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1. Introduction and statement of the main results

A natural question in the qualitative study of solutions to partial differential equations re-
gards their behaviour at large distances on complete Riemannian manifolds. For harmonic
potentials, a very satisfactory description was achieved in the fairly general framework of com-
plete Riemannian manifolds with nonnegative Ricci curvature and Euclidean Volume Growth
in [LTW97] and [CM97]. In [LTW97] using the representation formula and in [CM97] employing
the monotonicity of the Almgren’s frequency function, the authors proved that the harmonic
potential u of an open bounded subset Ω with smooth boundary, namely the solution to∆gu = 0 on M r Ω,

u = 1 on ∂Ω,
u(x)→ 0 as dg(x,Ω)→ +∞,

is asymptotically equivalent to dg(x,Ω)2−n, far away from Ω (see also [Din02; AFM20]). In
[AFM20] these results were applied to establish the Willmore Inequality in this framework
and, consequently, a sharp Isoperimetric Inequality in dimension n = 3 with an explicit optimal
constant depending only on the Asymptotic Volume Ratio (AVR(g) for short) and the dimension
of the manifold. The asymptotic behaviour of harmonic functions played a role also in the proof
of the Positive Mass Theorem in [AMO21] in the context of Asymptotically Flat Riemannian
manifolds with nonnegative scalar curvature.

In the last few years, it became evident that even stronger geometric conclusions can be drawn
from the study of p-harmonic potentials on complete Riemannian manifolds, such as the validity
of Minkowski Inequalities [FMP19; AFM22; BFM21] and the Riemannian Penrose Inequality
[Ago+22]. Aim of the present work is to provide a detailed analysis of the asymptotic behaviour
of these functions in the context of Asymptotically Conical Riemannian manifolds. This study
extends some classical results, obtained by Kichenassamy and Véron [KV86] (see also [Col+15])
in the context of the flat Euclidean space.

To state our results, we now introduce some notation and setup. We recall that on a Rie-
mannian manifold (M, g) the p-capacitary potential of a bounded open domain Ω ⊂ M is the
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solution u : M r Ω→ R to ∆
(p)
g u = 0 on M r Ω,
u = 1 on ∂Ω,

u(x)→ 0 as dg(x,Ω)→ +∞,

(1.1)

where ∆
(p)
g u = divg(|Du|p−2Du) is the p-Laplace operator associated with the metric g. Through-

out the paper we will systematically work on complete noncompact Riemannian manifolds (M, g)
of dimension n ≥ 3 that are Asymptotically Conical with quadratically asymptotically nonnega-
tive Ricci curvature, that is

Ric(x) ≥ − (n− 1)κ2

(1 + dg(x, o))2
(1.2)

for some some fixed o ∈ M and κ ∈ R, and every x ∈ M . In accordance with [CEV17], by the
locution Asymptotically Conical Riemannian manifolds, we are denoting, manifolds such that,
outside of some open bounded subset K, are diffeomorphic to a (truncated) cone [1,+∞)× L,
over a smooth hypersuface L, called the link of the cone, and such that the metric is close (in
the C k,α-topology for some k ∈ N and α ∈ [0, 1]) to the cone metric ĝ = dρ2 + ρ2gL, where ρ is
the radial coordinate on the cone (see Definition 2.13 for details).

Differently from the case Ric ≥ 0, where the Cheeger-Gromoll splitting theorem applies, here
we possibly have to deal with manifolds that have more than one single end (see [LT92, Definition
0.4 and discussion thereafter] for the notion of ends). Nevertheless, due to the compactness and
smoothness of ∂K, the manifold is forced to have a finite number of ends E1, . . . , EN . We
can assume that each end Ei is diffeomorphic to [1,+∞) × Li for every i = 1, . . . , N , being Li
the connected components of L, and consequently each end is Asymptotically Conical. We can
define an Asymptotic Volume Ratio on each end as

AVR(g;Ei) = lim
R→+∞

|B(o,R) ∩ Ei|
|Bn|Rn

.

Indeed, it is not hard to realise that, even if it is not monotone, the ratio |B(o,R)|/Rn has a
limit as R→ +∞ in Asymptotically Conical Riemannian manifolds. Moreover, the Asymptotic
Volume Ratio AVR(g) of the manifold splits as

AVR(g) =

N∑
i=1

AVR(g;Ei)

where 0 < AVR(g) ≤ N is the Asymptotic Volume Ratio of (M, g).
It is not surprising that the asymptotic behaviour of the solution to (1.1) could be different

depending on the end, and in fact it turns out that the behaviour on a given end it is not
affected by what happens on the others. More precisely, observing that for large enough T the
set {u > 1/T} contains K, we can define the normalised p-capacity of Ω relative to the end Ei
as

C(i)
p (Ω) =

(
p− 1

n− p

)p−1 1

|Sn−1|

ˆ

{u=1/t}∩Ei

|Du|p−1 dσ , (1.3)

for every i = 1, . . . ,m. Observe that, by virtue of the divergence theorem, the right hand side
does not depend on t > T and the above formula yields a well posed definition. The normalised
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p-capacity of Ω (see Definition 2.10) then split as

Cp(Ω) =

N∑
i=1

C(i)
p (Ω).

We are now ready to state our first main result.

Theorem 1.1 (Asymptotic behaviour of the p-capacitary potential). Let (M, g) be a com-
plete C 0-Asymptotically Conical Riemannian manifold with Ricci curvature satisfying (1.2). Let
E1, . . . , EN be the (finitely many) ends of M with respect to the compact K in Definition 2.13.
Consider Ω ⊂ M be an open bounded subset with smooth boundary and u : M r Ω → R the
solution to the problem (1.1). Then

u(x) =

(
C

(i)
p (Ω)

AVR(g;Ei)

) 1
p−1

ρ(x)
−n−p
p−1 + o

(
ρ(x)

−n−p
p−1

)
(1.4)

on Ei as ρ(x)→ +∞ for every i = 1, . . . , N .

When the C 0-Asymptotically Conical condition is strengthen to C k-Asymptotically Conical
condition, it is not difficult to deduce corresponding asymptotic behaviours for the derivatives
up to order k of u (see Theorem 3.1 below). Our result extends to the nonlinear setting the as-
ymptotic analyses carried out in [AMO22, Theorem 2.2], [AMO21, Lemma 2.2], [HM20, Lemma
4.1] and [MMT20, Lemma A.2], although without refined estimates of the error terms. It would
be interesting to deal, building on Theorem 1.1, with such remainders, possibly following the
lines of [Chr90].

We emphasise that Theorem 1.1 plays a crucial role in the recent proof of the Riemannian
Penrose Inequality through p-harmonic potentials proposed in [Ago+22] and that it will be
employed to provide new results in this field under milder asymptotic conditions. To this end,
we point out that the requirements above do not involve explicit rates of decay to the reference
metric, that are usually assumed when dealing with these topics.

It turns out that our approach, employed for proving Theorem 1.1 and its consequences, ap-
pearing in Section 3, happen to fit also the geometric case of the weak Inverse Mean Curvature
Flow starting at a bounded Ω ⊂M with smooth boundary. We briefly recall that with this no-
tion, introduced by Huisken and Ilmanen [HI01] as a weak counterpart to the classical evolution
by inverse mean curvature [Ger90; Urb90], it is indicated a Lipschitz function w ∈ Liploc that
satisfies

div

(
Dw

|Dw|

)
= |Dw|

on M \ Ω and such that Ω = {w < 0} in a very geometric nonstandard weak variational sense.
By the pioneering work of Moser [Mos07; Mos08] and subsequent extensions to Riemannian
manifolds [KN09; MRS21], the solution w can also be interpreted as the locally uniform limit
as p→ 1+ of −(p− 1) log up, where up is the p-capacitary potential of Ω.

In analogy with (1.3), we set

|∂Ω∗|(i) =
|∂{w ≤ t} ∩ Ei|

et
,

for every i = 1, . . . , N and every t ≥ T , where T is so chosen that {w ≥ T} contains K. By
means of [HI01, Exponential Growth Lemma 2.6] and the divergence theorem, we have that
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the right hand side does not depend on t > T and yields a well posed definition. As for the
p-capacity, we have that

|∂Ω∗| =
N∑
i=1

|∂Ω∗|(i)

where Ω∗ is the strictly outward minimising hull of Ω [FM20]. We refer to Section 4 for a more
detailed discussion. The following theorem provides a description of the asymptotic behaviour
for the weak IMCF for large times.

Theorem 1.2 (Asymptotic behaviour of the Inverse Mean Curvature Flow). Let (M, g) be a
complete C 1-Asymptotically Conical Riemannian manifold with Ricci curvature satisfying (1.2).
Let E1, . . . , EN be the (finitely many) ends of M with respect to the compact K in Definition 2.13.
Consider Ω ⊂ M be an open bounded subset with smooth boundary and w : M r Ω → R be the
weak Inverse Mean Curvature Flow starting at Ω. Then

w(x) = log
(
ρ(x)n−1

)
− log

(
|∂Ω∗|(i)

AVR(g;Ei)|Sn−1|

)
+ o (1) (1.5)

on Ei as ρ(x)→ +∞ for every i = 1, . . . , N .

It might be useful to observe that, coherently, multiplying by −(p − 1) the logarithm of the
right hand side of (1.4) and letting p→ 1+ one exactly recovers the right hand side of (1.5). In
fact, as a consequence of [FM20, Theorem 1.2], we have that

lim
p→1+

C(i)
p (Ω) =

|∂Ω∗|(i)

|Sn−1| (1.6)

holds for every i = 1, . . . , N (see Lemma 4.4 below). Observe that, differently from Theorem 1.1
we required C 1-convergence of the metric. This additional requirement is due to the fact that,
up to the authors’ knowledge, a Cheng-Yau-type estimate with sharp decay for the gradient
of the IMCF is not known. Therefore, in our proof we use the gradient bound [HI01, Weak
Existence Theorem 3.1]. In some cases, for example Ric ≥ 0, this requirement can be weakened
in favour of the C 0-convergence (see the discussion before Proposition 4.2). To our knowledge,
Theorem 1.2 with the explicit constant in the expansion (1.5) was known only in the flat case
of Rn, and was obtained by completely different means. Indeed, in this setting, the level sets
of the weak IMCF become starshaped (and thus smooth) after a sufficiently long time, as a
consequence of [HI08, Theorem 2.7]. At this point, (1.5) could be easily deduced by classical
results [Ger90; Urb90] for the smooth IMCF. It is worth pointing out that the arguments we
employ got an important inspiration also from those in the proof of [HI01, Blowdown Lemma
7.1], that actually helped also in establishing Theorem 1.1. Theorem 1.2 provided a simplified
approach to the proof of [HI01, Blowdown Lemma 7.1]. At the same time extend such result to
the class of Asymptotically Conical Riemannian manifolds, adding the explicit characterisation
of the constant term in the expansion (1.5).

The results above in particular apply to Asymptotically Locally Euclidean spaces (ALE for
short) gravitational instantons, that are noncompact hyperkhäler Ricci Flat 4-dimensional man-
ifolds playing a role in the study of Euclidean Quantum Gravity Theory, Gauge Theory and
String Theory (see [Haw77; EH79; Kro89a; Kro89b; Min09; Min10; Min11]). Moreover, it is not
difficult to realise that the completeness assumption can be dropped, and that the above results
can be extended to manifolds with boundary. Indeed, the method proposed is completely blind
to everything is inside Ω, and, therefore, we can also include Asymptotically Flat Riemannian
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manifolds (M, g) with compact boundary ∂M , of fundamental importance in General Relativity.

Summary. The paper is organised as follows. In Section 2, we recall some basic notions
about p-harmonic functions and the p-capacitary potential as well as an improvement of Li-
Yau-type estimates holding true on Asymptotically Conical Riemannian manifolds satisfying
the bound (1.2), with controlled constants as p → 1+. Section 3 and Section 4 are devoted to
the proof of the asymptotic behaviour of the p-capacitary potential and of the (weak) IMCF,
that are respectively Theorem 1.1 and Theorem 1.2, together with some other related results. In
the last section we prove the sharpness of the Minkowski Inequality in Asymptotically Conical
Riemannian manifolds with nonnegative Ricci curvature and its rigidity statement in the general
Euclidean volume growth case.

Acknowledgements. The authors are grateful to V. Agostiniani, F. Oronzio, G. Antonelli
for precious discussions and comments during the preparation of this manuscript. The authors
are members of Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni
(GNAMPA).

2. Preliminary results on p-capacitary potentials

2.1. p-harmonic functions and regularity. Before considering the specific case of problem
(1.1), we recall the definition of p-harmonic functions, as well as their regularity estimates.
Given an open subset U of a complete Riemannian manifold (M, g), we say that v ∈W 1,p(U) is
p-harmonic if ˆ

U

〈
|Dv|p−2Dv |Dψ

〉
dµ = 0. (2.1)

for any test function ψ ∈ C∞c (U). With 〈 · | · 〉 we denote as usual the scalar product induced by
the underlying Riemannian metric g on the tangent space at each point.

We now precisely recall what is known about the regularity of p-harmonic functions. Suppose
by now that K b U is entirely contained in a chart of M . For any k ∈ N and α ∈ (0, 1), we
have that

gij(x)ξiξj > λδijξ
iξj ‖gij‖C k,α(K)

< Λk,α (2.2)

holds for every x ∈ K and ξ ∈ Rn for some positive constants λ and Λk,α. Regularity results for
p-harmonic functions (see [Tol83; DiB83; Lie88]) yield

|Dv(x)| ≤ C |Dv(x)−Dv(y)| ≤ C
(
dg(x, y)

)β
for every p-harmonic function v with |v| ≤ 1, with C, β depending only on n, p, α, λ and Λ0,α

and the distance of K from the boundary of U . For a general K, since a compact set can be
finitely covered by charts, the result can be extended defining, with abuse of notation, λ and
Λk,α as the minimal λ and maximal Λk,α in (2.2) among a family of charts covering K. Hence,
the theorem below easily follows by a scaling argument, being that v/‖v‖L∞(U) is p-harmonic

as well.

Theorem 2.1 (Schauder interior estimates). Let (M, g) be a complete Riemannian manifold
of dimension n, U ⊆ M be an open subset and let 1 < p. For any α ∈ (0, 1) and K b U ,
there exists a positive constant β = β(n, p, α,Λ0,α, λ) ∈ (0, α) such that any bounded solution
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v : U → R of the problem ∆
(p)
g v = 0 on U belongs to C 1,β(K). Moreover, there is a positive

constant C = C(n, p, dg(K, ∂U),Λ0,α, λ) such that

|Dv(x)| ≤ C ‖v‖
L∞(U)

|Dv(x)−Dv(y)| ≤ C ‖v‖
L∞(U)

(
dg(x, y)

)β
for any x, y ∈ K.

On the other hand, the classical regularity theory for quasilinear nondegenerate elliptic equa-
tions ensures that Sobolev functions satisfying (2.1) are smooth around the points where the
gradient does not vanish (see [LSU68, Chapter 4, Section 6]). Moreover, the classical elliptic
regularity theory can be applied to get higher order interior estimates (see [GT15, Theorem
6.6]).

Theorem 2.2 (Higher order Schauder estimates). Let (M, g) be a Riemannian manifold of
dimension n, U ⊆M be an open smooth subset of M and consider 1 < p < n. Then for any k ∈
N, β ∈ (0, 1) and K b U , and every bounded solution v : U → R of the problem ∆

(p)
g v = 0 on U

such that |Dv| ≥ m > 0 on K, there exists a constant Ck,β = Ck,β(n, p, dg(K, ∂U),Λk−1,β, λ,m)
such that

‖v‖
C k,β(K)

≤ Ck,β ‖v‖L∞(U)
.

Given U ⊆ M with Lipschitz boundary, a p-harmonic function u ∈ W 1,p(U) attains some
Dirichlet data g ∈ Lp(∂U) if u coincides with g on ∂U in the sense of the trace operator. We
report in the next remark the issue of the boundary regularity.

Remark 2.3 (Boundary regularity of p-harmonic functions). We point out that, if a p-harmonic
function attains some C 1,α-Dirichlet data on a C 1,α boundary, then the C 1,β-estimates of Theo-
rem 2.1 can be extended up to the boundary. This is a major contribution of [Lie88]. Moreover,
if its gradient does not vanish at the boundary the function is smooth up to the boundary and
Theorem 2.2 extends as well.

We finally retrieve the Comparison Principles [Tol83, Lemma 3.1, Proposition 3.3.2] by Tolks-
dorf, specialised for our purposes.

Theorem 2.4 (Comparison Principles). Let (M, g) be a complete Riemannian manifold, U ⊆M
be an open bounded subset and v1, v2 : U → R be two p-harmonic functions.

• (Weak) Comparison Principle. If v1, v2 ∈ C 0(U) and v1 ≤ v2 on ∂U , then v1 ≤ v2 on U .
• Strong Comparison Principle. Suppose in addition that U is connected, v1 ∈ C 1(U), v2 ∈

C 2(U) and |∇v2| ≥ δ > 0 in U . If v1 ≤ v2 (resp. v1 ≥ v2) on U , then v1 = v2 or v1 < v2

(resp. v1 > v2) on U .

To conclude, we want to recall a compactness theorem that holds for p-harmonic functions.
It is a natural question whether the limit of a sequence of p-harmonic functions is still p-
harmonic. Clearly the weak formulation in (2.1) suggests that C 1-convergence on compact
subsets is enough to ensure that also the limit function is p-harmonic. The following theorem
relaxes this hypothesis in favour of uniform convergence on compact subsets.

Theorem 2.5 (Compactness Theorem). Let (vn)n∈N be a sequence of p-harmonic functions

on U that converges uniformly to v on compact subsets of U as n → +∞. Then v ∈ W 1,p
loc is

p-harmonic on U .

Proof. See [HK88, Theorem 3.2]. �
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Remark 2.6. Suppose that (Un)n∈N is a sequence of open subsets converging to U open subset
as n→ +∞. Let gn be a metric on Un for every n ∈ N that locally uniformly converges to some
metric g on U as n → +∞. The above theorem still holds if vn is p-harmonic with respect to
the metric gn. Consequently, v is p-harmonic on U with respect to g.

2.2. p-nonparabolic manifolds and the p-capacitary potential. We analyse here the ex-
istence and uniqueness of solution up to (1.1) on complete Riemannian manifolds. Given a
noncompact Riemannian manifold M , we consider the p-capacitary potential of a bounded set
with smooth boundary Ω ⊂M , that is a function u ∈W 1,p

loc (MrΩ) solving (1.1). The regularity

results previously discussed ensure that u belongs to C 1,β
loc (M r Ω) and it is smooth near the

points where the gradient does not vanish. In particular, by Hopf Maximum Principle [Tol83]
the datum on ∂Ω is attained smoothly.

We now focus on some classical sufficient conditions to ensure the existence of the p-capacitary
potential, which turns out to be related to the notion of p-Green’s function we are going to recall.

Definition 2.7 (p-Green’s function). Let (M, g) be a complete Riemannian manifold. Let
Diag(M) = {(x, x) ∈ M ×M |x ∈ M}. For p ≥ 1, we say that Gp : M ×M r Diag(M) → R
is a p-Green’s function for M if it weakly satisfies ∆pG(o, · ) = −δo for any o ∈ M , where δo is
the Dirac delta centred at o, that is, if it holdsˆ

M

〈
|DGp(o, · )|p−2 DGp(o, · )

∣∣∣Dψ〉 dµ = ψ(o)

for any ψ ∈ C∞c (M).

The notion of p-Green’s function immediately calls for that of p-nonparabolic Riemannian
manifold.

Definition 2.8 (p-nonparabolicity). We say that a complete noncompact Riemannian manifold
(M, g) is p-nonparabolic if, for any o ∈ M , there exists a positive p-Green’s function Gp :
M r {o} → R. With the expression p-Green function we are in fact referring to the positive
minimal one.

The notion of p-nonparabolicity is intimately related to existence of a solution to (1.1), in
that if the p-Green’s function of a p-nonparabolic Riemannian manifold vanishes at infinity, then
such solution exists for any open bounded subset Ω ⊂ M with smooth boundary. A complete
and self contained proof of this fact is provided in the Appendix of [FM20]. We report the
statement of such basic though fundamental result.

Theorem 2.9 (Existence of the p-capacitary potential). Let (M, g) be a complete noncom-
pact p-nonparabolic Riemannian manifold. Assume also that the p-Green’s function Gp satisfies
Gp(o, x) → 0 as dg(o, x) → +∞ for some o ∈ M . Let Ω ⊂ M be an open bounded subset with
smooth boundary. Then, there exists a unique solution up to (1.1).

We want to underline that, the existence of a p-Green’s function does not guarantee that it
vanishes at infinity. This last property is related to the geometry of all ends. We refer the reader
to [Hol90; Hol99] for a detailed discussion on this topic.

It is convenient to recall here the definition of p-capacity of an open bounded subset Ω ⊂
M together with a normalised version of it which turns out to be more convenient for our
computations.

Definition 2.10 (p-capacity and normalised p-capacity). Let (M, g) be a complete noncompact
Riemannian manifold, and let Ω be an open bounded subset of M . The p-capacity of Ω is defined
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as

Capp(Ω) = inf


ˆ

M

|Dv|p dµ

∣∣∣∣∣∣ v ∈ C∞c (M), v ≥ 1 on Ω

 .

On the other hand, the normalised p-capacity of Ω is defined as

Cp(Ω) = inf


(
p− 1

n− p

)p−1 1

|Sn−1|

ˆ

M

|Dv|p dµ

∣∣∣∣∣∣ v ∈ C∞c (M), v ≥ 1 on Ω

 .

A function u solving (1.1) realises the p-capacity of the initial set Ω, and actually one can
also characterise such quantity with a suitable integral on ∂Ω. We resume these facts in the
following statements, whose proof can be found in [BFM21, Section 2.2]

Proposition 2.11. Let (M, g) be a complete noncompact p-nonparabolic Riemannian manifold.
Assume also that the p-Green’s function Gp satisfies Gp(o, x) → 0 as dg(o, x) → +∞ for some
o ∈ M . Let Ω ⊂ M be an open bounded subset with smooth boundary. Then the solution up to
(1.1) realises

Cp(Ω) =

(
p− 1

n− p

)p−1 1

|Sn−1|

ˆ

MrΩ

|Dup|p dµ

Moreover, we have that

Cp(Ω) =

(
p− 1

n− p

)p−1 1

|Sn−1|

ˆ

{up=1/t}

|Dup|p−1 dσ. (2.3)

holds for almost every t ∈ [1,+∞), including any 1/t regular value for up.

In particular, evaluating (2.3) at t = 1, which is a regular value by the Hopf Maximum
Principle, we have that

Cp(Ω) =

(
p− 1

n− p

)p−1 1

|Sn−1|

ˆ

∂Ω

|Dup|p−1 dσ.

Moreover, one can actually relate the capacity of Ωt = {u > 1/t} ∪ Ω to the capacity of Ω.

Proposition 2.12. Let (M, g) be a complete noncompact p-nonparabolic Riemannian manifold,
for some p > 1. Let Ω ⊂M be an open bounded subset with smooth boundary. Then the solution
up to (1.1) realises

Cp(Ωt) = tp−1Cp(Ω) (2.4)

for every t ∈ [1,+∞), where Ωt = {u > 1/t} ∪Ω. In particular, the map t 7→ Cp(Ωt) is smooth.

From now on, unless where it is necessary, we fix 1 < p and we drop the subscript p when we
consider a solution up to the problem (1.1).

Given an end E ⊂ M and a set Ω ⊂ M such that ∂E ⊂ Ω we define the capacity of Ω
restricted to E as

Capp(Ω;E) = inf


ˆ

E

|Dv|p dµ

∣∣∣∣∣∣ v ∈ C∞c (M), v ≥ 1 on Ω

 .

The set function Capp( · ;E) has the same properties of the standard p-capacity in Definition 2.10.
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2.3. Preliminary properties of Asymptotically Conical manifolds. We give here the
precise definition of Asymptotically Conical Riemannian manifolds according to [CEV17]. For
better comprehension, we recall the definition of the Hölder seminorm of a tensor field. A tensor
field T ∈ T qs (M) is α-Hölder continuous at x for some α ∈ [0, 1] if there exists a geodesically
convex open neighbourhood Ux centred at x such that

sup
y∈Uxr{x}

|T (x)− T (y)|g
(dg(x, y))α

< +∞

is finite, where, to compute the difference between T (x) and T (y), we parallel transport T (y)
onto x. The tensor field T is said to be α-Hölder continuous on U ⊂ M if it is α-Hölder
continuous at every x ∈ U . We sometimes omit the subscript g if it is clear the metric we are
referring to.

Consider a cone with link L, namely ((0,+∞) × L, ĝ) where ĝ = dρ2 + ρ2gL. In this case,
let s > 0 be such that Bs(x) is geodesically convex in ((0,+∞) × L, ĝ) for every x ∈ {1} × L.
Then, for every x ∈ (0,+∞)×L the ball of radius sρ(x) centred at x is still geodesically convex,
where ρ : (0,+∞)×L→ (0,+∞) is the projection onto the first coordinate. Given an α-Hölder
continuous tensor field T , we define the α-Hölder seminorm of T at x as

[T ]
(s)
α,ĝ (x) = sup

y∈Bsρ(x)(x)r{x}

|T (x)− T (y)|ĝ
(dist(x, y))α

.

Observe that, if T is bounded (with respect to | · |ĝ) and s, t > 0 satisfy the above assumptions,

[T ]
(s)
α,ĝ(x) = [T ]

(t)
α,ĝ(x) for any x ∈ (R,+∞)× L provided R is large enough. Then, the following

definition is well-posed and we can drop the superscript (s).

Definition 2.13 (C k,α-Asymptotically Conical Riemannian manifolds). Let (M, g) be a Rie-
mannian manifold, k ∈ N and α ∈ [0, 1). M is said to be C k,α-Asymptotically Conical if there
exists an open bounded subset K ⊆ M , a closed smooth hypersurface L and a diffeomorphism
π : M rK → [1,+∞)× L such that

k∑
i=0

ρi
∣∣∣D(i)

ĝ (π∗g − ĝ)
∣∣∣
ĝ

+ ρk+α
[
D

(k)
ĝ (π∗g − ĝ)

]
α,ĝ

= o(1), (2.5)

as ρ → +∞, where ρ : [1,+∞) × L → [1,+∞) is the projection map onto the first component
and ĝ = dρ2 + ρ2gL is the cone metric. We use the convention C k = C k,0.

Definition 2.13 says that in a C k,α-Asymptotically Conical Manifold the metric g approaches
the metric ĝ of a truncated cone with link L with respect to a scaling invariant C k,α-norm.
The diffeomorphism π : M rK → [1,+∞) × L identifies the boundary of K with the link L.
With abuse of notation, π∗ρ : M rK → [1,+∞) will be denoted by ρ and π∗ĝ = dρ2 + ρ2gL
by ĝ. Moreover, by convention the set {ρ < 1} is used to denote K and accordingly {ρ ≤ r} =
Mr{ρ > r} and {1 ≤ ρ ≤ r} = Mr({ρ > r}∪K). Given any coordinate system (ϑ1, . . . , ϑn−1)
on an open subset U of L, (ρ, ϑ1, . . . , ϑn−1) are coordinates on (1,+∞) × U ⊂ M r K. The
condition |g − ĝ|ĝ = o(1) as ρ → +∞ is equivalent to a condition on the coordinates that can
be read as

gρρ = 1 + o(1) gρj = o(ρ) gij = ρ2gLij + o(ρ2)

for every i, j = 1, . . . , n−1 as ρ→ +∞. By using Cramer’s rule to solve the system and Laplace
expansion to compute determinants, we obtain

gρρ = 1 + o(1) gρj = o(ρ−1) gij = ρ−2gijL + o(ρ−2).



10 L. BENATTI, M. FOGAGNOLO, AND L. MAZZIERI

The C 0,α-Asymptotically Conical condition for α > 0 gives, in addition, information on the
Hölder seminorm of the components. Indeed, arguing as before we get that

[gρρ − 1]
α,ĝ

= o(ρ−α) [gρj ]α,ĝ = o(ρ1−α)
[
gij − ρ2gLij

]
α,ĝ

= o(ρ2−α)

for every i, j = 1, . . . , n − 1 as ρ → +∞. Increasing k in the C k,α-Asymptotically Conical
assumption we gain knowledge about the k-th derivative of the components of g. Increasing k
in the C k,α-Asymptotically Conical assumption we gain knowledge about the k-th derivative of
(g − ĝ).

Consider for every s > 0 the family of diffeomorphism on (0,+∞)× L defined as

ωs : (0,+∞)× L −→ (0,+∞)× L

(ρ, ϑ1, . . . , ϑn−1) 7−→ (sρ, ϑ1, . . . , ϑn−1),
(2.6)

With abuse of language we will also denote by ωs any restriction of it to some truncated cone.
Since ωs induces a family of diffeomorphisms from (1/s,+∞) × L onto {ρ ≥ 1} ⊂ M through
the composition with π in Definition 2.13, we will also denote by ωs such map. The condition
(2.5) can be also interpreted as the convergence of the family of metrics on the cone (0,+∞)×L,
built for every s ≥ 1 by pulling the metric g back through the diffeomorphism ωs and properly
rescaling them. This is the content of the following lemma.

Lemma 2.14. A complete Riemannian manifold (M, g) is C k,α-Asymptotically Conical if and
only if the metric g(s) = s−2ω∗sg satisfies

k∑
i=0

ρi
∣∣∣D(i)

ĝ (g(s) − ĝ)
∣∣∣
ĝ

+ ρk+α
[
D

(k)
ĝ (g(s) − ĝ)

]
α,ĝ

= o(1),

as s→ +∞ on [R,+∞)× L for every R > 0.

Proof. Since ω∗s dρ = r dρ and ω∗s dϑi = dϑi, is clear that s−2ω∗s ĝ = ĝ. Thus the the case of
C 0-Asymptotically Conical manifold follows from algebra operations on tensors. The result for
k ∈ N and α ∈ [0, 1] follows in the same way from the fact that Dĝs

−2ω∗sg = s−2ω∗s(Dĝg) and
distĝ(x, y) = distĝ(ωs(x), ωs(y))/s for every x, y ∈ (1/s,+∞)× L. �

We want to highlight the relation between the coordinate ρ and the distance induced by g on
M .

Lemma 2.15. Let (M, g) be a complete C 0-Asymptotically Conical Riemannian manifold and
o ∈M . Then

lim
dg(o,x)→+∞

dg(o, x)

ρ(x)
= 1. (2.7)

Observe that since K is compact there exist a R > 0 such that dg(o, x) > R implies x ∈MrK,
hence (2.7) makes sense. Since π is a diffeomorphism, taking the limit for dg(o, x)→ +∞ is the
same of taking it for ρ(x)→ +∞.

Proof. Since |Dρ|g = 1+o(1), for every ε > 0 we can find Rε > 1 such that 1−ε ≤ |Dρ|g ≤ 1+ε

on {ρ ≥ Rε}. Pick x ∈ {ρ ≥ Rε} and a curve γ : [Rε, ρ(x)] → M which is the solution to the
problem {

γ̇(s) = Dρ

|Dρ|2 (γ(s)),

γ(ρ(x)) = x.
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Computing the length of γ we get

L(γ) =

ˆ ρ(x)

Rε

|γ̇(s)| ds =

ˆ ρ(x)

Rε

1

|Dρ|g
(γ(s)) ds ≤ ρ(x)−Rε

1− ε
,

which ensures that

lim sup
ρ(x)→+∞

dg(o, x)

ρ(x)
≤ lim sup

ρ(x)→+∞

L(γ) + 2 diam({ρ ≤ Rε})
ρ(x)

≤ 1

1− ε
.

Conversely, consider any geodesic σ : [0, L]→M , parametrised by arc length, joining σ(0) ∈
{ρ = Rε} and σ(L) = x. Then we obtain

ρ(x)−Rε =

ˆ L

0
〈Dρ | σ̇(s)〉 ds ≤

ˆ L

0
|Dρ|g(σ(s)) ds ≤ (1 + ε)L

which yields

lim inf
ρ(x)→+∞

dg(x, o)

ρ(x)
≥ lim inf

ρ(x)→+∞

L− 2 diam({ρ ≤ Rε})
ρ(x)

≥ lim inf
ρ(x)→+∞

ρ(x)−Rε − 2 diam({ρ ≤ Rε})
(1 + ε)ρ(x)

=
1

1 + ε
.

By the arbitrariness of ε > 0 we can conclude. �

In Riemannian manifolds with nonnegative Ricci curvature, in virtue of Bishop-Gromov the-
orem, one can define an Asymptotic Volume Ratio since

AVR(g) = lim
r→+∞

|B(o,R)|
|Bn|Rn

exists and does not depend on o ∈ M . Here we relaxed the condition on Ricci curvature so
we can not apply Bishop-Gromov theorem, but on the other side we require an asymptotic
behaviour for the metric, that allows to define an Asymptotic Volume Ratio as well.

Lemma 2.16. Let (M, g) be a complete C 0-Asymptotically Conical Riemannian manifold. Then

|L|
|Sn−1| = lim

R→+∞

|{1 ≤ ρ ≤ R}|
|Bn|Rn

= lim
R→+∞

|{ρ = R}|
|Sn−1|Rn−1

(2.8)

where L is the link of the cone (M, g) is asymptotic to.

Proof. One can easily show that det(g) = det(ĝ)(1 + o(1)) = ρ2(n−1) det(gL)(1 + o(1)). Hence,
for every ε > 0 there exists Rε ≥ 1 such that

|L|(1− ε)(Rn −Rnε )

n
≤ |{Rε ≤ ρ ≤ R}| ≤ |L|(1 + ε)

(Rn −Rnε )

n

Dividing each term by |Bn|Rn one get

|L|(1− ε)(Rn −Rnε )

n|Bn|Rn
≤
|{Rε ≤ ρ ≤ R}|
|Bn|Rn

≤ |L|(1 + ε)
(Rn −Rnε )

n|Bn|Rn
.

Since |{1 ≤ ρ ≤ Rε}|/(|Bn|Rn) vanishes as R→ +∞ we obtain

(1− ε)
|L|
n|Bn|

≤ lim
R→+∞

|{1 ≤ ρ ≤ R}|
|Bn|Rn

≤ (1 + ε)
|L|
n|Bn|
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which in turn gives the first identity in (2.8) by arbitrariness of ε. We turn to prove the second
identity. Since De L’Hôpital rule gives

lim
R→+∞

d
dR |{1 ≤ ρ ≤ R}|
|Sn−1|Rn−1

= lim
R→+∞

|{1 ≤ ρ ≤ R}|
|Bn|Rn

=
|L|
|Sn−1|

and

d

dR
|{1 ≤ ρ ≤ R}| =

d

dR

R̂

1

ˆ

{ρ=s}

1

|Dρ|
dσ ds = |{ρ = R}|(1 + o(1)),

we conclude the proof. �

Coupling this result with Lemma 2.15 one gets that

lim
R→+∞

|B(o,R)|
Rn|Bn|

= lim
R→+∞

|{1 ≤ ρ ≤ R}|
|Bn|Rn

=
|L|
|Sn−1|

for every o ∈M . Hence the left hand side limit exists and does not depend on the point o ∈M .
We can finely give the following definition.

Definition 2.17. Let (M, g) be a complete C 0-Asymptotically Conical Riemannian manifold.
The Asymptotic Volume Ratio of (M, g) is defined as

AVR(g) =
|L|
|Sn−1|

where L is the link of the cone (M, g) is asymptotic to.

In this case 0 < AVR(g), but in general AVR(g) could exceed 1 and AVR(g) = 1 does not
imply that (M, g) is isometric to the flat Euclidean space.

As already observed in the Introduction, a complete C 0-Asymptotically Conical Riemannian
manifold is forced to have a finite number of ends.

Lemma 2.18. A complete C 0-Asymptotically Conical Riemannian manifold (M, g) has finitely
many ends with connected boundary each of them is differomorphic to [1,+∞)×Li where Li is
a connected component of the link of the asymptotic cone.

Proof. Since L is a compact hypersurface, it has a finite number of connected component. Each
end with respect to K is therefore diffeomorphic to a cone on a connected component of L. �

As already mentioned in the Introduction, given E1, . . . , EN the ends of M , each Ei is C 0-
Asymptotically Conical and we can define the Asymptotic Volume ratio of Ei as

AVR(g;Ei) = lim
R→+∞

|B(o,R) ∩ Ei|
|Bn|Rn

=
|Li|
|Sn−1| , (2.9)

for every i = 1, . . . , N , where as a above Li denotes a connected component of the link of the
asymptotic cone. Moreover, the Asymptotic Volume Ratio of (M, g) splits as

AVR(g) =

N∑
i=1

AVR(g;Ei) (2.10)

where AVR(g) > 0 is the Asymptotic Volume Ratio of (M, g).
If RicL ≥ (n − 2)gL, then the cone ([1,+∞) × L, ĝ) has nonnegative Ricci curvature and in

particular AVR(g;Ei) ≤ 1 for every i = 1, . . . , k. This condition is automatically true if the
manifold is C 0-Asymptotically Conical and Ric satisfies (1.2), thanks to the following lemma.
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Lemma 2.19. Let (M, g) be a complete C 0-Asymptotically Conical Riemannian manifold. Sup-
pose that Ricg ≥ −f(dist(x, o)) for some nonnegative smooth function f(t) = o(1) as t→ +∞,
for some o ∈M . Then Ricĝ ≥ 0, where ĝ = dρ2 +ρ2gL is the asymptotical conic metric of g and
L is the link of the limit cone. In particular, AVR(g) ≤ N where N is the number of connected
component of the link L.

Proof. By Lemma 2.14 we can assume that f is a function of ρ. Let ωs be as in (2.6), we denote
by g(s) the metric s−2ω∗sg on [1/s,+∞)× L. It is easy to prove that ([1/s,+∞)× L,distg(s) , x)

converges in the pointed-Gromov-Hausdorff topology to ([0,+∞) × L,distĝ, x) for some x ∈
{ρ = 2}. Since

lim
s→+∞

|B(x, 1)|g(s) = |B(x, 1)|ĝ

by [DG18, Theorem 1.2] ([1/s,+∞)×L,distg(s) , µg(s) , x) converges to ([0,+∞)×L,distĝ, µĝ, x) in

the pointed-measured-Gromov-Hausdorff topology. By [GMS15, Theorem 7.2] Ricĝ ≥ −f(s) for
every s, hence Ricĝ ≥ 0. In particular, |Li| ≤ |Sn−1|, hence AVR(g) ≤ N by (2.9) and (2.10). �

In [MRS21, Theorem 1.7] the authors guarantee the existence of the (weak) IMCF starting
at Ω ⊆ M with smooth boundary whenever the Ricci curvature satisfies a nondecreasing lower
bound and a global L1-Sobolev Inequality is in force, that is ˆ

M

|ϕ|
n
n−1 dµ

n−1
n

≤ CS

ˆ

M

|Dϕ| dµ (2.11)

for every ϕ ∈ Lipc(M) where CS is some finite constant depending only on the geometry of the
manifold.

It is well known that the existence of a finite constant CS for the L1-Sobolev Inequality is
equivalent to the existence of a positive Isoperimetric constant, which is a CIso > 0 such that

CIso ≤
|∂K|n

|K|n−1 (2.12)

for every compact domain K (see [FF60, Remark 6.6] or [SY94, pp. 89-90]).
Riemannian manifolds with nonnegative Ricci curvature and Euclidean Volume Growth sat-

isfies both (2.11) and (2.12) as observed by [Var85] (see also [Car94] and [Heb99, Theorem 8.4]).
It is then plausible that these inequalities hold also when the manifold asymptotically behaves
as a cone with nonnegative Ricci curvature.

Proposition 2.20. Let (M, g) be a C 0-Asymptotically Conical Riemannian manifold. Suppose
that Ricg ≥ −f(dist(x, o)) for some nonnegative smooth function f(t) = o(1) as t → +∞, for
some o ∈M . Then (M, g) admits a global L1-Sobolev Inequality (2.11) for some finite constant
CS or equivalently it has a positive isoperimetric constant CIso > 0.

Proof. In virtue of [PST14, Theorem 3.2] it is enough to prove that a L1-Sobolev Inequality is
satisfied outside some compact set. By Lemma 2.18 (M, g) has only a finite number of ends each
of them corresponding to one connected component of the link L. Thus, we can assume that
(M, g) has only one Asymptotically Conical end E. By Lemma 2.19, E asymptotically behaves
as a cone with nonnegative Ricci curvature, that satisfies the L1-Sobolev Inequality for some
constant Ĉ. Suppose by contradiction that for every compact K ⊂ E, the L1-Sobolev Inequality
is not satisfied on E rK. Since the metric g converges to the metric ĝ = dρ2 + ρ2gL, for every
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ε > 0 there exists a compact Kε such that∣∣∣∣∣
ˆ

M

|ϕ|
n
n−1 dµg −

ˆ

M

|ϕ|
n
n−1 dµĝ

∣∣∣∣∣ ≤ ε
ˆ

M

|ϕ|
n
n−1 dµĝ

and ∣∣∣∣∣
ˆ

M

|Dϕ|g dµg −
ˆ

M

|Dϕ|ĝ dµĝ

∣∣∣∣∣ ≤ ε
ˆ

M

|Dϕ|ĝ dµĝ

for every ϕ ∈ Lipc(E r Kε). Moreover, for every C there exists a function ϕ ∈ Lipc(E r Kε)
such that  ˆ

M

|ϕ|
n
n−1
g dµg

n−1
n

> C

ˆ

M

|Dϕ|g dµg

Then for every ε < 1 and C we have ϕ ∈ Lipc(E rKε) that satisfies ˆ
M

|ϕ|
n
n−1

ĝ dµĝ

n−1
n

≥ 1

(1 + ε)
n−1
n

 ˆ
M

|ϕ|
n
n−1
g dµg

n−1
n

>
C

(1 + ε)
n−1
n

ˆ

M

|Dϕ|g dµg

≥ C
(1− ε)

(1 + ε)
n−1
n

ˆ

M

|Dϕ|ĝ dµĝ.

It is enough to choose ε < 1 and C such that

C
(1− ε)

(1 + ε)
n−1
n

> Ĉ

to obtain a contradiction to the L1-Sobolev Inequality on the asymptotic cone. �

With some analogy, considering Ω ⊆ M some open subset with smooth boundary and up :
MrΩ→ R the p-capacitary potential associated to Ω, 1 < p < n, we recall from the Introduction
that

C(i)
p (Ω) =

(
p− 1

n− p

)p−1 1

|Sn−1|

ˆ

{up=1/t}∩Ei

|Dup|p−1 dσ =
Cp

(
{u ≤ 1

t } ∩ Ei;Ei
)

tp−1
. (2.13)

This is well defined since for every T ∈ [1,+∞) large enough, {up > 1/T} contains the compact
K in Definition 2.13 and the quantity in (2.13) does not depend on t ≥ T . Moreover, it is readily
checked that, by (2.3), the p-capacity of Ω splits as

Cp(Ω) =

N∑
i=1

C(i)
p (Ω).

The quantity C
(i)
p (Ω) represents the portion of Ω that contributes to its p-capacity under the

influence of the end Ei. In the case Ω is already contains K in Definition 2.17 it is exactly the
p-capacity of Ω ∩ Ei.

On cones, the p-capacity of the cross section {ρ = r} can be easily computed since the function

u = (ρ/r)−(n−p)/(p−1) is the p-capacitary potential associated to these sets. In Asymptotically
Conical Riemannian manifold one might expect that the p-capacity of {ρ = r} approaches the
model one for large r. Despite the definition of the p-capacity involves the first order derivatives
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of the p-capacitary potential, the convergence is also true even if the metric converges only in
the C 0-topology.

Lemma 2.21. Let (M, g) be a C 0-Asymptotically Conical Riemannian manifold. Let ρ be the
radial coordinate. Then

lim
r→+∞

Capp ({ρ ≤ r})
rn−p|Sn−1| =

(
n− p
p− 1

)p−1

AVR(g). (2.14)

Proof. Since the metric g converges to the metric ĝ, for every ε > 0 there exists a Rε > 0 such
that for every r ≥ Rε ∣∣∣∣∣

ˆ

M

|Dϕ|pg dµg −
ˆ

M

|Dϕ|pĝ dµĝ

∣∣∣∣∣ ≤ ε
ˆ

M

|Dϕ|pĝ dµĝ

holds for every function ϕ ∈ C∞c ({ρ ≥ r}) such that ϕ = 1 on {ρ = r}. In particular, we have
that

(1− ε)
ˆ

M

|Dϕ|pĝ dµĝ ≤
ˆ

M

|Dϕ|pg dµg ≤ (1 + ε)

ˆ

M

|Dϕ|pĝ dµĝ.

The set {ρ ≥ r} is diffeomorphic to [r,+∞)×L where L is the cross section of the cone (M, g) is
asymptotic to. Hence, the family of ϕ considered above are in one-to-one correspondence with
the competitors for the p-capacity of {ρ ≤ r} in the Riemannian cone [r,+∞) × L. Dividing
each side by |Sn−1|, recalling the characterisation of AVR(g) in Definition 2.17 and taking the
infimum on each side of the previous chain of inequalities we are left with

(1− ε)rn−p AVR(g)

(
n− p
p− 1

)p−1

≤
Capp({ρ ≤ r})
|Sn−1| ≤ (1 + ε)rn−p AVR(g)

(
n− p
p− 1

)p−1

.

dividing each term by rn−p and sending to the limit as r → +∞ we have that

(1− ε) AVR(g)

(
n− p
p− 1

)p−1

≤ lim
r→+∞

Capp({ρ ≤ r})
rn−p|Sn−1| ≤ (1 + ε) AVR(g)

(
n− p
p− 1

)p−1

which in turns gives (2.14) by arbitrariness of ε. �

2.4. Li-Yau-type estimates and gradient bound. We will provide Li-Yau-type estimates
for the p-Green function Gp with a controlled constant as p→ 1+. These estimates will be the
starting point for the proof of both Theorems 1.1 and 1.2. We highlight that in [MRS21] the
authors provided Li-Yau-type estimates for p-harmonic functions. The upper bound in [MRS21,
Theorem 3.6] carried out in a broader setting is actually in term of the distance. Conversely, the
lower bound in [MRS21, Corollary 2.8] is in terms of the distance in a model which has the same
radial sectional curvature of the lower bound in (1.2). This estimate does not seem sufficient for
our aims.

However, since our setting disposes of a precise asymptotic structure we can improve such
lower bound by inheriting some techniques coming from [Hol99], and using the natural foliaton
of ends induced by the cross-sections of the asymptotic cone. To accomplish this program we
first need a global Harnack Inequality holding on each end of (M, g).

Proposition 2.22 (Harnack’s Inequality). Let (M, g) be a C 0-Asymptotically Conical Riemann-
ian manifold with Ricci curvature satisfying (1.2) and let p > 1. A uniform Harnack Inequality
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holds on every {ρ = R} ∩ E, that is there exists a constant CH > 0 that depends only on the
dimension and p but not on R such that

inf
{ρ=R}∩E

u ≥ C
1
p−1

H sup
{ρ=R}∩E

u (2.15)

for every positive p-harmonic function u on E. Moreover, CH is bounded as p→ 1+

Proof. Proposition 2.20 and [Hol99, Example 2.20] guarantees that the hypotheses of [MRS21,
Theorem 3.4] are satisfied on B(x, 6r) for every x ∈M rB(o, 2R). Hence we have that

sup
B(x,R)

u ≤ C
1
p−1 inf

B(x,R)
u (2.16)

for every positive p-harmonic function u on E, for some constant which is bounded for large R
and in p as p → 1+. Since the {ρ = R} ∩ E is connected and its diameter increases linearly in
R by the asymptotic assumption, it can be covered with N balls of radius R, for some N not
depending on R. By chaining (2.16) N times we obtain (2.15). �

As a consequence we can overcome the main issue in [Hol99, Proposition 5.9], that is a control
on the bounded components of E r B(o, r). The proof of [Hol99, Proposition 5.9] suggest also
an explicit value for the constant.

Proposition 2.23. Let (M, g) be a C 0-Asymptotically Conical Riemannian manifold with Ricci
curvature satisfying (1.2) and o ∈M . For every end E of M there exists a constant C > 0 such
that

sup
∂E(r)

G(o, x) ≥ C
1
p−1

+∞ˆ

2r

(
t

|B(o, t) ∩ E|

) 1
p−1

dt (2.17)

holds for every r > 0 where E(r) is the unbounded component of E r B(o, r). Moreover, the

constant C = aCapp(K;E) where a > 0 is such that Gp(x, o) ≥ a1/(p−1) on M rK and K is
the compact set in Definition 2.13.

Proof. We already observed that (M, g) as a finite number of ends with connected boundary in
Lemma 2.18. Denote by E one of them. Since E is C 0-Asymptotically Conical, the volume of
B(o, r) ∩ E grows like rn, then for some large R > 0

+∞ˆ

R

(
r

|B(o, r) ∩ E|

) 1
p−1

dr ≤ CR
−n−p
p−1 < +∞

that is E is p-large. E satisfies a weak (1, p)-Poincaré Inequality and a volume-doubling property
(see [Hol99, Example 2.20]. Moreover, E satisfies the volume comparison condition which means
that there exists a constant Cv such that

|E ∩B(o, r)| ≤ Cv|B(x, r/8)| (2.18)

holds for any r ≥ R and x ∈ ∂B(o, r)∩E. Observe that (2.18) holds on the cones. Indeed, since
L is compact |B(x, r/8)| ≥ µrn/8n for some positive µ > 0. If E is merely C 0-Asymptotically
Conical, both the volume of E ∩B(o, r) and B(x, r/8) are approaching the corresponding ones
on the cone, which proves (2.18).

With the very same arguments as in [Hol99, Proposition 5.9] one can prove (2.17), by re-
stricting all quantities to the given end. A close look to [Hol99, Proposition 5.9] gives also that
the constant can be chosen as above, firstly choosing a > 0 and following the computations
accordingly. �
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The above Proposition implies the following double-sided bound on Gp, that will in turn imply
an analogous one for up. Such double bound will be key for working out the asymptotics.

Theorem 2.24 (Li-Yau-type estimates). Let (M, g) be a C 0-Asymptotically Conical Riemann-
ian manifold with Ric satisfying (1.2). Let p > 1, each end of M is p-nonparabolic and, given
Gp the p-Green function, then there exist two constants CL,CU > 0

C
1
p−1

L dg(o, x)
−n−p
p−1 ≤ Gp(o, x) ≤ C

1
p−1

U dg(o, x)
−n−p
p−1 . (2.19)

for every x ∈M r{o}. Moreover, the constant CU is bounded as p→ 1+ and there exists R > 0
not depending on p such that the lower bound in (2.19) holds with constant CL = C aCapp(K;E)

on M rB(o,R), where a > 0 is such that Gp(x, o) ≥ a1/(p−1) on M rK, C does not depend on
p and K is the bounded set in Definition 2.13.

Proof. The upper bound in (2.19) with CU bounded as p→ 1+ follows from [MRS21, Theorem
3.6]. Indeed, the assumptions are satisfied since a p-Sobolev Inequality holds true as a standard
consequence of the L1-Sobolev inequality in Proposition 2.20. For what it concerns the lower
bound, we are in position to apply Proposition 2.23. The main issue is that we do not have
control on the bounded components of E r B(o,R). Consider the function R : [1,+∞) → R
defined as

R(t) = max {dg(o, x) |x ∈ {ρ = t}} .
Observe that {ρ ≥ t} ⊃ E(2R(t)). Then applying the Harnack’s Inequality (2.15), Comparison
Principle and (2.17) one gets that

inf
{ρ=t}

Gp(o, x) ≥ C
1
p−1

H sup
{ρ=t}

Gp(o, x) ≥ C
1
p−1

H sup
∂E(2R(t))

Gp(o, x)

≥ C
1
p−1

4

+∞ˆ

4R(t)

(
r

|B(o, r) ∩ E|

) 1
p−1

dr ≥ C
1
p−1

5 R(t)
−n−p
p−1 .

for every t ≥ T , for some T large enough not depending on p and C5 = CaCapp(∂K;E). By
Lemma 2.15 there exists R1 ≥ R(T ) such that ∂B(o, r) ⊂ {ρ ≤ 2r} and R(2r) ≤ 4r hold for
every r ≥ R1. Then, by the Maximum Principle,

inf
∂B(o,r)

Gp(o, x) ≥ inf
{ρ=2r}

Gp(o, x) ≥ C
1
p−1

5 R(2r)
−n−p
p−1 ≥

(
C5

4n−p

) 1
p−1

r
−n−p
p−1 ,

holds for every r ≥ 1, since R1 does not depend on p. The global lower bound follows since it is
satisfied near the pole o, but the new constant CL might go to 0 as p→ 1+ �

Arguing as done in the proof of [BFM21, Theorem 2.15], it is easy to derive analogous esti-
mates for up. We do not take trace of the best constant as in the previous result, since this tool
will be only used to derive Theorem 1.1 where 1 < p < n is fixed.

Corollary 2.25 (Li-Yau-type estimates for the p-capacitary potential). Let (M, g) be a C 0-
Asymptotically Conical Riemannian manifold with Ric satisfying (1.2). Let be 1 < p < n. There
exists a unique solution up to (1.1) and there exists a positive and finite constant C such that

C−1dg(x, o)
−n−p
p−1 ≤ up(x) ≤ Cdg(x, o)

−n−p
p−1 (2.20)

for every x ∈M r Ω.
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Proof. The existence follows from (2.19) and Theorem 2.9. Moreover, In light of (2.19), it suffices
to show that there exists a positive finite constant C such that C−1Gp ≤ up ≤ CGp. Choose any
sup∂Ω up < C. Then, C−1Gp < up on ∂Ω. Moreover, since both up and Gp vanish at infinity, for
any δ > 0 we have C−1Gp < up+δ on ∂B(o,R) for any R big enough. The Comparison Principle

applied to the p-harmonic functions up+ δ and Gp in B(o,R)rΩ shows that C−1Gp < up+ δ in
the latter subset. The radius R being arbitrarily big, this implies that, by passing to the limit as
R→ +∞, that C−1Gp < up + δ in the whole M r Ω. Letting δ → 0+ leaves with C−1Gp ≤ up,
and consequently with the lower bound in (2.20). The inequality up ≤ CGp, yielding the upper
bound, is shown the same way. �

We recall the following Cheng-Yau-type estimate, proved in [WZ10], together with the con-
sequent gradient bound for the p-capacitary potential.

Theorem 2.26 (Cheng-Yau-type estimate). Let (M, g) a complete Riemannian manifold. Let

v ∈W 1,p
locB(o, 2R) be a positive p-harmonic function on a geodesic ball B(o, 2R) for some R > 0

where Ric ≥ −(n− 1)κ2. Then there exists a constant C = C(p, n) such that

sup
B(o,R)

|D log(v)| ≤ C

(
1

R
+ κ

)
. (2.21)

The above local estimate enables us to provide a global gradient bound for up, that will be
key for its asymptotic analysis.

Proposition 2.27. Let (M, g) be a complete C 0-Asymptotically Conical manifold with Ric sat-
isfying (1.2). Let Ω ⊂ M open bounded with smooth boundary and let up be its p-capacitary
potential. Then, there exists a constant C > 0 such that

|D log up| ≤
C

dist(x, o)
(2.22)

holds on the whole M r Ω.

Proof. By the C 1-regularity of u, it clearly suffices to show that (2.22) holds true outside some
compact set containing Ω. Let then o ∈ Ω and R > 0 be such that Ω ⊂ B(o,R), and let

x ∈ M r B(o, 2R). With this choice, we have B(x,dist(o, x) − R) ⊂ M r B(o,R). Thus,
applying inequality (2.21) to the function up in the ball B(x,dist(o, x)−R) we get

|Dup|
up

≤ 2C

(
1

dist(o, x)−R
+

κ

dist(o, x) + 1

)
≤ 2C

(2 + κ)

dist(o, x)
.

concluding the proof. �

The constant in (2.21) and consequently in (2.22) is such that (p − 1)C diverges as p → 1+.
Up to the authors’ knowledge a Cheng-Yau-type estimate with (p− 1)C controlled in p is yet to
be discovered. This should lead to various other insights about the weak IMCF and its relations
with p-harmonic potentials.

3. Asymptotic behaviour of the p-capacitary potential

In this section we prove Theorem 1.1. In fact, as anticipated in the Introduction, we prove a
more general statement that provides information also about the asymptotic behaviour of the
derivatives of u, if the asymptotic structure of the underlying metric is suitably reinforced.
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Theorem 3.1 (Asymptotic behaviour of the derivatives of p-capacitary potential). Let (M, g)
be a complete C k,α-Asymptotically Conical Riemannian manifold for some α > 0 and k ∈ N with
Ric satisfying (1.2). Let E1, . . . , EN be the (finitely many) ends of M with respect to the compact
K in Definition 2.13. Consider Ω ⊂ M be an open bounded subset with smooth boundary and
u : M r Ω→ R a solution of the problem (1.1). Then∣∣∣∣∣∣D`u−

(
C

(i)
p (Ω)

AVR(g;Ei)

) 1
p−1

D`ρ
−n−p
p−1

∣∣∣∣∣∣
ĝ

= o
(
ρ
−n−p
p−1
−`
)

(3.1)

on Ei as dist(o, x)→ +∞ for every i = 1, . . . , N and ` ≤ k + 1.

For future reference we want to specify the behaviour of partial derivatives coming from (3.1).
Given a coordinate system (ϑ1, . . . , ϑn−1) on L one has that

∂j+|α|u

∂ρj∂ϑα
=

(
C

(i)
p (Ω)

AVR(g;Ei)

) 1
p−1 ∂j+|α|

∂ρj∂ϑα

(
ρ
−n−p
p−1

)
+ o

(
ρ
−n−p
p−1
−j
)

as ρ→ +∞, where α is a (n− 1)-dimensional multi-index such that j + |α| ≤ k.
Along with the proof, we extend Lemma 2.21, showing that the p-capacity of the p-capacitary

potential behaves like the p-capacity of the cross sections approaching infinity.

Proposition 3.2 (Asymptotic behaviour of the p-capacity of level sets). In the same assump-
tions and notations of Theorem 1.1, set, for i = 1, . . . , N ,

vi =

(
C

(i)
p (Ω)

AVR(g;Ei)

) 1
n−p

u
− p−1
n−p .

Then, we have

lim
s→+∞

Capp({vi ≤ s} ∩ Ei;Ei)
sn−p|Sn−p|

=

(
n− p
p− 1

)p−1

AVR(g;Ei).

Moreover, as a byproduct, we obtain the following uniqueness result on Riemannian cones.

Proposition 3.3. Let ((0,+∞)×L, ĝ) be a Riemannian cone with nonnegative Ricci curvature
where L is a closed connected smooth hypersurface. Let u be a nonnegative p-harmonic function
on (0,+∞)×L satisfying u(x) ≤ Cρ(x)−(n−p)/(p−1) for every x ∈ (0,+∞)×L for some constant
C ≥ 0. Then, there exists a nonnegative γ ∈ R such that

u(x) = γρ(x)
−n−p
p−1

holds on (0,+∞)× L.

Proof of Theorems 1.1 and 3.1 and Propositions 3.2 and 3.3. It is enough to prove the theo-
rems in the case M has only one end. The proof of the general case then follows applying
the result to each end. We will denote by g(s) the metric s−2ω∗sg on [1/s,+∞) × L, being ωs
the family of diffeomorphisms defined in (2.6). We find convenient to organise the proof in four
steps. The first three steps are devoted do prove Theorem 1.1. The second and the third one
contain the proof of Proposition 3.3 and Proposition 3.2 respectively. In the last we complete
the proof for higher order asymptotic behaviour mainly using Schauder estimates for p-harmonic
functions.
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Step 1. Suppose that (M, g) is C 0-Asymptotically Conical. Define the family of functions
us : [1/s,+∞)× L→ R as

us(x) = s
n−p
p−1 u ◦ ωs(x)

where ωs is the map defined in (2.6). The aim of this step is to prove compactness of (us)s≥1

with respect to local uniform convergence on (0,+∞) × L. In particular, by Theorem 2.5 (see
also Remark 2.6) any limit point w for the sequence (us)s≥1 is p-harmonic with respect to the
metric ĝ on (0,+∞)× L. Moreover, there exists a positive constant C such that

C−1ρ(x)
−n−p
p−1 ≤ w(x) ≤ Cρ(x)

−n−p
p−1 (3.2)

is satisfied for every x ∈ (0,+∞)× L.
By Corollary 2.25 we have that

C−1
1

(
dist(o, x)

)−n−p
p−1 ≤ u(x) ≤ C1

(
dist(o, x)

)−n−p
p−1

.

holds on M r Ω. In particular, since by Lemma 2.15 the distance function from o behaves
asymptotically as the coordinate ρ, we deduce that there exist S2,C2 > 0 such that

C−1
2 ρ(x)

−n−p
p−1 ≤ us(x) ≤ C2ρ(x)

−n−p
p−1 , (3.3)

holds on [1/s,+∞)×L for every s ≥ S2. In particular, (us)s≥1 is equibounded. By the gradient
estimate Proposition 2.27

|Du|(x) ≤ C3u(x)
n−1
n−p ≤ C4

(
dist(o, x)

)−n−1
p−1

for some positive constants C3,C4. Hence, employing again Lemma 2.15 there exist S5,C5 > 0
such that

|Dus|g(s)(x) ≤ C5ρ(x)
−n−1
p−1 (3.4)

holds on [1/s,+∞)× L for every s ≥ S5. By Lemma 2.14 we have that for some ε > 0 there is
S6 > 0 such that

|Dus|ĝ ≤ (1 + ε)|Dus|g(s)
holds for every s ≥ S6. Combining it with (3.4) we obtain that the family (us)s≥1 is equicon-
tinuous. By Arzelà-Ascoli Theorem we conclude that (us)s≥1 is precompact with respect to the
local uniform convergence. (3.2) follows from (3.3).

Step 2. Here we prove that any limit point v of the family (us)s≥1 has the form

v(x) = γρ(x)
−n−p
p−1 , (3.5)

for some nonnegative γ ∈ R, proving also Proposition 3.3. Let v : (0,+∞) × L → R be a

nonnegative p-harmonic function satisfying the bound v(x) ≤ Cρ(x)
−n−p
p−1 on (0,+∞)× L.

Define the function ev : (0,+∞)→ R as

ev(t) =
R(t)

r(t)
,

where [r(t), R(t)]×L is the smallest annulus containing {v = 1/t} for every t ∈ (0,+∞). Observe
that, ev(t) ≥ 1 and ev(t) = 1 if and only if {v = 1/t} is a cross-section of the cone. By
the Comparison Principle Theorem 2.4, using the potentials of {ρ = r(t)} and {ρ = R(t)} as
barriers, we have that

r(t)

(
t

T

)n−p
p−1

≤ ρ(x) ≤ R(t)

(
t

T

)n−p
p−1

(3.6)
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holds for every x ∈ {v = 1/T} for every T ≥ t. Hence, ev is nonincreasing. Moreover, since

(0,+∞) × L is connected, ρ(x)
−n−p
p−1 is p-harmonic and C 2((0,+∞) × L) and

∣∣∣Dρ−n−pp−1

∣∣∣ ≥
n−p
p−1R

−n−1
p−1 holds on (0, R) × L for every R > 0, by the Strong Comparison Principle Theo-

rem 2.4 the inequalities in (3.6) are strict unless {v = t} is a cross-section. It is not hard to see
that ev is scale invariant

Consider for s ≤ 1 the family vs : [1,+∞)× L→ R defined as

vs(x) = s
n−p
p−1 v ◦ ωs(x)

where ωs is defined in (2.6). Using the same argument of Step 1 we have that

vs(x) ≤ Cρ(x)
−n−p
p−1 and |Dvs|(x) ≤ Cρ(x)

−n−1
p−1

holds on (0,+∞)×L for some constant C > 0. Hence, appealing to the Arzelà-Ascoli Theorem,
(vs)s≤1 is precompact with respect to the local uniform convergence. Let w be a limit point
for (vs)s≤1. Since e is scale invariant, evs(t) = ev(t/s). Then, ew(t) is constant equal to some
ew ∈ [1,+∞) that by monotonicity satisfies ew = supt ev(t) ∈ [1,+∞). Suppose by contradiction
that ew > 1. Then the level {w = 1} ⊂ [r(1), ewr(1)] × L and {w = 1} touches both the cross-
sections {ρ = r(1)} and {ρ = ewr(1)} without being equal to either one. By (3.6) and the Strong
Comparison Principle Theorem 2.4

r(1)t
p−1
n−p < ρ(x) < ewr(1)t

p−1
n−p

holds for every x ∈ {w = 1/t} for every t > 1. We therefore have that ew(t) < ew which is a
contradiction. In conclusion ew must be 1 and since 1 ≤ ev(t) ≤ ew = 1, v is as in (3.5).

Step 3. By Step 2, any limit point w for the sequence (us)s≥1 given by Step 1 has the form

γρ
−n−p
p−1 , where γ > 0 by (3.2). We are now going to prove that

γ = Cp(Ω)
1
p−1 AVR(g)

− 1
p−1 . (3.7)

The characterisation (3.7) ensures that any converging subsequence admits the same limit,

proving that the whole family (us)s≥1 locally uniformly converges to γρ
−n−p
p−1 as s → +∞. In

particular, for every ε > 0 there exists a S ≥ 1 such that

sup
{ρ=s}

s
n−p
p−1

∣∣∣∣∣u−
(

Cp(Ω)

AVR(g)

) 1
p−1

ρ
−n−p
p−1

∣∣∣∣∣ = sup
{ρ=1}

∣∣∣∣∣us −
(

Cp(Ω)

AVR(g)

) 1
p−1

ρ
−n−p
p−1

∣∣∣∣∣ ≤ ε
for every s ≥ S, proving Theorem 1.1 and Proposition 3.2.

Observe that γ > 0 by Corollary 2.25. In order to prove (3.7), we find convenient to work
with the auxiliary function

v =

(
u

γ

)− p−1
n−p

.

Since w is a limit point for the family (us)s≥1 there is a subsequence (usk)k∈N, sk increasing

and divergent as k → +∞, such that usk → v = γρ
−n−p
p−1 locally uniformly on (0,+∞) × L as

k → +∞. Then for any ε > 0 there exists kε ∈ N such that{
ρ ≤ sk

1 + ε

}
⊂ {v ≤ sk} ⊂

{
ρ ≤ sk

1− ε

}
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By the monotonicity of the p-capacity with respect to the inclusion, we have that

Capp

({
ρ ≤ sk

1 + ε

})
≤ Capp ({v ≤ sk}) ≤ Capp

({
ρ ≤ sk

1− ε

})
By (2.4) we can compute the capacity of level sets of v in terms of the capacity of ∂Ω, that is

Capp

({
ρ ≤ sk

1 + ε

})
≤ γ−(p−1)sn−pk Capp (Ω) ≤ Capp

({
ρ ≤ sk

1− ε

})
Dividing each side by |Sn−1|sn−pk , sending k → +∞ and using Lemma 2.21 we infer that(

n− p
p− 1

)p−1 AVR(g)

(1 + ε)n−p
≤ γ−(p−1) Capp(Ω)

|Sn−1| ≤
(
n− p
p− 1

)p−1 AVR(g)

(1− ε)n−p

Then (3.7) follows by arbitrariness of ε > 0, keeping in mind the characterisation of AVR(g) in
(2.17) and the relation between the p-capacity and the normalised p-capacity.

Step 4. Suppose now (M, g) is C 0,α-Asymptotically Conical for α > 0. By Theorem 2.1

us ∈ C 1,β
loc ((1/s,+∞) × L) for some β ∈ (0, α) and for every K ⊂ (1/s,+∞) × L there exists

constant C > 0 such that

‖us‖C 1,β(K)
≤ C ‖us‖C 0((1/s,+∞)×L)

. (3.8)

Since the metric g(s) locally C 0,α -converges to ĝ on (0,+∞)× L by Lemma 2.14, the constant

in (3.8) can be chosen not depending on s. Hence, by Arzelà-Ascoli Theorem, (us)s≥1 C 1-locally
converges on (0,+∞)× L to the function(

Cp(Ω)

AVR(g)

) 1
p−1

ρ
−n−p
p−1 (3.9)

as s→ +∞. This proves Theorem 3.1 for k = 0 and ` ≤ 1.
If (M, g) is C k,α-Asymptotically Conical for k ≥ 1 and α > 0, we already proved that (3.1)

holds for ` ≤ 1. In particular, for every R there exists S > 0 such that |Dus| > 0 holds on every
compact K ⊂ (R,+∞)×L for every s ≥ S. Applying Theorem 2.2, us ∈ C∞((R,+∞)×L) for
every s ≥ S. Moreover, for every K ⊂ (R,+∞)× L) there exists a constant C > 0 such that

‖us‖C k+1,α(K)
≤ C ‖us‖C 0((1/s,+∞)×L)

. (3.10)

Since g(s) locally C k+1,α-converges to ĝ on (0,+∞) × L , the constant in (3.10) can be chosen

not depending on s. Since R is arbitrary, (us)s≥1 is precompact with respect to the local C k+1-
topology. Hence, (us)s≥1 converges on compact subsets of (0,+∞) × L up to its (k + 1)-th
derivative to the function defined in (3.9) as s→ +∞, concluding the proof of Theorem 3.1. �

As a consequence of Theorem 1.1, we extend Lemma 2.16 showing that the volume of level
sets of a suitable function of the p-capacitary potential behaves like the volume of geodesic balls
approaching infinity. Requiring the assumption of Theorem 3.1 we actually deduce that the
same occur for the (n− 1)-Hausdorff measure of the level sets.

Proposition 3.4 (Asymptotic behaviour of the area of level sets). In the same assumptions
and notations of Theorem 1.1, set, for i = 1, . . . , N ,

vi =

(
C

(i)
p (Ω)

AVR(g;Ei)

) 1
n−p

u
− p−1
n−p .
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Then, we have

AVR(g;Ei) = lim
s→+∞

|{vi ≤ s} ∩ Ei|
sn|Bn|

. (3.11)

Moreover, if in addition (M, g) is C 0,α-Asymptotically Conical for α ∈ (0, 1), then

AVR(g;Ei) = lim
s→+∞

|{vi = s} ∩ Ei|
sn−1|Sn−1| . (3.12)

Proof of Proposition 3.4. We prove the statement in the case M has only one end, being the
general case a direct consequence. We drop the subscript i in the following lines. By Theorem 1.1,
for any ε > 0 there exists Rε > 0 such that

(1− ε)ρ ≤ v ≤ (1 + ε)ρ

holds on {ρ ≥ Rε}. Thus we have that{
ρ ≤ s

1 + ε

}
⊂ {v ≤ s} ⊂

{
ρ ≤ s

1− ε

}
.

By the monotonicty of the volume we have that∣∣∣∣{ρ ≤ s

1 + ε

}∣∣∣∣ ≤ |{v ≤ s}| ≤ ∣∣∣∣{ρ ≤ s

1− ε

}∣∣∣∣.
dividing each side by sn|Bn| and passing to the limit as s→ +∞ we can conclude that

AVR(g)

(1 + ε)n
≤ lim

s→+∞

|{v ≤ s}|
sn|Bn|

≤ AVR(g)

(1− ε)n

by arbitrariness of ε > 0 we have that the volume of level sets behaves like the one of geodesic
balls approaching infinity, proving the first identity in (3.11). A straightforward computation
relying on the identity

|Dv| =

(
Cp(Ω)

AVR(g)

) 1
n−p

(
p− 1

n− p

)
u
−n−1
p−1 |Du|

permits to write

AVR(g) =
1

|Sn−1|sn−1

ˆ

{v=s}

|Dv|p−1 dσ.

If in addition (M, g) is C 0,α-Asymptotically Conical for α ∈ (0, 1), then |Dv| approaches 1 at
infinity, hence we have

AVR(g) = lim
s→+∞

1

|Sn−1|sn−1

ˆ

{v=s}

|Dv|p−1 dσ = lim
s→+∞

|{v = s}|
sn−1|Sn−1|

which concludes the proof of (3.12). �

4. Asymptotic behaviour of the weak IMCF

We give the precise definition of (proper) weak Inverse Mean Curvature Flow (IMCF for
short).

Given an open set U ⊆M , we say that w ∈ Liploc(U) is a weak IMCF if for every v ∈ Liploc(U)
with {w 6= v} b U and any compact set K ⊂ U containing {w 6= v}, we have

JKw (w) ≤ JKw (v)
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where

JKw (v) =

ˆ
K
|Dv| + v|Dw| dµ.

Moreover, given a bounded open set Ω ⊂ M with smooth boundary we say that w is a weak
IMCF starting at Ω if for every v ∈ Liploc(M) with {w 6= v} b M \ Ω and any compact set
K ⊂M \ Ω containing {w 6= v} we have

JKw (w) ≤ JKw (v),

and the set Ω is the 0-sublevel set of w, that is

Ω = {w < 0}.
We say that w is a proper weak IMCF if the function w is proper, that is, its sublevel sets are
precompact. In the following result we gather the existence and the fundamental estimates for
w in the Asymptotically Conical setting.

Theorem 4.1. Let (M, g) be a C 0-Asymptotically Conical Riemannian manifold satisfying the
Ricci curvature bound (1.2). Let Ω ⊂ M be an open bounded subset with smooth boundary.
Then, there exists a proper weak IMCF w starting at Ω. Moreover, given o ∈ Ω, the function w
satisfies

(n− 1) log dist(x, o)− C ≤ w ≤ (n− 1) log dist(x, o) + C (4.1)

where C = C(M,n,Ω).

Proof. The existence is guaranteed by [MRS21, Theorem 1.7] whose assumptions are satisfied
in virtue of (2.11) and (1.2). The lower bound is the consequence of [MRS21, Theorem 1.7 and
1.3]. Let R be such that

− (p− 1) logGp(x, o) ≤ (n− p) log dist(x, o)− log CL (4.2)

on M r B(o,R) with the constant CL = C aCapp(K;E) described in the statement of Theo-

rem 2.24. By [MRS21], −(p−1) logGp(x, o) locally uniformly converges as p→ 1+. Then we can

choose a in the constant CL independent from p so that Gp(o, x) ≥ a
1
p−1 holds on M rK where

K is as in Definition 2.13. Moreover, by (1.6), since ∂K is smooth, Capp(K;E) is bounded as

p→ 1+. Hence the constant CL in (4.2) does not depend on p. Passing to the limit as p→ 1+,
in virtue of the upper bound in [MRS21, Theorem 1.7], we obtain

w ≤ (n− 1) log dist(x, o) + C

outside some B(o,R). Since both the left and side and the right hand side are continuous, the
bound can be extended to M r Ω. �

In [MRS21, Remark 4.9] the authors also obtained a gradient bound that reads as

|Dw| ≤ C

dist(x, o)1/κ′
, where κ′ =

1 +
√

1 + 4κ2

2
≥ 1,

for some constant C > 0 depending only on Ω, the dimension n and the geometry of the ambient
manifold. By [GW79] (see also [MRS21, Remark 4.5]) The exponent κ′ can be chosen equal to
1 if the lower bound on the Ricci curvature is of the kind Ric ≥ −(n− 1)f(dist(x, o)) for some
smooth nonnegative function f(t), such that

+∞ˆ

0

tf(t) dt < +∞.
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The Weak Existence Theorem 3.1 [HI01] the function w satisfies

|Dw|(x) ≤ sup
∂Ω∩B(x,r)

H +
C

r
(4.3)

for almost every x ∈ M r Ω and for every r for which there exists a function ψ ∈ C 2(B(x, r))
such that ψ ≥ dist(x, · )2, ψ(x) = 0, |Dψ| ≤ 3 dist(x, · ), D2ψ ≤ 3g and Ric ≥ −C/r2 in B(x, r).
The existence of ψ is guaranteed if a sectional curvature lower bound is ensured. Otherwise, one
can require a higher rate of convergence of the metric.

Proposition 4.2. Let (M, g) be a C 1-Asymptotically Conical Riemannian manifold satisfying
the Ricci curvature bound (1.2). Let Ω ⊂ M be an open bounded subset with smooth boundary,
o ∈M . There exists a postive constant C = C(n,M,Ω) > 0, such that the solution w ∈ Lip(M)
of the weak IMCF starting at Ω, given by Theorem 4.1 satisfies

|Dw|(x) ≤ C

dist(x, o)
(4.4)

for almost every x ∈M r Ω.

Proof. By [HI01, Weak Existence Theorem 3.1] the function w satisfies (4.3) for almost every
x ∈ M r Ω. In virtue of the discussion in [HI01, Definition 3.3] (see also the proof of [HI01,
Blowdown Lemma 7.1]) there exists a constant C > 0 and R > 0 such that r ≥ C dist(x, o) in
(4.3) for every x ∈M rB(o,R). Then (4.4) follows taking r so that ∂Ω ∩B(x, r) = ∅. �

The notion of weak IMCF is intimately tied with that of strictly outward minimising sets
[HI01, Minimizing Hulls, p.371]. Leaving the details to [FM20], we recall that a bounded set
E ⊂M is strictly outward minimising if P (F ) > P (E) for any bounded F ⊃ E with |F \ E| > 0.
The following simple lemma implies the existence of a foliation of strictly outward minimising
sets in Asymptotically Conical manifolds.

Lemma 4.3. Let (M, g) be a C 0-Asymptotically Conical Riemannian manifold. Then {ρ ≤ r}
is strictly outward minimising for r large enough.

Proof. Consider any ϕ ∈ C∞c ({ρ ≥ r}), thenˆ

{ρ≥r}

div

(
Dρ

|Dρ|

)
ϕdµ = −

ˆ

{ρ≥r}

〈
Dρ

|Dρ|

∣∣∣∣Dϕ〉 dµ−
ˆ

{ρ=r}

ϕdσg.

Observe that the right hand side of the previous identity depends only on the coefficient of the
metric and not on their derivatives. Since the metric g converges to the metric ĝ, for every ε > 0
there exists Rε such that for every r ≥ Rε∣∣∣∣∣

ˆ

M

div

(
Dρ

|Dρ|

)
ϕdµg −

ˆ

M

n− 1

ρ
ϕdµĝ

∣∣∣∣∣ ≤ ε
ˆ

M

n− 1

ρ
ϕdµĝ (4.5)

for every ϕ ∈ C∞c ({ρ ≥ r}) and ∣∣|E|g − |E|ĝ∣∣ ≤ ε|E|ĝ
for every measurable E ⊂ {ρ ≥ r}. By (4.5) and the density of compactly supported smooth
function, for every E ⊂ {ρ ≥ r} we have thatˆ

E

div

(
Dρ

|Dρ|

)
dµg ≥ (1− ε) n− 1

supE ρ
|E|ĝ.



26 L. BENATTI, M. FOGAGNOLO, AND L. MAZZIERI

Let F be a subset of finite perimeter containing {ρ < r}, then(
1− ε
1 + ε

)(
n− 1

supF ρ

)
|F r {ρ < r}|g ≤ (1− ε) n− 1

supF ρ
|F r {ρ ≤ r}|ĝ ≤

ˆ

M

div

(
Dρ

|Dρ|

)
dµg

≤
ˆ

∂∗F

〈
Dρ

|Dρ|

∣∣∣∣ ν∂∗F〉 dσg −
ˆ

{ρ=r}

〈
Dρ

|Dρ|

∣∣∣∣ ν{ρ=r}

〉
dσg

≤ |∂∗F |g − |{ρ = r}|g.

This proves that |{ρ = r}|g ≤ |∂∗F |g and the equality holds true if and only if |F r {ρ < r}|g = 0,

which gives that {ρ ≤ r} is strictly outward minimising. �

By [FM20, Theorem 2.16] the existence of an exhaustion of strictly outward minimising sets
provides, for any bounded Ω ⊂ M with smooth boundary, a suitable bounded strictly outward
minimising hull Ω∗, that in particular fulfils

|∂Ω∗| = inf {|∂∗F | |F is bounded and Ω ⊆ F} .

Let (M, g) be a C 0-Asymptotically Conical Riemannian manifold defined in Definition 2.13 and
denote by E1, . . . , EN the (finitely many) ends. Consider Ω ⊂ M open bounded subset with
smooth boundary and w : M rΩ→ [0,+∞) the weak IMCF w starting at Ω. As we did for the
p-capacity we can define the area of the strictly outward minimising hull of Ω with respect to
one end Ei. Indeed, there exists a time T such that {w ≤ t} contains the compact K defined in
Definition 2.13 for every t ≥ T . We then define the area of ∂Ω∗ with respect to Ei as

|∂Ω∗|(i) =
|∂{w ≤ t} ∩ Ei|

et

for some t ≥ T . Observe that such definition is well posed by [HI01, Exponential Growth Lemma
1.6]. Moreover, it can be checked, substantially using [FM20, Proposition 3.4], that |∂Ω∗| splits
as

|∂Ω∗| =
N∑
i=1

|∂Ω∗|(i).

Theorem 1.2 in [FM20] establishes a relation between Cp(Ω) and |∂Ω∗|. The same relation

between C
(i)
p (Ω) and |∂Ω∗|(i) holds true.

Lemma 4.4. Let (M, g) be a C 0-Asymptotically Conical Riemannian manifold with Ricci cur-
vature satisfying (1.2) and N be the number of ends. Let Ω ⊆ M be an open bounded subset
with smooth boundary. Then,

lim
p→1+

C(i)
p (Ω) =

|∂Ω∗|(i)

|Sn−1|
holds for every i = 1, . . . , N

Proof. Let w be the solution to the weak IMCF starting at Ω and T large enough so that {w ≤ T}
contains K in Definition 2.13. Given up the solution to (1.1), by [MRS21] we have −(p−1) log up
where converges locally uniformly to w as p → 1+. In particular, for every t ≥ T there exists
pt ∈ (1, n) such that {w ≤ T} ⊆ {−(1− p) log up ≤ t} holds for every p < pt. Arguing as
in [FM20, Theorem 1.2], since an Isoperimetric Inequality is in force by Proposition 2.20, we
can prove that |∂{w ≤ t} ∩ Ei| ≤ Cn,p Capp(∂{w ≤ t};Ei), for some constant Cn,p such that
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Cn,p → 1 as p→ 1+. In particular, by the monotonicity of the p-capacity and Proposition 2.12
we have that

|∂Ω∗|(i) ≤ Cn,p e−TCapp ({w ≤ T} ∩ Ei;Ei) ≤ e−TCapp

({
up ≥ Cn,p e

− t
p−1

}
∩ Ei;Ei

)
= Cn,p et−2TCapp

({
up ≥ e

− T
p−1

}
∩ Ei;Ei

)
≤ Cn,pe

t−TCap(i)
p (Ω)

Sending p→ 1+ and then t→ T+ we have that

|∂Ω∗|(i)

|Sn−1| ≤ lim
p→1+

C(i)
p (Ω).

If for some i = 1, . . . , N the inequality is strict, then

|∂Ω∗|
|Sn−1| =

N∑
i=1

|∂Ω∗|(i)

|Sn−1| <
N∑
i=1

lim
p→1+

C(i)
p (Ω) = lim

p→1+
Cp(Ω) =

|∂Ω∗|
|Sn−1|

which is a contradiction. �

Clearly, we also obtain the analogous of Proposition 3.2.

Proposition 4.5 (Asymptotic behaviour of the area of level sets). In the same assumptions
and notations of Theorem 1.2, set, for i = 1, . . . ,m,

vi =

(
|∂Ω∗|(i)

|Sn−1|AVR(g;Ei)

) 1
n−1

e
w
n−1 .

Then, we have

lim
s→+∞

|{vi = s} ∩ Ei|
sn−1|Sn−1| = AVR(g).

Observe that a similar result for the p-capacitary potential was obtained in (3.12). In that
case a first order asymptotic behaviour for the p-capacitary potential was required in the proof.
The reason is that the area is linked to the level sets of IMCF in the same way the p-capacity
is linked to the level set of p-capacitary potential. A simple C 0-convergence is therefore enough
in this case.

As a byproduct we also obtain the counterpart of Proposition 3.3 proving that

w(x) = (n− 1) log(ρ(x)) with x ∈ (0,+∞)× L

is the unique solution on (0,+∞)× L up to a constant.

Proposition 4.6. Let ((0,+∞)×L, ĝ) be a Riemannian cone with nonnegative Ricci curvature
where L is a closed connected smooth hypersurface. Let w be a weak IMCF on (0,+∞) × L
satisfying w(x) ≥ (n−1) log ρ(x)+C for every x ∈ (0,+∞)×L for some constant C ≥ 0. Then,
there exists a γ ∈ R such that

w(x) = (n− 1) log(ρ(x)) + γ with x ∈ (0,+∞)× L,

holds on (0,+∞)× L.

In the case of the flat Euclidean space, this uniqueness result has been obtained in [HI01,
Proposition 7.2].
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Proof of Theorem 1.2 and Propositions 4.5 and 4.6. The proof follows the same lines of Theo-
rem 1.1. We prove the theorem in the case M has only one end, since the general case follows
applying the result to each end. We denote by g(s) the metric s−2ω∗sg on [1/s,+∞)× L, being
ωs the family of diffeomorphism defined in (2.6). We divide the proof in three steps. The second
and the third one contains the proof of Propositions 4.5 and 4.6 respectively.

Step 1. Define for every s ≥ 1 the family of functions ws : [1/s,+∞)× L→ R as

ws = w ◦ ωs − (n− 1) log(s)

where ωs is the map defined in (2.6). Employing (4.1) in Theorem 4.1 and Proposition 4.2 as in
the proof of Theorem 1.1, it is easy to show that (ws)s≥1 is equibounded and equi-Lipschitz. By
Arzelà-Ascoli Theorem, (ws)s≥1 is precompact with respect to the local uniform convergence on
(0,+∞) × L. Moreover, by [HI01, Compactness Theorem 2.1] every limit point u is a solution
to the (weak) IMCF on (0,+∞) × L and by (4.1) there exists a positive constant C > 0 such
that

(n− 1) log(ρ(x))− C ≤ u(x) ≤ (n− 1) log(ρ(x)) + C

is satisfied on (0,+∞)× L.

Step 2. Here we prove Proposition 4.6, inferring in particular that any limit point v of (ws)s≥1

satisfies

v(x) = (n− 1) log ρ(x) + γ

on (0,+∞)× L for some γ ∈ R. Let ev : R→ R be defined as

ev(t) =
R(t)

r(t)

where, for every t ∈ R, [r(t), R(t)] × L is the smallest annulus containing {v = t}. Arguing as
in Step 2 of Theorem 1.1 starting from any weak IMCF v on (0,+∞) × L we can produce a
function u : (0,+∞)×L→ R such that eu(t) is constant and is equal to eu = supt ev(t) ∈ [1,+∞).
Suppose by contradiction that eu > 1. Then the level {u = 0} ⊂ [r(0), eur(0)] × L and touches
both the cross-sections {ρ = r(0)} and {ρ = eur(0)} without being equal to either one. We aim
to compare the weak flow and the two strong flows and prove that the level sets of u detach
from the spheres. Perturb {ρ ≤ r(0)} outward and {ρ ≤ eur(0)} inward to obtain D− and D+

respectively with the following properties:

• {ρ ≤ r(0)} ⊂ D− ⊂ {u ≤ 0} and {u ≤ 0} ⊂ D+ ⊂ {ρ ≤ eur(0)};
• D− and D+ are starshaped with smooth strictly mean convex boundary.

Then the smooth IMCF starting at D+ and D− exists for all time by [Zho18, Theorem 3.1] and
by [HI01, Smooth Flow Lemma 2.3] it coincides with the weak notion of the IMCF. Denote by
(D−t )t≥0 and (D+

t )t≥0 the sublevel sets of the two weak (and smooth) IMCF starting at D− and
D+ respectively. By the Strong Comparison Principle for smooth flows we have that

ρ(x) > r(0)e
t

n−1 for x ∈ ∂D−t and ρ(x) < eur(0)e
t

n−1 for x ∈ ∂D+
t . (4.6)

On the other hand, by the Weak Comparison theorem [HI01, Theorem 2.2(ii)]

D−t ⊂ {u ≤ t} ⊂ D
+
t . (4.7)

Coupling (4.6) and (4.7) we have that eu(t) < eu which is the desired contradiction. Then eu = 1
that completes, as in Step 2 of Theorem 1.1, the proof of Proposition 4.6.
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Step 3. Let v = (n− 1) log ρ+ γ be a limit point of the family (ws)s≥1. We are now going to
prove that

γ = log

(
AVR(g)|Sn−1|
|∂Ω∗|

)
. (4.8)

The characterisation proves Proposition 4.5 and implies that the limit point is unique, concluding
the proof. We work with the auxiliary function

u = e
w−γ
n−1

Since v is a limit point for the family (ws)s≥1 there exists a subsequence (wsk)k∈N, sk increasing
and divergent as k → +∞, such that wsk → v = (n−1) log ρ+γ locally uniformly on (0,+∞)×L
as k → +∞. Then for any ε > 0 there exists kε ∈ N such that{

ρ ≤ sk
1 + ε

}
⊂ {u ≤ sk} ⊂

{
ρ ≤ sk

1− ε

}
holds for every k ≥ kε. By Lemma 4.3 we can assume kε large enough so that both the left most
and the right most sets are strictly outward minimising for any k ≥ kε. Then the perimeter is
monotone by inclusion and by [HI01, Exponential Growth Lemma 1.6] we have∣∣∣∣{ρ =

sk
1 + ε

}∣∣∣∣ ≤ eγsn−1
k |∂Ω∗| ≤

∣∣∣∣{ρ =
sk

1− ε

}∣∣∣∣
Dividing both sides by |Sn−1|sn−1

k , sending k → +∞ and using Lemma 2.16 we infer that

AVR(g)

(1 + ε)n−1
≤ eγ

|∂Ω∗|
|Sn−1| ≤

AVR(g)

(1− ε)n−1

Then (4.8) follows by arbitrariness of ε > 0. �

Firstly, observe that we do not have the analogous of Theorem 3.1 for the IMCF. The asymp-
totic behaviour of higher order derivatives of the p-capacitary potential is indeed a consequence
of the higher regularity one gets once shown that the gradient does not vanish anymore suffi-
ciently far out. In the case of the weak IMCF, it is not clear to us how to work out this last
step.

The result above is to be compared with [HI01, Lemma 7.1]. We obtain here an explicit
characterisation of the constants cλ that is

cλ = −(n− 1) log

(
|Sn−1|
|∂Ω∗|

λ

)
.

The constant appearing in (1.5) satisfies

log

(
AVR(g)|Sn−1|
|∂Ω∗|

)
= lim

p→1+
−(p− 1) log

[(
Capp(∂Ω)

AVR(g)

) 1
p−1

]
thanks to (1.6), which is the constant in (1.4), trasformed accordingly to wp = −(p− 1) log up.
Hence, even if by Theorem 4.1 wp → w only locally uniformly as p → 1+, the asymptotic
behaviour of w is anyway affected by this procedure.
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[GMS15] N. Gigli, A. Mondino, and G. Savaré. Convergence of pointed non-compact metric

measure spaces and stability of Ricci curvature bounds and heat flows. In: Proc.
Lond. Math. Soc. (3) 111.5 (2015), pp. 1071–1129. issn: 0024-6115. doi: 10.1112/
plms/pdv047. url: https://doi.org/10.1112/plms/pdv047.

[GT15] D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order.
springer, 2015.

[GW79] R. E. Greene and H. Wu. Function theory on manifolds which possess a pole. Vol. 699.
Lecture Notes in Mathematics. Springer, Berlin, 1979, pp. ii+215. isbn: 3-540-09108-
4.

[Haw77] S. W. Hawking. Gravitational instantons. In: Phys. Lett. A 60.2 (1977), pp. 81–83.
issn: 0375-9601. doi: 10.1016/0375-9601(77)90386-3.

[Heb99] E. Hebey. Nonlinear analysis on manifolds: Sobolev spaces and inequalities. Vol. 5.
Courant Lecture Notes in Mathematics. New York University, Courant Institute of
Mathematical Sciences, New York; American Mathematical Society, Providence, RI,
1999, pp. x+309. isbn: 0-9658703-4-0.

[HI01] G. Huisken and T. Ilmanen. The inverse mean curvature flow and the Riemannian
Penrose inequality. In: J. Differential Geom. 59.3 (2001), pp. 353–437. issn: 0022-
040X. url: http://projecteuclid.org/euclid.jdg/1090349447.

[HI08] G. Huisken and T. Ilmanen. Higher regularity of the inverse mean curvature flow.
Nov. 2008. doi: 10.4310/jdg/1226090483. url: https://doi.org/10.4310/jdg/
1226090483.
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