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EQUIVARIANT ENDOMORPHISMS OF CONVEX FUNCTIONS

GEORG C. HOFSTÄTTER AND JONAS KNOERR

Abstract. Characterizations of all continuous, additive and GL(n)-equivariant
endomorphisms of the space of convex functions on a Euclidean space R

n, of
the subspace of convex functions that are finite in a neighborhood of the origin,
and of finite convex functions are established. Moreover, all continuous, addi-
tive, monotone endomorphisms of the same spaces, which are equivariant with
respect to rotations and dilations, are characterized. Finally, all continuous, ad-
ditive endomorphisms of the space of finite convex functions of one variable are
characterized.

1. Introduction

The study of additive functions on the space Kn of convex bodies, that is, the
space of all non-empty, convex and compact subsets of Rn, has a long history. Here,
a map µ : Kn → (G,+) into an Abelian semi-group (G,+) is called additive if

µ(K + L) = µ(K) + µ(L), for all K,L ∈ Kn,

where K + L = {x + y : x ∈ K, y ∈ L} is the Minkowski sum of K,L ∈ Kn.
Functions of this type include the mean width (with real values) and the Steiner
point (with values in R

n), which are both essentially uniquely characterized by this
property, continuity (with respect to the Hausdorff metric), and certain compatibility
properties with respect to rigid motions, as was shown in [48,54].

Initiated by Schneider in a seminal paper [51], additive endomorphisms of Kn,
that is, additive maps on Kn with values in Kn, have been the focus of intense
research in the past 50 years [1,25,31,33,40,49,53]. The first result in this direction
is the following classification of the difference body DK := K + (−K) for K ∈ Kn.

Theorem 1.1 (Schneider [51]). A map Φ : Kn → Kn is continuous, Minkowski
additive, GL(n)-equivariant, that is, Φ(ηK) = ηΦ(K) for K ∈ Kn and η ∈ GL(n),
and translation-invariant if and only if Φ = cD for some c ≥ 0.

If we replace GL(n)- by SO(n)-equivariance in the conditions of the theorem, we
obtain the notion of Minkowski endomorphisms, introduced by Schneider, who also
gave a characterization of this class of maps in dimension n = 2 (see [50]). For n ≥ 3,
no complete classification of all Minkowski endomorphisms is known. However, for
monotone Minkowski endomorphisms, that is, Φ : Kn → Kn satisfying additionally

Φ(K) ⊂ Φ(L) for all K,L ∈ Kn such that K ⊂ L,
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a complete characterization was obtained by Kiderlen [33]. For the statement of
this result, let Sn−1 ⊂ R

n denote the unit sphere and M+(Sn−1) the space of finite,
non-negative Borel measures on S

n−1, and choose ϑu ∈ SO(n), for every u ∈ S
n−1,

such that ϑuē = u, where ē ∈ S
n−1 is in the stabilizer of SO(n− 1) (a pole of Sn−1).

Theorem 1.2 (Kiderlen [33]). A map Φ : Kn → Kn is a monotone Minkowski
endomorphism if and only if there exists an SO(n − 1)-invariant µ ∈ M+(Sn−1)
with cent µ = 0 such that

h(ΦK,u) =

∫

Sn−1

h(K,ϑuv)dµ(v), u ∈ S
n−1,(1)

for every K ∈ Kn. Moreover, the measure µ is uniquely determined by Φ.

Here, µ(Sn−1) ·cent µ =
∫
Sn−1 ydµ(y) denotes the center of mass of µ ∈ M+(Sn−1)

and h(K, y) := supx∈K〈y, x〉 for y ∈ R
n denotes the support function of K ∈ Kn.

Kiderlen derived Theorem 1.2 from an interpretation of Minkowski endomor-
phisms as certain distributions on the sphere, an approach previously used by
Goodey–Weil [28]. The monotonicity of the endomorphisms then implies that these
functionals admit a representation by non-negative measures, as in Theorem 1.2.
This reduces the problem to showing that the right-hand side of (1) defines a sup-
port function for every convex body K, which is non-trivial. Dorrek [25] refined this
construction and gave (first) examples of non-monotone Minkowski endomorphisms.

In recent years, many classical notions from convex geometry have been general-
ized to function spaces, for example to log-concave functions [11–13, 46, 47]. There
now exists a substantial body of research on valuations on function spaces [3, 10,
15–24,35–37,43], functional versions of geometric inequalities [5, 9, 27,30,31,38,39],
and classifications of many natural operations on functions [6–8,34,41,42], including
the study of additive maps on convex functions under bijectivity conditions.

In [31], the notion of Asplund endomorphism was introduced, extending the ideas
of Schneider to endomorphism of spaces of log-concave functions, that is, of func-
tions ϕ : R → [0,∞) such that ϕ = e−f with convex f : Rn → (−∞,∞]. More
precisely, the space LCc(R

n) of all proper log-concave functions which are upper
semi-continuous and coercive was considered. Here, a function ϕ : Rn → [0,∞) is
called proper if it is not identically 0 and it is called coercive if lim‖x‖→∞ ϕ(x) = 0.
The notion of Minkowski addition naturally extends to this space: If ϕ,ψ ∈ LCc(R

n)
are given, their Asplund sum (or sup-convolution) is defined by

(ϕ ⋆ ψ)(x) = sup
x1+x2=x

ϕ(x1)ψ(x2), x ∈ R
n.

It is easy to see that 1K ⋆ 1L = 1K+L for indicator functions of K,L ∈ Kn. For
general log-concave functions, their Asplund sum may attain the value +∞, however,
LCc(R

n) is closed under this operation (see, e.g., [31, Lem. 2.3]). Using these notions,
a map Ψ : LCc(R

n) → LCc(R
n) is called an Asplund endomorphism if it is

(1) continuous with respect to the topology induced by hypo-convergence,
(2) Asplund additive,
(3) translation-invariant, that is, Ψ(ϕ(· + x)) = Ψ(ϕ),
(4) SO(n)-equivariant, that is, Ψ(ϕ ◦ η)[x] = Ψ(ϕ)[ηx],
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for all ϕ ∈ LCc(R
n), x ∈ R

n and η ∈ SO(n). Asplund endomorphisms can be con-
structed using the support function h(ϕ, ·) := L(− logϕ) of ϕ ∈ LCc(R

n) (following
[7]), where L denotes the classical Legendre transform. Basic properties of the Le-
gendre transform imply that an Asplund endomorphism defines an additive map on
the level of support functions, which can be used to construct a large number of
non-trivial examples. In fact, every monotone Minkowski endomorphism extends to
an Asplund endomorphism, as was shown in [31]. To state the result, we choose
ϑx ∈ SO(n), for every x 6= 0, such that ϑxē = x

‖x‖ . Then ϑx is defined up to

right-multiplication by SO(n− 1).

Theorem 1.3 ([31, Thm. 3]). Each SO(n − 1)-invariant µ ∈ M+(Sn−1) with
centµ = 0 induces a monotone Asplund endomorphism Ψµ by

h(Ψµϕ, x) =

∫

Sn−1

h(ϕ, ‖x‖ϑxv)dµ(v), x ∈ R
n \ {0},(2)

for ϕ ∈ LCc(R
n). Moreover, the measure µ is uniquely determined by Ψµ.

This result was then used in [31] to obtain new functional inequalities for these
endomorphisms. While the focus on log-concave functions is natural from this per-
spective, the goal of the present article is a more systematic study of additive maps
of this type with the aim to provide a classification under certain equivariance prop-
erties with respect to the standard representation of GL(n) or subgroups. We will
thus work directly with (convex) support functions instead of the corresponding log-
concave functions. In this setting, translation-invariance corresponds to invariance
with respect to addition of linear functions, and we will call maps with this property
dually translation-invariant.

To be more precise, we will be concerned with additive maps defined on sub-
spaces of the space Conv(Rn) of all lower semi-continuous, convex functions f :
R
n → (−∞,+∞] that are proper, that is, not identically +∞. We will mostly be

interested in the subspace Conv(Rn,R) of finite-valued convex functions, that is,
convex functions ϕ : Rn → R, and the space

Conv(0)(R
n) := {f ∈ Conv(Rn) : f < +∞ on a neighborhood of 0 ∈ R

n}.

Our interest in the latter space stems from the fact that support functions of elements
in LCc(R

n) belong to this class, which establishes a GL(n)-equivariant bijection
between the two spaces that intertwines Asplund sum and pointwise addition.

Obviously, Conv(Rn,R) ⊂ Conv(0)(R
n) ⊂ Conv(Rn). Note that Conv(Rn,R) and

Conv(0)(R
n) are both closed under pointwise addition of functions, while the sum of

two elements in Conv(Rn) may be identical to +∞ and thus not in Conv(Rn). We
will therefore call a map Ψ : C → Conv(Rn), defined on C ⊂ Conv(Rn), additive if

Ψ(g + h) = Ψ(g) + Ψ(h), for all g, h ∈ C such that g + h ∈ C.

In particular, we require that Ψ(g) + Ψ(h) ∈ Conv(Rn) whenever g + h ∈ C.

Before discussing the main results of this article, we want to note that Conv(Rn,R)
is dense in both Conv(0)(R

n) and Conv(Rn) if we equip these spaces with the topol-
ogy induced by epi-convergence. In particular, any continuous and additive map
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from any one of these spaces to Conv(Rn) is uniquely determined by its restric-
tion to finite-valued convex functions. Consequently, any classification problem of
additive maps on these spaces can be split into two parts:

(1) classify the corresponding maps on finite-valued convex functions,
(2) determine which maps extend to the desired class of functions by continuity.

Following this strategy, we prove our first main result, which is an analogue of
Theorem 1.1 for the space Conv(0)(R

n). To state it, let M+
c (R) denote the space of

non-negative Borel measures on R with compact support and set R× = R \ {0}.

Theorem A. A map Ψ : Conv(0)(R
n) → Conv(0)(R

n) is continuous, additive and

GL(n)-equivariant if and only if there exists ν ∈ M+
c (R) with

∫
R× |s|−1dν(s) < ∞

and c ∈ R such that

Ψ(f)[x] = cf(0) +

∫

R×

f(sx)− f(0)

|s|2
dν(s), x ∈ R

n,(3)

for every f ∈ Conv(0)(R
n). Moreover, the map Ψ defined by (3) is

• monotone if and only if
∫
R× |s|−2dν(s) ≤ c <∞.

• dually translation-invariant if and only if
∫
R× s

−1dν(s) = 0.

Note that c = Ψ(1)[0] is uniquely determined by Ψ, the same holds for ν if we
require ν({0}) = 0.

The idea of the proof is similar to Kiderlen’s approach. Given an additive and
continuous map Ψ : Conv(0)(R

n) → Conv(0)(R
n), any such endomorphism restricts

to an endomorphism of Conv(Rn,R) by GL(n)-equivariance. By evaluating the
function Ψ(f) for f ∈ Conv(Rn,R) at points x ∈ R

n, we obtain continuous, additive,
real-valued functionals on Conv(Rn,R) – in other words, distributions. We then
analyze which families of distributions are compatible with the equivariance property
and, among these, which yield mappings into Conv(Rn,R).

Thus, the proof of Theorem A actually provides a classification of all such equi-
variant endomorphisms on the space Conv(Rn,R), but the relevant maps extend to
endomorphisms on the larger space Conv(0)(R

n). In particular, Theorem A looks the
same if Conv(0)(R

n) is replaced by Conv(Rn,R). We may even consider equivariant
maps Conv(Rn,R) → Conv(0)(R

n) without changing the class of functionals. The
situation is completely different, however, if we replace Conv(0)(R

n) with Conv(Rn):

Theorem B. A map Ψ : Conv(Rn) → Conv(Rn) is continuous, additive, and
GL(n)-equivariant if and only if either Ψ ≡ 0 or Ψ ≡ 1

∞
{0} or there exists λ > 0 and

µ ∈ R
× such that

Ψ(f)[x] = λf(µx), x ∈ R
n,(4)

for every f ∈ Conv(Rn).

In particular, the difference body D = id+(− id) does not possess an extension
to Conv(Rn), but the Minkowski additive endomorphisms ± id do. The space of
additive maps on Conv(Rn) therefore is not closed under addition, which is is hardly
surprising, as Conv(Rn) is not closed under pointwise addition of functions itself.
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Moreover, by a result in [7], the non-constant endomorphisms in Theorem B are
exactly the bijective, GL(n)-equivariant endomorphisms of Conv(Rn).

We now turn to questions in the spirit of Kiderlen’s Theorem 1.2 about SO(n)-
equivariant endomorphisms Ψ that are monotone, that is, Ψ(f)[x] ≤ Ψ(g)[x], x ∈
R
n, holds for every two functions f and g in the domain of Ψ, satisfying f(y) ≤ g(y)

for all y ∈ R
n. Similar to Kiderlen’s approach, it is possible to give representation

formulas for monotone and additive maps on Conv(Rn,R) in terms of certain families
of measures (derived from the associated distributions, as in the GL(n)-equivariant
case discussed before). However, it is in general very difficult to decide whether a
given family of measures actually defines an endomorphisms, as the class of possible
families seems to be too big to handle. One major obstacle is that the different
measures in the family might a-priori be unrelated (stemming from the fact that
there are infinitely many SO(n)-orbits in R

n). We therefore need some additional
(equivariance) condition that relates the different SO(n)-orbits.

Note that the maps defined in Theorem 1.3, when considered as endomorphisms
of Conv(0)(R

n), that is, given for SO(n− 1)-invariant µ ∈ M+(Sn−1) by

Ψµ(f)[x] =

∫

Sn−1

f(‖x‖ϑxv)dµ(v), x ∈ R
n \ {0},

satisfy Ψµ(f)[t·x] = Ψµ(f(t·))[x] for all t > 0, x ∈ R
n, f ∈ Conv(0)(R

n). Hence, they
are equivariant with respect to dilations of Rn, which we call radially equivariant in
the following. This reduces the number of orbits of the joint representation to two,
which allows us to prove our next main result, an analogue of Kiderlen’s Theorem 1.2.

Theorem C. A map Ψ : Conv(0)(R
n) → Conv(0)(R

n) is continuous, additive,
monotone, as well as radially and SO(n)-equivariant if and only if there exists a
(necessarily unique) SO(n− 1)-invariant measure µ ∈ M+

c (R
n) such that

Ψ(f)[x] =

∫

Rn

f(‖x‖ϑxy)dµ(y), x ∈ R
n\{0},(5)

and Ψ(f)[0] = lim inf‖x‖→0 Ψ(f)[x] = f(0)µ(Rn), for every f ∈ Conv(0)(R
n).

Moreover, Ψ is dually translation-invariant if and only if
∫
Rn ydµ(y) = 0.

As a corollary, we obtain a classification of the endomorphisms in Theorem 1.3
as precisely those maps in this class that act as multiples of the identity on radially
symmetric convex functions (see Corollary 5.3).

Similar to the GL(n)-equivariant case, Theorem C does not change when we
replace Conv(0)(R

n) by Conv(Rn,R), but the situation is again completely different
for Conv(Rn).

Corollary D. A map Ψ : Conv(Rn) → Conv(Rn) is continuous, additive, mono-
tone, as well as radially and SO(n)-equivariant if and only if Ψ ≡ 0 or Ψ ≡ 1

∞
{0} or

there exists λ > 0 and µ ∈ R
× such that

Ψ(f)[x] = λf(µx), x ∈ R
n,(6)

for every f ∈ Conv(Rn).
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Up to this point, all of our results exploit the fact that the equivariance properties
reduce the classification problem to one distribution (or measure) per orbit. In
general, the situation is of course much more complicated. In particular, it is usually
not the case that an endomorphism of Conv(Rn,R) extends to an endomorphism of
Conv(0)(R

n) and we provide examples of such mappings in Section 3.3.

If we restrict ourselves to endomorphisms of Conv(R,R), the situation is much
simpler, and we are able to provide a full characterization of all endomorphisms
without any additional assumptions concerning monotonicity or equivariance. To
state the result, recall that the derivative of a distribution u ∈ D′(R) is defined

by the relation (∂ku)(φ) := (−1)ku(φ(k)) for φ ∈ C∞
c (R), k ∈ N. If g : R → R is

continuous, we may in particular consider the distribution ∂2g defined by (∂2g)(φ) =∫
R
φ′′(y)g(y)dy for φ ∈ C∞

c (R). In the following theorem, all partial derivatives are
understood in this distributional sense.

Theorem E. A map Ψ : Conv(R,R) → Conv(R,R) is continuous and additive if
and only if there exists ψ ∈ C(R2) such that

Ψ(f)[x] = (∂2yψ(x, ·))(f), x ∈ R,(7)

for every f ∈ Conv(R,R) ∩ C2(R), where ψ has the following properties:

(1) ψ(·, y) is convex for every y ∈ R.
(2) For every compact subset A ⊂ R there exists R = R(A) > 0 such that

(a) supp∂2xψ(·, y) ∩A = ∅ for all y ∈ R \ [−R,R];
(b) supp∂2yψ(x, ·) ⊆ [−R,R] for all x ∈ A.

Moreover, Ψ is monotone if and only if ψ(x, ·) is convex for every x ∈ R.

Note that property (2b) ensures that the distribution given by ∂2yψ(x, ·) has com-
pact support and hence (7) is well-defined. The function ψ is not uniquely deter-
mined by Ψ, but the possible modification can be described completely (see Corol-
lary 6.5). Moreover, the proof shows that a candidate for ψ can be obtained from the
underlying endomorphism Ψ by plugging in a suitable convex function; the converse
is slightly more involved. We provide an explicit representation of f 7→ Ψ(f)[x] us-
ing results on dually epi-translation invariant valuations on Conv(R,R) obtained by
Colesanti–Ludwig–Mussnig [24]. However, these formulas only hold locally around
x ∈ R. In particular, it is not easy to see under which conditions these endomor-
phisms extend to Conv(0)(R).

As a closing remark we revisit some of the examples considered in Section 3
and reinterpret them in terms of Theorem E. This also provides some non-trivial
examples for functions ψ ∈ C(R2) satisfying the conditions above.

This article is structured as follows: In Section 2, we recall the necessary general
background on convex functions. In Section 3 we construct Goodey–Weil distribu-
tions, prove auxiliary results for endomorphisms and give examples. In the last three
sections, finally, we prove the main results.
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2. Background on Convex Functions

In this section we recall additional basic notions and results about convex func-
tions. As general references, we recommend the monographs by Rockafellar [44],
Rockafellar and Wets [45], Schneider [52], and Artstein-Avidan, Giannopoulos and
Milman [4].

First recall that to every convex function f : Rn → (−∞,∞] we can associate its
domain, dom f = {x ∈ R

n : f(x) <∞}, and its epigraph, epi f = {(x, ξ) ∈ R
n × R :

f(x) ≥ ξ}, which are convex sets. Note that, if f ∈ Conv(Rn), dom f is non-empty
and epi f is closed and non-empty.

The spaces Conv(Rn),Conv(0)(R
n) and Conv(Rn,R) defined in the introduc-

tion are equipped with the topology induced by epi-convergence (also called Γ-
convergence), which corresponds to convergence of the epi-graphs in the Painlevé-
Kuratowski sense (cf. [45, Sec. 7B]). A sequence fj of functions in Conv(Rn) (and
therefore also in its subspaces Conv(0)(R

n) and Conv(Rn,R)) is called epi-convergent
to f : Rn → (−∞,∞] if for all x ∈ R

n the following two conditions hold:

(1) f(x) ≤ lim infj→∞ fj(xj) for every sequence xj that converges to x.
(2) There exists a sequence xj converging to x such that f(x) = limj→∞ fj(xj).

The limit function f is then necessarily convex and lower semi-continuous, but
might be equal to +∞. Let us also note that epi-convergence extends Hausdorff
convergence in the sense that 1∞Kj

epi-converges to 1∞K whenever Kj ∈ Kn converges

toK ∈ Kn in the Hausdorff distance. Here, 1∞K denotes the convex indicator function
of K ∈ Kn, defined by

1

∞
K (x) =

{
0, x ∈ K,

+∞, else.

The following lemma gives a very useful condition for epi-convergence when the limit
function (or a candidate for it) is known to be convex and finite in an open set.

Lemma 2.1 ([45, Thm. 7.17]). If f, fj ∈ Conv(Rn) and int dom f is non-empty,
then the following statements are equivalent to (fj)j being epi-convergent to f :

(1) There exists a dense set D ⊆ R
n such that fj(x) → f(x) for every x ∈ D.

(2) The sequence fj converges uniformly to f on every compact subset of Rn that
does not contain a boundary point of dom f .

An easy application of Lemma 2.1 is the proof of continuity of the addition of
functions of Conv(0)(R

n) and of the standard GL(n)-representation on R
n, given for

η ∈ GL(n) by (η · f)(x) = f(η−1x), x ∈ R
n. See, e.g., [37, Lem. 4.7] for a proof of

the first statement.

Lemma 2.2. The maps

Conv(0)(R
n)×Conv(0)(R

n) → Conv(0)(R
n)

(f1, f2) 7→ f1 + f2
and

Conv(0)(R
n) → Conv(0)(R

n)

f 7→ η · f

are continuous for every η ∈ GL(n).
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We will need the following two auxiliary statements about convex functions.

Lemma 2.3. Let fj, f ∈ Conv(Rn), for j ∈ N, and A ⊆ R
n be compact. If (fj)j

epi-converges to f , then there exists an affine function g : Rn → R such that

fj(x) ≥ g(x), f(x) ≥ g(x) ∀x ∈ A, j ∈ N.

Proof. Let g′ be any affine function that bounds f from below, which exists due to
the convexity of f . Then their epi-graphs satisfy epi g′ ⊇ epi f . As epi-convergence
is equivalent to the convergence of the epigraphs, [45, Thm. 4.10(b)] implies that for
every ε > 0 and every set A′ = A× [−R,R], R > 0, there exists j0 ∈ N, such that

epi fj ∩A
′ ⊆ epi(g′ − ε), j ≥ j0

In particular, by choosing R > 0 such that g′(x)−ε > −R for every x ∈ A, we deduce
that fj(x) ≥ g′(x)− ε, x ∈ A and j ≥ j0. Indeed, if fj(x) < g′(x)− ε for some x ∈ A
and j ≥ j0, then c := max{fj(x),−R} < g′(x) − ε. Thus (x, c) 6∈ epi(g′ − ε), but
(x, c) ∈ epi fj ∩A

′, a contradiction.
Finally, note that by semi-continuity, every fj − g′ is bounded from below on the

compact set A. Letting ε > 0 be arbitrary and choosing C ∈ R to be a common
lower bound for all j ≤ j0, the claim follows by setting g := g′ − ε+min{C, 0}. �

In order to state the next proposition, denote by Bε(x) the ball of radius ε centered
at x ∈ R

n.

Proposition 2.4 ([45, Ex. 9.14]). Let U ⊂ R
n be a convex open subset and f :

U → R a convex function. If X ⊂ U is a set with X + Bε(0) ⊂ U and f is
bounded on X +Bε(0), then f is Lipschitz continuous on X with Lipschitz constant
2
ε
supx∈X+Bε

|f(x)|.

3. Endomorphisms and Goodey–Weil Distributions

In this section, we will construct a family of Goodey–Weil distributions for every
endomorphism of Conv(Rn,R), prove some basic results for endomorphisms and give
some examples.

Before describing the constructions, let us recall some basic notation for distribu-
tions. As a general reference on distributions we recommend the book by Hörmander
[32]. We denote by C∞

c (Rn) the space of all smooth functions on R
n with compact

support (test functions) and denote by D′(Rn, F ) the space of all distributions on R
n

with values in a complete topological vector space F , that is, all continuous linear
maps C∞

c (Rn) → F . If F = R, we will write D′(Rn) = D′(Rn,R). We will simply
write u(ϕ) for the application of a distribution u ∈ D′(Rn, F ) to ϕ ∈ C∞

c (Rn).
Moreover, let suppu ⊆ R

n denote the support of u ∈ D′(Rn) and D′
c(R

n, F )
the space of all distributions with compact support. It is well-known that every
distribution with compact support can be extended to C∞(Rn).

3.1. General Construction. Our construction is very much inspired by results of
Goodey and Weil [28], who defined the Goodey–Weil distributions of real-valued
valuations on convex bodies, and relies on the following analogous result for con-
tinuous, dually epi-translation invariant valuations on convex functions proven in
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[37]. Note that for continuous, additive maps defined on Conv(Rn,R) (which are
one-homogeneous valuations), the additional invariance property that is used in [37]
may be dropped without affecting the results.

Theorem 3.1 ([37, Thm. 2]). Let F be a locally convex vector space and F its
completion. For every continuous and additive µ : Conv(Rn,R) → F there exists a
uniquely determined distribution GW(µ) ∈ D′(Rn, F ) which satisfies

GW(µ)(φ) = µ(f + φ)− µ(f),(8)

for every φ ∈ C∞
c (Rn) and f ∈ Conv(Rn,R) such that f + φ ∈ Conv(Rn,R), and

GW(µ) determines µ uniquely. If F admits a continuous norm, then GW(µ) has
compact support and GW(µ)[f ] = µ(f) for all f ∈ Conv(Rn,R) ∩ C∞(Rn).

We will apply Theorem 3.1 in two settings: for F = R and for F = C(W ), the space
of all continuous functions on a locally compact spaceW equipped with the topology
of uniform convergence on compact subsets. Suppose that Ψ : Conv(Rn,R) → C(W )
is additive and continuous, and consider for x ∈W the map

Ψx :

{
Conv(Rn,R) → R,

Ψx(f) = Ψ(f)[x].

Then Ψx clearly is a continuous and additive functional and therefore satisfies the
conditions of Theorem 3.1. By taking W = R

n and the (continuous) inclusion
Conv(Rn,R) ⊆ C(Rn) (compare Lemma 2.1(2)), we obtain a family of distributions
with compact support:

Definition 3.2. Let Ψ : Conv(Rn,R) → Conv(Rn,R) be continuous and additive.
Then (GW(Ψx))x∈Rn is the associated family of Goodey–Weil distributions of Ψ.

Coming from a map Ψ : Conv(Rn,R) → Conv(Rn,R), the functionals Ψx depend
continuously on x ∈ Rn. To make this more precise, consider for compact A ⊆ Rn

ΨA :

{
Conv(Rn,R) → C(A),

ΨA(f)[x] = Ψ(f)[x].

The map ΨA again satisfies the conditions of Theorem 3.1, where C(A) is equipped
with the maximum norm. Note that the restriction to a compact subset A is needed
here to obtain a Goodey–Weil distribution GW(ΨA) with compact support.

Denoting by ix : C(A) → R, x ∈ A, the continuous evaluation map, we see
that GW(Ψx) = ix ◦ GW(ΨA). As a consequence, we get the following bound on
suppGW(Ψx) ⊆ suppGW(ΨA), x ∈ A.

Proposition 3.3. Suppose that Ψ : Conv(Rn,R) → C(Rn) is continuous and addi-
tive, where C(Rn) is equipped with the topology of uniform convergence on compact
subsets. Then for every compact A ⊆ R

n there exists a compact A′ ⊆ R
n such that

suppGW(Ψx) ⊂ A′, ∀x ∈ A.

In the one-dimensional case, the (continuous) relation between the distributions
is made explicit in Theorem E.
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Another way to connect the associated Goodey–Weil distributions GW(Ψx) at
different points x ∈ R

n are equivariance properties of Ψ. Recall that the standard
representation of GL(n) on functions extends to D′(Rn) by (η · u)(ϕ) = u(η−1 · ϕ),
u ∈ D′(Rn), ϕ ∈ C∞

c (Rn) and η ∈ GL(n).

Lemma 3.4. Suppose that Ψ : Conv(Rn,R) → Conv(Rn,R) is continuous and
additive and let G ⊆ GL(n) be a subgroup.

If Ψ is G-equivariant, then for every x ∈ R
n and η ∈ G,

GW(Ψη(x))[φ] = (η ·GW(Ψx)) [φ] = GW(Ψx)[η
−1 · φ], φ ∈ C∞

c (Rn).

In particular, GW(Ψx) is invariant under Gx, the stabilizer of x in G.

Proof. The proof is an easy consequence of (8). �

Lemma 3.4 implies in particular that there is essentially one Goodey–Weil distri-
bution for every orbit of G for G-equivariant endomorphisms. If G = GL(n) or
G is the subgroup generated by SO(n) and dilations, there are exactly two orbits,
namely {0} and R

n \ {0}, where the values on the {0}-orbit are already determined
by continuity. This reduces the problem to analyzing only one distribution.

3.2. Auxiliary Results. In this section we prove some auxiliary results for endo-
morphisms, the first one showing that the associated Goodey–Weil distributions of
monotone endomorphisms are actually non-negative measures.

Lemma 3.5. Suppose that Ψ : Conv(Rn,R) → Conv(Rn,R) is continuous and
additive. Then Ψ is monotone if and only if the Goodey–Weil distributions GW(Ψx),
x ∈ R

n, are given by non-negative measures µx with compact support. In this case,

Ψ(f)[x] =

∫

Rn

fdµx, x ∈ R
n,(9)

for every f ∈ Conv(Rn,R).

Proof. Assume first that Ψ is monotone and let φ1 ≤ φ2 ∈ C∞
c (Rn). Take f ∈

Conv(Rn,R) such that f + φi is convex for i = 1, 2 (a possible choice would be
f(y) = c‖y‖2 for c > 0 large enough; see, e.g., [37, Lem. 5.1]). Then f +φ1 ≤ f +φ2
and, by the monotonicity of Ψ and (8),

GW(Ψx)[φ1] = Ψx(f + φ1)−Ψx(f) ≤ Ψx(f + ψ2)−Ψx(f) = GW(Ψx)[φ2].

As φ1 and φ2 were chosen arbitrarily, GW(Ψx) is a positive distribution and, hence,
given by a non-negative measure µx. By Theorem 3.1, suppGW(Ψx) is compact, so
µx is compactly supported as well, and

Ψx(f) = GW(Ψx)[f ] =

∫

Rn

fdµx, f ∈ Conv(Rn,R) ∩ C∞(Rn).

Obviously the right-hand side of this equation extends by continuity to Conv(Rn,R),
so this representation holds for all f ∈ Conv(Rn,R).

If, on the other hand, the Goodey–Weil distributions are given by non-negative
measures µx, then the previous argument can be repeated to obtain (9), from which
it is clear that Ψ is monotone. �
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Despite their very simple proofs, the following lemmas turn out to be very useful in
proving characterization results. We start with the following observation.

Lemma 3.6. Suppose that Ψ : Conv(Rn,R) → Conv(Rn,R) is additive. Then Ψ
maps affine functions to affine functions.

Proof. As Ψ is additive, the constant zero function is mapped to itself. Now let
g : Rn → R be affine. Then −g is affine as well and

Ψ(g) + Ψ(−g) = Ψ(0) = 0

implies that Ψ(−g) = −Ψ(g). Thus Ψ(g) and −Ψ(g) are convex, so Ψ(g) must be
affine. �

For a monotone endomorphism Ψ, Lemma 3.6 has the following implication for
the total mass of the measures µx defining the Goodey–Weil distributions GW(Ψx).
Let 1 denote the constant function x 7→ 1.

Corollary 3.7. If Ψ : Conv(Rn,R) → Conv(Rn,R) is continuous, additive and
monotone with associated measures (µx)x∈Rn , then µx(R

n) = Ψ(1)[0], for all x ∈ R
n.

In particular, Ψ = 0 if and only if Ψ(1)[0] = 0.

Proof. By Lemma 3.6, Ψ(1) is an affine function. Because Ψ(1) ≥ Ψ(0) = 0, Ψ(1)
has to be constant and, hence,

µx(R
n) =

∫

Rn

1dµx = Ψ(1)[x] = Ψ(1)[0], for all x ∈ R
n.

By the uniqueness of GW(Ψx) (by Theorem 3.1), Ψ is the zero map if and only if
GW(Ψx) = µx = 0 for all x ∈ R

n. As µx is a non-negative measure, this is the case
if and only if µx(R

n) = 0 for all x ∈ R
n, that is, if and only if Ψ(1)[0] = 0. �

We now turn to endomorphisms Ψ : Conv(0)(R
n) → Conv(0)(R

n).

Lemma 3.8. Suppose that Ψ : Conv(0)(R
n) → Conv(0)(R

n) is continuous and
additive. If Ψ(0) is finite everywhere, then Ψ restricts to an endomorphism of
Conv(Rn,R). This holds in particular if Ψ is radially equivariant.

Proof. Because Ψ is additive, Ψ(0) = Ψ(0) + Ψ(0), which therefore can only take
the values 0 or +∞. As Ψ(0) is convex, it must be the convex indicator function of
a convex set A ⊂ R

n.
Next, assume that Ψ(0) is finite (and, hence, 0) and let f ∈ Conv(Rn,R) be given.

Then 1
j
f epi-converges to 0 for j → ∞ by Lemma 2.1(1). The continuity of Ψ thus

implies that Ψ(1
j
f) = 1

j
Ψ(f) epi-converges Ψ(0) = 0. Again, Lemma 2.1(1) implies

that this convergence is pointwise on the interior of the domain of the zero function,
so 1

j
Ψ(f)[x] converges to zero for all x ∈ R

n. In particular, Ψ(f)[x] must be finite

for all x ∈ R
n, that is, Ψ(f) ∈ Conv(Rn,R).

Finally, assume that Ψ is radially equivariant. As Ψ(0) ∈ Conv(0)(R
n), 0 is

contained in the interior of A = domΨ(0). Given x ∈ R
n, we can thus choose r > 0

such that rx ∈ A. Because Ψ is radially equivariant, this implies

0 = 1

∞
A (rx) = Ψ(0)[rx] = Ψ(0)[x].

As this holds for all x ∈ R
n, Ψ(0) = 0. �
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3.3. Examples. In this section, we give additional examples of endomorphisms on
convex functions that do not appear in the characterization results of Theorems A to
E. In particular, we want to emphasize that in the two considered equivariant cases
all endomorphisms on Conv(Rn,R) extend by continuity to Conv(0)(R

n). Moreover,
the equivariance implies that endomorphisms of Conv(0)(R

n) restrict to endomor-
phisms of Conv(Rn,R), that is, every such endomorphism maps finite functions to
finite functions. As we will see, both statements do not hold in general.

In order to give the first example, we make use of Monge–Ampère measures, com-
ing from solutions of the Monge–Ampère equation (see, e.g., [2,26,29,55]). Monge–
Ampère measures have been used recently in the theory of valuations on convex
functions [3, 19,23,24], where the related notion of Hessian measure was used (see,
e.g., [14] and the references therein). As we will not need the exact definition, we
will just state the properties we use and refer to [19,24,26,29] for more details.

The following theorem is due to Aleksandrov [2] (see also [26, Thm. 2.3, Prop. 2.6
and Thm. A.31]), where the last two points are direct consequences of the first two.
Recall that a Radon measure on R

n is a Borel measure that is finite on compact
sets, and let D2f denote the Hessian matrix of f ∈ C2(Rn).

Theorem 3.9. For every f ∈ Conv(Rn,R) there exists a Radon measure MA(f ; ·)
on R

n, the Monge–Ampère measure of f , such that the following holds:

(1) If f ∈ Conv(Rn,R) ∩ C2(Rn), then MA(f ; ·) is absolutely continuous with
respect to the Lebesgue measure on R

n and

dMA(f ;x) = det(D2f(x))dx, x ∈ R
n.

(2) If fj ∈ Conv(Rn,R) epi-converges to f ∈ Conv(Rn,R), then MA(fj; ·) con-
verges weakly to MA(f ; ·).

(3) MA(f ; ·) is a non-negative measure.
(4) If n = 1 and g ∈ Conv(Rn,R), then MA(f + g; ·) = MA(f ; ·) +MA(g; ·).

TheMonge–Ampère measure will also be used in Section 6 in the proof of Theorem E.

We now have all prerequisites to give the first example of an endomorphism on
Conv(R,R) that does not extend to Conv(0)(R).

Example 3.10. Let g ∈ Conv(R,R) and ζ ∈ Cc(R) non-negative. Then, by Theo-
rem 3.9, the map Ψ defined by

Ψ(f)[x] = g(x) ·

∫

R

ζ(|y|)dMA(f ; y), x ∈ R,

is continuous, Ψ(f) ∈ Conv(R,R) as MA(f ; ·) is non-negative and finite on supp ζ
for every f ∈ Conv(R,R), and Ψ is additive, since MA(f ; ·) is additive. Ψ does not
possess a continuous extension to Conv(0)(R). This can be seen by approximating
convex indicator functions, e.g., with polynomials of degree four or higher, for which
the second derivatives diverge. Moreover, the example can be extended to arbitrary
dimensions by Ψ̂(f)[·] = Ψ(s 7→ f(sy))[pr〈y〉(·)] for some fixed y ∈ R

n, where pr〈y〉
denotes the orthogonal projection onto the linear span 〈y〉 of y.
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Recall that Lemma 3.8 provides a very simple description of the endomorphisms of
Conv(0)(R

n) that map finite-valued functions to finite-valued functions. Of course,
it is very easy to construct maps that do not have this property: We can always just
add the convex indicator function of a ball around the origin to any endomorphism.
By Lemma 2.1, the new map is still continuous as a map from Conv(Rn,R) to
Conv(0)(R

n), but obviously its image does not contain any finite-valued function.
Let us construct an example that is slightly less artificial:

Example 3.11. Let ϕ ∈ Conv(R,R) ∩ C2(R) be even and non-negative and define

Ψϕ(f)[t] =

∫ ϕ(t)

−ϕ(t)
(f(s)− f(0))ds, f ∈ Conv(R,R).(10)

Then the second derivative of Ψϕ(f), f ∈ Conv(R,R)∩C2(R), is given for t ∈ R by

Ψϕ(f)
′′[t] = ϕ′′(t) (f(ϕ(t)) + f(−ϕ(t))− 2f(0)) + (ϕ′(t))2(f ′(ϕ(t)) − f ′(−ϕ(t))).

Here, the first term is non-negative by the convexity of ϕ and f , and the second
term is non-negative since f ′ is increasing, again by convexity. Hence, Ψϕ(f) is
convex for every f ∈ Conv(R,R) ∩ C2(R) and thus for every f ∈ Conv(R,R) by
approximation. Moreover, note that Ψϕ is obviously continuous and additive, so
Ψϕ is an endomorphism of Conv(R,R), and that, by approximation, the condition
ϕ ∈ C2(R) is actually not necessary in (10).

The map Ψϕ can be extended to Conv(0)(R) if and only if ϕ(0) = 0: Indeed, (10)
can be used as definition for f ∈ Conv(0)(R), since every such f is bounded from
below on the compact subsets [−ϕ(t), ϕ(t)], t ∈ R, by semi-continuity. Moreover, we
can choose a sequence fj ∈ Conv(R,R) that epi-converges monotonously to f , and,
by monotone convergence and Lemma 2.1 (using that 0 ∈ int dom f),

Ψϕ(fj)[t] =

∫ ϕ(t)

−ϕ(t)
fj(s)ds − 2fj(0)ϕ(t) →

∫ ϕ(t)

−ϕ(t)
f(s)ds− 2f(0)ϕ(t) = Ψϕ(f)[t],

for every t ∈ R, as j → ∞. The resulting function Ψϕ(f) is therefore convex as
pointwise limit of convex function and it is finite in a neighborhood of 0 if and only
if ϕ(t) → 0 as t → 0, which is equivalent to ϕ(0) = 0 by continuity. The proof that
Ψϕ is continuous on Conv(0)(R), finally, is very similar to the according part of the
proof of Theorem A and will therefore be omitted at this point.

Another way to extend this example is to consider more generally ϕ ∈ Conv(0)(R)
even and non-negative. The naive idea to just extend (10), however, leads to a
map that is not continuous anymore. Indeed, affine functions would be mapped
to the constant zero function, while every other function would be infinite on the
complement of domϕ. For this reason, we use the following definition for ϕ ∈
Conv(0)(R), ϕ even and non-negative, and f ∈ Conv(R,R):

Ψϕ(f)[t] =





∫ ϕ(t)
−ϕ(t)(f(s)− f(0))ds, t ∈ int domϕ,

lim inft′→t,t′∈int domϕ Ψϕ(f)[t
′], t ∈ ∂ domϕ,

∞, t ∈ R \ domϕ.
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Note that Ψϕ(f) is by definition lower semi-continuous and finite in the neighborhood
int domϕ of the origin. To show that Ψϕ(f) is convex, first let t ∈ int domϕ. Since
ϕ is convex and finite in a neighborhood of [−t, t], we can find an affine function g
such that its graph is a supporting hyperplane of epiϕ at t. We may therefore define
ϕ̃ ∈ Conv(Rn,R) by requiring ϕ̃ to be equal to ϕ on [−t, t], equal to g(s) for s > t
and equal to g(−s) for s < −t. In particular, the first part of the example implies
that Ψϕ̃(f) is convex and as Ψϕ(f)[t

′] = Ψϕ̃(f)[t
′] for |t′| < |t|, Ψϕ(f) is convex on

int domϕ. Noting, finally, that since any linear function h is odd,

∫ ϕ(t)

−ϕ(t)
f(s)− f(0)ds =

∫ ϕ(t)

−ϕ(t)
f(s)− f(0)− h(s)ds, t ∈ int domϕ,

so we can assume that the integrand is non-negative (take, e.g., the graph of h to
be a supporting hyperplane of the epigraph of f(s) − f(0) at 0). Consequently,
monotone convergence implies that Ψϕ(f)[t] = limt′→tΨϕ(f)[t

′], where we take t′ ∈
int domϕ and t ∈ ∂ domϕ, and therefore Ψϕ(f) is convex on all of R, that is,
Ψϕ(f) ∈ Conv(0)(R).

The continuity of the map Ψϕ : Conv(R,R) → Conv(0)(R) follows from Lemma 2.1

using that every Ψϕ(f) is constant on the complement of domϕ and that, for t ∈
int domϕ, Ψϕ(f)[t] depends only on the values of f on the compact set [−ϕ(t), ϕ(t)].

Example 3.12. The previous Example 3.11 can be generalized to arbitrary dimen-
sions by defining for y ∈ R

n \ {0} and ϕ ∈ Conv(0)(R)

Ψ̃ϕ,y(f)[x] = Ψϕ(s 7→ f(sy))[pr〈y〉(x)], f ∈ Conv(Rn,R), x ∈ R
n,

where pr〈y〉 denotes the orthogonal projection onto 〈y〉. Moreover, taking means

over y ∈ R
n \ {0} and a family of ϕ ∈ Conv(0)(R) yields further examples that are

not “1-dimensional” anymore.

Examples 3.10 and 3.11, as well as the results of Theorems A and C lead to the
following (in our opinion very interesting) question: Is there a general criterion when
a continuous and additive map Ψ : Conv(Rn,R) → Conv(0)(R) can be extended to
Conv(0)(R

n)? For dually epi-translation invariant valuations on convex functions,
which are closely related to additive maps, some results in this direction were ob-
tained in [37] in terms of the supports of Goodey-Weil distributions. A similar
approach can be used to obtain conditions under which an endomorphism can be
extended “pointwise”, but the last part of Example 3.11 suggests that there may be
additional obstructions imposed by continuity.

In some sense, an answer to this question would yield a structural relation be-
tween the space Conv(0)(R

n) and its dense subspace Conv(Rn,R), which would be
interesting on its own. Moreover, it could be helpful in the characterization of en-
domorphisms with different equivariance properties, as our proofs rely on the fact
that we can restrict to Conv(Rn,R) and work with finite convex functions.
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4. Proof of Theorem A and Theorem B

Next, we prove Theorems A and B, starting with the “if”-part of Theorem A.

Theorem 4.1. Suppose that ν ∈ M+
c (R) with

∫
R× |s|−1dν(s) <∞ and c ∈ R.

Then there exists a unique continuous, additive and GL(n)-equivariant map Ψ :
Conv(0)(R

n) → Conv(0)(R
n) satisfying

Ψ(f)[x] = cf(0) +

∫

R×

f(sx)− f(0)

|s|2
dν(s), x ∈ R

n,(11)

for every f ∈ Conv(Rn,R).

Proof. As Conv(Rn,R) is a dense subspace of Conv(0)(R
n), Ψ is uniquely determined

by (11) and continuity, if it exists. To construct the desired map, observe first that
we may without loss of generality assume that c = 0. Indeed, the map f 7→ cf(0)
has all the claimed properties, which are preserved when adding two such maps.

Let ν ∈ M+
c (R) with

∫
R× |s|−1dν(s) < ∞ be given and set a := inf supp ν,

b := sup supp ν. For f ∈ Conv(0)(R
n) define Df := {x ∈ R

n : [a, b] · x ⊆ int dom f},
which is an open and convex neighborhood of 0. Let us set

Ψ(f)[x] :=





∫
R×

f(sx)−f(0)
|s|2

dν(s), x ∈ Df ,

lim inf
x′→x,x′∈Df

∫
R×

f(sx′)−f(0)
|s|2

dν(s), x ∈ ∂Df ,

∞, x ∈ R
n \Df .

(12)

Note that, if well-defined, Ψ(f) is lower semi-continuous by construction and this
definition coincides with (11) on Conv(Rn,R). In order to show well-definedness,
let x ∈ Df and observe that as [a, b] · x is compact and contained in the open and
convex set int dom(f), int dom(f) contains a compact and convex neighborhood of
[a, b] · x. By Proposition 2.4, f is Lipschitz continuous on [a, b] · x with constant
C > 0, and we can estimate

|f(sx)− f(0)|

|s|2
≤ C

‖x‖

|s|
, s ∈ [a, b] \ {0},

where the right-hand side is ν-integrable on R
× by assumption. Consequently, the

integral
∫

R×

f(sx)− f(0)

|s|2
dν(s)(13)

converges, that is, Ψ(f)[x] is well-defined and finite for x ∈ Df . Moreover, the
convexity of f implies the existence of α > 0, z ∈ R

n such that f(y) ≥ α〈y, z〉+ f(0)
for every y ∈ R

n. Hence, the integrand of (13) is bounded from below uniformly in
x ∈ R

n by −α|〈x, z〉| · |s|−1, which implies that Ψ(f)[x] exists for x ∈ ∂Df and is not
equal to −∞. Overall, we have shown that Ψ(f) : Rn → (−∞,∞] is a well-defined
and lower semi-continuous function, which is finite on the neighborhood Df of 0.

Let us now show that Ψ(f) ∈ Conv(0)(R
n), that is, that Ψ(f) is convex. Note that

Ψ(f) is given by (13) on the open and convex set Df , so it is in particular convex
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and, hence, continuous on this set. As Ψ(f) is infinite outside Df , it is sufficient to
prove

Ψ(f)[λx+ (1− λ)y] ≤ λΨ(f)[x] + (1− λ)Ψ(f)[y] for λ ∈ (0, 1)(14)

for x ∈ Df , y ∈ ∂Df and for x, y ∈ ∂Df . For the first case, let yj → y be a
sequence in Df such that Ψ(f)[yj] → Ψ(f)[y], j → ∞. Then, by the convexity of
Df , λx+ (1− λ)yj ∈ Df for all j ∈ N, and λx+ (1− λ)y ∈ Df for λ ∈ (0, 1), as Df

is also open. The continuity and convexity of Ψ(f) on Df therefore imply (14),

Ψ(f)[λx+ (1− λ)y] = lim
j→∞

Ψ(f)[λx+ (1− λ)yj]

≤ lim
j→∞

λΨ(f)[x]+(1− λ)Ψ(f)[yj ] = λΨ(f)[x] + (1− λ)Ψ(f)[y].(15)

The second case, x, y ∈ ∂Df , follows from the first case by taking a sequence xj ∈ Df

with xj → x such that Ψ(f)[xj] → Ψ(f)[x]. Then, by lower semi-continuity and
(15),

Ψ(f)[λx+ (1− λ)y] ≤ lim inf
j→∞

Ψ(f)[λxj + (1− λ)y]

≤ lim inf
j→∞

λΨ(f)[xj] + (1− λ)Ψ(f)[y] = λΨ(f)[x] + (1− λ)Ψ(f)[y],

that is, Ψ(f) ∈ Conv(0)(R
n).

Next, we prove that Ψ is continuous with respect to the topology induced by
epi-convergence. Let fj ∈ Conv(0)(R

n) be an epi-convergent sequence with limit
f ∈ Conv(0)(R

n). In order to show Ψ(fj) → Ψ(f), by Lemma 2.1(1), it is sufficient
to show that Ψ(fj)[x0] converges to Ψ(f)[x0] for all x0 ∈ R

n \ ∂Df .
First suppose that x0 ∈ Df . As Df is open, there exists ε > 0 such that Bε(x0) ⊂

Df , so the compact set A := {λx : λ ∈ [a, b], x ∈ Bε(x0)} is contained in int dom f .
Consequently, by Lemma 2.1(2), the sequence (fj)j converges uniformly to f on A.
In particular, there exists j0 ∈ N such that fj is bounded on A by a constant not
depending on j ≥ j0. Hence, Proposition 2.4 implies that the Lipschitz constants of
the functions fj are bounded on [a, b] ·x0 by some constant C > 0 not depending on
j ≥ j0, as A is a compact neighborhood of [a, b] · x0. Thus for j ≥ j0

|fj(sx0)− fj(0)|

|s|2
≤ C

‖x0‖

|s|
, s ∈ [a, b] \ {0},(16)

that is, the integrands are uniformly bounded on supp ν \ {0} by a ν-integrable
function. Dominated convergence and uniform convergence of fj on A ⊇ supp ν · x0
then imply

lim
j→∞

Ψ(fj)[x0] = lim
j→∞

∫

R×

fj(sx0)− fj(0)

|s|2
dν(s) =

∫

R×

f(sx0)− f(0)

|s|2
dν(s) = Ψ(f)[x0].

Suppose now that x0 ∈ R
n\Df . Then [a, b] ·x0 \dom f 6= ∅, so there exist ε, η > 0

such that either [b− ε, b] · λx0 ⊆ R
n \ dom f or [a, a+ ε] · λx0 ⊆ R

n \ dom f or both
for all λ ∈ [1−η, 1]. Pick one of the subsets [a, a+ε], [b−ε, b] with this property and
denote it by B. Then ν(B) > 0 by the definition of a and b. We can further choose
δ > 0 such that [−2δ, 2δ] ·x0 ⊆ int dom f , as 0 ∈ int dom f , and then [−δ, δ]∩B = ∅.
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As we need to show that Ψ(fj)[x0] → ∞, we will use the (disjoint) decomposition
R = [−δ, δ] ∪B ∪R \ ([−δ, δ] ∪B) to give a diverging lower bound of Ψ(fj)[x0].

First, since [−2δ, 2δ] · x0 ⊆ int dom f , the sequence (s 7→ fj(sx0))j∈N converges
uniformly to s 7→ f(sx0) on [−2δ, 2δ]. Hence, Proposition 2.4 implies that these
functions are Lipschitz continuous on [−δ, δ] with Lipschitz constant bounded by
some C > 0 independent of j ∈ N. In particular, we obtain an estimate

|fj(sx0)− fj(0)|

|s|2
≤ C

‖x0‖

|s|
, s ∈ [−δ, δ] \ {0} and j ∈ N,(17)

similar to (16). Moreover, the uniform convergence implies that |fj(0)| ≤ D for
some D > 0 independent of j ∈ N.

Secondly, as f ≡ ∞ on B · λx0, λ ∈ [1 − η, 1], the epi-convergence of fj implies
that for every k ∈ N we can choose jk ∈ N such that

fj(x) ≥ k for all x ∈ B · λx0, λ ∈ [1− η, 1] and j ≥ jk.(18)

For the third set R\([−δ, δ]∪B), finally, we will just need the general lower bound
given by Lemma 2.3, that is, for every x0 ∈ R

n there exists z ∈ R
n and β ∈ R, such

that

fj(x) ≥ 〈z, x〉 + β for all x ∈ R
n with ‖x‖ ≤ max{|a|, |b|}‖x0‖ and j ∈ N.(19)

We are now in position to prove the lower bound of Ψ(fj)[x0]. Let k ∈ N be

arbitrary and fix j ≥ jk. If x0 ∈ R
n\Dfj , Ψ(fj)[x0] = ∞ and there is nothing to

prove. Assume in the following that x0 ∈ Dfj . By the convexity of Dfj , λx0 ∈ Dfj

for λ ∈ (1 − η, 1) because 0 ∈ Df . Then, by (17) applied for sλ (as λ < 1), (18),
(19), and the bound on fj(0), we can estimate

Ψ(fj)[λx0] =

∫

R×

fj(sλx0)− fj(0)

|s|2
dν(s)

≥ −

∫

[−δ,δ]\{0}
C
λ‖x0‖

|s|
dν(s) +

∫

B

k −D

|s|2
dν(s) +

∫

R×\([−δ,δ]∪B)

〈z, sλx0〉+ β −D

|s|2
dν(s).

Note that all terms are well-defined and finite due to the compactness of supp ν and
the ν-integrability of |s|−1, and do not depend on j ≥ jk anymore. Hence, we can
rewrite this estimate with constants C ′, C ′′ ∈ R, not depending on j, to obtain

Ψ(fj)[λx0] ≥ C ′ + C ′′λ+ k

∫

B

1

|s|2
dν(s),(20)

where
∫
B
|s|−2dν(s) > 0 as ν(B) > 0 and |s|−2 > 0. The convexity of Ψ(fj) together

with (20) and the fact that Ψ(fj)[0] = 0 by the definition of Ψ implies

λΨ(fj)[x0] ≥ Ψ(fj)[λx0]− (1− λ)Ψ(fj)[0] ≥ C ′ + C ′′λ+ k

∫

B

1

|s|2
dν(s).

Letting λ→ 1, we see that Ψ(fj)[x0] ≥ (C ′+C ′′)+k
∫
B
|s|−2dν(s) and, consequently,

Ψ(fj)[x0] → ∞, as j → ∞. In total, we have shown that Ψ(fj) epi-converges to
Ψ(f) for j → ∞, so Ψ is continuous.

It remains to see that Ψ is additive and GL(n)-equivariant. However, the restric-
tion of Ψ to the dense subset Conv(Rn,R) is additive and GL(n)-equivariant by
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construction, so this follows from the continuity of Ψ, as the GL(n)-action and the
addition of functions in Conv(0)(R

n) are continuous (see Lemma 2.2). �

Having established the well-definedness of the maps from Theorem 4.1, we can now
show the conditions for their monotonicity and dual translation-invariance claimed
in Theorem A.

Proposition 4.2. Suppose that ν ∈ M+
c (R) with

∫
R× |s|−1dν(s) <∞ and c ∈ R.

Then the map Ψ : Conv(0)(R
n) → Conv(0)(R

n), defined by (11) is

(1) monotone if and only if
∫
R× |s|−2dν(s) ≤ c <∞;

(2) dually translation-invariant if and only if
∫
R× s

−1dν(s) = 0.

Proof. Suppose that Ψ is defined by (11) with ν and c as in the statement of the
proposition. If Ψ is monotone its Goodey–Weil distribution is positive by Lemma 3.5.
Let φ ∈ C∞(R) be an even function with φ(s) = 0 for |s| < 1, φ(s) = 1 for |s| > 2

and φ(s) non-decreasing for 1 < s < 2, and set φε(y) := φ
(
pr〈ē〉y

ε

)
for ε > 0, y ∈ R

n.

Then φε ≤ 1. Hence, we have GW(Ψx)(φε) ≤ GW(Ψx)(1) = c and thus for x = ē
and for all ε > 0

∫

R×

φ
(
s
ε

)

|s|2
dν(s) ≤ c.

As φ is non-decreasing on [0,∞) and non-increasing on (−∞, 0], the integrand con-
verges pointwise monotonously on R

× to 1. Monotone convergence thus implies
∫

R×

1

|s|2
dν(s) = lim

ε→0

∫

R×

φ
(
s
ε

)

|s|2
dν(s) ≤ c.

If, conversely,
∫
R× |s|−2dν(s) ≤ c <∞, we can split up the integrand to obtain

Ψ(f)[x] =

(
c−

∫

R×

1

|s|2
dν(s)

)
f(0) +

∫

R×

f(sx)

|s|2
dν(s),

for f ∈ Conv(Rn,R), x ∈ R
n, which clearly is monotone. This shows claim (1).

Claim (2) follows directly by plugging in linear functions into (11). �

We now turn to the “only if”-part of Theorem A, that is, that every continuous,
additive and GL(n)-equivariant endomorphism has the form of (11). We start by
analyzing general distributions satisfying the invariance properties that are imposed
on the Goodey–Weil-distributions (see Lemma 3.4).

Lemma 4.3. Suppose that u ∈ D′
c(R

n) and x ∈ R
n. If u is GL(n)x-invariant, then

• there exists c ∈ R such that u(ϕ) = cϕ(0) if x = 0,
• there exists u0 ∈ D′

c(R) such that u(ϕ) = u0(s 7→ ϕ(sx)) if x 6= 0,

for every ϕ ∈ C∞
c (Rn).

Proof. Assume first that x = 0. Then u is GL(n)-invariant and therefore also suppu
is GL(n)-invariant. As suppu is compact, we conclude that suppu ⊆ {0}. By
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[32, Thm. 2.3.4], there exist constants aα ∈ R, |α| ≤ k, where α is a multi-index and
k is the (finite) order of u, such that

u(ϕ) =
∑

|α|≤k

aα∂αϕ(0), ϕ ∈ C∞
c (Rn).

Now let λ > 0 and consider ηλ ∈ GL(n) defined by ηλ(y) = λy. Then u(ηλϕ) = u(ϕ)
by the GL(n)-invariance of u, and consequently, by the chain rule,

∑

|α|≤k

λ|α|aα∂αϕ(0) = u(ηλϕ) = u(ϕ) =
∑

|α|≤k

aα∂αϕ(0), ϕ ∈ C∞
c (Rn).

Using that u has compact support, we plug in the monomials ψα(y) = yα1

1 · · · yαn
n ,

α = (α1, . . . , αn), which satisfy ∂α′ψα(0) = δα,α′ , to obtain λ|α| = 1 for every |α| ≤ k.
As this can only be true for every λ > 0 if |α| = 0, we have shown the first claim.

Assume now that x 6= 0. Then GL(n)x consists of all non-degenerate linear maps
that keep the span 〈x〉 of x fixed. As suppu is compact and GL(n)x-invariant, we
conclude that suppu ⊆ 〈x〉. Applying [32, Thm. 2.3.5] to the splitting of variables
induced by R

n = 〈x〉 ⊕ 〈x〉⊥, we obtain distributions uα ∈ D′
c(R), |α| ≤ k and

α = (0, α′), of order k − |α|, such that

u(ϕ) =
∑

|α|≤k

uα(ϕα), ϕ ∈ C∞
c (Rn),

where ϕ(0,α′)(t) = ∂α′ϕ(tx, y′)|y′=0. For λ > 0 and taking τλ ∈ GL(n)x defined by

τλ(tx, y
′) = (tx, λy′), we conclude as before that

∑

|α|≤k

λ|α|uα(ϕα) =
∑

|α|≤k

uα(ϕα), ϕ ∈ C∞
c (Rn),

and, by taking ϕ(tx, y′) = ϕ̃(t)ψα′(y′) for ϕ̃ ∈ C∞
c (R) and the monomial ψα′ from

the first case, we see that λ|α| = 1 for all |α| ≤ k, so uα = 0 for |α| > 0 as before.
This completes the proof of the second claim. �

We are now in position to complete the

Proof of Theorem A. By Theorem 4.1 and Proposition 4.2, we are left to prove
that every continuous, additive and GL(n)-equivariant map Ψ : Conv(0)(R

n) →
Conv(0)(R

n) is of the form (11).
First, note that Ψ restricts to an endomorphism of Conv(Rn,R) by Lemma 3.8.

We can therefore consider its family of Goodey–Weil distributions (GW(Ψx))x∈Rn .
Every GW(Ψx) is invariant under the stabilizer GL(n)x of x ∈ R

n by Lemma 3.4.
Applying Lemma 4.3, there is c ∈ R and a distribution u ∈ D′

c(R) such that
Ψ(f)[0] = cf(0) and

GW(Ψē)(f) = u(s 7→ f(sē)), f ∈ Conv(Rn,R) ∩ C∞(Rn),

where ē is a pole of Sn−1 (but could be some arbitrary, non-zero element of Rn). The
GL(n)-equivariance of Ψ implies that for ηx ∈ GL(n), x ∈ R

n \ {0}, with ηxē = x,

Ψ(f)[x] = Ψ(f)[ηxē] = Ψ(η−1
x · f)[ē] = u(s 7→ (η−1

x · f)(sē)) = u(s 7→ f(sx))
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for every f ∈ Conv(Rn,R) ∩ C∞(Rn). Note that Ψ(f)[x] depends only on the
restriction of f to 〈x〉. Conversely, every f ∈ Conv(R,R) defines a convex function

f̃ on R
n by f̃(y) = f(ē∗(y)), where ē∗ ∈ (Rn)∗ is invariant under the stabilizer

GL(n)ē of ē and satisfies ē∗(ē) = 1. We can therefore define an endomorphism

ΨR : Conv(R,R) → Conv(R,R) by ΨR(f)[t] = Ψ(f̃)[tē], t ∈ R. If f is smooth, then

so is f̃ , and ΨR(f) is given by

ΨR(f)[t] = Ψ(f̃)[tē] = u(s 7→ f(st)), t ∈ R.(21)

Observe that ΨR determines Ψ completely by this equation.
Now let f ∈ Conv(R,R) be a smooth convex function. As ΨR(f)[t] is convex, the

second derivative of ΨR(f)[t] is non-negative, and using [32, Thm. 2.1.3] we obtain

0 ≤ ∂2tΨ
R(f)[t] = ∂2t u(s 7→ f(st)) = u(s 7→ s2f ′′(st)).(22)

If φ ∈ C∞
c (R) is non-negative, let Φ ∈ Conv(R,R) be such that Φ′′(s) = φ(s) ≥ 0.

Then the inequality in (22) yields for f = Φ

(s2u)(φ) = u
(
s 7→ s2φ(s)

)
= u

(
s 7→ s2Φ′′(s)

)
= ∂2tΨ

R(Φ)[t]|t=1 ≥ 0,

that is, s2u is a non-negative distribution (with compact support). We can therefore
find a non-negative measure ν ∈ M+

c (R) such that s2u = ν as distributions.
Next, note that if φ ∈ C∞(R) vanishes on a neighborhood of 0, then

u(φ) = u

(
s 7→ s2

φ(s)

|s|2

)
=

∫

R×

φ(s)

|s|2
dν(s).(23)

Hence, by approximating the (convex) functions fδ(t) = (t − δ)+ + (δ − t)+, where
t+ = max{t, 0}, by smooth functions, we get

ΨR(fδ)[1] =

∫

R\[−δ,δ]

fδ(s)

|s|2
dν(s) =

∫

R\[−δ,δ]

|s| − δ

|s|2
dν(s).(24)

For δ → 0, fδ epi-converges to f(t) = |t|, so by continuity, the left-hand side of
(24) converges to ΨR(f)[1]. By monotone convergence, the right-handside of (24)
converges to

∫
R× |s|−1dν, which thus must be finite.

Hence, we can apply Theorem 4.1 to ν and c to obtain a continuous, additive map
Ψ̂ : Conv(0)(R

n) → Conv(0)(R
n). We claim that Ψ = Ψ̂. It is enough to show that

their Goodey–Weil distributions coincide or, equivalently, ΨR(f)[1] = Ψ̂R(f)[1] for

every f ∈ Conv(R,R), where Ψ̂R is defined similarly to (21). Indeed, as Ψ̂ satisfies
the conditions of the theorem, we may repeat the steps taken for Ψ to conclude that
Ψ̂ is uniquely determined by Ψ̂R given by

Ψ̂R(f)[t] = cf(0) +

∫

R×

f(st)− f(0)

|s|2
dν(s), t ∈ R,

for every f ∈ Conv(R,R), and thus, by GL(n)-equivariance, just by Ψ̂R(f)[1].

In order to show ΨR = Ψ̂R, first let f ∈ Conv(R,R) be a smooth convex function
that vanishes in a neighborhood of 0. Then (23) shows that

ΨR(f)[1] = GW(ΨR
1 )[f ] = u(f) = Ψ̂R(f)[1].
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If f ∈ Conv(R,R) is an arbitrary convex function that vanishes in a neighborhood
of 0, we can use a mollifier and approximate f by a sequence of smooth convex
functions with the same property, so ΨR(f)[1] = Ψ̂R(f)[1], as ΨR and Ψ̂R are both
continuous. Next, let f ∈ Conv(R,R) satisfy f(0) = 0 ≤ f(t) for all t ∈ R. Then
fδ(t) := max(f(t) − δ, 0) vanishes on a neighborhood of 0 and converges to f for

δ → 0. Thus ΨR and Ψ̂R coincide on functions of this type by continuity.

Next, note that, by GL(n)-equivariance, ΨR(s 7→ 1) is constant, and therefore

ΨR(s 7→ 1)[1] = ΨR(s 7→ 1)[0] = c = Ψ̂R(s 7→ 1)[1].

By approximating the function g+(t) = t+ by the functions g+,δ(t) = (t − δ)+,

δ → 0, we further see that ΨR(g+) = Ψ̂R(g+) and similarly ΨR(g−) = Ψ̂R(g−) for
g−(t) = (−t)+. If we consider g(t) = t, we thus obtain

ΨR(g−)+ΨR(g) = ΨR(g−+g) = ΨR(g+) = Ψ̂R(g+) = Ψ̂R(g−+g) = Ψ̂R(g−)+Ψ̂R(g).

As ΨR(g−) = Ψ̂R(g−) and because both sides are finite, we see that ΨR and Ψ̂R

coincide on linear functions.
Finally, let f ∈ Conv(R,R) be an arbitrary convex function. Then there exists

an affine function g on R such that f̂(t) := f(t) − g(t) is a convex function with

f̂(t) ≥ f̂(0) = 0. By additivity and the previously shown,

ΨR(f) = ΨR(f̂) + ΨR(g) = Ψ̂R(f̂) + Ψ̂R(g) = Ψ̂R(f),

which finishes the proof. �

In the remainder of this section, we give a proof of Theorem B, which makes use of
Theorem A.

Proof of Theorem B. First note that every map Ψ : Conv(Rn) → Conv(Rn) defined
by (4) or by Ψ ≡ 0,1∞{0} is continuous, additive and GL(n)-equivariant.

Now let Ψ : Conv(Rn) → Conv(Rn) be non-trivial, that is, Ψ 6≡ 0, as well as
continuous, additive and GL(n)-equivariant, and consider Ψ(0) = Ψ(y 7→ 0), which is
GL(n)-invariant by the GL(n)-equivariance of Ψ. We claim that Ψ(0) ∈ Conv(Rn,R)
or Ψ(0) = 1

∞
{0}.

Indeed, if there exists x ∈ R
n\{0} with Ψ(0)[x] <∞, then Ψ(0) <∞ on R

n\{0},
since Ψ(0) is GL(n)-invariant, and thus Ψ(0)[0] < ∞ by convexity. Moreover, if
Ψ(0)[x] = ∞ for some x ∈ R

n\{0}, then Ψ(0)[x] = ∞ for every x ∈ R
n \ {0}

by the GL(n)-invariance. The additivity of Ψ and the fact that Ψ(0)[0] < ∞, as
Ψ(0) ∈ Conv(Rn), then imply that Ψ(0)[0] = Ψ(0)[0] + Ψ(0)[0], that is, Ψ(0)[0] = 0
and so Ψ(0) = 1

∞
{0}.

If Ψ(0) = 1

∞
{0}, then Ψ(f) = Ψ(f + 0) = Ψ(f) + 1

∞
{0} for all f ∈ Conv(Rn,R), so

Ψ(f)[0] must be finite and Ψ(f)[x] = ∞ for all x ∈ R
n\{0} for any f ∈ Conv(Rn,R).

As Ψ is continuous with respect to the topology induced by epi-convergence, this
implies that the map f 7→ Ψ(f)[0] is continuous on Conv(Rn,R). We can thus
consider its Goodey–Weil distribution, which is GL(n)-invariant. By Lemma 4.3,
there exists c ∈ R such that Ψ(f)[0] = cf(0) for every f ∈ Conv(Rn,R) ∩ C∞(Rn).
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However, the map f 7→ cf(0) + 1

∞
{0} does not possess a continuous extension to

Conv(Rn), unless c = 0, as can be seen by approximating any function f ∈ Conv(Rn)
that is infinite in a neighborhood of 0 with finite convex functions, hence, Ψ ≡ 1

∞
{0}.

If Ψ(0) ∈ Conv(Rn,R), on the other hand, then Ψ maps Conv(Rn,R) into itself
by the same reasoning as in the proof of Lemma 3.8. We can therefore consider the
family of Goodey–Weil distributions (GW(Ψx))x∈Rn and apply (the arguments of)
Theorem A to obtain c ∈ R and ν ∈ M+

c (R), such that

Ψ(f)[x] = cf(0) +

∫

R×

f(sx)− f(0)

|s|2
dν(s), x ∈ R

n,(25)

for all f ∈ Conv(Rn,R). We want to use (25) to show that Ψ is of the claimed form.

First fix y0 ∈ R
n \ {0}. Then there exists x0 ∈ R

n such that Ψ(1∞{y0})[x0] < ∞.

We claim that this implies suppΨx0
⊆ {y0}. To see this, let φ ∈ C∞

c (Rn) be a
function with y0 /∈ suppφ. As suppφ is closed, we can choose δ > 0 such that
Bδ(y0)∩ suppφ = ∅. Now consider the function f(y) := ‖y−y0‖

2. Then there exists
ε > 0 such that f + tφ is convex for all t ∈ (−ε, ε) and for such t we can use (8) to
calculate

tGW(Ψx0
)[φ] =Ψ(f + tφ)[x0]−Ψ(f)[x0]

=Ψ(f + tφ)[x0] + Ψ(1∞{y0})[x0]−
(
Ψ(f)[x0] + Ψ(1∞{y0})

)
[x0]

=Ψ(1∞{y0} + f + tφ)[x0]−Ψ(1∞{y0} + f)[x0]

=Ψ(1∞{y0})[x0]−Ψ(1∞{y0})[x0] = 0.

Here we have used Ψ(1∞{y0})[x0] < ∞, the additivity of Ψ, and the fact that f and

f + tφ vanish in y0. Thus, suppGW(Ψx0
) ⊂ {y0}.

Next, we want to show that for every y0 ∈ R
n \ {0} we can choose x0 6= 0 with

Ψ(1∞{y0})[x0] < ∞. Note that this holds for all y0 ∈ R
n \ {0} as soon as it holds for

one point due to the GL(n)-equivariance of Ψ. Assume for the sake of a contradiction
that domΨ(1∞{y0}) ⊆ {0} for all y0 ∈ R

n \ {0}. Then Ψ(1∞{y0})[0] < ∞, as Ψ(1∞{y0})

is not identical to +∞.
As the maps y 7→ j‖y−y0‖ epi-converge to 1∞{y0}, the continuity of Ψ implies that

Ψ(j‖ ·−y0‖) → Ψ(1∞{y0}) as j → ∞. By the definition of epi-converge, point 2, there

exists a sequence (xj)j in R
n converging to 0 such that Ψ(j‖ · −y0‖)[xj ] converges

to Ψ(1∞{y0})[0] for j → ∞. In particular, (25) implies that

Ψ(j‖ · −y0‖)[xj ] = j

[
c‖y0‖+

∫

R×

‖sxj − y0‖ − ‖y0‖

|s|2
dν(s)

]
(26)

converges to Ψ(1∞{y0})[0] <∞ for j → ∞, which is only possible if the expression in

the brackets converges to 0. Since ‖y0‖ 6= 0 and the integrand is bounded by
∣∣∣∣
‖sxj − y0‖ − ‖y0‖

|s|2

∣∣∣∣ ≤
‖xj‖

|s|
, s ∈ R

×,
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with ‖xj‖ → 0 and |s|−1 being ν-integrable, the expression in the bracket in (26)
can only converge to 0 if c = 0.

Next, let t ∈ R
× and consider the constant sequence x̃j = ty0. Again by the

definition of epi-convergence, point 1,

Ψ(1∞{y0})[ty0] ≤ lim inf
j→∞

Ψ(j‖ · −y0‖)[x̃j ] = ‖y0‖ lim inf
j→∞

j

∫

R×

|st− 1| − 1

|s|2
dν(s),

and since Ψ(1∞{y0})[ty0] = ∞ for t 6= 0, we must have
∫

R×

|st− 1| − 1

|s|2
dν(s) > 0.

Choosing t 6= 0 such that |s|·|t| ≤ 1 for all s ∈ supp ν (using that supp ν is compact),
we obtain

0 <

∫

R×

|st− 1| − 1

|s|2
dν(s) = −t

∫

R×

1

s
dν(s),

which yields a contradiction, as we can flip the sign of t. We therefore conclude that
for every y0 ∈ R

n \ {0} the set domΨ(1∞{y0}) contains a point x0 distinct from 0.

By the first step, suppGW(Ψx0
) ⊆ {y0}. If Ψx0

= 0 for some x0 6= 0, then
Ψx = 0 for all x ∈ R

n \ {0} by GL(n)-equivariance, and, by convexity, Ψ0 = 0, so
Ψ ≡ 0, which contradicts the assumption of non-triviality. Hence, Ψx0

6= 0, and
since suppGW(Ψx0

) = {y0} is GL(n)x0
-invariant, y0 ∈ 〈x0〉, that is, there exists

µ ∈ R
× such that y0 = µx0. Note that the GL(n)-equivariance of Ψ implies that

µ does not depend on y0 ∈ R
n \ {0}. Consequently, suppGW(Ψx0

) = {µx0} for all
x0 ∈ R

n \ {0}.
Finally, using the arguments in the proof of Theorem A, ν = s2u, where u ∈ D′

c(R)
is given by GW(Ψē)[φ] = u(s 7→ φ(sē)), φ ∈ C∞

c (Rn), and we conclude ∅ 6= supp ν ⊆
suppu = {µ}. By (25) and the fact that Ψ(f)[x0] does not depend on f(0) anymore,

it is then easy to see that for λ = ν({µ})
µ2 > 0 we have

Ψ(f)[x0] = λf(µx0), f ∈ Conv(Rn,R),

which extends to Conv(Rn) by continuity. �

5. Proof of Theorem C and Corollary D

In this section, we prove Theorem C and show that it implies Corollary D. As in
the GL(n)-equivariant setting, we first show that (5) well-defines an endomorphism
with the claimed properties. Note that the arguments in the proof of the next
theorem resemble in big parts arguments in the proof of [31, Prop. 3.3], which
corresponds to the case suppµ ⊆ S

n−1. However, we do not know whether one can
use [31, Prop. 3.3] directly.

Theorem 5.1. Suppose that µ ∈ M+
c (R

n) is an SO(n− 1)-invariant measure.
Then the map Ψ : Conv(0)(R

n) → Conv(0)(R
n) defined by

Ψ(f)[x] =

∫

Rn

f(‖x‖ϑxy)dµ(y), x ∈ R
n\{0},(27)



24 GEORG C. HOFSTÄTTER AND JONAS KNOERR

and Ψ(f)[0] = lim inf‖x‖→0 Ψ(f)[x] for every f ∈ Conv(0)(R
n) is continuous, addi-

tive, monotone, radially and SO(n)-equivariant. Moreover, Ψ is dually translation-
invariant if and only if

∫
Rn ydµ(y) = 0.

Proof. Note that, if well-defined, Ψ is clearly an additive, monotone, radially and
SO(n)-equivariant mapping. Moreover, Ψ is dually translation-invariant if and only
if Ψ(〈a, ·〉) = 0 for every a ∈ R

n, which is equivalent to
∫
Rn ydµ(y) = 0. We therefore

need to show that Ψ(f) is a well-defined function in Conv(0)(R
n) for every f ∈

Conv(0)(R
n) and that the mapping Ψ : Conv(0)(R

n) → Conv(0)(R
n) is continuous.

First let f ∈ Conv(0)(R
n) and note that the lower semi-continuity of f implies that

f is bounded from below on every compact subset of Rn. As suppµ is compact by
assumption, the map y 7→ f(‖x‖ϑxy) is therefore bounded from below for y ∈ suppµ
for every fixed x ∈ R

n \ {0} , and thus the integral in (27) is well-defined for every
x ∈ R

n \ {0}, taking values in (−∞,∞]. Moreover, (27) does not depend on the
choice of ϑx, as µ is SO(n− 1)-invariant.

Noting further that Ψ(f)[x] only depends on the values of f on the (compact) set
‖x‖ϑx suppµ, we conclude that Ψ(f)[x] is finite whenever ‖x‖ϑx suppµ is contained
in int dom f . Indeed, the continuity of f on int dom f implies that f is bounded on
the domain of integration of (27) and thus Ψ(f)[x] < ∞. Since 0 ∈ int dom f and
suppµ is compact, Ψ(f) is finite on a neighborhood of the origin (and in particular
proper).

Next, to prove that Ψ(f) is convex, we can assume without loss of generality that
f is finite. Indeed, for every f ∈ Conv(0)(R

n) there is a sequence fj ∈ Conv(Rn,R)
such that (fj(x))j is monotone for every x ∈ R

n and such that fj epi-converges to f
(take, e.g., the Moreau envelope of f , see [45, Ch. 1.G]). Monotone convergence of
the integral in (27) then implies that

Ψ(f)[x] = sup
j∈N

Ψ(fj)[x], x ∈ R
n \ {0},

and, hence, Ψ(f) is convex on R
n \{0} as supremum of convex functions. Moreover,

we only need to show convexity on R
n\{0} since Ψ(f) must then be finite and convex

and therefore continuous on Bδ(0) \ {0} for some δ > 0. It is easy to check that the
extension of Ψ(f) to 0 by lower semi-continuity is again convex (and therefore the
extension is continuous on Bδ).

In order to prove convexity of Ψ(f) for f ∈ Conv(Rn,R), we first assume that µ
is absolutely continuous with respect to the Lebesgue measure on R

n with density
ρ. Rewriting the integral in (27) using polar coordinates yields for x ∈ R

n \ {0}

Ψ(f)[x] =

∫

Rn

f(‖x‖ϑxy)ρ(y)dy =

∫ ∞

0

∫

Sn−1

f(‖x‖ϑxru)ρ(ru)du r
n−1dr,

where we denote by du the spherical Lebesgue measure on S
n−1. Note that, by

compactness, suppµ ⊆ BR(0) for some R > 0, and, hence, ρ(ru) ≡ 0 for r > R,
u ∈ S

n−1. Letting νr, r ∈ (0, R], be the measure on S
n−1 with density ρ(r·) with
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respect to the spherical Lebesgue measure, we can use Theorem 1.3 to identify

Ψ(f)[x] =

∫ R

0
Ψνr(f)[rx]r

n−1dr, x ∈ R
n \ {0},

where Ψνr(f) is convex for every r ∈ (0, R] by Theorem 1.3. From this representation
it is clear that Ψ(f) is convex on Rn \ {0}.

For a general measure µ (that might not be absolutely continuous with respect
to the Lebesgue measure), we use a mollification of µ. Let φ : Rn → [0,∞) be a
smooth, radially symmetric function with suppφ ⊆ B1(0) and

∫
Rn φdx = 1. Denote

φε(x) =
1
εn
φ(x

ε
), ε > 0, and consider

(µ ∗ φε)(y) =

∫

Rn

φε(y − z)dµ(z), y ∈ R
n,

which is a smooth, non-negative function with compact support (see, e.g., [32,
Thm. 4.1.1]). Moreover, the radial symmetry of φ implies that µ ∗ φε is SO(n− 1)-
invariant. We can therefore use what we have proved before to see that

Ψε(f)[x] =

∫

Rn

f(‖x‖ϑxy)(µ ∗ φε)(y) dy, x ∈ R
n \ {0},

is convex for every f ∈ Conv(Rn,R). Since by [32, Thm. 4.1.4], µ ∗ φε converges
weakly to µ for ε → 0+, Ψε(f)[x] converges to Ψ(f)[x] for every x ∈ R

n \ {0}. We
conclude that Ψ(f) is convex on R

n \{0} as pointwise limit of convex functions and,
hence, as noted before, on R

n.
Since the lower semi-continuity of Ψ(f), f ∈ Conv(0)(R

n), is a direct consequence
of Fatou’s lemma (see also [31, Prop. 3.3]), we conclude that Ψ(f) ∈ Conv(0)(R

n)
for every f ∈ Conv(0)(R

n).

It remains to prove the continuity of Ψ on Conv(0)(R
n). Let (fj)j ⊆ Conv(0)(R

n)
be a sequence epi-converging to f ∈ Conv(0)(R

n) and consider the set

Df := {x ∈ R
n : ‖x‖ϑx suppµ ⊂ int dom f for some ϑx ∈ SO(n) with ‖x‖ϑxē = x}.

Note that Df contains an open ball around the origin, as int dom f is a neighborhood
of the origin and suppµ is compact. We will show that Ψ(fj) converges pointwise

to Ψ(f) on the dense set (Df \ {0}) ∪R
n \Df , which by Lemma 2.1(1) implies that

(Ψ(fj))j epi-converges to Ψ(f).

First, let x ∈ Df \ {0} be given. By the compactness of suppµ, there exists ε > 0
such that Aε := ‖x‖ϑx suppµ + Bε(0) ⊂ int dom f . As Aε is compact and does
not intersect the boundary of dom f , Lemma 2.1(2) implies that (fj)j converges
uniformly to f on Aε. In particular, there exists j0 ∈ N such that fj < ∞ on Aε

for all j ≥ j0. Using the uniform convergence of (fj)j and that suppµ is compact,
dominated convergence implies lim

j→∞
Ψ(fj)[x] = Ψ(f)[x].

Next, let x ∈ R
n \ Df be given and choose δ > 0 such that Bδ(x) ⊆ R

n \ Df .

Taking x̃ = λx with λ = 1− δ
2‖x‖ < 1, we have x̃ ∈ R

n \Df , so by assumption there

exists y ∈ (‖x̃‖ϑx̃ suppµ)∩ (Rn \ int dom f). As int dom f is a convex neighborhood
of 0, the ray through y emanating from 0 intersects the boundary of dom f in at most
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one point, which must be contained in the segment (0, y]. Hence, λ−1y ∈ R
n\dom f ,

as λ < 1, and there exists a compact neighborhood A ⊆ R
n \ dom f of λ−1y.

Noting that we can choose ϑx = ϑx̃ since x and x̃ are collinear, we also have

λ−1y ∈ ‖x‖ϑx suppµ, and, consequently, µ(Ã) > 0, where for simplicity we denote

Ã = 1
‖x‖ϑ

−1
x A. As f is bounded from below on ‖x‖ϑx suppµ by semi-continuity and

f ≡ +∞ on A, this directly implies

Ψ(f)[x] =

∫

Rn

f(‖x‖ϑxy)dµ(y) = ∞.

Moreover, A does not intersect the boundary of dom f , so the sequence (fj)j con-
verges uniformly to f on A by Lemma 2.1(2). As f ≡ +∞ on A, this implies that for
every k ∈ N there exists jk ∈ N such that fj ≥ k on A for all j ≥ jk. By Lemma 2.3,
there further exists an affine function g : Rn → R such that fj ≥ g on the compact
set ‖x‖ϑx suppµ. Consequently, we can estimate for j ≥ jk

Ψ(fj)[x] =

∫

Rn

fj(‖x‖ϑxy)dµ(y) =

∫

Rn\Ã
fj(‖x‖ϑxy)dµ(y) +

∫

Ã

fj(‖x‖ϑxy)dµ(y)

≥

∫

Rn\Ã
g(‖x‖ϑxy)dµ(y) + k

∫

Ã

dµ(y) = C + kµ(Ã)

for some constant C independent of j, k ∈ N. As µ(Ã) > 0 by construction, we
conclude that lim

j→∞
Ψ(fj)[x] = ∞ = Ψ(f)[x], which finishes the proof. �

We are now in position to complete the

Proof of Theorem C. By Theorem 5.1, we are left to prove that every continuous,
additive, radially and SO(n)-equivariant map Ψ : Conv(0)(R

n) → Conv(0)(R
n) is of

the form (5).
First note that Ψ restricts to an endomorphism of Conv(Rn,R) by Lemma 3.8.

We can therefore consider its family of Goodey–Weil distributions (GW(Ψx))x∈Rn .
Fixing the point ē ∈ S

n−1, every non-zero x ∈ R
n is given by x = ‖x‖ϑxē, and from

Lemma 3.4 we deduce that GW(Ψē) is SO(n− 1)-invariant and

GW(Ψx)[φ] = GW(Ψē)[φ(‖x‖ϑx·)], φ ∈ C∞
c (Rn).

By Lemma 3.5, there exists a family of non-negative measures (µx)x∈Rn with com-
pact support such that GW(Ψx) = µx. Hence, GW(Ψx) = µx is given as the push-
forward of the SO(n − 1)-invariant measure µ := µē under the map y 7→ ‖x‖ϑxy,
x ∈ R

n \ {0}. Applying Lemma 3.5 once again, we deduce that

Ψ(f)[x] =

∫

Rn

f(y)dµx(y) =

∫

Rn

f(‖x‖ϑxy)dµ(y), x ∈ R
n \ {0},

for every f ∈ Conv(Rn,R). As Ψ(f) is finite and therefore continuous,

Ψ(f)[0] = lim
‖x‖→0

Ψ(f)[x] = lim inf
‖x‖→0

Ψ(f)[x].

Coinciding with it on the dense subset Conv(Rn,R) and being continuous, Ψ must
therefore be equal to the endomorphism constructed in Theorem 5.1. �
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Each endomorphism Ψ satisfying the conditions of Theorem C, which is addition-
ally dually translation-invariant, restricts to a monotone Minkowski endomorphism.
Indeed, let K ∈ Kn and define ΦK ∈ Kn by h(ΦK, ·) = Ψ(h(K, ·)). Here, the
radial equivariance implies that Ψ(h(K, ·)) is again 1-homogeneous and therefore
a support function, making Φ well-defined. Continuity, monotonicity, translation-
invariance and SO(n)-equivariance now follow from the according properties of Ψ.

On the other hand, Theorems 1.2 and 1.3 show that every monotone Minkowski
endomorphism can be extended to a continuous and additive map on Conv(0)(R

n).
This extension is not unique. However, the extensions of Theorem 1.3 can be charac-
terized by their action on radially symmetric functions, where a function f : Rn → R

is called radially symmetric if f(ηx) = f(x) for all x ∈ R
n and η ∈ SO(n). To show

this, we first need the following lemma.

Lemma 5.2. The map Ψ : Conv(0)(R
n) → Conv(0)(R

n) defined in Theorem 5.1 for

some SO(n− 1)-invariant measure µ ∈ M+
c (R

n) satisfies

Ψ(f) = c · f,(28)

for every radially symmetric f ∈ Conv(0)(R
n) and some fixed c > 0, if and only if

suppµ ⊆ S
n−1. In this case, c = µ(Rn).

Proof. It is clear from (27) that suppµ ⊆ S
n−1 implies (28) for radially symmetric

f ∈ Conv(0)(R
n) and that c = µ(Rn), by evaluating Ψ(1).

To see the converse, assume that there exists y ∈ suppµ with ‖y‖ 6= 1 and let
φ ∈ C∞

c (Rn) be a radially invariant, non-negative function such that φ(y) = 1,
φ(x) = 0 for all x ∈ R

n such that |‖x‖ − ‖y‖| > 1
2 |‖y‖ − 1|, and φ ≥ 0 in between.

Choosing a radially symmetric f ∈ Conv(Rn,R) such that φ+ f ∈ Conv(Rn,R), we
obtain

0 <

∫

Rn

φ(x)dµ(x) = GW(Ψē)[φ] = Ψ(φ+ f)[ē]−Ψ(f)[ē]

= c(φ+ f)(ē)− cf(ē) = cφ(ē) = 0,

which is a contradiction. �

Theorem C and Lemma 5.2 now easily imply

Corollary 5.3. The maps defined in Theorem 1.3 are precisely those continuous,
additive, monotone, dually translation-invariant, as well as radially and SO(n)-
equivariant endomorphisms Ψ of Conv(0)(R

n) that satisfy

Ψ(f) = c · f,

for every radially symmetric f ∈ Conv(0)(R
n) and some fixed c > 0.

In the remainder of the section, we deduce Corollary D from Theorem C.

Proof of Corollary D. As in the proof of Theorem B, the endomorphisms defined by
(6) or by Ψ ≡ 0,1∞{0} clearly possess all the claimed properties.

Now let Ψ be an endomorphism with the given properties and assume Ψ 6≡ 0.
Noting that we only used that the action of GL(n) is transitive on R

n \ {0} in the
first part of the proof of Theorem B, which is also true for the combination of the
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SO(n)-action with radial scaling, we can conclude in the same way that Ψ(0) = 1

∞
{0}

or Ψ(0) ∈ Conv(Rn,R). Moreover, if Ψ(0) = 1

∞
{0}, then Ψ ≡ 1

∞
{0}. Indeed, we

can consider the Goodey–Weil distribution GW(Ψ0) at 0, which must be a multiple
of the delta distribution at 0, since in the proof of the corresponding statement of
Lemma 4.3 we only used that {0} is the unique compact orbit of the GL(n) action
(which is also true in the current setting) and that the distribution is invariant under
radial scalings by positive scalars.

We therefore conclude that, if Ψ is not constant, Ψ maps Conv(Rn,R) to itself,
and, by the arguments of Theorem C, there exists an SO(n − 1)-invariant measure
µ ∈ M+

c (R
n), such that

Ψ(f)[x] =

∫

Rn

f(‖x‖ϑxy)dµ(y), x ∈ R
n \ {0},(29)

for all f ∈ Conv(Rn,R). It remains to prove that suppµ consists of one point. By the
SO(n− 1)-invariance of µ, this point then must be a multiple of the fixed direction
ē ∈ S

n−1, say cē, c ∈ R, and Ψ(f)[x] = µ({cē})f(cx) for all f ∈ Conv(Rn,R)
and by continuity for all f ∈ Conv(Rn). Noting that, if c = 0, there would exist
f ∈ Conv(Rn) such that Ψ(f) ≡ ∞, we obtain c 6= 0, which yields the claim.

In order to show that suppµ consists of one point, we let y ∈ R
n\{0} be arbitrary

and consider f(x) = ‖x − y‖. Then j · f epi-converges to 1∞{y} and, by continuity,

jΨ(f) = Ψ(jf) → Ψ(1∞{y}), as j → ∞. In fact, this convergence is pointwise due

to the representation of Ψ on Conv(Rn,R) in (29) and monotone convergence of
the integral. Hence, Ψ(f) ≥ 0 and Ψ(f)[x] = 0 if and only if Ψ(1∞{y})[x] = 0. As

f(w) > 0 for w 6= y and µ is non-negative, Ψ(f)[x] = 0 for x ∈ R
n \{0} is equivalent

to

µ

(
R
n \

{
ϑ−1
x y

‖x‖

})
= µ ({w ∈ R

n : ‖x‖ϑxw 6= y}) = 0.

As Ψ is non-trivial by assumption, µ is non-zero, and we are finished if we can show
that there exists y ∈ R

n \ {0} such that Ψ(1∞{y})[x] = 0 for some non-zero x ∈ R
n.

Indeed, assume that this is not the case, so Ψ(1∞{y}) = 1

∞
{0} for all y ∈ R

n \ {0}.

Then for every f ∈ Conv(Rn,R) and every y ∈ R
n \ {0} we have

Ψ(f)[0] = Ψ(f)[0] + Ψ(1∞{y})[0] = Ψ(f + 1

∞
{y})[0]

= Ψ(f(y) + 1

∞
{y})[0] = f(y)Ψ(1)[0] + Ψ(1∞{y})[0] = f(y)µ(Rn),

which, as µ 6= 0, yields a contradiction by taking f non-constant. �

6. Proof of Theorem E

In this section, we give a proof of Theorem E. We will split the proof into the
“only if”-part (Theorem 6.2) and the “if”-part (Theorem 6.3). In the proofs, we
will make use of the following characterization of continuous, dually epi-translation
invariant valuations on R by Colesanti, Ludwig and Mussnig [24]. Note that in [24],
the Hessian measure Θ0(f, ·) is used instead of the Monge–Ampère measure MA(f ; ·)
(see Section 3.3), which arises as a marginal of Θ0.
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Theorem 6.1 ([24, Cor. 6]). A functional Z : Conv(R,R) → R is a continuous and
dually epi-translation invariant valuation if and only if there exist a constant ζ0 ∈ R

and a function ζ1 ∈ Cc(R) such that

Z(f) = ζ0 +

∫

R

ζ1(y)dMA(f ; y)

for every f ∈ Conv(R,R). Z is additive if and only if ζ0 = 0.

We start with the “only if”-part. In the proof, we will use the notation y+ for the
function y 7→ max(y, 0).

Theorem 6.2. Suppose that Ψ : Conv(R,R) → Conv(R,R) is continuous and ad-
ditive. Then the associated family of Goodey–Weil distributions of Ψ is given by

GW(Ψx) = ∂2yψ(x, ·), x ∈ R,(30)

where ψ ∈ C(R2) has the following properties:

(1) ψ(·, y) is convex for every y ∈ R;
(2) For every compact subset A ⊂ R there exists R = R(A) > 0 such that

(a) supp∂2xψ(·, y) ∩A = ∅ for all y ∈ R \ [−R,R];
(b) supp∂2yψ(x, ·) ⊆ [−R,R] for all x ∈ A.

Proof. Let Ψ : Conv(R,R) → Conv(R,R) be continuous and additive and denote by
ux = GW(Ψx) the associated family of Goodey–Weil distributions. Define the map

Ψ̃(f)[x] = Ψ(f)[x]− f(0) ·Ψ(y 7→ 1)[x]− (f(1)− f(0)) ·Ψ(y 7→ y)[x],

for f ∈ Conv(R,R). Then, for every x ∈ R, the map f 7→ Ψ̃(f)[x] is a contin-
uous, additive and dually epi-translation invariant map (hence, a valuation). By
Theorem 6.1 and Theorem 3.9, there exists a function ζ(x, ·) ∈ Cc(R) such that

Ψ̃(f)[x] =

∫

R

ζ(x, y)f ′′(y)dy, f ∈ Conv(R,R) ∩ C2(R),

and we conclude that the Goodey–Weil distributions ux of Ψ are given by

ux = Ψ(y 7→ 1)[x] · δ0 +Ψ(y 7→ y)[x] · (δ1 − δ0) + ∂2yζ(x, ·), x ∈ R.

Convoluting the right-hand side with the fundamental solution ϕ(y) = y+ of ∂2y , we
have shown (30) with

ψ(x, y) = Ψ(y 7→ 1)[x] · y+ +Ψ(y 7→ y)[x] · ((y − 1)+ − y+) + ζ(x, y), x, y ∈ R.

Note that ψ is clearly continuous in y and that, by Lemma 3.6, the first two sum-
mands are affine in x. Moreover, as ψ(x, y) = (ux ∗ ϕ)(y), we can approximate ϕ
with smooth and convex functions ϕε to obtain

ψ(x, y) = lim
ε→0

(ux ∗ ϕε)(y) = lim
ε→0

Ψ(ϕε(y − ·))[x] = Ψ(ϕ(y − ·))[x],(31)

so ψ(·, y) is in particular convex for every y ∈ R, which implies property (1).
Moreover, the continuity of Ψ implies that ψ(·, y) depends continuously on y ∈ R.
Lemma 2.1(2) and (31) thus imply that ψ ∈ C(R2).

Now let A ⊂ R be a compact subset. Property (2b) then follows from Proposi-
tion 3.3, if we choose R = R(A) appropriately. In order to show property (2a), note
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that the bound suppux ⊆ [−R,R] implies that Ψ(ϕ(y − ·))[x] is affine for y > R
and zero for y < −R, for every x ∈ A. Indeed, if y > R, ϕ(y − ·) is affine on
suppux, and if y < −R, ϕ(y − ·) is zero on suppux. Consequently, using also (31),
the distributions ∂2xψ(·, y), y ∈ R\ [−R,R], coincide on A with the second derivative
of an affine function and therefore vanish. This shows property (2a) and completes
the proof. �

The second part of Theorem E is the content of the following theorem.

Theorem 6.3. Suppose that ψ ∈ C(R2) satisfies

(1) ψ(·, y) is convex for every y ∈ R.
(2) For every compact subset A ⊂ R there exists R = R(A) > 0 such that

(a) supp∂2xψ(·, y) ∩A = ∅ for all y ∈ R \ [−R,R];
(b) supp∂2yψ(x, ·) ⊆ [−R,R] for all x ∈ A.

Then ux = ∂2yψ(x, ·), x ∈ R, defines a family of Goodey–Weil distributions of a
continuous and additive map Ψ : Conv(R,R) → Conv(R,R).

Proof. Let A ⊂ R be a compact and convex subset, x ∈ A and set R := R(A). By
property (2b), the function y 7→ ψ(x, y) is affine on (−∞,−R] and [R,∞), so there
exist c1(x), c2(x), c3(x), c4(x) ∈ R such that

ψ(x, y) =c1(x)y + c2(x)(y + 1) for y ≥ R

ψ(x, y) =c3(x) · (−y) + c4(x)(−y − 1) for y ≤ −R.

Plugging in R,R+ 1 in the first equation and −R,−R− 1 in the second, we obtain

c1(x) =(R+ 1)ψ(x,R + 1)− (R+ 2)ψ(x,R),

c2(x) =(R+ 1)ψ(x,R) −Rψ(x,R + 1),

c3(x) =(R+ 1)ψ(x,−R − 1)− (R + 2)ψ(x,−R),

c4(x) =(R+ 1)ψ(x,−R) −Rψ(x,−R− 1).

Then the map

ψ̃(x, y) = ψ(x, y) − (c1(x)y+ + c2(x)(y + 1)+ + c3(x)(−y)+ + c4(x)(−y − 1)+)

vanishes for y ∈ R\ [−R,R] and x ∈ A. As ψ is continuous, the coefficients ci(x), i ∈
{1, . . . , 4}, depend continuously on x ∈ A. Moreover, we deduce from property (2a)
that ψ(·, y) is affine on A for y ∈ R \ [−R,R]. By continuity, this holds for y =
±R as well, so in particular, ci(x) defines an affine function on A. Together with

property (1), this implies that x 7→ ψ̃(x, y) is convex on A for every y ∈ R.

Applying the “if”-part of Theorem 6.1, ψ̃(x, ·) defines a dually epi-translation
invariant, continuous valuation on Conv(R,R) by

f 7→

∫

R

ψ̃(x, y)dMA(f ; y), f ∈ Conv(R,R).

For x ∈ A we define Ψx : Conv(R,R) → R by

Ψx(f) := (c1(x)− c3(x))f(0) + (c2(x)− c4(x))f(−1) +

∫

R

ψ̃(x, y)dMA(f ; y).
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Then Ψx is continuous and additive. Moreover, it is easy to see that

GW(Ψx)[φ] = ∂2yψ(x, ·) = ux(φ), φ ∈ C∞
c (R),

so Ψx is uniquely determined by the distribution ux and in particular, Ψx is inde-
pendent of the choice of A. For every x ∈ R we thus obtain a unique continuous
and additive map Ψx : Conv(R,R) → R extending the distribution ux. Setting
Ψ(f)[x] := Ψx(f), we obtain a real valued function Ψ(f) for every f ∈ Conv(R,R).

It remains to see that the function Ψ(f) is convex for all f ∈ Conv(R,R). Note
that it is sufficient to show that this function is convex on any compact and convex
subset A ⊂ R. But by the previous discussion, Ψ(f)[x] is given for any x ∈ A by

Ψ(f)[x] = (c1(x)− c3(x))f(0) + (c2(x)− c4(x))f(−1) +

∫

R

ψ̃(x, y)dMA(f ; y),

where c1(x), c2(x), c3(x), c4(x) are affine functions on A and x 7→ ψ̃(x, y) is convex
on A for every y ∈ R. As the Monge–Ampère measure of a convex function is
non-negative, the right-hand side of this equation defines a convex function on A.

The prescription f 7→ Ψ(f) therefore defines an additive map Ψ : Conv(R,R) →
Conv(R,R). As f 7→ Ψ(f)[x] is continuous for every x ∈ R, Ψ is continuous by
Lemma 2.1(1). �

The proof of Theorem E is completed by

Proposition 6.4. Suppose that ψ ∈ C(R2) satisfies the conditions of Theorem 6.3.
Then the map Ψ : Conv(Rn) → Conv(Rn), defined by Theorem 6.3, is monotone if
and only if ψ(x, ·) is convex for every x ∈ R.

Proof. By Theorem 6.3, the Goodey–Weil distributions of Ψ are given by ∂2yψ(x, ·),
and, by Lemma 3.5, Ψ is monotone if and only if its Goodey–Weil distributions are
given by non-negative measures. Hence, Ψ is monotone if and only if ∂2yψ(x, ·) is
non-negative, which is equivalent to ψ(x, ·) being convex, by [32, Thm. 4.1.6]. �

Let us also add the following note concerning the uniqueness of ψ.

Corollary 6.5. Let ψ, ψ̃ ∈ C(Rn) satisfy the properties in Theorem 6.3. Then the

induced endomorphisms of Conv(R,R) coincide if and only if ψ(x, ·) − ψ̃(x, ·) is
affine for all x ∈ R.

Proof. ψ and ψ̃ define the same endomorphism if and only if ∂2yψ(x, ·) = ∂2yψ(x, ·)

as distributions, that is, if ∂2y(ψ(x, ·) − ψ̃(cx, ·)) = 0. This is the case if and only if

ψ(x, ·) − ψ̃(cx, ·) is an affine function. �

We complete the section with a continuation of Example 3.11 in view of Theorem E.

Example 6.6. For the endomorphism Ψϕ from Example 3.11, ϕ ∈ Conv(R,R), the
function ψ from Theorem 6.2 is given up to addition of affine functions by

ψ(t, s) =

{
0, for |s| ≥ ϕ(t),
(s+ϕ(t))2

2 − 2ϕ(t)s+, for |s| < ϕ(t).
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[32] L. Hörmander, The analysis of linear partial differential operators. I, Springer-Verlag, Berlin,

2003.
[33] M. Kiderlen, Blaschke- and Minkowski-endomorphisms of convex bodies, Trans. Amer. Math.

Soc. 358 (2006), no. 12, 5539–5564.
[34] B. Klartag and V. D. Milman, Geometry of log-concave functions and measures, Geom. Dedi-

cata 112 (2005), 169–182.
[35] J. Knoerr, Smooth valuations on convex functions (2020), arXiv:2006.12933v2.
[36] , Unitarily invariant valuations on convex functions, I (2021), arXiv:2112.14658v1.
[37] , The support of dually epi-translation invariant valuations on convex functions, J.

Funct. Anal. 281 (2021), no. 5, 109059.
[38] A. V. Kolesnikov and E. M. Werner, Blaschke-Santaló inequality for many functions
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