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ON THE TRANSCENDENCE OF GROWTH CONSTANTS ASSOCIATED WITH

POLYNOMIAL RECURSIONS

VEEKESH KUMAR

Abstract. Let P (x) := adx
d + · · · + a0 ∈ Q[x], ad > 0, be a polynomial of degree d ≥ 2. Let (xn) be a

sequence of integers satisfying

xn+1 = P (xn) for all n = 0, 1, 2 . . . , and xn → ∞ as n → ∞.

Set α := limn→∞ xd−n

n . Then, under the assumption a
1/(d−1)
d ∈ Q, in a recent result by Dubickas [3],

either α is transcendental, or α can be an integer, or a quadratic Pisot unit with α−1 being its conjugate

over Q. In this paper, we study the nature of such α without the assumption that a
1/(d−1)
d is in Q, and

we prove that either the number α is transcendental, or αh is a Pisot number with h being the order of

the torsion subgroup of the Galois closure of the number field Q(α, a
−

1

d−1

d ). Other results presented in this

paper investigate the solutions of the inequality ||q1α
n
1 + · · ·+qkα

n
k +β|| < θn in (n, q1, . . . , qk) ∈ N×(K×)k,

considering whether β is rational or irrational. Here, K represents a number field, and θ ∈ (0, 1). The
notation ||x|| denotes the distance between x and its nearest integer in Z.

1. Introduction

Let P (x) := adx
d + · · · + a0 ∈ Q[x], ad > 0, be a polynomial of degree d ≥ 2. Let (xn) be a sequence

of integers satisfying

xn+1 = P (xn) for all n = 0, 1, 2 . . . , and xn → ∞ as n → ∞. (1.1)

Recently Wagner and Ziegler [8] showed that for the above sequence (xn), limn→∞ xd
−n

n = α exists.
Moreover, they showed that α > 1 and it is either irrational or an integer. Also, it was shown that such
sequence (xn)n takes the form

xn = a
−1/(d−1)
d αdn − ad−1

dad
+O(α−dn). (1.2)

The proof of the asymptotic formula (1.2) has already been discussed in [8] and [3]. Here, we provide a

sketch of the proof for completeness. By the substitution yn := a
1/d−1
d (xn +

ad−1

dad
), the recursion becomes

yn+1 = a
1/d−1
d

(

P (xn) +
ad−1

dad

)

= a
d/d−1
d

(

xn +
ad−1

dad

)

+O(xd−2
n )

= ydn +O(yd−2
n ) as n → ∞.

Since xn → ∞ as n → ∞, so yn → ∞. By increasing n, if necessary we can assume that the sequence
(yn)n≥0 is increasing and none of the yn is zero. Taking the logarithm, we get

log

(

yn+1

ydn

)

= O(y−2
n ) as n → ∞. (1.3)
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Express log yn as follows:

log yn = d log yn−1 + log

(

yn

ydn−1

)

= dn log y0 +
n−1
∑

k=0

dn−k−1 log

(

yk+1

ydk

)

.

Since the series

∞
∑

k=0

d−k−1 log

(

yk+1

ydk

)

is convergent, we can re-write log yn as follows:

log yn = dn

(

log y0 +

∞
∑

k=0

d−k−1 log

(

yk+1

ydk

)

)

−
∞
∑

k=n

dn−k−1 log

(

yk+1

ydk

)

.

Set

log α = log y0 +

∞
∑

k=0

d−k−1 log

(

yk+1

ydk

)

.

Then, we get

log yn = dn log α−
∞
∑

k=n

dn−k−1 log

(

yk+1

ydk

)

.

Since the sequence (yn)n is increasing from some point onwards, we have yn ≤ yn+ 1 ≤ · · · for sufficiently
large n. Together with equation (1.3), we deduce that

log yn = dn log α+O

(

1

y2n

)

,

which in turns gives yn = αdn +O(α−dn) as n → ∞, and hence

xn = a
−1/d−1
d αdn − ad−1

dad
+O

(

1

αdn

)

as n → ∞.

This completes the proof of (1.2).

Very recently, Dubickas [3] studied the transcendence of numbers α under the assumption a
1/d−1
d ∈

Q. More precisely, he showed the possibility of such α can be an integer, a quadratic Pisot unit with
α−1 being its conjugate over Q, or a transcendental number. As a consequence, he established the
transcendence of several constants given by the polynomial recursion. For example, he considered the
sequence 1, 2, 5, 26, 277, 458330, . . ., given by x0 = 1 and

xn+1 = x2n + 1 for n = 0, 1, 2, . . . .

It can also defined as xn = [κ2
n
], n = 0, 1, . . ., where

κ := lim
n→∞

x2
−n

n =

∞
∏

n=1

(

1 +
1

x2n

)
1

2n+1

.

The sequence 2, 3, 8, 63, 3968, 15745023, . . . given by x0 = 2 and

xn+1 = x2n − 1 for n = 0, 1, 2, . . . .

Then xn = [ζ2
n
], n = 0, 1, 2, . . . , where

ζ := lim
n→∞

x2
−n

n .

Another example is Sylvester’s sequence 2, 3, 7, 43, 1807, 3263443, . . ., where x0 = 2 and

xn+1 = x2n − xn + 1 for n = 0, 1, 2, . . . .

In this case xn can also given by xn = [γ2
n
], where γ := limn→∞ x2

−n

n . These above sequences can be
found in the On-Line Encyclopedia of Integer Sequences [7](see also [1]). By the above mentioned result
of Dubickas, the constants κ, ζ and γ are transcendental.

Notice that in both of the above sequences, the respective polynomials have a leading coefficient of 1,

so the condition a
1/(d−1)
d ∈ Q is satisfied. In this paper, our main result provides a variant of Dubickas’
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result without assuming a
1/(d−1)
d ∈ Q. Many fascinating examples of sequences satisfying (1.1) can be

found in Finch’s book on mathematical constants [4].

Here is our main result:

Theorem 1.1. Suppose that an integer sequence (xn)n satisfies a recursion of the form xn+1 = P (xn)
for some polynomial P = adX

d + ad−1x
d−1 + · · · + a0 ∈ Q[X] degree d ≥ 2 and ad > 0. Assume further

that xn → ∞ as n → ∞. Then either the number

α = lim
n→∞

(xn)
1
dn

is transcendental, or αh is a Pisot number, with h being the order of the torsion subgroup of the Galois

closure of the number field K = Q(α, a
− 1

d−1

d ). Moreover, if ad is an integer, then either α is transcendental,

or (ad)
d−2
d−1αdm is a Pisot number for some non-negative integer m.

Remark 1. In the proof of the above theorem, we are using the fact that d · ad · a−1/(d−1)
d αdn is pseudo-

Pisot number for infinitely many positive integers n, which in turn implies that α is an algebraic integer,
as proven by either the result of Corvaja and Zannier [2] or Theorem 1.2 below. So, if we additionally

assume that a
−1/d−1
d ∈ Q (which is an essential assumption in Dubickas’s result), then we can conclude

that αdm is a Pisot number for some integer m ≥ 0. Without this assumption, the conclusion is no longer
true; we can only assert that αD is a Pisot number for some positive integer D, but this D may not be
of the form dm. In our Theorem 1.1, we obtain a similar conclusion as Dubickas’s result, except for the

extra factor a
d−2/d−1
d .

We illustrate Theorem 1.1 with some examples.

Example 1. Consider the sequence given by x1 = 3 and xn+1 = x2n − 2. It has been shown in [8, Page
2] that

xn = L2n =

(

1 +
√
5

2

)2n

+

(

1−
√
5

2

)2n

for all n ≥ 1, where Ln is the nth Lucas number. Thus, the limit of the sequence x2
−n

n would be the

golden ratio in this case. Since ad = 1, by taking m = 0, we see that a
(d−2)/(d−1)
d αdm is nothing but the

golden ratio. Therefore, it is a Pisot number.

Example 2. Consider the polynomial P (x) = 2xd. Then, the nth term of the sequence defined by
x0 = 1 and xn+1 = 2xdn for n = 0, 1, 2, ..., and it is equal to

xn = 2(d
n−1)/(d−1).

Hence, α = lim
n→∞

xd
−n

n = 21/(d−1), which is an algebraic integer. Since the order of the torsion subgroup of

the Galois closure of the number field Q(α) is d− 1, we have αd−1 = 2, making it a Pisot number. This
also explains why the exponent h in Theorem 1.1 is the best possible. Furthermore, since ad is a positive
integer, by taking m = 1, we see that

a
(d−2)/(d−1)
d αdm = 2(d−2)/(d−1)2d/(d−1) = 22 = 4,

which is again a Pisot number.

For a complex number x, ||x|| denotes the distance of x from its nearest integer in Z. In other words,

||x|| := min{|x−m| : m ∈ Z}.
We recall the following definition.

Definition 1. A tuple (α1, . . . , αk) of non-zero algebraic numbers is called non-degenerate if αi/αj is not

a root of unity for all integers 1 ≤ i < j ≤ k.
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When working with sums of the form q1α
n
1 + · · · + qkα

n
k , we can assume that (α1, . . . , αk) is non-

degenerate without loss of generality. To see this, suppose αk
αk−1

= ζ is an h-th root of unity. For

0 ≤ a ≤ h − 1, we restrict to n ∈ N congruent to a modulo h, and write n = a + hm. Then the sum
q1α

n
1 + · · ·+ qkα

n
k is equal to the sum q1α

a
1(α

h
1)

m + · · ·+ (qk−1+ζaqk)α
a
k−1(α

h
k−1)

m, which has fewer terms
than the original sum.

We also recall the following definition introduced in [5].

Definition 2. Let (β1, . . . , βk) be a tuple of distinct non-zero algebraic numbers. Set

B := {β ∈ Q̄×\{β1, . . . , βk} : β = σ(βi) for some σ : Q(β1, . . . , βk) → C and 1 ≤ i ≤ k}.
Then the tuple (β1, . . . , βk) is called pseudo-Pisot if

∑k
i=1 βi +

∑

β∈B β ∈ Z and |β| < 1 for every β ∈ B.

Moreover, if βi is an algebraic integer for 1 ≤ i ≤ k then the tuple (β1, . . . , βk) is called Pisot.

Let h(x) denote the absolute logarithmic Weil height. By sublinear function, we mean a function

f : N → (0,∞) satisfying lim
n→∞

f(n)

n
= 0. Let GQ be the absolute Galois group of Q.

We require the following diophantine approximation result of Kulkarni, Mavraki, and Nguyen [5], which
extends a seminal work by Corvaja and Zannier [2].

Theorem 1.2. (Kulkarni, Mavraki and Nguyen) Let r ∈ N, let (δ1, . . . , δr) be a non-degenerate tuple of

algebraic numbers with |δi| ≥ 1 for 1 ≤ i ≤ r. Let K be a number field and f be a sublinear function.

Suppose for some θ ∈ (0, 1), the set M of tuple (n, q1, . . . , qr) ∈ N× (K×)r satisfying the inequality

||q1δn1 + . . . + qrδ
n
r || < θn and max

1≤i≤k
h(qi) < f(n)

is infinite. Then the following holds:

(i) δi is an algebraic integer for i = 1, . . . , r.

(ii) For each σ ∈ GQ and 1 ≤ i ≤ r such that
σ(δi)
δj

is not a root of unity for 1 ≤ j ≤ r, we have

|σ(δi)| < 1.

Moreover for all but finitely many tuples (n, q1, . . . , qr) ∈ A
(iii) (q1δ

n
1 , . . . , qrδ

n
r ) is pseudo-Pisot.

(iv) σ(qδni ) = qjδ
n
j precisely for those triples (σ, i, j) ∈ GQ × {1, . . . , r}2 such that

σ(δi)
δj

is a root of

unity.

Theorem 1.2 plays a crucial role in proving all the results presented in this paper.

2. some other results

Here is our second theorem, which is an immediate consequence of Theorem 1.2.

Theorem 2.1. Let k ∈ N, and let (α1, . . . , αk) be a non-degenerate tuple of algebraic numbers with

|αi| ≥ 1 for 1 ≤ i ≤ k and none of αi is root of unity. Let β ∈ (0, 1) be an algebraic irrational number.

Let K be a number field and f be a sublinear function. Then for any θ ∈ (0, 1), there are only finitely

many tuples (n, q1, . . . , qk) ∈ N× (K×)k satisfying

||q1αn
1 + . . .+ qkα

n
k + β|| < θn and max

1≤i≤k
h(qi) < f(n). (2.1)

Very recently, the case k = 1 with q1 is a fixed algebraic number, independently also proved by the
author [6]. We have the following corollary of Theorem 2.1.

Corollary 2.1. Let α1, . . . , αk be multiplicatively independent algebraic numbers with |αi| ≥ 1 for 1 ≤ i ≤
k and none of αi is a root of unity. Let P (x1, . . . , xk) be a non-zero polynomial with algebraic coefficients

and constant term is irrational. Suppose that for some θ ∈ (0, 1), there are infinitely many n ∈ N such

that ||P (αn
1 , . . . , α

n
k )|| < θn. Then, at least one of αi is transcendental.
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It is natural to ask what can we say in the case when β is a rational number in Theorem 2.1. First, let
us see some remarks, then we will come back to this case.

Remark 2.1. We observe that in the case when αi is pseudo-Pisot number, qi = 1 for all 1 ≤ i ≤ k,
and β is a real number in the interval (0, 1), the inequality (2.1) can have only finitely many solutions in

n for any given θ ∈ (0, 1). This can be seen as follows: suppose there are infinitely many integers n ≥ 1
and some θ′ ∈ (0, 1) such that the inequality

||αn
1 + · · · + αn

k + β|| < θ′n (2.2)

holds. Let pn be the nearest integer to αn
1 + · · ·+ αn

k + β. Then pn is of the form

pn = TrQ(α1)/Q(α
n
1 ) + · · · +TrQ(αk)/Q(α

n
k ) + [β] + a,

for all sufficiently large values of n, where a is either 0 or 1. Here we used the fact that when α is

pseudo-Pisot number then the TrQ(α)/Q(α
n) is the nearest integer of αn for all sufficiently large positive

integers n. Thus we have

||αn
1 + · · · + αn

k + β|| =
∣

∣

∣

∣

∣

d1
∑

i=2

αn
1,i + · · ·+

dk
∑

i=2

αn
k,i + {β} − a

∣

∣

∣

∣

∣

.

Since {β} ∈ (0, 1), we have {β}−a is non-zero. On the other hand, by the hypothesis αi’s are pseudo-Pisot

numbers, we get that αn
j,i → 0 for every pair (i, j). Thus by these observations, we have

||αn
1 + · · ·+ αn

k + β|| > c(β) > 0 (2.3)

holds for all large positive integers n. From (2.2) and (2.3), we get a contradiction and hence the assertion.

Remark 2.2. If we take q1 =
1
2 , α1 =

1+
√
5

2 , β = 1
2 and θ = |1−

√
5/2|. It can be easily seen that Tr(α2n

1 )
is an odd integer for all n ∈ N, where Tr := Tr

Q(
√
5)/Q. Hence, we get that

‖q1α2n

1 + β‖ ≤
∣

∣

∣

∣

α2n
1

2
−
(

Tr(α2n
1 )

2
+

1

2

)

+
1

2

∣

∣

∣

∣

=
1

2
θ2

n

for all sufficiently large values of n. This explains that in general, the assumption β is an irrational

number cannot be removed in Theorem 2.1.

Remark 2.3. The assumption that none of αi is the root of unity is a necessary condition in Theorem

2.1. Take α1 to be any root of unity of order h, α2 =
1+

√
5

2 and q2 =
1
2 , then take any q1 and β such that

the q1α1 + β = 1/2. Then for any n such that n ≡ 1 mod h and TrQ(
√
5)/Q(α

n
2 ) is odd, we get back to the

situation as in Remark 2.2.

In the case when β is rational number, we have the following result.

Theorem 2.2. Let k ∈ N, and let (α1, . . . , αk) be a non-degenerate tuple of algebraic numbers with

|αi| ≥ 1 for 1 ≤ i ≤ k and none of αi is root of unity. Let β be a non-integral rational number. Let K be

a number field, OK be its ring of integers and f be a sublinear function. Then for any θ ∈ (0, 1), there
are only finitely many tuples (n, q1, . . . , qk) ∈ N× (O×

K)k satisfying the inequality

||q1αn
1 + . . . + qkα

n
k + β|| < θn and max

1≤i≤k
h(qi) < f(n)

Remark 2.2 explains our restriction (n, q1, . . . , qk) ∈ N× (O×
K)k in Theorem 2.2.



6

3. Proof of Theorem 1.1.

As we have discussed in the beginning, the sequence xn as stated in the theorem can be given by the
following asymptotic formula

xn = a
−1/(d−1)
d αdn − ad−1

dad
+O(α−dn),

where α = limn→∞ x
1
dn
n and it is strictly greater than 1.

Suppose that α is an algebraic number. Let L = Q(a
−1/(d−1)
d , α), and K be its Galois closure. Let h be

the order of the torsion subgroup of K×. Since α > 1, we have dada
−1/(d−1)
d αdn > 1 for all large enough

integers n. Then by the hypothesis, the inequality,

|dad · a−1/(d−1)
d αdn − (dadxn − ad−1)| < C(α)

(

1

α

)dn

has infinitely many solutions in n for some constant C(α) > 0. Since ad and ad−1 are fixed rational
numbers, we can multiply by a suitable fixed positive integer to reduce the case when the term (dadxn −
ad−1) becomes an integer. Therefore, the above inequality can be rewritten as:

‖dad · a−1/(d−1)
d αdn‖ < C(α)

(

1

α

)dn

, (3.1)

which has infinitely many solutions in n for some constant C(α) > 0. We denote A be a set of positive
integers n for which the inequality (3.1) holds. Since A is infinite, there exists an integer a ∈ {0, 1, . . . , h−
1} such that dn = a+ hm for infinitely many natural numbers m.

By taking k = 1 with q1 = d · ad · (a−1/(d−1)
d )αa and δ1 = αh, we can observe that the hypothesis

of Theorem 1.2 is satisfied. Therefore, according to part (i) of Theorem 1.2, αh is an algebraic integer.
Additionally, based on part (iii), for all sufficiently large values of n satisfying (3.1) and dn = a+ hm, we

have d · ad · (a−1/(d−1)
d ) · αdn is a pseudo-Pisot number. In order to complete the proof of this theorem, it

suffices to show that |σ(αh)| < 1 for each embedding σ 6= Id : Q(αh) → C.
We first observe that any conjugate σ(αh) 6= αh has an absolute value less than or equal to 1. Assume

that |σ(αh)| > 1. Since d · ad · (a−1/(d−1)
d ) · αdn is a pseudo-Pisot number, we must have ρ(q1α

hm) =

ρ(q1)σ(α
h)m = q1α

hm for all but finitely many values of m such that dn = a + hm ∈ A and some
ρ ∈ Gal(L/Q), where σ is the restriction of the automorphism ρ to Q(αh). Then by property (iv) of
Theorem 1.2, we have σ(αh)/αh is a root of unity, and hence σ(αh) = αh, which is a contradiction. Thus,
we conclude that |σ(αr)| ≤ 1.

Now, we show that the possibility |σ(αh)| = 1 cannot occur. If we have |σ(αh)| = 1, then the quotient
σ(αh)
αh is not a root of unity. By property (ii) of Theorem 1.2, we have |σ(αh)| < 1, which contradicts the

assumption that |σ(αh)| > 1. This proves that |σ(αh)| < 1 for each embedding σ 6= Id : Q(αh) → C, and
hence finishes the proof of the first part.

For the moreover part of the theorem, we apply Theorem 1.2 with the inputs k = 1, q1 = d ·
ad · (a−1

d )1/(d−1), and δ1 = α. Consequently, we can conclude that α is an algebraic integer, and

da
(d−2)/(d−1)
d αdn is a pseudo-Pisot number for all but finitely many values of n ∈ A. Since ad ∈ N,

we can deduce that a
(d−2)/(d−1)
d is an algebraic integer. This implies that a

(d−2)/(d−1)
d αdn is also an

algebraic integer.

Therefore, given the fact that da
(d−2)/(d−1)
d αdn is a pseudo-Pisot number for all but finitely many values

of n ∈ A, we can further conclude that a
(d−2)/(d−1)
d αdm is a Pisot number for some non-negative integer

m.
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4. Proofs of Theorems 2.1, 2.2 and Corollary 2.1

Proof of Theorem 2.1. The proof of this theorem follows from Theorem 1.2. Suppose there exists an
infinite set A of tuples (n, q1, . . . , qk) ∈ N × (K×)k, where K is some number field and some θ ∈ (0, 1)
such that the inequality

0 < ||q1αn
1 + . . .+ qkα

n
k + β|| < θn and max

1≤i≤k
h(qi) < f(n)

holds. Since none of αi is root of unity, we have the tuple (α1, . . . , αk, 1) is non-degenerate. Then we
apply Theorem 1.2 with the inputs M = A, r = k + 1, δi = αi for 1 ≤ i ≤ k and qk+1 = β, δk+1 = 1, and
conclude by part (iv) of Theorem 1.2 that β is fixed by all σ ∈ GQ, and hence β is rational. This is a
contradiction to the assumption that β is an irrational number and hence the theorem.

Proof of Theorem 2.2. For the proof of this theorem, we argue by contradiction. Suppose there exists
an infinite set A of tuples (n, q1, . . . , qk) ∈ N× (K×)k, where K is some number field and some θ ∈ (0, 1)
such that the inequality

0 < ||q1αn
1 + . . .+ qkα

n
k + β|| < θn and max

1≤i≤k
h(qi) < f(n)

holds. Since none of αi is root of unity, we have the tuple (α1, . . . , αk, 1) is non-degenerate. Then we
apply Theorem 1.2 with the inputs M = A, r = k + 1, δi = αi for 1 ≤ i ≤ k and qk+1 = β, δk+1 = 1, and
conclude by part (i) of Theorem 1.2 that each αi is an algebraic integer. By part (iii) of Theorem 1.2,
together with Defintion 2, we also have

k
∑

i=1

TrQ(qiαn
i )/Q

(qiα
n
i ) + β ∈ Z

for infinitely many values of n ∈ A. Since each αi is an algebraic integer and by the hypothesis each
qi is also an algebraic integer, we get that qiαi is an algebraic integer for i = 1, . . . , k. Thus the sum
∑k

i=1TrQ(qiαn
i )/Q

(qiα
n
i ) ∈ Z, which in turns implies that β is an integer. This contradicts the assumption

that β is not an integer and hence the theorem..

Proof of Corollary 2.1. Let P (x1, . . . , xk) =
∑

ī=(i1,...,ik)

aīx
i1
1 · · · xikk + a0̄ be a polynomial with real

algebraic coefficients and degree in each variable xi is di, and the constant term a0̄ is irrational. By the
hypothesis

||P (αn
1 , . . . , α

n
k )|| = ||

∑

ī

aī

(

αi1
1 · · ·αik

k

)n
+ a0̄|| < θn

holds for infinitely many values of n. Since |αi| ≥ 1 for all 1 ≤ i ≤ k and α1, . . . , αk are multiplicatively

independent, we have the tuple (αi1
1 · · ·αik

k : 1 ≤ ij ≤ dj , 1 ≤ j ≤ k) is non-degenerate. Then by

applying Theorem 2.1 with inputs k = d1d2 · · · dk, δi1,...,ik = αi1
1 · · ·αik

k , β = a0̄ and qi1,...,ik = aī for
1 ≤ ij ≤ dj , 1 ≤ j ≤ k, we conclude that at least one of αi is transcendental.
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