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ABSTRACT

Building on previous Bayesian approaches, we introduce a novel formulation of probabilistic cross-

identification, where detections are directly associated to (hypothesized) astronomical objects in a

globally optimal way. We show that this new method scales better for processing multiple catalogs

than enumerating all possible candidates, especially in the limit of crowded fields, which is the most

challenging observational regime for new-generation astronomy experiments such as the Rubin Ob-

servatory Legacy Survey of Space and Time (LSST). Here we study simulated catalogs where the

ground-truth is known and report on the statistical and computational performance of the method.

The paper is accompanied by a public software tool to perform globally optimal catalog matching

based on directional data.

1. MOTIVATION

Several approaches have been proposed over the years

to combine observations across telescopes and epochs.

In the era of time-domain astronomy where dozens or

hundreds of observation epochs are available, these prob-

lems are more important than ever. In particular, com-

bining catalogs has been a central issue where detec-

tions in separate exposures are matched by identify-

ing the ones that correspond to the same celestial ob-

ject. Several tools were developed to provide solution to

the cross-matching problem, such as TOPCAT (Taylor

2005) and CDS XMatch (Pineau et al. 2011; Boch et al.

2012). However, they do not consider the statistical as-
pect of the problem.

This cross-identification problem was successfully ad-

dressed using Bayesian hypothesis testing by Budavári

& Szalay (2008), whose methodology was implemented

in the latest version of the SkyQuery service (Budavári

et al. 2013) which is now part of the SciServer Science

Platform (Taghizadeh-Popp et al. 2020). The Bayesian

formalism and the combinatorial nature of the problem

is discussed in a review by Budavári & Loredo (2015).

The first solution came from Budavári & Basu (2016)

who formulated the matching problem as a search for

globally optimal associations using combinatorial opti-
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mization, where the marginal likelihood of the entire

matched catalog is maximized, and used the Hungarian

algorithm (Munkres 1957) to solve it. After that proof of

concept was developed for two catalogs, Shi et al. (2019)

extended the algorithm to handle multiple catalogs us-

ing Integer Linear Programming, or ILP for short. For

simplicity, we will refer this method as CanILP, as it

enumerates all possible candidate associations and uses

ILP to choose the best valid subset. As we will discuss

later, the method suggested in Shi et al. (2019) does

not scale very well with large number of catalogs. This

scaling problem is also observed in Pineau et al. (2017)

as the authors try to estimate the probability, for all

combinations of sources, that a tuple of sources from

different catalogs correspond to the same object. The

exhaustive search results in an exponential growth in

the number of possible tuples as the number of cata-

logs increases. They also note that this approach is not

feasible in practice for more than 9 catalogs.

In this paper, we improve on the previous studies by

introducing a novel formulation, hereafter referred to as

DirILP, where we use ILP to directly assign detections

to hypothesized objects. Section 2 describes the new

approach, and Section 3 illustrates how the new method

scales better with the number of input catalogs. Sec-

tion 4 discusses a public software tool to solve the cata-

log matching problem. Section 5 concludes the study.

2. OUR APPROACH
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To quantify the associations among independent de-

tections, a relatively recent approach was developed that

uses a hierarchical Bayesian formalism. Suppose there

are C catalogs, indexed by c ∈ {1, . . . , C}, with each cat-

alog capturing Nc sources respectively. Let Dic denote

the measurements for source i in catalog c, hereafter

denoted by tuple (i, c). Associated with any (i, c) mea-

surement is a likelihood function `ic(ω) = p(Dic|ω), for

the unknown true direction ω, which captures the astro-

metric uncertainty. While other object properties could

also be considered in general, such as their brightness or

colors, here we focus on directional matching only.

Here we adopt the definition for matching used in pre-

vious papers (e.g., Budavári & Szalay 2008; Budavári &

Loredo 2015; Budavári & Basu 2016; Shi et al. 2019)

where one tests whether two or more detections cor-

respond to the same physical object. That said, it is

possible to define the “match” hypothesis such that de-

tections are not of the “same” object but instead just

“part of” another, e.g., an optical galaxy in an X-ray

cluster, or a star in a blend of two. In theory such sce-

narios can be accommodated (by changing the marginal

likelihood calculations, see below), but the computation

requirements might increase, and the interpretation of

the matched catalog would be more difficult.1 Our as-

sociation approach described below is flexible and will

yield matches based on the underlying model.

Associations are created by grouping all sources in

all catalogs such that each belongs to only one group.

Mathematically, a partition P is created of the data set

D, the union of all sources in all catalogs, where each

subset corresponds to the same celestial object. The

number of subsets in the partition will constitute the

number of hypothesized objects Nobj, which is an un-

known but bounded quantity that is less or equal to

the number of all sources. Typically it is much less as

the equality would mean that every source is in fact a

separate object altogether. We can index every object

by an integer o ∈ {1, . . . , Nobj}. Let So be the set of

sources (i, c) associated with object o and Co be the list

of catalogs containing sources associated with object o.

Following Budavári & Loredo (2015), the likelihood of a

partition P of all sources, a collection of the So subsets,

will be a product of conditionally independent terms,

L(P ) ≡ p(D|P ) =
∏
o

Mo, (1)

1 Further complications emerge when different blends are to be
matched, in which case one considers whether the detections
“share” components, e.g., a common star in two different blends.

where the marginal likelihood Mo for the association

corresponding to object o is

Mo =

∫
dω ρCo

(ω)
∏

(i,c)∈So

`ic(ω). (2)

Here ρCo
(ω) is the prior probability density function of

the object direction producing sources within (the foot-

print of) every catalog in the set Co. This notation

enables the treatment of catalogs with different sky cov-

erage, whose angular selection function would enter the

prior on the latent direction ω. Technically, the ρCo
(ω)

function is not simply the angular selection function of

the intersection area of the catalogs, because it also in-

corporates the astrometric uncertainty: there is a non-

zero probability of observing a source within a given

footprint even if its true direction is outside the field of

view, but this effect is negligible if the field of view is

large in comparison to its boundary blurred by the astro-

metric uncertainty, which is the case for typical obser-

vations and surveys, but would not apply, for example,

if a catalog were an aggregation of disjoint sky patches

comparable in size to the point-spread function.

Alternatively, one can define the marginal likelihood

for a non-association hypothesis, which assumes that ev-

ery source in So is a separate object on its own

MNA
o =

∏
(i,c)∈So

∫
dω ρc(ω) `ic(ω), (3)

where ρc(ω) is the prior probability density function of

direction for sources in catalog c. This hypothesis serves

as a natural comparison, with which it is useful to in-

troduce the Bayes factor as the ratio of the marginal

likelihoods of these two cases,

Bo =
Mo

MNA
o

. (4)

The Bo takes values larger than 1 when the association

of the sources in So is more likely than the alternative,

Bo < 1 favors separate objects. We note that
∏
MNA

o

is simply a product over all sources in all catalogs in-

dependent of partition P and, hence, is constant. Con-

sequently, the maximization of the likelihood L(P ) is

equivalent to optimizing
∏
Bo.

As customary, we work with a summary of the raw

imaging data Dic for each detection (i, c), the measured

direction xic, which is essentially the intensity-weighted

pixel direction. In order to calculate the Bayes factors

Bo with these measurements, we specify a distribution

for the member likelihood function `ic(ω), i.e., the astro-

metric uncertainty. To describe directional uncertainty
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in the observations, the spherical analog of the Gaussian

is often assumed, the Fisher (1953) distribution,

`ic(ω) := f(xic;ω, κic) =
κic

4π sinhκic
exp (κic ω · xic) ,

(5)

where the xic observed direction and true ω direction

are both 3D unit vectors. The latter is the mode of

the distribution, and κic is a concentration parameter.

When κic � 1, the Fisher distribution approximates a

Gaussian distribution with standard deviation (in radi-

ans) for each coordinate σic with κic = 1/σ2
ic and the

(all-sky) Bayes factor can be calculated analytically as

shown in Budavári & Szalay (2008) as follows,

Bo = 2|So|−1
∏
ic κic∑
ic κic

exp

(
−
∑
ic

∑
i′c′ κicκi′c′ψ

2
ic,i′c′

4
∑
ic κic

)
,

(6)

where (i, c) and (i′, c′) are all sources in subset So and

ψic,i′c′ is the (small) angle between the directions for

sources (i, c) and (i′, c′).

The next section discusses how to find the globally op-

timal associations, i.e., the partition P that maximizes

the L(P ) likelihood function by optimizing
∏
Bo using

integer linear programming.

2.1. CanILP: Optimal Selection of Candidates

First we summarize the previous approach introduced

by Shi et al. (2019) and highlight some of the outstand-

ing challenges. Maximizing
∏
Bo is equivalent to mini-

mizing

−
∑
o

lnBo. (7)

Given a data set D of all (i, c) pairs for all catalog c and

source i in catalog c, we introduce a binary variable xT
taking values in {0, 1} for each nonempty subset T ⊆ D,

with the interpretation that xT = 1 indicates that the

subset T is included in the partition. To ensure the

validity of the partition, we require∑
T3(i,c)

xT = 1 (8)

for every element (i, c) ∈ D. This forces every source

(i, c) to be included in exactly one subset of the par-

tition. However, note that for an orphan o, Bo = 1.

Hence, these coefficients do not contribute to the objec-

tive function and we could simply remove those subsets

T that have |T | = 1. From this, we can modify the above

constraint to ∑
T3(i,c)

xT ≤ 1 (9)

for every element (i, c) ∈ D. In the final solution, if a

source (i, c) does not appear in any subset T, we treat it

as an orphan. For example, in Figure 1, Source (2,1)

is not included in any subset T , so, in the solution, we

will include it as an orphan.

By defining wT = − lnBT for every subset T , the final

integer linear programming function can be written as

follows,

min
∑
T

wTxT

subject to xT ∈ Z and 0 ≤ xT ≤ 1 for all T,

and
∑

T3(i,c)

xT ≤ 1 for all (i, c) ∈ D. (10)

Note that the formulation above can be used to solve the

matching problem given any number of catalogs C but

requires an enumeration of all possible candidate asso-

ciations, which can be numerous. This requires calcula-

tions of combinatorially many wT and the introduction

of the corresponding xT binary variables, which quickly

becomes prohibitively expensive for many catalogs.

Shi et al. (2019) demonstrated their approach on three

catalogs with identical astrometric uncertainty. Here we

extend their work and describe a novel approach, which

can be efficiently used with many catalogs.

2.2. DirILP: Optimal Direct Associations

The key idea is to introduce variables that directly

assign the detections to hypothesized objects instead of

simply switching on and off some previously enumer-

ated candidate associations in the final matched cata-

log. The objective
∏
Bo is the same but expressing it

with the new variables is significantly more complicated

than before. In the process one needs to introduce sev-

eral additional (sets of) auxiliary variables to linearize

the problem. In case of homoscedasticity when all as-

trometric uncertainty are the same for all detections,

the linearization is relatively straightforward, but fur-

ther modeling tricks are required in the general setting.

In the following sections these two cases are introduced

along with the variables needed to model and solve the

global association problem. Further details are provided

in the appendix about the derivation of the general het-

eroscedastic formalism.

2.2.1. Homoscedasticity

For simplicity, we first discuss the special case where

the astrometric uncertainty of each detection is the

same, i.e., σic=σ for each source (i, c). Given a data set

D, let N be the total number of detections in all cat-

alogs considered. The number of astronomical objects

these represent will be at most N , corresponding to the

hypothesis that every detection comes from a different

object. Our goal is to find a mapping that matches each
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Catalog 1

Source (1,1)

Source (2,1)

Catalog 2

Source (1,2)

Catalog 3

Source (1,3)

Source (2,3)

{(1,1),(1,2)} {(2,1),(1,2)} {(1,1),(1,3)}

{(2,1),(1,3)} {(1,1),(2,3)} {(2,1),(2,3)}

{(1,2),(1,3)} {(1,2),(2,3)} {(1,1),(1,2),(1,3)}

{(1,1),(1,2),(2,3)} {(2,1),(1,2),(1,3)} {(2,1),(1,2),(2,3)}

Figure 1. An illustration of CanILP. As can be seen on the left side, we assume there are 2 detections from Catalog 1 (Sources
(1,1) and (2,1)), 1 detection from Catalog 2 (Source (1,2)) and 2 detections from Catalog 3 (Sources (1,3) and (2,3)). In
CanILP, we list all candidates for possible associations across independent detections, which are shown on the right side. These
are the xT in the formulation. We then find the combinations of subsets that maximize the overall likelihood. Here, the solution
given by CanILP indicates that the subsets {(1, 1), (2, 3)} and {(1, 2), (1, 3)} are included in the partition. These subsets, which
are represented by a green color, correspond to the variables x{(1,1),(2,3)} = x{(1,2),(1,3)} = 1 in the model. On the other hand,
all other variables xT = 0. Notice that because Source (2,1) does not appear in any of these subsets, so we treat it as an
orphan. As a result, the association outputted by CanILP is {{(1, 1), (2, 3)}, {(1, 2), (1, 3)}, {(2, 1)}}.

source to one (and only one) object. This association

between a source and an object means that the source

is an observation of that object in the sky. Naturally,

multiple sources are expected to be assigned to the same

object, which represents the hypothesis that all of these

sources are observations of that same object. To capture

the matching between a source (i, c) and an object o, we

introduce binary variables {xoic}, where a given xoic = 1

if the (i, c) detection is associated with object o, and 0

otherwise.

Figure 2 illustrates how this approach works. For ex-

ample, the arrow from Source (2,1) to Object 1 rep-

resenting an association means that x121 = 1. Similarly,

x311 = 0 means no association, hence there is no arrow

between the corresponding entries. A partition P can

now be represented as a set {So : o = 1, . . . , N}, where

So is the subset of sources assigned to o, i.e.,

So := {(i, c) : xoic = 1} . (11)

If, for a given index o, xoic = 0 for all (i, c) sources, then

So = ∅ is empty, which means object o is not needed for

that particular partition.

Recall that the goal is to maximize the product of

Bayes factors
∏
Bo (or to minimize −

∑
lnBo) corre-

sponding to these associations. Given an association

So, assuming κic = κ for all source (i, c), eq. (6) gives

us

Bo = 2|So|−1
∏
ic κ∑
ic κ

exp

(
−
∑
ic

∑
i′c′ κ

2ψ2
ic,i′c′

4
∑
ic κ

)
(12)

= 2|So|−1 κ
|So|

|So|κ
exp

(
−
κ
∑
ic

∑
i′c′ ψ

2
ic,i′c′

4|So|

)
(13)
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Catalog 1

Source (1,1)

Source (2,1)

Catalog 2

Source (1,2)

Catalog 3

Source (1,3)

Source (2,3)

Object 1

Object 2

Object 3

Object 4

Object 5

Figure 2. An illustration of DirILP. As in Figure 1, assume
there are 2 detections from Catalog 1 (Sources (1,1) and
(2,1)), 1 detection from Catalog 2 (Source (1,2)) and 2
detections from Catalog 3 (Sources (1,3) and (2,3)). In
this case, the output of DirILP indicates that Sources (1,1)

and (2,3) belong to the same object, that Sources (1,2)

and (1,3) belong to the same object, and that Source (2,1)

is an orphan. Notice that it is okay for an object to not have
any source associated with it. The solution given by DirILP
is {{(1, 1), (2, 3)}, {(1, 2), (1, 3)}, {(2, 1)}}, which is the same
as the one given by CanILP in Figure 1.

Hence,

− lnBo = ln(2κ) (1− |So|) + ln |So|+
κ
∑
ψ2
ic,i′c′

4|So|
(14)

We want to find the partition P that minimizes

−
∑

lnBo. Notice that as of now, there are still sev-

eral non-linear terms in − lnBo so it is not yet a linear

objective. To make use of ILP method, we will first need

to rewrite this as a linear function. To do that, we in-

troduce the following variables, defined for each index

k ∈ {0, . . . , C}, with C representing the total number of

catalogs:

zok =

1 if
∑
ic

xoic = k

0 otherwise
(15)

This variable captures the number of sources getting

matched to object o, or the cardinality of the subset So.

When zo
′

k′ = 1, there are k′ hypothesized observations of

object o′ in the data. In addition, notice that at most 1

of the zok, k = 0, . . . , C can be 1. We also introduce

yoic,i′c′ =

{
1 if xoic = xoi′c′ = 1

0 otherwise
(16)

This is an indicator variable that checks whether the

sources (i, c) and (i′, c′) belong to the same object o.

In particular, yo
′

ic,i′c′ = 1 indicates the hypothesis that

sources (i, c) and (i′, c′) are observations of object o′. We

also have

to =

{∑
κψ2

ic,i′c′y
o
ic,i′c′

4k if zok = 1 for some k ∈ [C]

0 if zo0 = 1
(17)

where [C] represents the set of numbers {1, 2, · · · , C}.
This variable captures the last term in − lnBo for a

subset So. In particular, when zok = 1 for some k ∈ [C],

i.e. |So| = k by definition of zok, we have

to =

∑
κψ2

ic,i′c′

4|So|
(18)

as desired, where the summation goes over all (i, c) and

(i′, c′) in So. On the other hand, when zo0 = 1, no de-

tection is assigned to object o, so this term should con-

tribute nothing to the objective function. Next, we in-

troduce

po =

{
(1− k) ln(2κ) if zok = 1 for some k ∈ [C]

0 if zo0 = 1
.

(19)

This variable captures the first term in − lnBo for a

subset So. It plays a similar role as to, i.e., when zo0 = 1,

no detection is assigned to object o, so this term should

contribute nothing to the objective function. On the

other hand, if some sources are matched to object o,

po = ln(2κ)(1− |So|) as desired.

Finally, we will linearize the term ln|So| by breaking

the natural log function into finitely many affine lin-

ear pieces. We first introduce constants a1, a2, · · · , aC ,
where a1 = 0 and ap = ln(p)−ln(p−1), for p = 2, · · · , C.

Then for each object o, we define binary variables

wo1 ≥ wo2 ≥ · · · ≥ woC and impose the constraint that

C∑
p=1

wop =
∑
ic

xoic = |So|. (20)

Using the new notation, we can now express ln|So| as a

linear function of wop: ln |So| =
∑C
p=1 apw

o
p. To explain
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why this is the case, it is best to work with an example.

Suppose 3 sources are matched with object o, so |So| = 3

and ln|So| = ln 3. Because
∑C
p=1 w

o
p = |So| = 3 and wop

are 0/1 variables with wo1 ≥ wo2 ≥ · · · ≥ woC , we have

wo1 = wo2 = wo3 = 1 and wo4 = wo5 = · · · = woC = 0.

Then,
∑C
p=1 apw

o
p = a1 + a2 + a3 = (0) + (ln 2− ln 1) +

(ln 3− ln 2) = ln 3, which is exactly ln|So|. Our objective

function now becomes

min
∑
o

(
po +

∑
p

apw
o
p + to

)
, (21)

which is linear in the variables po, wop and to.

As can be seen in the definitions of these variables,

there are certain relationships that still need to be mod-

eled using linear constraints. The full ILP formulation

is given in Appendix A with detailed explanations for

how the constraints model the relationships between the

variables xoic, y
o
ic,i′c′ , z

o
k, p

o, wop, and to.

2.2.2. Heteroscedasticity

We can also remove the assumption that every source

has the same measure of uncertainty κic. From eq. (6),

we have,

− lnBo= (1− |So|) ln 2−
∑
ic

lnκic + ln
∑
ic

κic +

+

∑
ic

∑
i′c′ κicκi′c′ψ

2
ic,i′c′

4
∑
ic κic

, (22)

where all the summations run over all (i, c) and (i′, c′)

in So. We use xoic, z
o
k, and yoic,i′c′ as defined in the special

case of Section 2.2. We also introduce new variables to

convert eq. (22) into a linear function.

We first linearize the term ln
∑
κic using the same

trick as when we linearized ln|So| in Section 2.2. We

introduce constants bmin ≡ b1, b2, b3, · · · , where

bmin = ln

(
min
ic∈D

κic

)
(23)

and

bmax = ln

(
C max

ic∈D
κic

)
. (24)

Now, if we set an error threshold ε, then the

R ≡
⌈
bmax − bmin

ε

⌉
(25)

constants bp are defined as

bp = bmin + (p− 1)× ε for p = 1, . . . , R. (26)

Then for each object o, we define binary variables

χo1 ≥ χo2 ≥ · · · ≥ χoP and impose the constraint

χo1 exp(b1) +

R∑
p=2

χop [exp(bp)− exp(bp−1)] ≥
∑
ic

κicx
o
ic .

(27)

Using the new variables, we have

ln
∑
ic

κic ≈ χo1b1 +

R∑
p=2

χop(bp− bp−1) = χo1 bmin + ε

R∑
p=2

χop

(28)

since bp − bp−1 = ε for all p ≥ 2.

To illustrate how the χop variables work, let us as-

sume that after looking at the data, we determine that

bmin = 29 and bmax = 33. If we let ε = 0.5, then the

value of constants bp are {29, 29.5, · · · , 32.5, 33}. Now

suppose there are 3 sources that are matched to an

object o with associated κic values of 5× 1012, 8× 1012,

and 1013. Then the true value of ln
∑
ic∈So

κic is

ln(2.3×1013), which evaluates to 30.77. With the defined

variables, the solution given by ILP is χo1 = χo2 = · · · =
χo5 = 1 and χo6 = · · · = χo9 = 0 because χo1 exp(b1) +∑P
p=2 χ

o
p(exp(bp)− exp(bp−1)) = exp(29) + exp(29.5)−

exp(29)+exp(30)−exp(29.5)+· · ·+exp(31)−exp(30.5) =

exp(31) > 2.3 × 1013, which satisfies the constraint

χo1 exp(b1) +
∑P
p=2 χ

o
p(exp(bp)− exp(bp−1)) ≥

∑
ic κicx

o
ic.

Notice that setting the variables χo6, · · · , χo9 = 1 will also

satisfy the constraint. However, since we will model our

problem with a minimization objective, the optimal

solution will force χo1b1 +
∑R
p=2 χ

o
p(bp − bp−1) to be as

small as possible. Finally, notice that in this case the

value of χo1b1 +
∑R
p=2 χ

o
p(bp − bp−1), which is used to

approximate ln
∑
ic∈So

κic, is 31, which is close to the

true value of 30.77.

Next, we will linearize the last term in eq. (22) by first

introducing the constant

cmin = min
ic∈D

κic (29)

and

cmax = C max
ic∈D

κic . (30)

Then by rounding these two values to the nearest 100, we

can introduce grid points 0 ≡ c0, c1, c2, · · · , cQ, where c1
is the nearest 100 of cmin, cQ is the nearest 100 of cmax,

and for all i > 2, ci = c1 +100(i−1). We then introduce

uok =

1 if
∑
ic

[κic]
100

xoic = ck

0 otherwise
(31)

where k ranges in {0, 1, . . . , Q} and the operator [·]
100

”

is defined as rounding to the nearest 100. This variable

attempts to approximate
∑
ic∈So

κic, which appears in

the denominator of the last term of eq. (22).

The variables po and to are also very similar to the

definitions in Section 2.2; however, we need to slightly

modify them as follows:

to =

∑
ic

∑
i′c′ κicκi′c′ψ

2
ic,i′c′y

o
ic,i′c′

4ck
, (32)
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if uok = 1 for some k ∈ {1, 2, · · · , Q}, and to = 0 other-

wise.

The reasoning for defining to this way is that if uo0 = 1,∑
(i,c)

[κic]100x
o
ic = c0 = 0. (33)

This happens only when xoic = 0 for all (i, c), i.e. no

sources are matched to object o. Hence, to should not

contribute to the objective function, hence the value of

0. On the other hand, if uok = 1 for some k > 0, by defi-

nition of uk, ck is the best approximation to
∑
ic∈So

κic.

Thus, (32) holds.

In addition, we modify po defined in eq. (19) as follows,

po =

{
(1− k) ln(2) if zok = 1 for some k ∈ [C]

0 if zo0 = 1
.

(34)

This variable serves a similar function as in the ho-

moscedastic case, which is to capture the first term in

eq. (22).

The objective function can now be written as

∑
o

(
po −

∑
ic

xoic lnκic + χo1bmin + ε

P∑
p=2

χop + to

)
,

(35)

which is linear in all the variables involved.

There are certain relationships that still need to be

modeled using linear constraints because ILP formula-

tions only take linear constraints. The full ILP formula-

tion is given in Appendix B, with detailed explanations

for how the constraints model the relationships between

the variables xoic, y
o
ic,i′c′ , z

o
k, χ

o
p, u

o
k, p

o, and to.

3. MOCK OBJECTS AND SIMULATIONS

We consider the idealized case where all the catalogs

capture the same astronomical properties of objects in

the sky, i.e., they detect the same set of objects. As

we generate 100 objects and assume there are C dis-

tinct catalogs, we expect to see 100×C sources and 100

C−way association sets. We will now show the catalog

matching results using both of our approaches. The ILP

programs in both approaches are solved using Gurobi,

an optimization solver Gurobi Optimization (2020).

3.1. Homoscedasticity: identical κic = 1/σ2

Observe that for the CanILP formulation in Section

2.1, we need to list all the possible valid subsets T ⊆ D.
We could do this by sequentially adding catalogs one

by one and considering sources from the new catalog.

However, this evaluates to 101C − 1 subsets, which is

exponential in terms of the number of catalogs C. Hence,

we first try to reduce the number of possible subsets

by observing that sources that are far away cannot be

from the same object. So we can impose some distance

constraints on the sources that are put into the same

candidate association set. In doing so, we should be

careful not to discard potentially true associations later

on because say two sources from the first 2 catalogs that

are far away might not be a 2−way matching; but, if on

the third catalog, there is a source lying in the middle of

the path between these 2 sources, the 3 sources together

might be a 3−way matching.

That being said, this suggests an idea for dividing the

whole region of the sky that is of interest into different

islands where the sources are clustered together so that

instead of solving one big problem, we could break it

into smaller problems and make use of parallel comput-

ing. Essentially, we first apply a single-linkage clustering

algorithm to our dataset, which is done using the DB-

SCAN algorithm with parameters “min samples” = 2

and “eps” = 5×maxic∈D σic. With the chosen parame-

ters, we are essentially performing the friends-of-friends

algorithm. It turns out that for our simulation, most of

these islands consist of only 1 source from each catalog.

Hence, from now on, we will show the result for this

scenario of having 1 source from each catalog. This sit-

uation is not peculiar to our simulation but is, in fact,

observed in real data sets from multiple visits of the

same part of the sky by the same telescope. Analysis for

the multiple sources per catalog will be discussed later.

As can be seen in Figure 3, even though we are able to

handle more than 3 catalogs, the maximum number of

catalogs we could analyze in a day is 20. Though, similar

to Shi et al. (2019), we do not include any pruning pro-

cedures, such as those described in Kunszt et al. (2001);

Gorski et al. (2005); Gray et al. (2007); Lee & Budavári

(2017). These pruning procedures might speed up the

matching, but from our experience the complexity of

the problem is still exponential in terms of the number

of catalogs. The next paragraph discusses how far we

could get using DirILP formulation.

DirILP formulation analysis.—The main drawback from

the previous approach is that the process of creating po-

tential subsets T is exponential in terms of the number

of catalogs. Even if we consider the island, the number

of nonempty subsets in such an island will still be 2C−1,

so creating the variables for the ILP takes a tremendous

amount of time.

DirILP formulation attempts to fix that problem by

reducing the time complexity to create the variables for

the ILP to something that is polynomial in the total

number of sources. However, since this catalog matching

problem is intrinsically difficult, we still have to tackle
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the exponential complexity of the problem somewhere

else: this appears in the time needed to solve the ILP.

We believe that with advances in the field of integer

linear programming, the Gurobi solver will be able to

solve this problem more efficiently. It turns out using

DirILP, we are able to tackle up to 60 catalogs. The

comparison for the total running time between CanILP

and DirILP is shown in Figure 3. In addition, we also

include the set up time and optimization time for each

formulation in Figures 4 and 5.

Figure 3. Total running time comparison between the two
formulations for the special case (Log Scale). Notice that
CanILP chokes when there are 20 catalogs.

Figure 4. Set up time comparison between the two formu-
lations for the special case (Log Scale)

Moreover, by including some heuristic constraints,

such as imposing a time limit between incumbent so-

lutions, on the Gurobi solver, we are able to push the

DirILP further to handle 160 catalogs.

Finally, it is important to note that the associations

given by CanILP and DirILP are the same and they

Figure 5. Optimization time comparison between the two
formulations for the special case (Log Scale)

match the ground truth perfectly. Hence, there is no

difference in the accuracy of the matching between the

two approaches. They only differ in their running time.

3.2. General case: different κic for every detection

For the general case, both approaches still give all cor-

rect associations that match the ground truth. However,

as in the special case, DirILP is still more efficient at

solving the matching problem than CanILP, as shown in

Figure 6. We should point out that even though in this

general setting, the optimal value found in DirILP is just

an approximation of the Bayes factor associated with the

ground-truth matching, the values are still quite close to

each other. More importantly, the associations obtained

from DirILP still match the ground-truth associations.

Figures 6 - 8 show the total running time, time to set up

the ILP, and time for Gurobi to solve the ILP, for both

CanILP and DirILP in this general case.

Figure 6. Total running time comparison between the two
formulations for the general case (Log Scale). Notice that
CanILP chokes when there are 18 catalogs.
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Figure 7. Set up time comparison between the two formu-
lations for the general case (Log Scale)

Figure 8. Optimization time comparison between the two
formulations for the general case (Log Scale)

3.3. Multiple sources per catalog in each island

Recall that in the previous sections, we assume that

in each island there is only one detection from each cat-

alog, which is a reasonable assumption in many real-life

situations. In this section, we would like to discuss sce-

narios when the uncertainty σic is large or the source

density is very high. These scenarios will result in is-

lands where there might be multiple detections from

each catalog in an island. It turns out that in our simu-

lation, CanILP and DirILP still give the correct associ-

ation under this scenario. However, both methods run

much slower than in the previous scenario and are able

to handle only about half as many catalogs with the

same settings on the algorithms. We give an example

of the running time for the 2 methods when there are

2 detections from each catalog. One can see how much

worse it can get when the number of detections from

each catalog becomes larger. Figure 9 shows the total

running time for both CanILP and DirILP when there

are 2 detections from each catalog in an island.

Figure 9. Total Running time comparison between the two
formulations when there are 2 detections from each catalog
in an island (Log Scale)

3.4. Discussion of running time complexity

We now give a brief explanation for the shape of the

curves in Figures 3–8. For CanILP, since the number

of variables is exponential in terms of the number of

catalogs, under the log scale as in Figures 4 and 7, the

time to create these variables and set up the ILP as a

function of the number of catalogs is represented by a

straight line. On the other hand, for DirILP, we have a

curve with decreasing gradient instead of a straight line

because the number of variables and constraints in this

method is polynomial in the number of catalogs. The

explanation for the curves in Figures 5 and 8 are similar

because the amount of time to solve an ILP generally

depends on the number of variables and constraints in

the problem. That being said, the curves in these two

figures look more jagged because of other complexities

involved in the optimization procedure. Finally, as most

of the time to solve the catalog matching problem is

spent on setting up the ILP, the curves in Figures 3 and

6 are very much similar to their counterparts in Figures

4 and 7, respectively.

4. IMPLEMENTATION AND SOFTWARE

CanILP and DirILP algorithms are implemented in

several Jupyter notebooks. They share a common struc-

ture: In the first part, we create a simulation with differ-

ent catalogs and a number of mock objects on each of the

catalogs. Next, we perform the DBSCAN algorithm to

output different islands, or clusters of detections. Again,

as mentioned in 3.1, with our chosen parameters, this is
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similar to executing a friends-of-friends algorithm. The

reason we pick DBSCAN is because of its well-developed

library in Python.

After running the clustering algorithm, we implement

CanILP and DirILP to solve the catalog matching prob-

lem in each island. The optimization problems in these

modules were solved using Gurobi software Gurobi Op-

timization (2020).

In addition, we employ several (optional) heuristics in

the DirILP algorithm to speed up the catalog match-

ing procedure. First, any 2 sources that are more

than 8σ away from each other, we force them to be-

long to separate objects. Second, for sources that are

0.1σ away from each other, we restrict them to be-

long to the same object. Finally, we set an MIP Gap

(optimality gap) of 0.5% to prevent Gurobi from tak-

ing too long to verify optimality. Through our experi-

ments, we have found that running the algorithm with

these heuristics give the same results but it was 10

times faster. The notebooks can be found on Github

at https://github.com/tunguyen52/Nway-matching.

5. SUMMARY AND FUTURE WORK

We have shown how the CanILP approach of Shi et al.

(2019) and the new DirILP solve for a globally opti-

mal matched catalog in crowded fields where a greedy

approach is not sufficient. The former enumerates the

candidate associations and picks the optimal combina-

tion of those; the latter introduces variables to directly

assign sources to objects. The new DirILP formulation

is superior in the sense that it scales to large number

of catalogs better, i.e., produces results in less time.

The method comes at a price, which is in complexity

of the algorithm, especially in case of heteroscedasticity

when the catalogs have different astrometric uncertainty.

In fact DirILP only out-performs the previous method

when many catalogs are to be crossmatched. We rec-

ommend the simpler CanILP approach for small num-

ber of catalogs, where the combinatorial explosion is not

as severe. In our experiments, this crossover threshold

appears to be at around 12 visits or catalogs, beyond

which the DirILP method gets faster.

Both of these methods optimize the same objective

and yield the best possible catalog matching result in a

likelihood sense. No prior on the partition is imposed

currently in our study and the accompanying software.

While placing priors on the partition might seem com-

plicated, certain simple priors can be easily expressed,

such as those that depend only the number of objects

in the matched catalog. This is a possible direction to

explore in the future.

Additional future work includes testing the software

and its performance on imaging surveys, such as multi-

ple visits of the Hyper Suprime-Cam Subaru Strategic

Program, whose data collection resembles future obser-

vations of the LSST.
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APPENDIX

A. DIRILP FORMULATION - SPECIAL CASE

The ILP Formulation for DirILP when κic = 1
σ2 for every source (i, c) is given below.

The objective function we want to minimize is given by

min
∑
o

(
po +

∑
p

apw
o
p + to

)
(A1)

The following constraints restrict xoic, y
o
ic,i′c′ , z

o
k, w

o
p to binary variables and to to have non-negative values.

xoic, y
o
ic,i′c′ , z

o
k, w

o
p ∈ Z and 0 ≤ xoic, yoic,i′c′ , zok, wop ≤ 1, 0 ≤ to, ∀(i, c), k, p, o. (A2)

The next equation ensures that all sources (i, c) need to belong to exactly one subset:∑
o

xoic = 1, ∀(i, c) (A3)

https://github.com/tunguyen52/Nway-matching
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The following equation imposes that every subset takes no more than 1 source from each catalog.∑
i

xoic ≤ 1, ∀o ∈ {1, 2, ..., N}, ∀c ∈ {1, . . . , C} (A4)

The following set of constraints on yoic,i′c′ is an implementation of the definition of yoic,i′c′ in Section 2.2, which

requires yoic,i′c′ = 1 only if xoic = xoi′c′ = 1:

yoic,i′c′ ≥ xoic + xoi′c′ − 1, (A5)

yoic,i′c′ ≤ xoic, (A6)

yoic,i′c′ ≤ xoi′c′ , (A7)

for all (i, c) 6= (i′, c′) and ∀o.
Since the cardinality of any subset from a partition P is between 0 and C, the following equation states that only 1

of zok can take a value of 1.
C∑
k=0

zok = 1,∀o, (A8)

The next constraint is the definition of wop as described in Section 2.2.

wo1 ≥ wo2 ≥ · · · ≥ woC and

C∑
p=1

wop =
∑
ic

xoic, ∀o, (A9)

With the specific choice of the constant M as defined below, the equation that follows becomes redundant when

zok = 0 since the RHS will be negative and so to ≥ 0 becomes the enforcing constraint, and when zok = 1, the

minimization forces to to be equal to the first term of the RHS.

to ≥
∑
κψ2

ic,i′c′y
o
ic,i′c′

4k
− (1− zok)M, ∀o and k ∈ {1, 2, · · · , C}, (A10)

where M =

⌈ ∑
ic,i′c′∈D

κψ2
ic,i′c′

4

⌉
.

The following set of equations constitutes the definition of zok.∑
ic

xoic ≤ kzok + C(1− zok) (A11)∑
ic

xoic ≥ kzok, (A12)

for all k ∈ {0, 1, 2, · · · , C} and for all o.

Finally, the last equation

po ≥ ln(2κ)(1−
∑
p

wop)− ln(2κ)zo0 , ∀o, (A13)

ensures that for an empty subset So, p
o = 0, hence contributing nothing to the objective. This is because when zo0 = 1

(nothing is assigned to subset So), w
o
p = 0,∀p. As we are minimizing the objective function with respect to po, po will

be set to 0. On the other hand, when zo0 = 0, the constraint becomes po ≥ ln(2κ)(1−
∑
p w

o
p) and again, since we are

minimizing, po will equal this value.

B. DIRILP FORMULATION - GENERAL CASE

Below, we give the ILP Formulation for DirILP when κic is different for distinct sources (i, c). Some of these

constraints are similar to the special case so we will only give explanations for the new constraints, which are shown

after the ILP formulation. We follow the notation introduced in Section 2.2.2. In particular, recall the constants

c0, c1, . . . , cQ designed to model, up to the nearest 100, the sum of subsets of uncertainties κic, the associated decision

variables uok and the decision variables χoP to model the logarithms of such sums.
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The objective in the general case is

min
∑
o

(
po −

∑
ic

xoic lnκic + χo1bmin + ε

R∑
p=2

χop + to
)

(B14)

As in the special case, the following constraints on the variables restrict xoic, y
o
ic,i′c′ , z

o
k to binary variables and to to

have non-negative values. Additionally, the new variables χop, u
o
k are also restricted to binary values.

xoic, y
o
ic,i′c′ , z

o
k, χ

o
p, u

o
k ∈ Z and 0 ≤ xoic, yoic,i′c′ , zok, χop, uok ≤ 1, 0 ≤ to.

Next, constraints (A3)–(A8) and (A11)–(A12) are included verbatim.

The following impose the conditions required on χop as described in Section 2.2.2.

χo1 ≥ χo2 ≥ · · · ≥ χoR and χo1 exp(b1) +

R∑
p=2

χop(exp(bp)− exp(bp−1)) ≥
∑
ic

κicx
o
ic, ∀o. (B15)

The next set of constraints ensure that the value of
∑
ic∈So

κic will be approximately equal to ck (up to the nearest

100) for some k ∈ {0, 1, 2, · · ·Q}.

Q∑
k=0

uok = 1, ∀o, (B16)

∑
ic[κic]100x

o
ic ≤ ckuok +M ′(1− uok)∑

ic[κic]100x
o
ic ≥ ckuok

, ∀k ∈ {0, 1, 2, · · · , Q} and ∀o. (B17)

where M ′ = C maxic∈D κic.

Finally, the last set of constraints tie everything back into the objective function (B14).

to ≥
∑
ic

∑
i′c′ κicκi′c′ψ

2
ic,i′c′y

o
ic,i′c′

4ck
− (1− uok)M, ∀o and k ∈ {1, 2, · · · , Q}, (B18)

po ≥ (1−
∑
ic∈So

xoic) ln 2− zo0 ln 2, ∀o. (B19)

where M =

⌈
maxic∈D κ2

ic

∑
ic,i′c′∈D

ψ2
ic,i′c′

4minic∈D κic

⌉
.
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