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Abstract

In this paper, we give some new lower bounds for the kissing number of `p-spheres.
These results improve the previous work due to Xu (2007). Our method is based on coding
theory.
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1 Introduction

Let Sn−1 be the unit sphere in Rn. The (translative) kissing number problem asks the maximum
number of nonoverlapping translates Sn−1 +x that can touch Sn−1 at its boundary. This is an
old and difficult problem in discrete geometry. The exact answer is only known in dimensions
1, 2, 3, 4, 8, and 24. In dimensions 1 and 2, the problem is trivial; in dimension 3, the problem
is known as the Gregory-Newton Problem and was solved by Schütte and van der Waerden [12]
(see also [7] for another proof); in dimension 4, the problem was solved by Musin [9] via an
extension of Delsarte’s method; in dimensions 8 and 24, the problem was solved by Levenštĕın
[8] and Odlyzko and Sloane [10] independently.
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Let K2(n) be the kissing number of Sn−1. The best upper bound for K2(n) in high dimen-
sions is due to Kabatjanskĭı and Levenštĕın [5]: K2(n) ≤ 20.401n(1+o(1)). Using a sphere covering
argument, Shannon [13] and Wyner [16] obtained a lower bound K2(n) ≥ c

√
n(2/
√

3)n. Re-
cently, Jenssen et al. [3] improved the lower bound by a linear factor in the dimension. See also
Fernández et al. [1] for constant factor improvement.

In this paper, we consider the kissing number of `p-spheres. For p ≥ 1, let Sn−1p (R) be the
`p-sphere with radius R and centered at 0 in Rn, that is, Sn−1p (R) := {x ∈ Rn : ‖x‖p = R},
where the `p-norm ‖·‖p is defined by ‖x‖p = (

∑n
i=1 |xi|p)

1/p
for x = (x1, x2, . . . , xn). We simply

write Sn−1p = Sn−1p (1). Let Kp(n) be the kissing number of Sn−1p . Minkowski-Hadwiger theorem
[2] implies an upper bound Kp(n) ≤ 3n − 1. This bound was improved by Sah et al. [11] for
p ≥ 2. Much less is known about the upper bound when p is between 1 and 2.

On the lower bound, Larman and Zong [6] proved thatKp(n) ≥ (9/8)n(1+o(1)) = 20.1699n(1+o(1)).
Xu [17] improved this result for every p ≥ 1, for instance, K3(n) ≥ 20.4564n(1+o(1)). Our main
result is an improvement to the work of Xu. Since our result does not have an explicit formula,
we list some numerical results here:

K1(n) ≥ 20.1247n(1+o(1)) + 20.1825n(1+o(1)) + 20.1554n(1+o(1)) + · · · ;

K2(n) ≥ 20.2059n(1+o(1)) + 20.1381n(1+o(1)) + 20.0584n(1+o(1)) + · · · ;

K3(n) ≥ cn20.4564n(1+o(1)) + 20.1562n(1+o(1)) + 20.0425n(1+o(1)) + · · · .

We give some explanation to our results. In the lower bound for K2(n), the 20.2059n(1+o(1))

term is the same as the lower bound due to Xu, so we improve the lower bound by adding
the remainder terms 20.1381n(1+o(1)) + 20.0584n(1+o(1)) + · · · . In the lower bound for K3(n), the
20.4564n(1+o(1)) term is the same as the lower bound due to Xu, so we improve the leading term
by a factor of n and add some remainder terms.

Our idea comes from coding theory. The translative kissing number Kp(n) is equal to the
largest size of an `p-spherical code with minimum distance 1 (see Lemma 2.1). We choose a
discrete set X from Sn−1p . Applying ideas from coding theory, we are able to find a large subset
of X, in which points have pairwise distance larger than or equal to 1. This gives a lower bound
for Kp(n).

2 An improved Gilbert-Varshamov type bound

Let Ap(n, d) be the maximum size of a subset of Sn−1p in which the points have pairwise `p-
distance at least 2d; that is,

Ap(n, d) := max{|C| : C ⊆ Sn−1p and dp(x,y) ≥ 2d,∀x,y ∈ C},
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where dp(x,y) := ‖x− y‖p is the `p-distance between x and y. In other words, Ap(n, d) is the
largest size of an `p-spherical code with minimum distance 2d. The following lemma is an easy
observation.

Lemma 2.1. The translative kissing number Kp(n) of Sn−1p is equal to Ap(n, 1/2).

Proof. For convenience, let k1 = Kp(n) and k2 = Ap(n, 1/2).
Suppose Sn−1p , Sn−1p +x1, S

n−1
p +x2, . . . , S

n−1
p +xk1 form a kissing configuration. For every

i, if dp(0,xi) > 2, then Sn−1p +xi and Sn−1p do not share a common point; if dp(0,xi) < 2, then
Sn−1p +xi and Sn−1p are overlapping. Thus, dp(0,xi) = 2 and 1

2
xi ∈ Sn−1p for every i. Moreover,

dp(xi,xj) ≥ 2 for i 6= j. So dp(
1
2
xi,

1
2
xj) ≥ 1 for i 6= j. Therefore, {1

2
x1,

1
2
x2, . . . ,

1
2
xk1} is an

`p-spherical code with minimum distance 1, i.e. k2 ≥ k1.
On the other hand, suppose {x1,x2, . . . ,xk2} is an `p-spherical code with minimum distance

1. Then Sn−1p + 2x1, S
n−1
p + 2x2, . . . , S

n−1
p + 2xk2 are nonoverlapping, and Sn−1p + 2xi touches

Sn−1p at xi for every i. So k1 ≥ k2. Thus the lemma follows.

For a positive integer m ≤ n, which will be determined later, we define a family J (m,n) of
subsets of Rn recursively. Define m1 := m and

J1(m,n) :=

{
u = (u1, u2, . . . , un) ∈ {0,±1}n :

n∑
i=1

|ui|p = m

}
.

Suppose we have defined mi and Ji(m,n). Then we define

mi+1 := bmi/2
pc (1)

and

Ji+1(m,n) :=

{
u = (u1, u2, . . . , un) ∈ {0,±(m/mi+1)

1/p}n :
n∑
i=1

|ui|p = m

}
.

This process terminates when mr < 2p for some r. So we obtain {m1 > m2 > . . . > mr} and
J (m,n) = {J1(m,n), J2(m,n), . . . , Jr(m,n)}. And we have the following proposition.

Proposition 2.2. For J (m,n) defined above, the following statements hold.

1. If i 6= j, then Ji(m,n) ∩ Jj(m,n) = ∅.

2. For every 1 ≤ i ≤ r and for every u ∈ Ji(m,n), u has exactly n−mi zero coordinates.

3. For every 1 ≤ i ≤ r,

|Ji(m,n)| =
(
n

mi

)
2mi . (2)
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4. For every 1 ≤ i ≤ r and for every u ∈ Ji(m,n), the `p-norm of u is m1/p.

5. If i 6= j, then for every u ∈ Ji(m,n) and v ∈ Jj(m,n), dp(u,v) ≥ m1/p.

Proof. The first four statements are trivial.
In order to prove the last statement, let u = (u1, u2, . . . , un) ∈ Ji(m,n) and v = (v1, v2, . . . , vn) ∈

Jj(m,n), where 1 ≤ i < j ≤ r. Without loss of generality, assume that u1 = u2 = · · · = umi
=

(m/mi)
1/p and umi+1 = umi+2 = · · · = un = 0. In other words, u = (m/mi)

1/p · 1mi0n−mi . For
1 ≤ k ≤ mi, we have vk ∈ {0,±(m/mj)

1/p}, and

|uk − vk|p ≥ min
{
|(m/mi)

1/p − 0|p, |(m/mi)
1/p − (m/mj)

1/p|p, |(m/mi)
1/p + (m/mj)

1/p|p
}

= min
{
|(m/mi)

1/p − 0|p, |(m/mi)
1/p − (m/mj)

1/p|p
}

= min

{
m

mi

,
m

mi

· |1− (mi/mj)
1/p|p

}
=

m

mi

min
{

1, |1− (mi/mj)
1/p|p

}
.

Since j > i, it follows that mj ≤ mi+1 = bmi

2p
c ≤ mi

2p
. Thus mi/mj ≥ 2p, and

|uk − vk|p ≥
m

mi

min
{

1, |1− (mi/mj)
1/p|p

}
≥ m

mi

min
{

1, |1− (2p)1/p|p
}

=
m

mi

.

Therefore,

dp(u,v)p =
n∑
k=1

|uk − vk|p ≥
mi∑
k=1

|uk − vk|p ≥
mi∑
k=1

m

mi

= m.

This completes the proof.

For every i, let J ′i(m,n) be a largest subset of Ji(m,n) with the property that dp(u,v) ≥ m1/p

for every u,v ∈ J ′i(m,n). Since we have proved that dp(u,v) ≥ m1/p if u ∈ J ′i(m,n) ⊆ Ji(m,n)
and v ∈ J ′j(m,n) ⊆ Jj(m,n) for i 6= j, the set

1

m1/p

r⋃
i=1

J ′i(m,n) :=

{
x ∈ Rn : m1/px ∈

r⋃
i=1

J ′i(m,n)

}
is an `p-spherical code with minimum distance 1. So

Ap(n, 1/2) ≥

∣∣∣∣∣ 1

m1/p

r⋃
i=1

J ′i(m,n)

∣∣∣∣∣ =

∣∣∣∣∣
r⋃
i=1

J ′i(m,n)

∣∣∣∣∣ =
r∑
i=1

|J ′i(m,n)| . (3)

For 1 ≤ i ≤ r and u ∈ Ji(m,n), define

Bi,n(u,m) :=
{
v ∈ Ji(m,n) : dp(u,v) < m1/p

}
,
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which is the open `p-ball centered at u with radius m1/p in the metric space (Ji(m,n), ‖ · ‖p).
Note that the size ofBi,n(u,m) is independent of u. If we writeBi,n(m) for the size ofBi,n(u,m),
then

Bi,n(m) =
∑

2t+2px<mi

(
mi

t

)(
n−mi

t

)(
mi − t
x

)
2t. (4)

Using the above notations, we have the following theorem, which is a Gilbert-Varshamov type
bound for |J ′i(m,n)|.

Theorem 2.3. For every 1 ≤ i ≤ r, we have

|J ′i(m,n)| ≥
⌈
|Ji(m,n)|
Bi,n(m)

⌉
=

⌈(
n
mi

)
2mi

Bi,n(m)

⌉
. (5)

The following corollary is immediate and it is our main result.

Corollary 2.4.

Ap(n, 1/2) ≥ max
1≤m≤n

r∑
i=1

⌈(
n
mi

)
2mi

Bi,n(m)

⌉
. (6)

Remark 2.5. In [17, Lemma 2.1], the lower bound for Ap(n, 1/2) is given by max1≤m≤n

⌈
( n
m1

)2m1

B1,n(m)

⌉
.

So Corollary 2.4 gives an improvement.

Proof of Theorem 2.3. Let i be given and J =
⌈
|Ji(m,n)|
Bi,n(m)

⌉
. We choose points from Ji(m,n)

recursively. At first, we arbitrarily choose u1 in Ji(m,n). Suppose we have chosen u1,u2, . . . ,uk
for some k < J . The set

Ji(m,n) \

(
k⋃
j=1

Bi,n(uj,m)

)
has size at least

|Ji(m,n)| −
k∑
j=1

|Bi,n(uj,m)| = |Ji(m,n)| − kBi,n(m) > 0.

So we can choose uk+1 from Ji(m,n) \
(⋃k

j=1Bi,n(uj,m)
)

and dp(uk+1,uj) ≥ m1/p for every

1 ≤ j ≤ k. This process continues as long as k < J . Therefore, {u1,u2, . . . ,uJ} is a subset of
Ji(m,n), in which the points have pairwise distance at leastm1/p. And hence |J ′i(m,n)| ≥ J .
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3 Some numerical results for small p

It seems that there does not exist an explicit formula for the lower bound in Corollary 2.4. So
we give some numerical results for small p in this section. In [17], Xu gives the lower bound for

max1≤m≤n

⌈
( n
m1

)2m1

B1,n(m)

⌉
. We still need to estimate the rest terms in right hand side of inequality

(6).
Define

Fp(σ) =

(
n
bσnc

)
2bσnc∑

2t+2px<bσnc
(bσnc

t

)(
n−bσnc

t

)(bσnc−t
x

)
2t
, σ ∈ (0, 1).

Then by equations (1)-(4) and inequality (6), we have

Ap(n, 1/2) ≥ max
0<σ<1

r∑
i=1

Fp

( σ

2(i−1)p

)
.

3.1 The value of r

We first estimate the value of r. Suppose m = d2kp + 2(k−1)p + · · ·+ 2pe for some k. Then

m1 = m = d2kp + 2(k−1)p + · · ·+ 2pe ∈
[
2kp + 2(k−1)p + · · ·+ 2p, 2kp + 2(k−1)p + · · ·+ 2p + 1

]
.

We calculate

m2 =
⌊m1

2p

⌋
∈
[
b2(k−1)p + 2(k−2)p + · · ·+ 1c, b2(k−1)p + 2(k−2)p + · · ·+ 1 + 2−pc

]
⊆
[
2(k−1)p + 2(k−2)p + · · ·+ 2p, 2(k−1)p + 2(k−2)p + · · ·+ 1 + 2−p

]
,

and

m3 =
⌊m2

2p

⌋
∈
[
b2(k−2)p + 2(k−3)p + · · ·+ 1c, b2(k−2)p + 2(k−3)p + · · ·+ 2−p + 2−2pc

]
⊆
[
2(k−2)p + 2(k−3)p + · · ·+ 2p, 2(k−2)p + 2(k−3)p + · · ·+ 2−p + 2−2p

]
.

So
mk ∈

[
2p, 2p + 1 + 2−p + · · ·+ 2−(k−1)p

]
,

and
mk+1 ∈

[
1, 1 + 2−p + 2−2p + · · ·+ 2−kp

]
⊆ [1, 2).

Therefore mk+1 = 1 and r = k + 1 if m = d2kp + 2(k−1)p + · · ·+ 2pe. Note that d2kp + 2(k−1)p +
· · · + 2pe ∈ [2kp, 2(k+1)p). On the other hand, if m ∈ [2kp, d2kp + 2(k−1)p + · · · + 2pe), then mk

may be less than 2p. So we conclude that r = blog2p mc+ 1 or r = blog2p mc.
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3.2 The behavior of Fp(σ)

In this subsection, we investigate the asymptotic behavior of Fp(σ).
Let H(σ) be the entropy function defined as

H(σ) =

 0, if σ = 0 or σ = 1;

−σ log2 σ − (1− σ) log2(1− σ), if 0 < σ < 1.

We have the following theorem.

Theorem 3.1 ([17]). We have

lim
n→∞

1

n
log2 Fp(σ) ≥ min

0≤y≤min{σ/2,1−σ}
fp(σ, y),

where

fp(σ, y) = (σ − y)

(
1−H

(
σ − 2y

2p(σ − y)

))
+H(σ)− σH

(y
σ

)
− (1− σ)H

(
y

1− σ

)
.

3.3 Numerical results for some special values of p

Let gp(σ) = min0≤y≤min{σ/2,1−σ} fp(σ, y). We list some numerical results for special values of p.

For p = 1, see left hand side of Figure 1 for the graph of g1(σ). g1(σ) attains its maximum
0.1825 at σ0 = 0.2605. So

A1(n, 1/2) ≥ max
0≤σ≤1

r∑
i=1

F1

( σ

2i−1

)
≥

r∑
i=1

F1

(
2σ0
2i−1

)
≥ F1 (2σ0) + F1 (σ0) + F1

(σ0
2

)
+ · · ·

≥ 2g1(2σ0)·n(1+o(1)) + 2g1(σ0)·n(1+o(1)) + 2g1(σ0/2)·n(1+o(1)) + · · ·
= 20.1247n(1+o(1)) + 20.1825n(1+o(1)) + 20.1554n(1+o(1)) + · · · .

Although 20.1247n(1+o(1)) + 20.1554n(1+o(1)) + · · · = o(20.1825n(1+o(1))), we still write them explicitly
since they improve the previous bound.

Remark 3.2. In [15], Talata obtained A1(n, 1/2) ≥ 20.1825n(1+o(1)) as well.
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Figure 1: The graphs of g1(σ) and g2(σ)

For p = 2, see right hand side of Figure 1 for the graph of g2(σ). g2(σ) attains its maximum
0.2059 at σ0 = 0.3881. So

A2(n, 1/2) ≥ max
0≤σ≤1

r∑
i=1

F2

( σ

22(i−1)

)
≥

r∑
i=1

F2

( σ0
4i−1

)
≥ F2 (σ0) + F2

(σ0
4

)
+ F2

(σ0
42

)
+ · · ·

≥ 2g2(σ0)·n(1+o(1)) + 2g2(σ0/4)·n(1+o(1)) + 2g2(σ0/16)·n(1+o(1)) + · · ·
= 20.2059n(1+o(1)) + 20.1381n(1+o(1)) + 20.0584n(1+o(1)) + · · · .

We also write the 20.1381n(1+o(1)) + 20.0584n(1+o(1)) + · · · = o(20.2059n(1+o(1))) terms explicitly.

For p = 2.1, see Figure 2 for the graph of g2.1(σ). g2.1(σ) attains its maximum 0.2163 at
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Figure 2: The graph of g2.1(σ)

σ0 = 0.9998. So

A2.1(n, 1/2) ≥ max
0≤σ≤1

r∑
i=1

F2.1

( σ

22.1(i−1)

)
≥

r∑
i=1

F2.1

( σ0
4.2871i−1

)
≥ F2.1 (σ0) + F2.1

( σ0
4.2871

)
+ F2.1

( σ0
4.28712

)
+ · · ·

≥ 2g2.1(σ0)·n(1+o(1)) + 2g2.1(σ0/4.2871)·n(1+o(1)) + 2g2.1(σ0/18.3792)·n(1+o(1)) + · · ·
= 20.2163n(1+o(1)) + 20.1944n(1+o(1)) + 20.0995n(1+o(1)) + · · · .

We also write the 20.1944n(1+o(1)) + 20.0995n(1+o(1)) + · · · = o(20.2163n(1+o(1))) terms explicitly.

4 Some numerical results for large p

There exists a threshold p0 ≈ 2.1 (we do not attempt to calculate the exact value of p0) such
that when p > p0, Fp(σ) attains its maximum at σ = 1. For σ = 1, i.e. m = n, we have another
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lower bound. Let m = n, and recall inequalities (3) and (5). We have

Ap(n, 1/2) ≥
r∑
i=1

|J ′i(n, n)|

= |J ′1(n, n)|+
r∑
i=2

|J ′i(n, n)|

≥ |J ′1(n, n)|+
r∑
i=2

⌈(
n
mi

)
2mi

Bi,n(n)

⌉

= |J ′1(n, n)|+
r∑
i=2

Fp

(
1

2p(i−1)

)
.

Indeed, we can improve the lower bound for |J ′1(n, n)| slightly.

4.1 An improvement of the lower bound for |J ′1(n, n)|
Recall the definition of J1(n, n) and J ′1(n, n). J1(n, n) = {±1}n and J ′1(n, n) is a largest subset
of {±1}n in which points have pairwise distance larger than or equal to n1/p. For u,v ∈ {±1}n,
let dH(u,v) := |{i : ui 6= vi}| be the Hamming distance between them. The following lemma is
an easy observation.

Lemma 4.1. For every u,v ∈ {±1}n, we have

(dp(u,v))p = 2p · dH(u,v).

By this lemma, it suffices to find a largest subset of {±1}n, in which points have pairwise
Hamming distance larger than or equal to dn/2pe. Recall the definition of B1,n(u, n) and we
have

B1,n(u, n) =
{
v ∈ {±1}n : dp(u,v) < n1/p

}
= {v ∈ {±1}n : 2p · dH(u,v) < n}
= {v ∈ {±1}n : dH(u,v) ≤ dn/2pe − 1} .

So B1,n(n) = |B1,n(u, n)| =
∑dn/2pe−1

k=0

(
n
k

)
. We have the following theorem, which gives a better

lower bound for |J ′1(n, n)| than that in inequality (5).

Theorem 4.2 ([4]). There exists a positive constant c such that

|J ′1(n, n)| ≥ c
2n

B1,n(n)
log2B1,n(n).
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Note that

lim
n→∞

1

n
log2B1,n(n) = H

(
1

2p

)
,

by Stirling’s formula. So

|J ′1(n, n)| ≥ c
n2n

B1,n(n)
= cn2n(1−H(2−p)+o(1)),

for some constant c (maybe depends on p). Although n = 2o(n), we write it explicitly to
represent the improvement.

4.2 Numerical results for some special values of p

As before, let gp(σ) = min0≤y≤min{σ/2,1−σ} fp(σ, y). We list some numerical results for special
values of p.

For p = 2.2, see left hand side of Figure 3 for the graph of g2.2(σ). We have

A2.2(n, 1/2) ≥ |J ′1(n, n)|+
r∑
i=2

F2.2

(
1

22.2(i−1)

)
≥ cn2n(1−H(2−2.2)+o(1)) + F2.2 (0.2176) + F2.2 (0.0474) + · · ·
≥ cn2n(1−H(2−2.2)+o(1)) + 2g2.2(0.2176)·n(1+o(1)) + 2g2.2(0.0474)·n(1+o(1)) + · · ·
= cn20.2442n(1+o(1)) + 20.1913n(1+o(1)) + 20.0915n(1+o(1)) + · · · .

For p = 3, see right hand side of Figure 3 for the graph of g3(σ). We have

A3(n, 1/2) ≥ |J ′1(n, n)|+
r∑
i=2

F3

(
1

23(i−1)

)
≥ cn2n(1−H(2−3)+o(1)) + F3 (0.1250) + F3 (0.0156) + · · ·
≥ cn2n(1−H(2−3)+o(1)) + 2g3(0.1250)·n(1+o(1)) + 2g3(0.0156)·n(1+o(1)) + · · ·
= cn20.4564n(1+o(1)) + 20.1562n(1+o(1)) + 20.0425n(1+o(1)) + · · · .
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Figure 3: The graphs of g2.2(σ) and g3(σ)

For p = 4, see Figure 4 for the graph of g4(σ). We have

A4(n, 1/2) ≥ |J ′1(n, n)|+
r∑
i=2

F4

(
1

24(i−1)

)
≥ cn2n(1−H(2−4)+o(1)) + F4 (0.0625) + F4 (0.0039) + · · ·
≥ cn2n(1−H(2−4)+o(1)) + 2g4(0.0625)·n(1+o(1)) + 2g4(0.0039)·n(1+o(1)) + · · ·
= cn20.6627n(1+o(1)) + 20.1083n(1+o(1)) + 20.0145n(1+o(1)) + · · · .

5 Further remarks

In [11], Sah et al. obtained an inequality between `p-spherical codes for different p; that is,
Ap(n, d) ≤ Aq(n, d

p/q) for all 1 ≤ q ≤ p and d ∈ (0, 1]. So

A2(n, d) ≤ Ap(n, d
2/p), if 1 ≤ p ≤ 2, (7)

and
Ap(n, d) ≤ A2(n, d

p/2), if p ≥ 2. (8)

Sah et al. used inequality (8) to obtain an upper bound for Ap(n, d) (p ≥ 2).
On the other hand, Swanepoel [14] had used inequality (7) to obtain a lower bound for

Ap(n, 1/2) (1.62107 < p ≤ 2) before. Because the best lower bound for A2(n, d) has been
improved since then, we update this type of lower bound here. We need the following theorem,
which is the best known lower bound for A2(n, d) (d ∈ (0, 1)).
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Figure 4: The graph of g4(σ)

Theorem 5.1 ([1]). Let θ ∈ (0, π/2) be fixed. Then

A2(n, sin(θ/2)) ≥ (1 + o(1)) ln
sin θ√

2 sin(θ/2)
· n ·
√

2πn cos θ

sinn−1 θ
.

For 1 < p ≤ 2, we have
Ap(n, 1/2) ≥ A2(n, (1/2)p/2).

Let sin(θ/2) = 2−p/2. Then cos(θ/2) =
√

1− 2−p, sin θ = 21−p/2√1− 2−p, and cos θ = 1− 21−p.
So

Ap(n, 1/2) ≥ A2(n, (1/2)p/2)

= A2(n, sin(θ/2))

≥ (1 + o(1)) ln
√

2− 21−p · n ·
√

2πn(1− 21−p)

(21−p/2
√

1− 2−p)n−1
.

(9)

After some numerical calculations, when p ∈ (1.9948, 2], the lower bound in inequality (9) is
better than that in inequality (6).
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