shown that answers to the above problems are not
affirmative.

The following result uses similar techniques as in Theorem 3.30.

Theorem 3.35.

(1) If X is star-Scheepers, then X × {0} is star-Scheepers in AD(X).
(2) If X is strongly star-Scheepers, then X × {0} is strongly star-Scheepers in AD(X).

We now consider another cardinal characteristic of the star-Scheepers and related spaces. Since strongly
starcompactness is equivalent to countably compactness for Hausdorff spaces, the extent of a Hausdorff
strongly starcompact space is finite. The extent of a Scheepers space is countable. Consider X =
(βD × [0, κ+)) ∪ (D × {κ+}) as a subspace of βD × [0, κ+), where D = {dα : α < κ} is the discrete
space of infinite cardinality κ and βD denotes the Čech-Stone compactification of D. By [31, Lemma
2.3], X is Tychonoff and star-Scheepers. Since D×{κ+} is a discrete closed set in X , we have e(X) ≥ κ.
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Thus the extent of a Tychonoff star-Scheepers space can be arbitrarily large. Furthermore, [28, Example
2.4] shows that for every infinite cardinal κ there exists a T1 strongly star-Scheepers space X such that
e(X) ≥ κ. Observe that if X is a T1 space such that AD(X) is star-Lindelöf, then e(X) ≤ ω. Thus if
X is a T1 space such that AD(X) is star-Scheepers (or, strongly star-Scheepers), then the extent of X is
countable. Since the converse of Theorem 3.32 does not hold in general, we may ask the following.

Problem 3.36.

(1) Let X be star-Scheepers with e(X) ≤ ω. Is the space AD(X) star-Scheepers?
(2) Let X be strongly star-Scheepers with e(X) ≤ ω. Is the space AD(X) strongly star-Scheepers?

Next we turn to consider preimages. If we assume that ω1 < d, then Y = Ψ(A) with |A| = ω1

is Tychonoff and strongly star-Scheepers but X = AD(Y ) is not star-Scheepers. Since the projection
p : X → Y is a closed 2-to-1 continuous mapping, it follows that preimage of a Tychonoff star-Scheepers
(respectively, strongly star-Scheepers) space under a closed 2-to-1 continuous mapping need not be star-
Scheepers (respectively, strongly star-Scheepers).

Theorem 3.37. If f : X → Y is an open perfect mapping from a space X onto a star-Scheepers space
Y , then X is star-Scheepers.

Proof. We only sketch the proof. Let (Un) be a sequence of open covers of X and y ∈ Y . Since f−1(y) is
compact, for each n there exists a finite subset Vy

n of Un such that f−1(y) ⊆ ∪Vy
n and f−1(y)∩U 6= ∅ for

each U ∈ Vy
n. Since f is closed, there exists an open set U

(n)
y in Y containing y such that f−1(U

(n)
y ) ⊆

∪Vy
n. Also we can find an open set V

(n)
y in Y containing y such that V

(n)
y ⊆ ∩{f(U) : U ∈ Vy

n} and

f−1(V
(n)
y ) ⊆ f−1(U

(n)
y ). Consider the sequence (Vn) of open covers of Y , where Vn = {V

(n)
y : y ∈ Y }

for each n. Apply the star-Scheepers property of Y to (Vn) to obtain a sequence (Hn) such that for
each n Hn is a finite subset of Vn and {St(∪Hn,Vn) : n ∈ N} is an ω-cover of Y . For each n define

Hn = {V
(n)
yi : 1 ≤ i ≤ kn} and Wn = ∪1≤i≤kn

Vyi
n . Since for each 1 ≤ i ≤ kn, f

−1(V
(n)
yi ) ⊆ ∪Vyi

n , we have
f−1(∪Hn) ⊆ ∪Wn for each n. The sequence (Wn) now witnesses that X is star-Scheepers. �

Since star-Scheepers property is invariant under countable increasing unions, we have the following.

Corollary 3.38. If X is star-Scheepers and Y is σ-compact, then X × Y is star-Scheepers.

The above result does not hold for the strongly star-Scheepers variation. Example 3.40 shows the
existence of a strongly star-Scheepers space X and a compact space Y such that their product X × Y is
not strongly star-Lindelöf (and hence not strongly star-Scheepers). Again by [28, Example 2.16], there
exist two countably compact spaces X and Y whose product X × Y is not star-Lindelöf. Thus the
product of two star-Scheepers (respectively, strongly star-Scheepers) spaces need not be star-Scheepers
(respectively, strongly star-Scheepers).

The following example shows that Corollary 3.38 does not hold if X is star-Scheepers and Y is Lindelöf.

Example 3.39. There exist a countably compact space X and a Lindelöf space Y such that X × Y is
not star-Lindelöf.
The space X = [0, ω1) with the usual order topology is countably compact. Now define a topology on
Y = [0, ω1] as follows. Each point α < ω1 is isolated and a set U containing ω1 is open if and only if
Y \ U is countable. Clearly Y is Lindelöf.

If possible suppose that X × Y is star-Lindelöf. For each α < ω1 let Uα = [0, α] × [α, ω1] and
Vα = (α, ω1) × {α}. Observe that Uα ∩ Vβ = ∅ for α, β < ω1 and Vα ∩ Vβ = ∅ for α 6= β. Now
U = {Uα : α < ω1}∪{Vα : α < ω1} is an open cover of X×Y . Apply the star-Lindelöf property of X×Y
to find a countable set V ⊆ U such that St(∪V ,U) = X × Y . Since V is a countable subset of U , there
exists a α0 < ω1 such that Vα /∈ V for each α > α0. If we choose a β0 > α0, then (β0+1, β0) /∈ St(∪V ,U)
as Vβ0

is the only member of U containing the point (β0 + 1, β0) and Vβ0
∩ (∪V) = ∅, contradicting our

assumption. Thus X × Y can not be star-Lindelöf.

Also note that Theorem 3.37 does not hold for strongly star-Scheepers spaces.

Example 3.40. There exists a strongly star-Scheepers space whose preimage under an open perfect
mapping is not strongly star-Lindelöf (and hence not strongly star-Scheepers).
Assume that ω1 < d. The space X = Ψ(A) with |A| = ω1 is strongly star-Scheepers. Let Y be the one
point compactification of the discrete space D = {dα : α < ω1} (of cardinality ω1). Observe that the
projection mapping p : X × Y → X is open perfect.

If possible suppose that the preimage X ×Y is strongly star-Lindelöf. Since |A| = ω1, enumerate A as
{Aα : α < ω1}. Consider the open cover

U = {({Aα} ∪ Aα)× (Y \ {dα}) : α < ω1} ∪ {X × {dα} : α < ω1} ∪ {{n} × Y : n ∈ N}
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of X×Y . Since we assume that X×Y is strongly star-Lindelöf, there is a countable subset A of X×Y such
that St(A,U) = X×Y . Also since A is countable, there exists a α0 < ω1 such that A∩(X×{dα}) = ∅ for
each α > α0. Choose β > α0. Thus (Aβ , dβ) /∈ St(A,U) as X×{dβ} is the only member of U containing
the point (Aβ , dβ), which is a contradiction. Clearly X × Y is not strongly star-Lindelöf.

A similar characterization for the strongly star-Scheepers property is the following.

Theorem 3.41. If f is an open, closed and finite-to-one continuous mapping from a space X onto a
strongly star-Scheepers space Y , then X is strongly star-Scheepers.

4. Modifying Scheepers property using new star selection principles

4.1. The new star-Scheepers property ∗Ufin(O,Ω). In [5], the authors introduced the idea of new
star selection principles in the following way. Let A and B be collections of open covers of a space X .

∗U1(A,B): For each sequence (Un) of elements of A there exists a sequence (Un) such that for each n
Un ∈ Un and {St(∪m∈NUm,Un) : n ∈ N} ∈ B.

∗Ufin(A,B): For each sequence (Un) of elements of A there exists a sequence (Vn) such that for each
n Vn is a finite subset of Un and {St(∪m∈N(∪Vm),Un) : n ∈ N} ∈ B.

Similarly one can define the following new star selection principles (corresponding to the strongly star
variations).

∗SU1(A,B): For each sequence (Un) of elements of A there exists a sequence (xn) of members of X
such that {St(∪m∈N{xm},Un) : n ∈ N} ∈ B.

∗SUfin(A,B): For each sequence (Un) of elements of A there exists a sequence (Fn) of finite subsets of
X such that {St(∪m∈NFm,Un) : n ∈ N} ∈ B.

Observe that ∗SU1(A,B) = ∗SUfin(A,B). An easy verification yields the following.

Proposition 4.1. The following assertions are equivalent.

(1) X is strongly star-Lindelöf.
(2) X satisfies ∗SU1(O,Γ).
(3) X satisfies ∗SU1(O,Ω).
(4) X satisfies ∗SU1(O,O).

∗Ufin(O,Γ) ∗Ufin(O,Ω) ∗Ufin(O,O)

star-Lindelöf

∗U1(O,Γ) ∗U1(O,Ω) ∗U1(O,O)

U∗
fin(O,Γ) U∗

fin(O,Ω) S∗fin(O,O)

∗SU1(O,Γ) ∗SU1(O,Ω) ∗SU1(O,O)

S∗1(O,Γ) S∗1(O,Ω) S∗1(O,O)

strongly star-Lindelöf

SS∗fin(O,Γ) SS∗fin(O,Ω) SS∗fin(O,O)

Figure 2. Diagram for new star selection principles

We call ∗Ufin(O,Ω) as the new star-Scheepers property. The relations among the star selection prin-
ciples and the new star selection principles are delineated into an implication diagram (Figure 2).

Note that Ψ(A) with |A| = c is not star-Scheepers, but being a separable space (implies strongly
star-Lindelöf) it satisfies ∗Ufin(O,Ω).

Observe that ∗Ufin(O,Ω) is an invariant of clopen subsets, continuous mappings and countable in-
creasing unions. By Example 3.27, there exists a Tychonoff space with the property ∗Ufin(O,Ω) having a
regular-closed Gδ subset which does not satisfy ∗Ufin(O,Ω). Also note that Ψ(A) satisfies ∗Ufin(O,Ω) for
anyA. If we consider |A| = ω1, then AD(Ψ(A)) does not satisfy ∗Ufin(O,Ω) asA×{1} = {(A, 1) : A ∈ A}
is a discrete clopen subset of AD(X) with cardinality ω1. The following result is similar to Theo-
rem 3.32(1).
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Theorem 4.2. For a space X if AD(X) satisfies ∗Ufin(O,Ω), then so does X.

Also observe that if X is a T1 space such that AD(X) satisfies ∗Ufin(O,Ω) , then e(X) ≤ ω.
As in case of the star-Scheepers and strongly star-Scheepers property, ∗Ufin(O,Ω) is also not an inverse

invariant of closed 2-to-1 continuous mappings. Indeed, Y = Ψ(A) with |A| = ω1 satisfies ∗Ufin(O,Ω).
But X = AD(Y ) does not satisfy ∗Ufin(O,Ω) and the projection mapping p : X → Y is closed 2-to-1
continuous. However the following result is obtained.

Theorem 4.3. If f : X → Y is an open perfect mapping from a space X onto a space Y having the
property ∗Ufin(O,Ω), then X satisfies ∗Ufin(O,Ω).

Since ∗Ufin(O,Ω) is preserved under countable increasing unions, we obtain the following.

Corollary 4.4. If X satisfies ∗Ufin(O,Ω) and Y is σ-compact, then X × Y satisfies ∗Ufin(O,Ω).

The property ∗Ufin(O,Ω) is not preserved under finite products (see Example 3.39). However we
obtain the following.

Theorem 4.5. If every finite power of X satisfies ∗Ufin(O,O), then X satisfies ∗Ufin(O,Ω).

Proof. The proof is similar to [6, Theorem 2.1] and so is omitted. �

As a consequence, we obtain the following result.

Corollary 4.6 ( [5, Theorem 2.19]). If every finite power of a space X satisfies ∗U1(O,O), then X
satisfies ∗Ufin(O,Ω).

The proof of the next result follows from [6, Theorem 2.2] with necessary modifications.

Theorem 4.7. For a space X the following assertions are equivalent.

(1) X satisfies ∗Ufin(O,Ω).
(2) X satisfies ∗Ufin(O,Owgp).

In combination with Theorem 4.5 we obtain the following.

Corollary 4.8. If every finite power of a space X satisfies ∗Ufin(O,O), then X satisfies ∗Ufin(O,Owgp).

The symbol w(X) denotes the weight of a space X .

Theorem 4.9. Let X be a star-Lindelöf regular P -space. If Y is an infinite closed and discrete subset
of X, then |Y | < cof(Fin(w(X))N).

Proof. Let κ = cof(Fin(w(X))N). We prove this by contrapositive argument. If possible suppose that
κ ≤ |Y |. Since w(X) ≤ κ and |Y | ≤ w(X), by our supposition κ = |Y |. By Lemma 3.24(1), κ is
uncountable. Choose a base B for X with |B| = w(X). We may assume that for each B ∈ B, |B∩Y | ≤ 1.

Let {(B
(α)
n ) : α < κ} be a cofinal subset of (Fin(B)N,≤). It now remains to show that X is not star-

Lindelöf. For each y ∈ Y choose an open set Uy in X containing y such that Uy ∩ Y = {y}. Let

Z = {yα : α < κ} be a subset of Y where yα ∈ Y \ ∪{∪B
(α)
n : n ∈ N} and yα 6= yβ for α 6= β.

Since X is a regular P -space, for each α < κ there exists a Vyα
∈ B such that yα ∈ Vyα

⊆ Uyα
and

Vyα
∩ (∪B

(α)
n ) = ∅ for all n. For each x ∈ X \ Z choose Bx ∈ B such that x ∈ Bx and Bx ∩ Z = ∅.

Define Un = {Vyα
: α < κ} ∪ {Bx : x ∈ X \ Z}. Clearly U is an open cover of X . Next consider a

countable subset V of U and enumerate V as {Un : n ∈ N}. For each n define Vn = {Un}. Thus there is

a α0 < κ such that Vn ⊆ B
(α0)
n for all n. It follows that Vyα0

∩ Un ⊆ Vyα0
∩ (∪B

(α0)
n ) = ∅ for all n i.e.

Vyα0
∩ (∪V) = ∅. Since Vyα0

is the unique member of U containing yα0
, yα0

/∈ St(∪V ,U). As a result, X
is not star-Lindelöf. �

Corollary 4.10. For a regular P -space X the following assertions hold.

(1) Let X satisfy ∗Ufin(O,Ω). If Y is an infinite closed and discrete subset of X, then |Y | < cof(Fin(w(X))N).
(2) Let X be either star-Lindelöf or satisfy ∗Ufin(O,Ω). If w(X) = c, then every closed and discrete

subset of X has cardinality less than c.

Note that the role of P -space is essential in Theorem 4.9 and Corollary 4.10. Consider the (regular)
space X = Ψ(A) with |A| = c. Now X satisfies ∗Ufin(O,Ω) and hence X is star-Lindelöf. It is well known
that A is a closed and discrete subset of X and w(X) = c. By Lemma 3.24(4), |A| ≮ cof(Fin(w(X))N).
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4.2. Local countable cellularity and the star operations. Throughout the section all spaces are
assumed to be Hausdorff, unless a specific separation axiom is mentioned. A family of pairwise disjoint
nonempty open sets in a space is called a cellular family.

Definition 4.11. A space is said to have local countable cellularity if every cellular family is locally
countable.

Recall that a space X is called collectionwise normal if for every discrete family {Fα : α ∈ Λ} of closed
sets of X there exists a pairwise disjoint family {Uα : α ∈ Λ} of open sets of X such that Fα ⊆ Uα for
every α ∈ Λ.

We now recollect few definitions from [21,34].

(1) A subset S of a space X is said to be separated if there exists a collection {Ux : x ∈ S} of disjoint
open sets with x ∈ Ux for every x ∈ S and the collection {Ux : x ∈ S} is called a separation of S.

(2) A space X is said to be ≤ κ-collectionwise Hausdorff if every closed discrete subset of size ≤ κ can
be separated.

(3) A space X is said to be collectionwise Hausdorff if it is ≤ κ-collectionwise Hausdorff for every cardinal
κ.

(4) A subset S of a space X is said to be weakly separated if it has a subset of size |S| that is separated.
(5) A space X is said to be weakly κ-collectionwise Hausdorff if every closed discrete subset of size κ is

weakly separated.
(6) A space X is said to be weakly collectionwise Hausdorff if it is weakly κ-collectionwise Hausdorff for

every cardinal κ.

Clearly every collectionwise normal space is collectionwise Hausdorff and every collectionwise Hausdorff
space is weakly collectionwise Hausdorff.

Theorem 4.12. If D is an uncountable separated closed set in X with a locally countable separation,
then X is not star-Lindelöf and X does not satisfy ∗Ufin(O,Ω).

Proof. Let D = {dα : α < ω1} and U = {Uα : α < ω1} be a locally countable separation of D, where
dα ∈ Uα for each α < ω1. For each x ∈ X \D let Ux be an open set in X \D containing x such that Ux

intersects only countably many members of U . Clearly W = U ∪ {Ux : x ∈ X \D} is an open cover of X .
We now show that there is no such countable set V ⊆ W satisfying X = St(∪V ,W). Indeed, suppose

that there exists a countable set V ⊆ W such that X = St(∪V ,W). Now V being a countable subset ofW ,
contains only countably many members of {Ux : x ∈ X \D}. Clearly V intersects only countably many
members of U . It follows that there exists a β < ω1 such that Uβ ∩ (∪V) = ∅. Thus dβ /∈ St(∪V ,W)
as Uβ is the only member of W containing dβ and we arrive at a contradiction. Therefore X is not
star-Lindelöf. �

Corollary 4.13. Suppose that X has local countable cellularity. If X is either star-Lindelöf or satisfies
∗Ufin(O,Ω), then any of the following conditions implies that e(X) ≤ ω.

(1) X is weakly ω1-collectionwise Hausdorff.
(2) X is weakly collectionwise Hausdorff.
(3) X is collectionwise Hausdorff.
(4) X is collectionwise normal.

Theorem 4.14. Every T1 star-Lindelöf space is DCCC.

Proof. Let D be a discrete family of nonempty open sets in a T1 star-Lindelöf space X . Choose a member
x(D) ∈ D for each D ∈ D and set A = {x(D) : D ∈ D}. Let W be the collection of all open sets that
meet at most one member of D and that are disjoint from A. Since D is discrete, U = W ∪D is an open
cover of X and every element of U intersects at most one member of D. Also since X is star-Lindelöf,
there is a countable subset V of U such that {St(V,U) : V ∈ V} covers X . In order to cover A every
member of D must intersect an element of U . Now A is countable as every element of V intersects at
most one member of D. Clearly D is countable and hence X is DCCC. �

Corollary 4.15. Every T1 space satisfying ∗Ufin(O,Ω) is DCCC.

Example 4.16. There exists a Tychonoff DCCC space X which is not star-Lindelöf. Hence X does not
satisfy ∗Ufin(O,Ω).
Let X = ([0, ω1] × [0, ω1)) ∪ (D × {ω1}), where D is the collection of all isolated ordinals in [0, ω1).
Observe that X is Tychonoff and since [0, ω1] × [0, ω1) is a countably compact dense subset of X, X is
pseudocompact and so is DCCC. Consider the open cover U = ([0, ω1]× [0, ω1))∪ {{α}× [0, ω1] : α ∈ D}
of X. Suppose that V is a countable subset of U satisfying X = St(∪V ,U). Now choose a α0 such that
(∪V) ∩ ({α0} × [0, ω1]) = ∅. Since {α0} × [0, ω1] is the only member of U containing (α0, ω1), it follows
that (α0, ω1) /∈ St(∪V ,U), which is a contradiction. Thus X is not star-Lindelöf.



14 D. CHANDRA, N. ALAM

Clearly every separable space is strongly star-Lindelöf (and hence satisfies ∗Ufin(O,Ω)). On the other
way round, the one point Lindelöfication D∗ of the discrete space D of cardinality c is Lindelöf (and
hence strongly star-Lindelöf) but D∗ is not separable.

Theorem 4.17. Let X be a star-Lindelöf perfect space. If X has local countable cellularity, then X is
CCC.

Proof. Suppose that X is not CCC. Choose an uncountable pairwise disjoint family U of nonempty open
sets of X . Say U = {Uα : α < ω1}. For each α < ω1 choose dα ∈ Uα and set D = {dα : α < ω1}. Now D
is an uncountable discrete subset of X . Since X is perfect, by [40, Lemma 3.5], we may assume that D
is a closed subset of X . Clearly D is a separated set with a locally countable separation {Uα : α < ω1}.
By Theorem 4.12, X is not star-Lindelöf. This completes the proof. �

Corollary 4.18. Let X be a perfect space having local countable cellularity. If X satisfies ∗Ufin(O,Ω),
then X is CCC.

Proposition 4.19. Let X be a star-Lindelöf space having local countable cellularity. Any of the following
conditions implies that X is CCC.

(1) X is a union of countably many closed discrete subsets.
(2) X is a semi-stratifiable space.
(3) X is a Moore space.

Corollary 4.20. Let X be a space having local countable cellularity. If X satisfies ∗Ufin(O,Ω), then any
of the following conditions implies that X is CCC.

(1) X is a union of countably many closed discrete subsets.
(2) X is a semi-stratifiable space.
(3) X is a Moore space.

Recall that a space X is said to be monotonically normal if it admits an operator N (called the
monotone normality operator) that assigns to any point x ∈ X and any open set U ∋ x an open set
N(x, U) such that x ∈ N(x, U) ⊆ U and for any points x, y ∈ X and open sets U, V such that x ∈ U and
y ∈ V , it follows from N(x, U) ∩N(y, V ) 6= ∅ that x ∈ V or y ∈ U [17].

Lemma 4.21. If X is a star-Lindelöf monotonically normal space with local countable cellularity, then
e(X) ≤ ω.

Recall that a space is stratifiable if and only if it is monotonically normal and semi-stratifiable ( [17,
Theorem 2.5]). Now suppose that X is a star-Lindelöf stratifiable space with local countable cellularity.
By Lemma 4.21, e(X) ≤ ω. Since every semi-stratifiable space X with e(X) ≤ ω is Lindelöf ( [14]), we
have the following.

Theorem 4.22. Every star-Lindelöf stratifiable space X with local countable cellularity is Lindelöf.

Corollary 4.23. Let X be a stratifiable space having local countable cellularity. If X satisfies ∗Ufin(O,Ω),
then X is Lindelöf.

Corollary 4.24. Let X be a stratifiable space having local countable cellularity. The following assertions
are equivalent.

(1) X is star-Lindelöf.
(2) X satisfies ∗Ufin(O,Ω).
(3) X is strongly star-Lindelöf.
(4) X is Lindelöf.

Theorem 4.25. Let Y =
∏n

i=1 Yi, where each Yi is a scattered monotonically normal space and let
X ⊆ Y . If X is a star-Lindelöf space with local countable cellularity, then e(X) ≤ ω.

Proof. Suppose that e(X) = ω1. Choose a closed discrete subset D of X with |D| = ω1. Consider the
projection pi : Y → Yi for each 1 ≤ i ≤ n. Next choose a k, 1 ≤ k ≤ n, such that |pk(D)| = ω1.
Let A be the collection of isolated points of pk(D). Since Yk is scattered, A is dense in pk(D) and
hence A is uncountable. Now A is a separated set in Yk since Yk is hereditary collectionwise normal.
Let {Ux : x ∈ A} be a separation of A. For each x ∈ A we choose a yx ∈ D such that pk(yx) = x.
Consequently B = {yx : x ∈ A} is a separated set in X with separation {p−1(Ux) : x ∈ A}. Also since B
is an uncountable closed set in X and {p−1(Ux) : x ∈ A} is locally countable, X is not star-Lindelöf by
Theorem 4.12. �

Corollary 4.26. Let Y =
∏n

i=1 Yi, where each Yi is a scattered monotonically normal space and let X
be a subspace of Y having local countable cellularity. If X satisfies ∗Ufin(O,Ω), then e(X) ≤ ω.
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Corollary 4.27. Let α be an ordinal and X be a subspace of αn having local countable cellularity. If X
is either star-Lindelöf or satisfies ∗Ufin(O,Ω), then e(X) ≤ ω.

Theorem 4.28. Let X be a star-Lindelöf subspace of ωN
1 . If X has local countable cellularity, then

e(X) ≤ ω.

Proof. Assume the contrary. Suppose that e(X) = ω1. Choose a closed discrete subset D of X with
cardinality ω1. For each n ∈ N consider the nth projection mapping pn : ωN

1 → ω1. Now it is possible to
find a k ∈ N such that |pk(D)| = ω1. Since otherwise if for each n pn(D) is countable, then

∏
n∈N

pn(D)
is second countable. Also since D ⊆

∏
n∈N

pn(D) and every second countable space has countable extent,
these lead to a contradiction.

Next observe that if A is the collection of isolated points of pk(D), then A is uncountable. On the
other hand, since ω1 is hereditary collectionwise normal, A is a separated set in ω1. Let {Ux : x ∈ A}
be a separation of A. Now choose for each x ∈ A a yx ∈ D such that pk(yx) = x. Subsequently
B = {yx : x ∈ A} is a separated set in X with a separation {p−1(Ux) : x ∈ A}. Since B is an uncountable
closed set in X and {p−1(Ux) : x ∈ A} is locally countable, X is not star-Lindelöf by Theorem 4.12. �

Corollary 4.29. Let X be a subspace of ωN
1 satisfying ∗Ufin(O,Ω). If X has local countable cellularity,

then e(X) ≤ ω.

5. Game theoretic observations

In [1], we recently investigated on games of some star selection principles. A similar type of investigation
for the star versions of the Scheepers property has been carried out in this section. Few more related
observations are also discussed.

Following [19,26], we consider infinitely long games G∏(O,B) corresponding to the selection principles∏
(O,B) and G∑(O,O) corresponding to the selection principles

∑
(O,O), where

∏
∈ {∗U1, SS

∗
fin,Ufin,U

∗
fin,

∗Ufin},

G∏ ∈ {∗G1, SG
∗
fin,Gufin,G

∗
ufin,

∗Gufin},
∑

∈ {S1, S
∗
1, SS

∗
1,

∗U1, Sfin, S
∗
fin, SS

∗
fin,

∗Ufin},

G∑ ∈ {G1,G
∗
1, SG

∗
1,

∗G1,Gfin,G
∗
fin, SG

∗
fin,

∗Gufin}

and B ∈ {Ω,Γ}.
The game Gufin(O,Ω) on a space X corresponding to the selection principle Ufin(O,Ω) is played as

follows. Players ONE and TWO play an inning for each positive integer n. In the nth inning ONE
chooses an open cover Un of X and TWO responds by selecting a finite subset Vn of Un. TWO wins the
play U1,V1,U2,V2, . . . ,Un,Vn, . . . of this game if {∪Vn : n ∈ N} is an ω-cover of X ; otherwise ONE wins.
Other games can be similarly defined.

It is easy to see that if ONE does not have a winning strategy in any of the above game on X , then
X satisfies the selection principle corresponding to that game.

Recall that two games are said to be equivalent if whenever one of the players has a winning strategy
in one of the games, then that same player has a winning strategy in the other game [24].

Theorem 5.1. For a paracompact Hausdorff space X the games Gufin(O,Ω) and G∗
ufin(O,Ω) are equiv-

alent.

Proof. An easy verification shows that if ONE has a winning strategy in G∗
ufin(O,Ω) on X , then ONE

has a winning strategy in Gufin(O,Ω) on X and on the other hand, if TWO has a winning strategy in
Gufin(O,Ω) on X , then TWO has a winning strategy in G∗

ufin(O,Ω) on X .
Suppose that ONE has a winning strategy σ in Gufin(O,Ω) on X . We now define a strategy τ for

ONE in G∗
ufin(O,Ω) on X as follows. Let σ(∅) = U be the first move of ONE in Gufin(O,Ω). Since X is a

paracompact Hausdorff space, U has an open star-refinement, sayW . Suppose that the first move of ONE
in G∗

ufin(O,Ω) is τ(∅) = W and TWO responds by selecting a finite subset W1 ⊆ τ(∅). For each W ∈ W1

we can find a UW ∈ U such that St(W, τ(∅)) ⊆ UW . Thus we obtain a finite subset V1 = {UW : W ∈ W1}
of U . Let V1 be the response of TWO in Gufin(O,Ω). The second move of ONE is σ(V1). Continuing in
this way, we obtain the legitimate strategy τ for ONE in G∗

ufin(O,Ω). It now follows that τ is a winning
strategy for ONE in G∗

ufin(O,Ω) on X .
Next suppose that TWO has a winning strategy σ in G∗

ufin(O,Ω) on X . We define a strategy τ
for TWO in Gufin(O,Ω) on X as follows. Let U1 be the first move of ONE in Gufin(O,Ω). Again
by paracompactness and Hausdorffness of X , U1 has an open star-refinement, say W1. Define ONE’s
first move in G∗

ufin(O,Ω) to be W1. TWO responds by choosing a finite subset σ(W1) = F1 of W1 in
G∗

ufin(O,Ω). Since W1 is an open star-refinement of U1, for each W ∈ F1 there exists a UW ∈ U1 such
that St(W,W1) ⊆ UW . Choose V1 = {UW : W ∈ F1}, which is a finite subset of U1. Define TWO’s
response in Gufin(O,Ω) as τ(U1) = V1. Proceeding similarly, we can construct the strategy τ for TWO
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in Gufin(O,Ω). Observe that τ is a winning strategy for TWO in Gufin(O,Ω) on X . This completes the
proof. �

Similarly the next result is obtained.

Theorem 5.2. For a metacompact space X the games Gufin(O,Ω) and SG∗
fin(O,Ω) are equivalent.

In association with Theorem 5.1 and Theorem 5.2, we obtain the following.

Corollary 5.3. For a paracompact Hausdorff space X the following games are equivalent.

(1) Gufin(O,Ω).
(2) G∗

ufin(O,Ω).
(3) SG∗

fin(O,Ω).

We now show that the hypothesis on the space X in Theorem 5.1, Theorem 5.2 and Corollary 5.3
cannot be dropped.

Example 5.4. Paracompactness in Theorem 5.1 and metacompactness in Theorem 5.2 are essential.
Consider X = [0, ω1), the set of all countable ordinals with the order topology. The space X is Tychonoff
but not metacompact (and hence not paracompact). Since X is not Lindelöf, it does not satisfy the
Scheepers property and hence TWO has no winning strategy in Gufin(O,Ω). We claim that TWO has a
winning strategy in the games G∗

ufin(O,Ω) and SG∗
fin(O,Ω) on X. It is enough to show that TWO has

a winning strategy in SG∗
fin(O,Ω). Let us define a strategy σ for TWO in SG∗

fin(O,Ω) on X as follows.
In the nth inning, suppose that Un is the move of ONE in SG∗

fin(O,Ω). Since X is strongly starcompact,
there exists a finite set Fn ⊆ X such that X = St(Fn,Un). Choose σ(U1,U2, . . . ,Un) = Fn as the response
of TWO in SG∗

fin(O,Ω). This defines a winning strategy σ for TWO in SG∗
fin(O,Ω) on X.

Example 5.5. Paracompactness in Corollary 5.3 is essential.

(1) We construct a Hausdorff metacompact starcompact space X which is not paracompact. Let κ be an
infinite cardinal and D = {dα : α < κ} be the discrete space of cardinality κ. Let aD = D ∪ {∞} be the
one point compactification of D. In the product space aD × (ω + 1), replace the local base of the point
(∞, ω) by the family {U \ (D × {ω}) : (∞, ω) ∈ U and U is an open set in aD × (ω + 1)}. Let X be the
space obtained by such replacement. Observe that TWO has no winning strategy in the game SG∗

fin(O,Ω)
on X since X is not strongly star-Scheepers. Using starcompactness we can construct a winning strategy
for TWO in G∗

ufin(O,Ω) on X in line of Example 5.4.

(2) Let aD be the one point compactification of the discrete space D of cardinality c and consider the
subspace X = (aD× [0, c+))∪ (D×{c+}) of the product space aD× [0, c+]. The space X obtained such a
way is Tychonoff starcompact but not paracompact. In addition, X is not strongly star-Scheepers. Using
similar reasoning it can be shown that TWO has a winning strategy in G∗

ufin(O,Ω) but TWO has no
winning strategy in SG∗

fin(O,Ω) on X.

Also we can remark that the games G∗
ufin(O,Ω) and Gufin(O,Ω) are not equivalent in general.

Theorem 5.6. If X is a space such that ONE does not have a winning strategy in the game Gufin(O,Ω)
on X, then each large cover of X is weakly groupable.

Proof. Let U = {Un : n ∈ N} be a large cover of X . We define a strategy σ for ONE in the game
Gufin(O,Ω) on X as follows. Consider σ(∅) = U as the first move of ONE. If TWO responds by selecting
a finite subset V1 ⊆ σ(∅), then ONE plays σ(V1) = U \V1 in the second inning. If TWO responds with a
finite subset V2 ⊆ σ(V1), then ONE plays σ(V1,V2) = U \ (V1 ∪ V2) and so on. Thus we get a legitimate
strategy σ for ONE in Gufin(O,Ω) on X . Since ONE does not have a winning strategy in Gufin(O,Ω) on
X , σ is not a winning strategy for ONE. Now there is a σ-play σ(∅),V1, σ(V1),V2, σ(V1,V1), . . . which is
lost by ONE. It follows that {∪Vn : n ∈ N} is an ω-cover of X and the members of the sequence (Vn)
of moves by TWO are pairwise disjoint. If any member of U are not present in the sequence (Vn), then
after the construction of the play they can be distributed among Vn’s so that U is weakly groupable. �

Summarizing Theorem 5.6, Theorem 5.1 and Theorem 5.2, we obtain the following.

Corollary 5.7.

(1) Let X be a paracompact Hausdorff space. If ONE does not have a winning strategy in the game
G∗

ufin(O,Ω) on X, then each large cover of X is weakly groupable.
(2) Let X be a metacompact space. If ONE does not have a winning strategy in the game SG∗

fin(O,Ω) on
X, then each large cover of X is weakly groupable.

Definition 5.8. An open cover U of X is said to be star-weakly groupable if it can be expressed as a
countable union of finite, pairwise disjoint subfamilies Vn, n ∈ N, such that for each finite set F ⊆ X we
have F ⊆ St(∪Vn,U) for some n.
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We sketch the proof of the next result, which is a star variation of Theorem 5.6.

Theorem 5.9. If X is a space such that ONE does not have a winning strategy in the game G∗
ufin(O,Ω)

on X, then each countable large cover of X is star-weakly groupable.

Proof. Let U = {Un : n ∈ N} be a large cover of X . We define a strategy σ for ONE in G∗
ufin(O,Ω) on

X as follows. Consider σ(∅) = U as the first move of ONE. If TWO responds by selecting a finite subset
V1 ⊆ σ(∅), then ONE plays σ(V1) = U \ V1 in the second inning. If TWO responds with a finite subset
V2 ⊆ σ(V1), then ONE plays σ(V1,V2) = U \ (V1 ∪V2) and so on. Thus we get a legitimate strategy σ for
ONE in G∗

ufin(O,Ω) on X . Since ONE does not have a winning strategy in G∗
ufin(O,Ω) on X , σ is not a

winning strategy for ONE. So there exists a σ-play σ(∅),V1, σ(V1),V2, σ(V1,V2), . . . which is lost by ONE.
Observe that {St(∪Vn, σ(V1,V2, . . . ,Vn−1)) : n ∈ N} is an ω-cover of X and the members of the sequence
(Vn) of moves by TWO are pairwise disjoint. It can be shown that U is star-weakly groupable. �

Corollary 5.10. If X is a space such that ONE does not have a winning strategy in the game SG∗
fin(O,Ω)

on X, then each countable large cover of X is star-weakly groupable.

The next result can be similarly verified.

Theorem 5.11. If ONE does not have a winning strategy in the game Gufin(O,Ω) on X, then ONE does
not have a winning strategy in the game Gfin(Ω,Λ

wgp) on X.

Combining Theorem 5.11, Theorem 5.1 and Theorem 5.2, we obtain the following.

Corollary 5.12.

(1) Let X be a paracompact Hausdorff space. If ONE does not have a winning strategy in the game
G∗

ufin(O,Ω) on X, then ONE does not have a winning strategy in the game Gfin(Ω,Λ
wgp) on X.

(2) Let X be a metacompact space. If ONE does not have a winning strategy in the game SG∗
fin(O,Ω) on

X, then ONE does not have a winning strategy in the game Gfin(Ω,Λ
wgp) on X.

Theorem 5.13. If TWO has a winning strategy in the game G∗
ufin(O,Ω) on X, then TWO has a winning

strategy in the game ∗Gufin(O,Ω) on X.

Theorem 5.14. If ONE has a winning strategy in the game ∗Gufin(O,Ω) on X, then ONE has a winning
strategy in the game G∗

ufin(O,Ω) on X.

Example 5.15. Converse of Theorem 5.13 and Theorem 5.14 is not true.
The space X = Ψ(A) where |A| = c is Tychonoff and strongly star-Lindelöf but not star-Scheepers. Thus
TWO has no winning strategy and ONE has a winning strategy in G∗

ufin(O,Ω) on X. We claim that
TWO has a winning strategy in ∗Gufin(O,Ω) on X. Define a strategy σ for TWO in ∗Gufin(O,Ω) on X
as follows. Let U1 be the first move of ONE. Since X is strongly star-Lindelöf, choose a countable subset
A = {xn : n ∈ N} of X such that St(A,U1) = X. Next choose a U1 ∈ U1 such that x1 ∈ U1 and consider
σ(U1) = {U1} as the response of TWO. Let U2 be the second move of ONE. Also there is a U2 ∈ U2 such
that x2 ∈ U2 and consider σ(U1,U2) = {U2} as the response of TWO. Suppose that U3 is the third move
of ONE and so on. Thus we define a winning strategy σ for TWO in the game ∗Gufin(O,Ω) on X.

We now show that ONE does not have a winning strategy in ∗Gufin(O,Ω) on X. Let τ be a strategy
for ONE in ∗Gufin(O,Ω). We construct a τ-play as follows. Suppose that τ(∅) = U is the first move of
ONE. Again by the strongly star-Lindelöf property of X, there is a countable subset A = {xn : n ∈ N} of
X such that St(A,U) = X. Choose a U1 ∈ U such that x1 ∈ U1 and define V1 = {U1} as the response of
TWO. The second move of ONE is τ(V1) and subsequently we can find a U2 ∈ τ(V1) such that x2 ∈ U2.
Define V2 = {U2} as the response of TWO. The third move of ONE is τ(V2) and so on. This defines a
τ-play in ∗Gufin(O,Ω). It can be seen that the τ-play is lost by ONE and hence ONE does not have a
winning strategy in the game ∗Gufin(O,Ω) on X.

The relation between the winning strategies of the players ONE and TWO in the games (for any space
X) considered here can be outlined into the following diagram (Figure 3), where each of the implications

G H, G H and G H

holds if winning strategies for TWO in G produce winning strategies for TWO in H as well as winning
strategies for ONE in H produce winning strategies for ONE in G and the selection principle for G implies
the selection principle for H .

6. Concluding Remarks

We surmise a result related to the strongly star-Scheepers property. See [9, Theorem 3.24] for similar
investigation in the context of strongly star-Menger spaces.
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∗G1(O,Γ) ∗Gufin(O,Γ) ∗Gufin(O,Ω) ∗Gufin(O,O) ∗G1(O,O)

G∗
1(O,Γ) G∗

ufin(O,Γ) G∗
ufin(O,Ω) G∗

fin(O,O) G∗
1(O,O)

G∗
1(O,Ω) SG∗

fin(O,Γ) SG∗
fin(O,Ω) SG∗

fin(O,O) SG∗
1(O,O)

∗G1(O,Ω) Gufin(O,Γ) Gufin(O,Ω) Gfin(O,O) G1(O,O)

Figure 3. Diagram of winning strategies

Conjecture 6.1. Let X be a strongly star-Lindelöf space of the form Y ∪Z, where Y is a closed discrete
set and Z is a σ-compact subset of X with Y ∩ Z = ∅. If X is strongly star-Scheepers, then ONE does
not have a winning strategy in the game SG∗

fin(O,Ω) on X.

Considering the above conjecture is true, we obtain the amusing game theoretic observation.

Result 6.2. If X is Ψ-space or the Niemytzki plane, then X is strongly star-Scheepers if and only if
ONE does not have a winning strategy in the game SG∗

fin(O,Ω) on X.

Next we use the idea of [1, 15] to define restricted Scheepers game RGufin(O,Ω), restricted star-
Scheepers game RG∗

ufin(O,Ω) and restricted strongly star-Scheepers game RSG∗
fin(O,Ω) on a space X .

RGufin(O,Ω): Players ONE and TWO play an inning per each positive integer. At the start of nth inning
TWO makes an initial move which must be a positive integer kn. ONE then play an open cover Un of
X and TWO responds by selecting a finite set Vn ⊆ Un with |Vn| = kn. TWO wins the play if and
only if {∪Vn : n ∈ N} is an ω-cover of X ; otherwise ONE wins. The game RG∗

ufin(O,Ω) can be defined
analogously, where we demand that {St(∪Vn,Un) : n ∈ N} instead of {∪Vn : n ∈ N} is an ω-cover of X .

RSG∗
fin(O,Ω): Players ONE and TWO play an inning per each positive integer. At the start of nth

inning TWO makes an initial move which must be a positive integer kn. ONE then play an open cover
Un of X and TWO responds by selecting a finite set Fn ⊆ X with |Fn| = kn. TWO wins the play if and
only if {St(Fn,Un) : n ∈ N} is an ω-cover of X ; otherwise ONE wins.

It can be seen that the games RGufin(O,Ω), RG∗
ufin(O,Ω) and RSG∗

fin(O,Ω) are all equivalent for
paracompact Hausdorff spaces. Similar such investigations may be carried out in line of [1].

In another note, assume that b < d. By [8, Proposition] and Corollary 3.19(1), Ψ(A) with |A| = b is
strongly star-Scheepers but neither Scheepers nor strongly star-Hurewicz. Thus it is interesting to ask
the following questions.

Problem 6.3. Does there exist a star-Scheepers space which is neither Scheepers nor star-Hurewicz?

Problem 6.4. Does there exist a strongly star-Menger space which is neither Menger nor strongly star-
Scheepers?

Problem 6.5. Does there exist a star-Menger space which is neither Menger nor star-Scheepers?
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[7] L. Babinkostova, Lj.D.R. Kočinac, M. Scheepers, Combinatorics of open covers (VIII), Topology Appl., 140 (2004),

15–32.
[8] M. Bonanzinga, M. Matveev, Some covering properties for Ψ-spaces, Mat. Vesnik, 61 (2009), 3–11.
[9] J. Casas-de la Rose, S.A. Garcia-Balan, P.J. Szeptycki, Some star and strongly star selection principles, Topology

Appl., 258 (2019), 572–587.
[10] A. Caserta, S. Watson, The Alexandroff duplicate and its subspaces, Appl. Gen. Topol., 8(2) (2007), 187–205.
[11] D. Chandra, N. Alam, On localization of the star-Menger selection principle, Hacet. J. Math. Stat., 50(4) (2021),

1155–1168.
[12] D. Chandra, N. Alam, Some remarks on star-Menger spaces using box products, Filomat, 36(5) (2022), 1769–1774.
[13] D. Chandra, N. Alam, Further investigations on certain star selection principles, Topology Appl., 328 (2023), 108446.
[14] G.D. Creede, Concerning semi-stratifiable spaces, Pacific J. Math., 32(1) (1970), 47–54.
[15] L. Crone, L. Fishman, N. Hiers, S. Jackson, Equivalence of the Rothberger, k-Rothberger, and restricted Menger games,

Topology Appl., 258 (2019), 172–176.
[16] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
[17] R.W. Heath, D.J. Lutzer, P.L. Zenor, Monotonically normal spaces, Trans. Amer. Math. Soc., 178 (1973), 481–493.
[18] W. Just, A.W. Miller, M. Scheepers, P.J. Szeptycki, The combinatorics of open covers (II), Topology Appl., 73 (1996),

241–266.
[19] Lj.D.R. Kočinac, Star-Menger and related spaces, Publ. Math. Debrecen, 55 (1999), 421–431.
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