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An Elementary Proof of a Theorem of Hardy and Ramanujan

Asaf Cohen Antonir∗ Asaf Shapira †

Abstract

Let Q(n) denote the number of integers 1 ≤ q ≤ n whose prime factorization q =
∏

t

i=1
pai

i

satisfies a1 ≥ a2 ≥ . . . ≥ at. Hardy and Ramanujan proved that

logQ(n) ∼ 2π√
3

√

log(n)

log log(n)
.

Before proving the above precise asymptotic formula, they studied in great detail what can be
obtained concerning Q(n) using purely elementary methods, and were only able to obtain much
cruder lower and upper bounds using such methods.

In this paper we show that it is in fact possible to obtain a purely elementary (and much
shorter) proof of the Hardy–Ramanujan Theorem. Towards this goal, we first give a simple
combinatorial argument, showing that Q(n) satisfies a (pseudo) recurrence relation. This enables
us to replace almost all the hard analytic part of the original proof with a short inductive argument.

1 Introduction

Let ℓk = p1 · p2 · · · pk denote the product of the first k prime numbers, and take Q to be the set of
integers q which can be expressed as q = ℓb11 · ℓb22 · · · ℓbtt , for some t ≥ 1 and sequence of non-negative
integers b1, . . . , bt. Set Q(n) = |Q∩ [n]|, and note that this definition of Q(n) is equivalent to the one
given in the abstract. The problem of bounding Q(n) was introduced by Hardy and Ramanujan [2].
As they explained, their motivation for studying this problem was its relation to highly composite
numbers [7], its relation to variants of the partition function (see below), as well as the methods used
in order to estimate Q(n). The main result of [2] was the tight asymptotic bound

logQ(n) ∼ 2π√
3

√

log(n)

log log(n)
. (1)

In the first section of their paper, they studied what bounds can be obtained regarding logQ(n)
using purely elementary methods. They were only able to use such methods in order to prove the
much cruder bounds

C1

√

log(n)

log log(n)
≤ logQ(n) ≤ C2

√

log(n) log log(n) .

They then used far more sophisticated methods (see below) in order to prove (1), not before noting
that “to obtain these requires the use of less elementary methods”. We will show in this paper that
one can in fact prove (1) via a completely elementary and short argument. But prior to discussing
our new proof, let us first put it in perspective.
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1.1 Historical perspective

The paper in which Hardy and Ramanjuan studiedQ(n) [2] was followed a year later by the celebrated
paper [3] in which they obtained their famous asymptotic formula for the partition function p(n).
Much as they have done in [2], they devoted the first section of [3] to study what bounds can be
obtained regarding p(n) using purely elementary methods. They proved that 2

√
n ≤ log p(n) ≤

√
8n,

and remarked that they can prove the right asymptotic bound

log p(n) ∼ π
√

2n/3 (2)

using the methods they used in [2] in their proof of (1), but that this proof “is of the difficult and

delicate type”. Indeed, in his book on Ramanujan’s work from 1940 [1], Hardy remarked that “It is
actually true that log p(n) ∼ π

√

2n/3..., but we cannot prove this very simply”. This shortcoming
was resolved two years later by Erdős [4], who came up with an ingeniously simple proof of (2). His
main idea was to take advantage of a certain recurrence relation satisfied by p(n) in order to bound
p(n) by induction on n. See [5, 6] for further background and references.

With this perspective in mind, what we obtain in this paper can be considered an Erdős-type
proof of (1). Unlike the case of p(n), there is (to the best of our knowledge) no recurrence relation
involving Q(n). This suggests that Erdős’s approach cannot be used to prove (1). However, as we
explain below, there is an approximate such relation, which turns out to be sufficient for proving (1).

1.2 Our simplification

The proof of (1) in [2] began with an estimate for the function φ(δ) =
∑∞

k=1 ℓ
−δ
k . Hardy and

Ramanujan [2] then used their estimate for φ(δ) in order to estimate the generating function of Q(n)
around zero. They then moved to the second and main step of their proof in which they proved a
Tauberian theorem, which enabled them to translate their estimate for the generating function of
Q(n), to the estimate for Q(n) in (1). Before describing our simplification, it is worth remarking
that another indication that Hardy and Ramanujan were genuinely interested in keeping their proof
as elementary as possible, is that one can easily estimate φ(δ) while relying on the prime number
theorem (see Appendix B for the short proof). They instead found a remarkable identity (see (7))
which enabled them to estimate φ(δ) while relying only on the elementary fact that Chebyshev’s
function ϑ(x) is of order x.

As in [2], our proof starts with a certain sum estimate. Set Φ(δ) =
∑∞

k=1 log(ℓk)ℓ
−δ
k .

Lemma 1.1. We have Φ(δ) ∼ δ−2/ log(1/δ) as δ → 0.

At this point our proof departs from that of [2] by doing away with its entire hard analytic part.
This is achieved by the following (pseudo1) recurrence relation.

Lemma 1.2. For every integer n set W (n) :=
∏

m∈Q∩[n]m. Then the following relation holds

W (n) =
∏

k

ℓ
∑

s Q(⌊n/ℓsk⌋)
k . (3)

Proof. Let Q(n, k, s) and Q∗(n, k, s) be the number of integers in Q ∩ [n] for which bk = s and
bk ≥ s respectively. Since each integer has at most one representation as a product of ℓk, we have

W (n) =
∏

s,k

ℓ
s·Q(n,k,s)
k =

∏

k

ℓ
∑

s sQ(n,k,s)
k =

∏

k

ℓ
∑

s Q
∗(n,k,s)

k =
∏

k

ℓ
∑

s Q(⌊n/ℓsk⌋)
k . �

1One expects that most of the contribution to Q(n) comes from integers q satisfying log(q) ≈ log(n). In this case
we expect W (n) ≈ nQ(n), which then turns equation (3) into a “genuine” recurrence relation.
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What Lemma 1.2 gives us is the ability to prove (1) by induction on n (with the aid of Lemma
1.1). We prove the upper bound of (1) in the next section. Lemma 1.1 is proved in Section 3. The
proof of the lower bound of (1), which is almost identical to the proof of the upper bound, is given
in Section 4. The appendix contains proofs of a few elementary inequalities.

2 An Upper Bound for Q(n)

Set c = 2π/
√
3 and fix any 0 < ε < 1/2. We will prove that Q(n) ≤ Ke(1+ε)c

√
log(Cn)/log(log(Cn)) by

induction on n, where K = K(ε) and C = e10 + 1. Note that by choosing K large enough, we can
assume that the induction assumption holds for all n ≤ n0(ε), allowing us to assume in what follows
that n ≥ n0(ε). We first split the contributions of Q(n) as follows

Q(n) = Q(n1−ε/4) + (Q(n)−Q(n1−ε/4))

≤ Ke(1+ε)c
√

log(Cn1−ε/4)/log(log(Cn1−ε/4)) + (Q(n)−Q(n1−ε/4))

≤ ε

8
Ke(1+ε)c

√
log(Cn)/log(log(Cn)) + (Q(n)−Q(n1−ε/4)) .

The first inequality holds by induction and the second holds provided n is large enough. Hence,

proving that Q(n)−Q(n1−ε/4) ≤ (1− ε
8)Ke(1+ε)c

√
log(Cn)/log(log(Cn)) would complete the proof. Since

logW (n) ≥ (1− ε/4) log(n)(Q(n)−Q(n1−ε/4))

we just need to establish that for large enough n

logW (n) ≤ (1− ε/2) log(n)Ke(1+ε)c
√

log(Cn)/log(log(Cn)) . (4)

To simplify the presentation, we set m = log(Cn). Further, set f(x) =
√

x/ log(x) and denote its

derivative by f ′(x) = 1−1/ log(x)

2
√

x log(x)
. We will use the fact2 that for every r > 10 and 0 ≤ t ≤ r − 10

f(r − t) ≤ f(r)− tf ′(r) . (5)

Using Lemma 1.2 and then applying induction, we can bound logW (n) as follows

logW (n) =
∑

k

∑

s

log(ℓk)Q(⌊n/ℓsk⌋) ≤
∑

s

∑

k

log(ℓk)Ke(1+ε)cf(log(Cn/ℓsk))

≤ Ke(1+ε)cf(m)
∞
∑

s=1

∞
∑

k=1

log(ℓk)ℓ
−(1+ε)csf ′(m)
k , (6)

where the second inequality3 holds by (5) with r = m and t = log(ℓsk) noting that m = log(Cn) ≥ 10
and assuming that in the first line we only consider indices k, s so that log(ℓsk) ≤ log(n) ≤ m − 10
(as otherwise Q(⌊n/ℓsk⌋) = 0).

Hence, to complete the proof of (4) it remains to establish that the double sum in (6) is bounded
from above by (1 − ε/2) log(n). Since c ≥ 1 and α⌈k log(k + 1)⌉ ≤ log(ℓk) ≤ β⌈k log(k + 1)⌉ for all
k ≥ 14, this double sum is clearly bounded from above by S1 + S2 where

S1 =

(log log(n))2
∑

s=1

∞
∑

k=1

log(ℓk)ℓ
−(1+ε)csf ′(m)
k and S2 =

∞
∑

s=(log log(n))2

∞
∑

k=1

βke−αsf ′(m)k .

2This follows directly from Lagrange’s remainder theorem, see Lemma A.1 in the appendix for a detailed proof.
3When we write f ′(m), we mean substituting x = m = log(Cn) in f ′(x) = 1−1/ log(x)

2
√

x log(x)
.

4See [6] for an elementary proof that such α and β exist.
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Bounding S1: By Lemma 1.1 there is a δ0 = δ0(ε) so that Φ(δ) ≤ (1 + ε/12)δ−2/log(1/δ) holds
for every δ < δ0. Assume n is large enough so that (1 + ε)c(log log(n))2f ′(m) ≤ δ0. Then,

S1 ≤
(log log(n))2
∑

s=1

(1 + ε/12)f ′(m)−2

(1 + ε)2c2 log
(

1
(1+ε)csf ′(m)

)

s2
≤ 8(1 + ε/12)2 log(n)

(1 + ε)2c2

∞
∑

s=1

1

s2
≤ (1− ε) log(n) .

The first inequality uses Lemma 1.1 with δ = (1+ε)csf ′(m) (≤ δ0), and the second inequality holds

as f ′(m)−2

− log((1+ε)csf ′(m)) ≤ 8(1 + ε/12) log(n) for all 1 ≤ s ≤ (log log(n))2 and large n.

Bounding S2: Since S1 ≤ (1− ε) log(n) it remains to prove that S2 ≤ 1
2ε log(n). Indeed

S2 =

∞
∑

s=(log log(n))2

βe−αsf ′(m)

(

1− e−αsf ′(m)
)2 ≤ β

α2f ′(m)2

∞
∑

s=(log log(n))2

1

s2
≤ 9βm log(m)

α2(log log(n)2 − 1)
≤ 1

2
ε log(n) .

The equality holds as
∑∞

a=1 at
a = t

(1−t)2
, the first inequality uses the elementary fact (see Lemma

A.2) e−z

(1−e−z)2 ≤ 1
z2 , and the second inequality holds as for all t we have

∑∞
s=t

1
s2 ≤

∫∞
t−1

1
x2dx = 1

t−1 .

3 Proof of Lemma 1.1

Throughout the proof we will use Chebyshev’s function, ϑ(x) =
∑

p≤x log(p), and the elementary5

fact that C1x ≤ ϑ(x) ≤ C2x (see [6] for a proof). We start with the following identity from [2]:

∞
∑

k=1

ℓ−δ
k =

∞
∑

k=1

1− 1/pδk
pδk − 1

∏

1≤i≤k−1

p−δ
i =

1

pδ1 − 1
+

∞
∑

k=1

ℓ−δ
k

(

1

pδk+1 − 1
− 1

pδk − 1

)

=
1

2δ − 1
−

∞
∑

k=1

ℓ−δ
k

∫ pk+1

pk

δxδ−1

(xδ − 1)2
dx

=
1

2δ − 1
−

∞
∑

k=1

∫ pk+1

pk

δxδ−1e−δϑ(pk)

(xδ − 1)2
dx . (7)

Differentiating6 both sides with respect to δ (while differentiating under the integral sign) we obtain:

Φ(δ) = − 2δ log(2)

(2δ − 1)2
+

∞
∑

k=1

∫ pk+1

pk

xδe−δϑ(pk)((xδ − 1)(δϑ(pk)− 1) + δ(xδ + 1) log(x))

(xδ − 1)3x
dx

= − 2δ log(2)

(2δ − 1)2
+

∞
∑

k=1

∫ pk+1

pk

xδe−δϑ(x)((xδ − 1)(δϑ(x) − 1) + δ(xδ + 1) log(x))

(xδ − 1)3x
dx

= − 2δ log(2)

(2δ − 1)2
+

∫ ∞

2

xδe−δϑ(x)((xδ − 1)(δϑ(x) − 1) + δ(xδ + 1) log(x))

(xδ − 1)3x
dx

= − 2δ log(2)

(2δ − 1)2
+

∫ ∞

2

δϑ(x)xδe−δϑ(x)

(xδ − 1)2x
dx+

∫ ∞

2

xδ((xδ + 1) log(xδ)− xδ + 1)

(xδ − 1)3
e−δϑ(x)

x
dx

5It is much easier to prove Lemma 1.1 if one is willing to rely on the prime number theorem, see Appendix B.
6By the Weierstrass M -test, both sides of (7), and their term by term derivatives form a (locally) uniformly

convergent series on (0, 1). Hence, we can derive them by differentiating term by term, see [8, Theorems 7.10 and 7.17].
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Fixing ε > 0 we need to prove that |Φ(δ)− δ−2

log(1/δ) | ≤
εδ−2

log(1/δ) for all δ < δ0(ε). Denoting each of the
above summands by I1, I2, I3 from left to right, we now evaluate each of them. To do so we will use
the following elementary inequalities7 which hold for all z > 0:

∣

∣

∣

∣

ez

(ez − 1)2
− 1

z2

∣

∣

∣

∣

≤ 1

12
and

∣

∣

∣

∣

ez((ez + 1)z − ez + 1)

(ez − 1)3
− 1

z2

∣

∣

∣

∣

≤ 1 . (8)

Applying the first inequality in (8) to I1 with z = δ log(2) we have
∣

∣

∣

∣

I1 +
1

log(2)δ2

∣

∣

∣

∣

≤ 1

12
. (9)

Applying the same inequality to I2 with z = δ log(x) we have
∣

∣

∣

∣

∣

I2 −
∫ ∞

2

δϑ(x)e−δϑ(x)

δ2 log2(x)x
dx

∣

∣

∣

∣

∣

≤
∫ ∞

2

δϑ(x)e−δϑ(x)

12x
dx ≤

∫ ∞

2

δC2e
−δC1x

12
dx ≤ C2

12C1
, (10)

where the second inequality holds as C1x ≤ ϑ(x) ≤ C2x for all x > 0. Finally, applying the second
inequality in (8) to I3 with z = δ log(x) we have

∣

∣

∣

∣

∣

I3 −
∫ ∞

2

e−δϑ(x)

δ2 log2(x)x
dx

∣

∣

∣

∣

∣

≤
∫ ∞

2

e−δϑ(x)

x
dx ≤ 1

δC1
, (11)

where the second inequality holds as ϑ(x) ≥ C1x. We conclude that provided δ is sufficiently small,
then (9),(10), and (11) imply that

∣

∣

∣

∣

∣

Φ(δ)−
∫ ∞

2

(δϑ(x) + 1)e−δϑ(x)

δ2 log2(x)x
dx+

1

log(2)δ2

∣

∣

∣

∣

∣

≤ ε/2

δ2 log(1/δ)
. (12)

For every positive C let fC(δ) =
∫∞
2

(δCx+1)e−δCx

δ2 log2(x)x
dx. Since (x + 1)e−x is monotone decreasing

for all x > 0 and C1x ≤ ϑ(x) ≤ C2x, the integral in (12) is bounded from above and below by
fC1(δ), fC2(δ), respectively. Hence, to conclude the proof we will prove that for every C, ε > 0 and
small enough δ

∣

∣

∣

∣

fC(δ)−
1

log(2)δ2
− 1

δ2 log(1/δ)

∣

∣

∣

∣

≤ ε/2

δ2 log(1/δ)
. (13)

Indeed, using integration by parts and then change of variables we obtain:

fC(δ) =
(2δC + 1)e−2δC

log(2)δ2
+ C2

∫ ∞

2

xe−δCx

log(x)
dx =

(2δC + 1)e−2δC

log(2)δ2
+

1

δ2

∫ ∞

2δC

ze−z

log(z/Cδ)
dz . (14)

It remains to estimate the last integral. Since xe−x ≤ 1 and
∫∞
0 ze−zdz = 1 we have

∫ ∞

2δC

ze−z

log(z/Cδ)
dz ≤

∫ C/ log2(1/δ)

2δC

ze−z

log(z/Cδ)
dz +

∫ ∞

C/ log2(1/δ)

ze−z

log(z/Cδ)
dz

≤ C

log(2) log2(1/δ)
+

1

log(1/(δ log2(1/δ)))
≤ 1 + ε/4

log(1/δ)
, (15)

and
∫ ∞

2δC

ze−z

log(z/Cδ)
dz ≥

∫ C log(1/δ)

2δC

ze−z

log(z/Cδ)
dz ≥

∫ C log(1/δ)

2δC

ze−z

log(log(1/δ)/δ)
dz ≥ 1− ε/4

log(1/δ)
, (16)

for small enough δ. Combining (14),(15),(16) we obtain (13) for every small enough δ.

7Both inequalities can be proved by replacing ez with its power series. For a proof see Lemma A.2 in the appendix.
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4 A Lower Bound for Q(n)

The proof is almost identical to the proof in Section 2. The only difference is that instead of (5) we
now use (17), hence we need to account for f ′′. Set c = 2π/

√
3 and fix any 0 < ε < 1/2. We will

prove that Q(n) ≥ 1
K e(1−ε)c

√
log(Cn)/ log log(Cn) by induction on n, where K = K(ε), and C = e10

3
+1.

Note that by choosing K large enough, we can assume that the induction assumption holds for all
n ≤ n0(ε), allowing us to assume in what follows that n ≥ n0(ε).

To simplify the presentation we set m = log(Cn). Further, set f(x) =
√

x/ log(x), denote its

derivative by f ′(x) = 1−1/ log(x)

2
√

x log(x)
, and its second derivative by f ′′(x) = −1+3/ log2(x)

4x
√

x log(x)
. We will next use

the fact8 that for r ≥ 103 and any 0 ≤ t ≤ r/10

f(r − t) ≥ f(r)− tf ′(r) + t2f ′′(r) . (17)

Setting s′ = log log(n) and k′ = log3/4(n) we have ℓs
′

k′ ≤ n1/10 for large enough n, and hence

log(n)Q(n) ≥ log (W (n)) =
∑

k

∑

s

log(ℓk)Q(⌊n/ℓsk⌋)

≥
∑

s≤s′

∑

k≤k′

log(ℓk)
1

K
e(1−ε)cf(log(Cn)−(1+ε/4) log(ℓsk))

≥ 1

K
e(1−ε)cf(m)

∑

s≤s′

∑

k≤k′

log(ℓk)e
−(1−ε/2)c log(ℓsk)f

′(m) · e2c log2(ℓsk)f ′′(m)

≥ 1

K
e(1−ε)cf(m)

∑

s≤s′

∑

k≤k′

log(ℓk)ℓ
−(1−ε/2)csf ′(m)
k

(

1 + 2c log2(ℓsk)f
′′(m)

)

, (18)

where the equality holds by Lemma 1.2, the second inequality holds by induction, the fact that for all
x > 2 we have log(⌊x⌋) ≥ log(x)− 2/x, and by assuming n is large enough so that ℓsk/n ≤ 1

8ε log(ℓ
s
k)

for all s ≤ s′ and k ≤ k′; the third inequality holds9 by (17) with r = m, t = (1+ ε/4) log(ℓsk) noting
that m = log(Cn) ≥ 103 and log(ℓs

′

k′) ≤ log(n1/10) ≤ m/10, and the last inequality holds as for all x
we have 1 + x ≤ ex.

Hence, to complete the proof it remains to establish that the double sum in (18) is bounded from
below by log(n). Since (1 − ε/2)c > 1 and since α⌈k log(k + 1)⌉ ≤ log(ℓk) ≤ β⌈k log(k + 1)⌉ for all
k ≥ 1, the double sum in (18) is at least S1 − S2 + S3 where (note that f ′′(m) < 0)

S1 =

s′
∑

s=1

∞
∑

k=1

log(ℓk)ℓ
−(1−ε/2)csf ′(m)
k , S2 =

s′
∑

s=1

∞
∑

k=k′

βke−αsf ′(m)k ,

S3 =

s′
∑

s=1

∞
∑

k=1

2β3cs2k3f ′′(m)e−αsf ′(m)k .

Bounding S1: By Lemma 1.1 there is a δ0 = δ0(ε) so that Φ(δ) ≥ (1− ε/4)δ−2/log(1/δ) holds for
every δ < δ0. Assume n is large enough so that (1− ε/2)c log log(n)f ′(m) ≤ δ0. Then,

S1 ≥
log log(n)
∑

s=1

(1− ε
4)f

′(m)−2

(1− ε
2)

2c2 log
(

1
(1− ε

2
)csf ′(m)

)

s2
≥ 8(1 − ε

4 )
3/2 log(n)

(1− ε
2)

2c2

log log(n)
∑

s=1

1

s2
≥
(

1 +
ε

2

)

log(n) ,

8This follows by direct computation, see Lemma A.1 in the appendix for a detailed proof.
9As in Section 2, f ′(m) and f ′′(m) mean plugging x = m = log(Cn) into the first/second derivatives of f .
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where the first inequality holds by Lemma 1.1 applied with δ = (1− ε/2)csf ′(m) (≤ δ0), the second

inequality holds as f ′(m)−2

− log((1−ε/2)csf ′(m)) ≥ 8
√

1− ε/4 log(n) for all 1 ≤ s ≤ log log(n) and large n.

The last inequality holds provided n is large enough so that
∑log log(n)

s=1
1
s2

≥
√

1− ε/4 · π2/6.

Bounding S2: Observe that the following holds for large enough n:

S2 ≤ β log log(n) · e
−αf ′(m) log3/4(n)

(

1− e−αf ′(m)
)2 ≤ β log log(n) · e−αf ′(m) log3/4(n)

α2 (f ′(m)− f ′(m)2)2
≤ 1

4
ε log(n) ,

where the first inequality holds as for all M > 0 and 0 < x < 1 we have
∑∞

k=M kxk ≤ xM

(1−x)2 , the

second inequality holds as for all 0 < x < 1 we have (1− e−x)2 > (x− x2)2.

Bounding S3: Since S1−S2 ≥ (1+ε/4) log(n), it is enough to prove that S3 ≥ −1
4ε log(n). Indeed,

S3 ≥ 2β3cf ′′(m)

log log(n)
∑

s=1

s2
6e−αsf ′(m)

(

1− e−αsf ′(m)
)4 ≥ 36β3cf ′′(m)

α4f ′(m)4

∞
∑

s=1

1

s2
≥ −1

4
ε log(n) ,

where the first and second inequalities hold as for all 0 < z < 1 we have10
∑∞

k=0 k
3zk ≤ 6z

(1−z)4 and11

e−z/(1− e−z)4 ≤ 3/z4. The last inequality holds for large enough n.
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[5] M. B. Nathanson, On Erdős’s elementary method in the asymptotic theory of partitions, in:
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A Some Elementary inequalities

Lemma A.1. Let f(x) =
√

x/ log(x). Then, for every m ≥ 10 and 0 ≤ x ≤ m− 10 we have:

f(m− x) ≤ f(m)− xf ′(m) .

For all m ≥ 103 and 0 ≤ x ≤ m/10 we have

f(m− x) ≥ f(m)− xf ′(m) + x2f ′′(m) .

Proof. By Lagrange’s remainder theorem, for every m > 1 and x such that 0 ≤ x ≤ m there is
m− x ≤ c ≤ m such that

f(m− x) = f(m)− xf ′(m) + x2f ′′(c)/2 .

Noting that f ′′(z) = 3−log2(z)

4z3/2 log5/2(z)
is negative for all z > e

√
3 we obtain the first part of the lemma

for m > e
√
3 and x > 0 with m− x > e

√
3.

For the second part of the lemma, for every m and x ≤ m we let

gm(x) := f(m− x)− f(m) + xf(m)− x2f ′′(m) .

Note that gm(0) = g′m(0) = 0. Hence, proving that for all m ≥ 103 and 0 ≤ x ≤ m/10 we have
g′′m(x) > 0 implies the second part of the lemma. Indeed, let m ≥ 103 and let x = εm with
0 ≤ ε ≤ 1/10. We have

g′′m(εm) =
3− log2((1− ε)m)

4(1 − ε)3/2m3/2 log5/2((1− ε)m)
− 3− log2(m)

2m3/2 log5/2(m)

≥ 1

4m3/2

(

1

(1− ε)3/2
· 3− log2(9m/10)

log5/2(9m/10)
− 2 · 3− log2(m)

log5/2(m)

)

≥ 1

4m3/2
· 2(1 − 1/10) − (1− ε)−3/2(1 + 1/10)

√

log(m)
> 0

where the first inequality holds as 3−log2(x)

log5/2(x)
is monotone increasing for x > e

√
15 and as (1 − ε)m ≥

900 ≥ e
√
15, and the second inequality holds as m > 103 which implies both 3−log2(9m/10)

log5/2(9m/10)
≥ −(1+1/10)√

log(m)

and 3−log2 m

log5/2(m)
≤ −(1−1/10)√

log(m)
, and the last inequality holds as ε ≤ 1/10. �

Lemma A.2. For all z > 0 we have

1

z2
− 1

12
≤ ez

(ez − 1)2
=

e−z

(e−z − 1)2
≤ 1

z2
, (19)

1

z2
− 1

12
≤ ez((ez + 1)z − ez + 1)

(ez − 1)3
≤ 1

z2
+ 1 , (20)

and for all 0 < z < 1 we have
e−z

(1 − e−z)4
=

e3z

(ez − 1)4
≤ 3

z4
. (21)
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Proof. The proof of all five inequalities are similar; we replace ez with its power series, and then
compare the coefficients on both sides of the inequality. We prove the upper bound/lower bound
of (19) with respect to ez

(ez−1)2
. The upper bound of (19) is equivalent to z2ez ≤ e2z − 2ez + 1. By

expanding each side to its power series, we need to show that

∞
∑

n=2

zn

(n− 2)!
≤

∞
∑

n=2

2n − 2

n!
zn .

To see this, note that the coefficient of zn on the left-hand side is always at most the coefficient of
zn on the right-hand side for all n ≥ 2 as clearly n(n− 1) ≤ (2n − 2) for all n ≥ 2.

The lower bound of (19) is equivalent to 12e2z − 24ez + 12 ≤ z2(e2z + 10ez + 1). By expanding
each side to its power series, we wish to show that

∞
∑

n=3

12 · (2n − 2)

n!
zn ≤

∞
∑

n=3

n(n− 1)(2n + 10)

n!
zn .

To see this, we show that each of the coefficients of zn on the left-hand side is at most the ones of zn

on the right-hand side. The coefficient of z3 on the left-hand side is 72 and on the right-hand side it
is 108; for n ≥ 4 we have 12 ≤ n(n− 1) and clearly for all n we have 2n − 2 ≤ 2n +10, implying that
the coefficient of zn on the left-hand side is at most the coefficient of zn on the right-hand side.

Observe that (20) follows directly from inequality (19) and the following inequality

1 ≤ (ez + 1)z − ez + 1

ez − 1
≤ 1 + z2 . (22)

The upper bound in (22) is equivalent to 2 + z + z2 ≤ (2− z + z2)ez. By expanding each side to its
power series, it is enough to show that 2n(n− 1)−n+1 ≥ 0 for all n ≥ 2. This clearly holds. As for
the lower bound, note that as z > 0 the inequality is equivalent to 2ez − 2 ≤ (ez +1)z. By expanding
each side to its power series, we wish to show that

∞
∑

n=2

2zn

n!
≤

∞
∑

n=2

zn

(n− 1)!
,

This clearly holds as for all n ≥ 2 the coefficient of zn on the left-hand side is at most the coefficient
of zn on the right-hand side.

Clearly, to prove (21) it is enough to prove that e2z

(ez−1)2
≤ 1

z2
+ 1

z + 1, as then using inequality

(19), we are done. The above is equivalent to proving that 2z2ez ≤ (1 + z)(e2z − 2ez + 1) + z2. By
expanding each side to its power series, we wish to show that

∞
∑

n=4

2n(n− 1)

n!
zn ≤

∞
∑

n=4

2n − 2 + n(2n−1 − 2)

n!
zn .

As in previous cases, this holds since the coefficient of zn on the left-hand side is at most as large as
the coefficient of zn on the right-hand side. �

B Estimating φ(δ) and Φ(δ) Assuming the Prime Number Theorem

Hardy and Ramanujan [2] proved that φ(δ) ∼ δ−1/ log(1/δ), while only relying on elementary facts.
Let us show that if one is willing to rely on the prime number theorem, which is equivalent to the
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statement that log(ℓk) ∼ k log k, then one can prove this estimate quite easily. Using the same
approach, one can also easily prove Lemma 1.1 (again, assuming the prime number theorem).

We claim that the following holds

δ−1/ log(1/δ) ∼
∫ ∞

1
e−δx log xdx ∼

∑

k≥2

e−δk log k ∼ φ(δ).

The first estimate is proved below, the second estimate follows from the fact that e−δx is a monotone
function, and the last estimate follows from the fact that log(ℓk) ∼ k log k, that is, from the fact that
φ(δ) is bounded from above (resp. below) by

∑

k e
−δ(1−o(1))k log k (resp.

∑

k e
−δ(1+o(1))k log k).

It thus remains to estimate the above integral. We prove that for every ε and all small enough
δ < δ0(ε), this integral is bounded from above by (1+ ε)δ−1/ log(1/δ). The proof of the lower bound
is identical. Let a0 = a0(ε) be such that log(x) ≥ (1− 1

4ε) log(x log(x)) for every x ≥ a0. Then

∫ ∞

1
e−δx log xdx ∼

∫ ∞

a0

e−δx log xdx ≤ 1

(1− ε/8)δ

∫ ∞

δa0 log(a0)

e−z

log(z/δ)
dz

≤ 1 + ε/4

δ

(

∫ 1/ log2(1/δ)

δa0 log(a0)

e−δz

log(z/δ)
dz +

∫ ∞

1/ log2(1/δ)

e−z

log(z/δ)
dz

)

≤ 1 + ε/4

δ

(

C

log2(1/δ)
+

1

log(1/δ) − 2 log log(1/δ)

∫ ∞

0
e−zdz

)

≤ ε/2

δ log(1/δ)
+

1 + ε/2

δ log(1/δ)

∫ ∞

0
e−zdz =

1 + ε

δ log(1/δ)
,

where in the first inequality we used the substitution z = δx log x, which, by the choice of a0,
guarantees that dz = δ(log(x) + 1)dx ≥ δ(1 − ε/8) log(z/δ)dx, and in the third line C is a constant
that depends only on a0.
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