
ar
X

iv
:2

20
7.

11
30

5v
1 

 [
m

at
h.

M
G

] 
 2

2 
Ju

l 2
02

2

VERTICAL VERSUS HORIZONTAL INEQUALITIES ON SIMPLY CONNECTED NILPOTENT LIE

GROUPS AND GROUPS OF POLYNOMIAL GROWTH

SEUNG-YEON RYOO

ABSTRACT. We establish “vertical versus horizontal inequalities” for functions from nonabelian simply con-

nected nilpotent Lie groups and not virtually abelian finitely generated groups of polynomial growth into

uniformly convex Banach spaces using the vector-valued Littlewood–Paley–Stein theory approach of Laf-

forgue and Naor (2012). This is a quantitative nonembeddability statement that shows that any Lipschitz

mapping from the aforementioned groups into a uniformly convex space must quantitatively collapse along

certain subgroups. As a consequence, a ball of radius r ≥ 2 in the aforementioned groups must incur bilips-

chitz distortion at least a constant multiple of (logr )1/q into a q(≥ 2)-uniformly convex Banach space. This

bound is sharp for the Lp (1 < p <∞) spaces.

In the special case of mappings of Carnot groups into the Lp (1 < p < ∞) spaces, we prove that the

quantitative collapse occurs on a larger subgroup that is the commutator subgroup; this is in line with the

qualitative Pansu–Semmes nonembeddability argument given by Cheeger and Kleiner (2006) and Lee and

Naor (2006). We prove this by establishing a version of the classical Dorronsoro theorem on Carnot groups.

Previously, in the setting of Heisenberg groups, Fässler and Orponen (2019) established a one-sided Dor-

ronsoro theorem with a restriction 0 < α < 2 on the range of exponents α of the Laplacian; this restriction

does not appear in the commutative setting and is caused by their use of horizontal polynomials as ap-

proximants. We identify the correct class of approximant polynomials and prove the two-sided Dorronsoro

theorem with the full range 0 < α <∞ of exponents in the general setting of Carnot groups, thus strength-

ening and extending the work of Fässler and Orponen.
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1. INTRODUCTION

It is well known that nonabelian simply connected nilpotent Lie groups and not virtually abelian

finitely generated groups of polynomial growth fail to embed bilipschitzly (or quasi-isometrically) into

uniformly convex Banach spaces (or, more generally, Banach spaces with the Radon–Nikodým prop-

erty). This is because nonabelian Carnot groups do not bilipschitzly embed into Banach spaces with the

Radon–Nikodým property [CK06, LN06], and nonabelian simply connected nilpotent Lie groups have

nonabelian Carnot groups as asymptotic cone and hence do not quasi-isometrically embed into Banach

spaces with the Radon-Nikodým property (see [HS20] for example), while not virtually abelian finitely

generated groups of polynomial growth are quasi-isometric to nonabelian simply connected nilpotent

Lie groups [Gro81, Mal49] and hence fail to embed quasi-isometrically into Banach spaces with the

Radon–Nikodým property. The aim of this paper is to provide quantitative counterparts to these quali-

tative nonembeddability statements.

Let G be a nonabelian simply connected nilpotent Lie group, endowed with a left-invariant Riemann-

ian metric. We write

Br (x) := {y ∈G : dG (x, y)< r }, Br :=Br (eG ), x ∈G , r > 0,

where eG is the identity element of G . Note that Br (x) = xBr , by left-invariance.

Let Γ be a finitely generated group of polynomial growth. This means that Γ has a finite generating

set S, and that if we denote by dW (·, ·) the left-invariant word metric on Γ induced by S and BΓ

n = {x ∈
Γ : dW (x,eΓ) ≤ n} the corresponding closed ball of radius n ∈ N, where eΓ is the identity element of Γ,

then the cardinality |BΓ

n | grows at most polynomially in n. We assume in addition that Γ is not virtually

abelian, i.e., that it has no finite index subgroup isomorphic to Z
n ; by [DCTV07, Corollary 1.5] Γ has no

finite index subgroups that have abelian groups as quotients by finite normal subgroups.

Let the Banach space (X ,‖ · ‖X ) be a uniformly convex Banach space, that is, for every ε ∈ (0,1) there

exists δ ∈ (0,1) such that every x, y ∈ X with ‖x‖X = ‖y‖X = 1 and ‖x − y‖X ≥ ε satisfy ‖x + y‖X ≤ 2(1−δ).

By [BCL94, Fig76, Pis75], there is an equivalent norm on X such that if we renorm X using this norm,

there is some exponent q ∈ [2,∞) for which the Banach space (X ,‖ · ‖X ) is q-uniformly convex, which

means that the q-uniform convexity constant of X defined by

Kq (X ) := inf






K > 0 : ∀x, y ∈ X

(

‖x‖q
X +

1

K q
‖y‖q

X

)1/q

≤
(

‖x + y‖q
X +‖x − y‖q

X

2

)1/q






is finite. We will assume this renorming has happened, because it does not affect our theorems, so that X
is q-uniformly convex for some q ≥ 2. By [Han56] and [BCL94], the Lp spaces for 1 < p <∞ are max{p,2}-

uniformly convex with

K2(Lp ) ≤
1

√
p −1

, 1 < p ≤ 2, Kp (Lp )≤ 1, p ≥ 2.

A separable metric space (M ,dM ) is said to embed (D-)bilipschitzly into a normed space (X ,‖ · ‖X ) if

there is a finite D ∈ [1,∞) and a mapping f : M → X such that dM (x, y) ≤ ‖ f (x)− f (y)‖ ≤ DdM (x, y) for

all x, y ∈ M . The bilipschitz distortion cX (M ,dM ) is defined to be the infimum over those D for which

such a mapping exists. We write1 cLp (σ)(M ,dM ) = cLp ([0,1])(M ,dM ) =: cp (M ,dM ) and call c2(M ,dM ) the

Euclidean distortion of (M ,dM ). The space (M ,dM ) is said to quasi-isometrically embed into (X ,‖ ·‖X ) if

1This equality is due to the fact that any separable subspace of an Lp (σ) space is isometric to a subspace of Lp ([0,1]), see

[Ost13, Fact 1.20].
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there is a mapping f : M → X , D ∈ [1,∞) and C > 0 such that dM (x, y)−C ≤ ‖ f (x)− f (y)‖≤ DdM (x, y)+C
for all x, y ∈ M .

Now we have defined all the concepts used in the first sentence of the introduction (except for the

Radon–Nikodým property, which will not appear in other parts of this paper), which, in other words, can

be written as

cX (G) = cX (Γ) =∞,

for G , Γ, and X given as above. In this paper, we quantify this fact by providing the following growth rates

of the bilipschitz constant of balls in such groups.

Theorem 1. Let G be a nonabelian simply connected nilpotent Lie group, and let X be a q-uniformly
convex Banach space, q ≥ 2. Then2

cX (Br )&G
(log r )1/q

Kq (X )
, r ≥ 2.

Theorem 2. Let Γ be a not virtually abelian finitely generated group of polynomial growth, and let X be a
q-uniformly convex Banach space, q ≥ 2. Then

cX (BΓ

n )&Γ

(log n)1/q

Kq (X )
, n ≥ 2.

As a special case, we obtain sharp bounds on the Lp -distortions, the upper bounds following from the

Assouad embedding theorem.

Corollary 3. Let G be a nonabelian simply connected nilpotent Lie group. Then,

cp (Br ) ≍G ,p (log r )1/max{p,2}, 1 < p <∞, r ≥ 2.

Corollary 4. Let Γ be a not virtually abelian finitely generated group of polynomial growth. Then

cp (BΓ

n )≍Γ,p (log n)1/max{p,2}, 1 < p <∞, n ≥ 2.

We remark that Theorem 2 and Corollary 4 were proven for the discrete Heisenberg groups by Laf-

forgue and Naor [LN14], where the discrete Heisenberg groups H
2k+1
Z

, k ∈Z>0 are defined as the groups

with word relations as follows:

H
2k+1
Z

=
〈

a1, · · · , ak ,b1, · · · ,bk ,c |∀i (c = [ai ,bi ])

∧∀i , j
(

i 6= j → [ai , a j ] = [bi ,b j ] = [ai ,b j ] = [ai ,c]= [bi ,c] = e
H

2k+1
Z

)〉

.

A previously weaker result was given by Li [Li14, Theorem 1.4], who proved that if Γ is a finitely gen-

erated nonabelian torsion-free nilpotent group, and X is a uniformly convex Banach space, then there

exists c > 0 depending on Γ and X such that

cX (BΓ

n)&G ,X (log n)c , n ≥ 2.

A stronger bound was given for cocompact lattices Γ of Carnot groups by Gartland [Gar20, Corollary 1.6]:

if G is a Carnot group of step s (to be defined below) and Γ is a cocompact lattice of G , then

c
Rd (BΓ

n)&Γ,d
(log n)

1
2
− 1

2s

(log log n)
1
2
+ 1

2s

, n ≥ 3,

2We will use the following (standard) asymptotic notation. For P,Q > 0, the notations P .Q, Q & P , P =O(Q), and Q =Ω(P)

mean that P ≤ KQ for a universal constant K ∈ (0,∞), and the notation P ≍ Q means P . Q and Q . P . If we need to allow

for dependence on parameters, we indicate this by subscripts. For example, in the presence of auxiliary parameters ψ,ξ, the

notations P .ψ,ξ Q, Q &ψ,ξ P , P =Oψ,ξ(Q), Q =Ωψ,ξ(P) mean that P ≤ K (ψ,ξ)Q where K (ψ,ξ) ∈ (0,∞) may depend only on ψ

and ξ, and P ≍ψ,ξ Q means that P .ψ,ξ Q and Q .ψ,ξ P .
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under the additional restriction that G contains a copy of the model filiform group J s−1(R) of step s
(this requirement is automatically fulfilled if s ≤ 3), which is the Carnot group whose Lie algebra js−1 is

spanned by elements x, y0, · · · , ys−1 with the only nontrivial bracket relations being

[x, yi ] = yi+1, i = 0, · · · , s −2.

For example, J 0(R) =R
2, J 1(R) =: H3 is called the real Heisenberg group of dimension 3, and J 2(R) is called

the Engel group. Compared to this result, Corollary 4 removes the exponent gap of 1
2s and gets rid of the

lower order factor.

We obtain Theorems 1 and 2 by proving the following “vertical-versus-horizontal inequalities” on the

groups G and Γ.

We first state the inequality on nilpotent groups. In the following theorem, given left-invariant vector

fields X1, · · · , Xk that form a basis of the Lie algebra g of G at eG , we write the horizontal gradient of a

function f : G → X as

∇ f := (X1 f , · · · , Xk f ),

if each Xi f exists. Also, given v ∈G and t ∈R, we write v t := exp(t w ), where w ∈ g is such that v = exp(w ),

and exp : g→G is the Lie group exponential map. Letµ denote the bi-invariant Haar measure of G , which

is the push-forward of the Lebesgue measure on g by the exponential map.

Theorem 5. Let G be a nonabelian simply connected nilpotent Lie group. Let v ∈ Z (G) and ρ ∈ N with
ρ ≥ 2 and dG (v t ,eG ) ≤ t 1/ρ, t > 0. Suppose that p ∈ (1,∞) and q ∈ [2,∞). Let (X ,‖ · ‖X ) be a Banach space
with Kq (X ) <∞, and let f : G → X be smooth and compactly supported. Then

(
ˆ ∞

0

(ˆ

G

(‖ f (hv t )− f (h)‖X

t 1/ρ

)p

dµ(h)

)max{p,q}/p
d t

t

)1/max{p,q}

.max
{

(p −1)1/q−1,Kq (X )
}
(ˆ

G

∥
∥∇ f (h)

∥
∥p

ℓk
2 (X )

dµ(h)

)1/p

.

(1)

In particular, when p = q,

(ˆ ∞

1

ˆ

G

(‖ f (hv t )− f (h)‖X

t 1/ρ

)q

dµ(h)
d t

t

)1/q

. Kq (X )

(ˆ

G

∥
∥∇ f (h)

∥
∥q

ℓk
2 (X )

dµ(h)

)1/q

. (2)

Note that the v described in this theorem exists, for example, if we choose v ∈ [[G ,G], · · · ,G]
︸ ︷︷ ︸

s times

\{eG }

where s is the nilpotency step of G , i.e., it is the largest integer s such that [[g,g], · · · ,g]
︸ ︷︷ ︸

s times

6= 0, then we may

normalize v so that dG (v t ,eG ) ≤ t 1/s for t > 0. We remark that exp




[[g,g], · · · ,g]
︸ ︷︷ ︸

j times




 = [[G ,G], · · · ,G]

︸ ︷︷ ︸

j times

for

j = 1, · · · , s, where [g,g] denotes the Lie algebra bracket and [G ,G] denotes the commutator subgroup.

We next state the inequality on groups of polynomial growth.

Theorem 6. Let Γ be a not virtually abelian finitely generated group of polynomial growth. There exist
vΓ ∈ Γ, s ∈N with s ≥ 2, and c = c(G) ∈N such that the following is true. First, dW (v n

Γ
,eΓ) ≍Γ n1/s for n ∈N.

Second, let p ∈ (1,∞) and q ∈ [2,∞). Suppose that (X ,‖·‖X ) is a Banach space satisfying Kq (X ) <∞. Then
4



for every n ∈N and every f : Γ→ X we have
(

ns
∑

k=1

1

k1+max{p,q}/s

(

∑

x∈BΓ
n

‖ f (xv k
Γ

)− f (x)‖p
X

)max{p,q}/p )1/max{p,q}

.Γ,vΓ
max

{

(p −1)1/q−1,Kq (X )
}

(

∑

x∈BΓ
cn

∑

a∈S
‖ f (xa)− f (x)‖p

X

)1/p

.

(3)

In particular, when p = q,
(

ns
∑

k=1

∑

x∈BΓ
n

‖ f (xv k
Γ

)− f (x)‖q
X

k1+q/s

)1/q

.Γ,vΓ
Kq (X )

(

∑

x∈BΓ
cn

∑

a∈S
‖ f (xa)− f (x)‖q

X

)1/q

. (4)

Our choice of s and vΓ is as follows. By [Gro81], Γ admits a subgroup Γ
′ of finite index that is nilpotent.

Let T be the torsion subgroup of Γ′ and consider the quotient subgroup Γ
′′ = Γ

′/T . We may take any

v ′′ ∈ Z (Γ′′) \ {eΓ′′} with the property that dW ((v ′′)n ,eΓ′′) ≍Γ′′ n1/s , n ≥ 2, for some integer s ≥ 2, and take

vΓ to be any representative of v ′′. For example, we may take s to be the nilpotency step of Γ′′ and v ′′ ∈
[[Γ′′,Γ′′], · · · ,Γ′′]
︸ ︷︷ ︸

s times

\{eΓ′′}. (See Section 4 for details.)

One can see that changing to another finite symmetric generating set S of Γ or changing the verti-

cal element vΓ affects only c ∈ N and the constant in the inequalities (3) and (4) up to constant factors

depending on S and vΓ.

Theorems 5 and 6 are extensions from the real Heisenberg groups H2k+1 to general simply connected

nilpotent Lie groups and from the discrete Heisenberg groups H2k+1
Z

to general finitely generated groups

of polynomial growth, respectively, of the “vertical versus horizontal inequalities” established by Austin,

Naor, and Tessera [ANT13] and Lafforgue and Naor [LN14]. See also Naor and Young [NY18, NY20] for

the endpoint case p = 1 for the Heisenberg groups. Here, the real Heisenberg groups H2k+1, k ∈Z>0, are

defined to be the simply connected nilpotent Lie groups whose Lie algebras h2k+1 are spanned by the

2k +1 elements x1, · · · , xk , y1, · · · , yk , and z, the only nontrivial bracket relations among which are

[xi , yi ] = z, i = 1, · · · ,k .

The discrete Heisenberg groups H2k+1
Z

, k ≥ 1, embed naturally in the real Heisenberg groups H2k+1.

The inequality (1) is proven following the argument of Lafforgue and Naor [LN14] by comparing the

left-hand side of (1) against convolutions of ∇ f with derivatives of the heat kernel on the real line R,

and then upper bounding this quantity using the vector-valued Littlewood–Paley–Stein theory of [HN19,

MTX06, Xu20]. The inequality (3) follows from inequality (1) by a discretization argument.

The utility of Theorems 5 and 6 is that they prove quantitatively that nonabelian simply connected

nilpotent Lie groups and not virtually abelian finitely generated groups of polynomial growth, respec-

tively, do not bilipschitzly embed into uniformly convex spaces. More precisely, they give Theorems 1

and 2 as Corollaries; see Section 3 for proofs.

We will prove Theorem 5 in Section 2. Actually, Theorem 5 will be a special case of the more general

Theorem 32 and Corollary 33, and the resulting Theorem 1 will be a special case of the more general

Theorem 34 and Corollary 35.

It would appear that we may also derive similar constraints for other coarse embeddings (see [Ost13,

Definition 1.36] for the definition). For example, we have the following theorem, where for a metric space

(M ,dM ) and 0 <α< 1, (M ,dα
M ) is a metric space called the α-snowflake of (M ,dM ).

Theorem 7. Let Γ be a not virtually abelian finitely generated group of polynomial growth, and let X be a
q-uniformly convex Banach space. Then

cX (Γ,d 1−ε
W )&Γ

1

Kq (X )ε1/q
.

5



In particular,
cp (Γ,d 1−ε

W ) ≍p,Γ ε
−1/max{p,2}.

Indeed, by (4), any D-bilipschitz embedding (Γ,d 1−ε
W ) → X must satisfy for all n

|BΓ

n |
1/q

(
ns
∑

k=1

1

k1+εq/s

)1/q

.Γ Kq (X )D|S|1/q |BΓ

cn|
1/q

which gives the stated lower bound. The second assertion of Theorem 10, namely the estimate for

cp (Nr1 ,r2
), follows from an optimized version [LMN05, Theorem 5.1] of the Assouad embedding theo-

rem [Ass83]:

cp (Γ,d 1−ε
W ).G ,p 1/ε1/max{p,2}, 0 < ε< 1.

Using Theorem 6, we may also characterize the compression rate of not virtually abelian finitely gen-

erated groups of polynomial growth into Lp spaces. Here, the compression rate of a Lipschitz function

f : (M ,dM ) → (X ,‖ · ‖X ) from a metric space (M ,dM ) into a Banach space (X ,‖ · ‖X ) is the largest nonde-

creasing function ω f : (0,∞) → [0,∞) such that for all x, y ∈ M we have ‖ f (x)− f (y)‖X ≥ω f (dM (x, y)).

Corollary 8. Let Γ be a not virtually abelian finitely generated group of polynomial growth.

(1) For n ∈ N, n ≥ 2, a nondecreasing function θ : (0,∞) → [0,∞) satisfies θ(t ) . ω f (t ) for some 1-
Lipschitz function f : BΓ

n → Lp , p > 1, if and only if
ˆ 2n

1

(
θ(t )

t

)max{p,2} d t

t
.Γ 1.

(2) A nondecreasing function θ : (0,∞) → [0,∞) satisfies θ(t ) . ω f (t ) for some 1-Lipschitz function
f : Γ→ Lp , p > 1, if and only if

ˆ ∞

1

(
θ(t )

t

)max{p,2} d t

t
.Γ 1.

The if direction is due to [Tes11, Theorem 1]. The only if direction is given by Theorem 6, from which

it follows that

s

ˆ 2n

1

(
θ(t )

t

)max{p,2} d t

t
=
ˆ (2n)s

1

θ(τ1/s )max{p}

τ1+max{p}/s
dτ.

(2n)s
∑

k=1

θ(k1/s)max{p}

k1+max{p,2}/s
.Γ 1.

Under a slightly more abstract setting, one can obtain the following statement about the compression

function.

Theorem 9. Let Γ be an amenable group with finite generating set S, with v ∈ Z (Γ) and ρ > 1 such that
dW (v k ,eΓ) ≍Γ k1/ρ, k ∈N. Let (X ,‖ · ‖X ) be a q-uniformly convex space, and let f : Γ→ X be a 1-Lipschitz
function. Then for every t ≥ 3 there exists an integer t ≤ n ≤ t 2 such that

ω f (n)

n
.Γ Kq (X )

(
log logn

log n

)1/q

.

(Here we consider ρ to be dependent on Γ, so that .Γ includes dependence on ρ.)

We prove Theorem 9 in Section 5 following the argument of [ANT13]. Theorem 9 is somewhat weaker

than our distortion result of Theorem 2 and the vertical versus horizontal inequality of Theorem 6 under

the setting of groups of polynomial growth, because the distortion bound one can obtain from Theorem

9 is of the weaker form cX (Bn) &Γ
1

Kq (X )

(
logn

loglogn

)1/q
(this deduction follows the argument of [ANT13,

Section 6], and requires the assumption that Γ be of polynomial growth).

On a different note, we can investigate the distortion of nets in nonabelian simply connected nilpotent

Lie groups. In the following, with r1,r2 > 0, an r1-covering of a metric space (M ,dM ) is a subset N ⊂ M
such that for any x ∈ M there exists nx ∈ N such that dM (x,nx ) < r1, an r2-packing of (M ,dM ) is a subset

6



N ⊂ M such that for all distinct n1,n2 ∈ N we have dM (n1,n2) ≥ r2, and an (r1,r2)-net of (M ,dM ) is a

subset which is both an r1-covering and an r2-packing.

Theorem 10. Let r1,r2 > 1 with r1 ≥ 2r2. Let G be a nonabelian simply connected nilpotent Lie group, and
let Nr1,r2

be an r2-covering of Br1
. Let X be a q-uniformly convex space, q ≥ 2. Then

cX (Nr1,r2
)&

(

C1s1/q

p
kK 2/q log K

)

(log(r1/r2))1/q

Kq (X )
,

where K is the largest of the doubling constant of G and the doubling constant of the measure µ, i.e., it is
the smallest constant such that µ(B2r ) ≤Kµ(Br ) for all r ≥ 0, and that for all r > 0 there exist y1, · · · , yK ∈G
such that B2r ⊂∪K

i=1
Br (yi ), and C1 > 0 denotes a constant such that C1t 1/s ≤ d (v t ,eG ) ≤ t 1/s for t ≥ 1.

In particular, if Nr1,r2
is an (r2,Ω(r2))-net of Br1

, then

cp (Nr1,r2
) ≍G ,p (log(r1/r2))1/max{p,2}, 1 < p <∞.

We remark that the second assertion of Theorem 10, namely the estimate for cp (Nr1,r2
), follows from

an optimized version [LMN05, Theorem 5.1] of the Assouad embedding theorem [Ass83]:

cp (G ,d 1−ε
G ).G ,p 1/ε1/max{p,2}, 0< ε< 1.

When Nr1,r2
is an Ω(r2)-packing of Br1

, (Nr1,r2
,d 1−1/2 log(r1/r2)

G ) is O(1)-bilipschitz equivalent to (Nr1,r2
,dG ),

so we have the second assertion of Theorem 10.

Thus, the bound of Theorem 10 is sharp for X = Lp , and therefore is the best result we can attain

in terms of q-uniformly convex spaces. These distortion bounds generalizes those established for the

Heisenberg group in [LN14]. The same conclusion holds with Lp replaced by the Schatten class Sp ,

whose modulus of uniform convexity was computed in [TJ74].

We may also derive the following variant of Theorem 10 for snowflakes.

Theorem 11. Let N ′
c1,c2

be a (c1,c2)-net of a nonabelian simply connected nilpotent Lie group G, where
c1,c2 ≥ 1 with c1 ≥ c2/2. Let X be a q-uniformly convex space. Then

cX (N ′
c1,c2

,d 1−ε
G )&

(

C 1−ε
1 (c2/c1)εs(1−ε)/q

k (1−ε)/2K 2(1−ε)/q log K

)

1

Kq (X )1−εε1/q
, 0 < ε< 1,

where K and C1 are as in Theorem 10. In particular,

cp (N ′
c1,c2

,d 1−ε
G ) ≍G ,p,c1 ,c2

ε−1/max{p,2}, 1 < p <∞.

The nonembeddability of nonabelian simply connected nilpotent Lie groups and not virtually abelian

finitely generated groups of polynomial growth into uniformly convex Banach spaces is known from the

fact that the asymptotic cone of these groups are nonabelian Carnot groups, and that nonabelian Carnot

groups do not admit bilipschitz embeddings into uniformly convex Banach spaces. The definition of

Carnot groups is as follows.

Definition 12 ([LD17]). A (sub-Riemannian) Carnot group is a 5-tuple (G ,δλ,B , | · |,dG ), where:

• The simply connected nilpotent Lie group G is such that its Lie algebra g admits an s-step stratifi-

cation, s ∈Z>0, i.e., a direct sum decomposition

g=V1 ⊕V2 ⊕·· ·⊕Vs ,

where Vs 6= 0, Vs+1 = 0, and Vr+1 = [V1,Vr ] for r = 1, · · · , s.
• For each λ ∈R

+, the linear map δλ : g→ g is defined by

δλ|Vr
=λi idVr , r = 1, · · · , s.

• The bundle B over G is the extension of V1 to a left-invariant subbundle:

Bp := (dLp )eV1, p ∈G .
7



• The inner product norm3 | · | is initially defined on V1, and is then extended to B as a left-invariant
norm:

|(dLp )e (v)| := |v |, p ∈G , v ∈V1.

• The metric dG on G is the Carnot–Carathéodory distance associated to B and | · |, i.e.,

dG (p, q) := inf

{ˆ 1

0

|γ̇(t )|d t :γ ∈C∞
pw([0,1];G),γ(0) = p,γ(1) = q, γ̇ ∈ B

}

, p, q ∈G ,

where C∞
pw([0,1];G) consists of the piecewise smooth functions from [0,1] to G.

For simplicity, we will call G the Carnot group. When we wish to emphasize the step size, we will call G an
s-step Carnot group or a Carnot group of step s.

It is easy to see that commutative Carnot groups are precisely those of step 1 and are the Euclidean

spaces R
d . The nonabelian ones are those of step s ≥ 2. An example of this are the Heisenberg groups

H
2k+1 defined above, which are Carnot groups of step 2 whose Lie algebras h2k+1 admit the 2-step strati-

fication

V1(h) = span{x1, · · · , xk , y1, · · · , yk }, V2(h) = span{z}.

Another example of Carnot groups are the aforementioned model filiform groups J s−1(R), s ≥ 1, which

are Carnot groups of step s whose Lie algebras js−1 admit the s-step grading

V1(js−1) = span{x, y0}, V2(js−1) = span{y1}, · · · , Vs (js−1) = span{ys−1}.

Let our choice of left-invariant vector fields X1, · · · , Xk , k :=dimV1, be such that (X1)eG , · · · , (Xk )eG form

an orthonormal basis of (V1, | · |). We have the center Z (G) = exp(Vs ) and commutator subgroup [G ,G] =
exp(V2⊕·· ·⊕Vs ). Also, the maps δλ act as scalings in the Carnot–Carathéodory distance, in the sense that

dG (δλ(p),δλ(q)) =λdG (p, q), for λ> 0 and p, q ∈G .

In an algebraic sense, nonabelian Carnot groups are nonabelian simply connected nilpotent Lie groups,

but their metrics differ, since we endowed nilpotent Lie groups with Riemannian distances while we en-

dowed Carnot groups with sub-Riemannian distances. Nevertheless, Theorem 5 holds for nonabelian

Carnot groups G , stated as follows.

Theorem 13. Let G be a nonabelian Carnot group of step s ≥ 2. Let v ∈ Z (G) \ {eG } be normalized so that
dG (v,eG) = 1. Suppose that p ∈ (1,∞) and q ∈ [2,∞). Let (X ,‖ · ‖X ) be a Banach space with Kq (X ) <∞,
and let f : G → X be smooth and compactly supported. Then

(
ˆ ∞

0

(ˆ

G

(‖ f (hv t )− f (h)‖X

t 1/s

)p

dµ(h)

)max{p,q}/p
d t

t

)1/max{p,q}

.max
{

(p −1)1/q−1,Kq (X )
}
(ˆ

G

∥
∥∇ f (h)

∥
∥p

ℓk
2 (X )

dµ(h)

)1/p

.

(5)

In particular, when p = q,
(ˆ ∞

0

ˆ

G

(‖ f (hv t )− f (h)‖X

t 1/s

)q

dµ(h)
d t

t

)1/q

. Kq (X )

(ˆ

G

∥
∥∇ f (h)

∥
∥q

ℓk
2 (X )

dµ(h)

)1/q

. (6)

For nilpotent Lie groups, we have dG (v t ,eG) ≍G t for 0 < t < 1 and dG (v t ,eG ) ≍G t 1/s for t ≥ 1 for our

choice of v , while for Carnot groups we have dG (v t ,eG ) = t 1/s for all t > 0. Thus, Theorem 5 only gives

global nonembeddability of nonabelian simply connected nilpotent Lie groups into uniformly convex

spaces, i.e., we only know that the entire group fails to embed into X , while Theorem 13 gives local

3For sub-Finsler Carnot groups we allow | · | to be more generally a norm. Then, compared to the sub-Riemannian case, the

resulting distance dG is then distorted by a factor of at most
√

dimV1 by the John ellipsoid theorem [Joh48], and the results of

this paper follow up to multiplicative factors of
√

dimV1.
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nonembeddability of Carnot groups into uniformly convex spaces, i.e., we know also that any nonempty

open subset of the group fails to embed into X .

Although Theorems 5 and 13 have a formal difference in the sense that Theorem 5 considers Riemann-

ian distances on nilpotent Lie groups while Theorem 13 considers sub-Riemannian distances on Carnot

groups, it will turn out that they are instances of a more general theorem regarding sub-Riemannian

distances on nilpotent Lie groups. This is stated as Corollary 33 in Section 2. See Corollary 35 for the

resulting distortion results.

Theorem 6 applies to cocompact lattices Γ of a nonabelian Carnot group G , because they are not

virtually abelian finitely generated groups of polynomial growth. We can take s to be the step of G and

vΓ ∈ Z (G)∩Γ\ {eG }; we will not repeat the statement of Theorem 6 here.

We may state simplified versions of Theorems 10 and 11 in the setting of Carnot groups, thanks to the

scale-invariance. In the following, nh :=
∑s

r=1 r kr is the Hausdorff dimension of G

Theorem 14. Let r1,r2 > 0 with r1 ≥ 2r2. Let G be a nonabelian Carnot group, and let Nr1,r2
be an r2-

covering of Br1
. Let X be a q-uniformly convex space, q ≥ 2. Then

cX (Nr1,r2
)&

(
C1s1/q

p
k4nh /q nh

)
(log(r1/r2))1/q

Kq (X )
.

In particular, if Nr1,r2
is an (r2,Ω(r2))-net of Br1

, then

cp (Nr1,r2
) ≍G ,p (log(r1/r2))1/max{p,2}, 1 < p <∞.

Theorem 15. Let N ′
c1,c2

be a (c1,c2)-net of a nonabelian Carnot group G, where c1,c2 > 0 with c1 ≥ c2/2.
Let X be a q-uniformly convex space. Then

cX (N ′
c1,c2

,d 1−ε
G )&

(

C 1−ε
1 (c2/c1)εs(1−ε)/q

k (1−ε)/24nh (1−ε)/q nh

)

1

Kq (X )1−εε1/q
, 0 < ε< 1.

In particular,
cp (N ′

c1,c2
,d 1−ε

G ) ≍G ,p,c1 ,c2
ε−1/max{p,2}, 1 < p <∞.

That a nonabelian Carnot group G fails to embed bilipschitzly into R
n was first proven by Semmes

[Sem96] using the differentiation theorem of Pansu [Pan89]. Pansu’s theorem states that any Lipschitz

mapping f : G → R
n is differentiable a.e. with the derivative being a Lie group homomorphism that

commutes with the dilations δλ of G and R
n . In other words, one can ‘blow-up’ f almost everywhere and

the resulting ‘blow-up’ function is a Carnot group homomorphism. Semmes’ observation was that if f
were a bilipschitz mapping, then the blow-up of f would also be bilipschitz, resulting in a Carnot group

monomorphism. This is impossible because a group homomorphism G → R
n must send the nontrivial

commutator subgroup [G ,G] to 0. Later this argument was generalized, independently by Cheeger and

Kleiner [CK06] and Lee and Naor [LN06], to Banach space targets with the Radon–Nikodým property,

which includes uniformly convex spaces.

From the standpoint of the Pansu–Semmes argument which simply outputs the qualitative nonexis-

tence of a bilipschitz mapping G → R
n , the significance and advantage of Theorems 5, 6, and 13 is that

they give quantitative nonembeddability statements, such as Theorems 1, 2, 10, 11, 14, and 15. How-

ever, the Pansu–Semmes argument tells us that any Lipschitz function f : G → X must ‘collapse’ along

directions of the commutator group [G ,G], and from this point of view, Theorem 13 possesses a curious

limitation, namely that it requires us to measure the collapse along central directions.

This limitation is caused by a technical requirement in the proof of Theorems 5 and 13, which is for the

horizontal derivative and the convolution along the direction of v to commute (more precisely, equation

(28) below). Since there is no such limitation in the original Pansu–Semmes proof, we pose the following

question.

Question 16. Let G be a nonabelian Carnot group. Is Theorem 13 true for all v ∈ [G ,G] with dG (v,eG)= 1?
9



We answer this question in the affirmative for Lp targets, albeit with some loss of control on the con-

stants.

Theorem 17. Let G be a nonabelian Carnot group. For 1 < p ≤ 2, f ∈ Lp (G) with ∇ f ∈ Lp (G ;ℓk
2 ), and

v ∈ [G ,G] with dG (v,e)= 1, we have
(
ˆ ∞

0

[ˆ

G

( | f (h)− f (hδr (v))|
r

)p

dµ(h)

]2/p dr

r

)1/2

.G ,p ‖∇ f ‖Lp (G ;ℓk
2 ). (7)

Although Theorem 17 is stated for R-targets, it is easy to tensorize inequality (7) using the triangle

inequality when f : G → Lp (σ) is smooth and compactly supported.

Remark 18. With q defined as in Theorem 13, Theorem 17 only considers the exponent q = 2. This is
because the case q =∞ formally holds, so that the inequality for q = 2 implies the inequalities for q ≥ 2.
See Section 2, page 19 for a proof of this simple fact. We cannot make this simplification in Theorem 13 or
in Theorem 5 due to the stated dependence of the constants on q.

However, we have not managed to prove a strengthening of Theorem 6 to directions in the commuta-

tor group for Carnot groups, formulated as follows.

Question 19. Let Γ be a cocompact lattice of a nonabelian Carnot group G. For any vΓ ∈ [Γ,Γ] \ {eG },
does there exist c ∈ N such that the following is true? If we let s′ ≥ 2 be the largest integer such that vΓ ∈
[[G ,G], · · · ,G]
︸ ︷︷ ︸

s ′ times

, let p ∈ (1,∞) and q ∈ [2,∞), and suppose (X ,‖·‖X ) is a Banach space satisfying Kq (X ) <∞,

then for every finitely supported f :Γ→ X we have
(

ns′
∑

k=1

1

k1+max{p,q}/s ′

(

∑

x∈BΓ
n

‖ f (xv k
Γ

)− f (x)‖p
X

)max{p,q}/p )1/max{p,q}

.Γ,vΓ
max

{

(p −1)1/q−1,Kq (X )
}

(

∑

x∈BΓ
cn

∑

a∈S
‖ f (xa)− f (x)‖p

X

)1/p

.

We will deduce Theorem 17 from a Dorronsoro theorem for Carnot groups following the argument

of Fässler and Orponen [FO20a]. We will also prove the Carnot group Dorronsoro theorem itself, which

states that the Lp (G) norm of the Lp fractional Laplacian ‖(−∆p )α f ‖Lp (G) (1 < p <∞, α> 0) of a function

f ∈ Lp (G), is equivalent up to constant factors to a singular integral that, roughly speaking, measures, at

all points of G and at all scales, the deviation of f from being a polynomial of weighted degree ≤ ⌊α⌋. This

was first proven for G =R
n for all α> 0 by Dorronsoro [Dor85], and for the Heisenberg groups H2k+1 one

side of the Dorronsoro statement (namely that the aforementioned singular integral is bounded above

by ‖(−∆p )α f ‖Lp ) was proven for the restricted exponent range 0 < α< 2 in [FO20a]. The reason for this

restriction 0 < α < 2 in [FO20a] is that they considered deviations from the smaller class of “horizontal

polynomials", which is inadequate for α≥ 2 (see Remark 23 for a proof).

We will discuss the Dorronsoro theorem for Carnot groups in detail later in subsection 1.1. To sum-

marize, the novelty of this paper in this direction is threefold. First, we recognize the correct class of

polynomials to approximate by, namely polynomials of weighted degree that depend on the “full set of

coordinates” as opposed to just the “horizontal coordinates”. Second, we recover the full Dorronsoro

theorem, i.e., we prove both directions of the equivalence. Third, we verify that generalizing to higher

step Carnot groups introduces no serious problems. The proof method of Theorem 22 is based on Dor-

ronsoro’s original proof in [Dor85] and adds various ingredients used in Fässler and Orponen’s proof in

[FO20a].

Remark 20. So far, we have mentioned two proof methods of the vertical versus horizontal inequality,
namely the Littlewood–Paley–Stein theory for Theorems 5 and 13 and the Dorronsoro theorem for the vari-
ant Theorem 17. There is a third possible proof method for L2 targets which follows the representation
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theoretic proof of [ANT13] for the case G =H
3, X = L2. Specifically, one can reduce proving the vertical ver-

sus horizontal inequality to proving a certain inequality regarding 1-cocycles G → L2 of irreducible unitary
representations of G. The irreducible unitary representations of H3 are given by the Stone–von Neumann
theorem, while the irreducible unitary representations have been described by Dixmier [Dix59, Dix57] and
Kirillov [Kir62]. We will not pursue this proof method since the anticipated results do not seem to provide
an improvement or advantage over neither Theorem 5 nor Theorem 17.

Focusing on Euclidean distortion for concreteness, Theorem 14 tells us that

c2(NR ) ≍nh

√

log R,

for any Carnot group G and (1,Ω(1))-net NR of BR . One may have expected that Carnot groups with

higher steps may have a ‘hierarchy’ of collapsing happening, with distortions being propagated and am-

plified as one passes from [G ,G], [G , [G ,G]], all the way up to [G , [G , · · · ,G]]
︸ ︷︷ ︸

s times

, with the center ending up

“super-collapsed”; certainly if G is high-dimensional and V1 is low dimensional, the collapsing happens

along the subgroup [G ,G] of small codimension, and one may have enough room to have many more

interesting phenomena such as collapsing happen. In this case, the dependency on s of the asymptotics

of c2(NR ) would appear in the exponent of log R , but actually the asymptotics is exactly that of
√

log R.

Thus, it seems that the collapsing happens “only once” and happens “uniformly across all of [G ,G]”. The

algebraic structure of the Carnot group seems to only affect the constants involved while having no effect

on the exponent. We then ask what is the correct dependence on the Lie group structure:4

Question 21. In the case of Euclidean distortion, what are the precise asymptotics? More precisely, we ask
the following.

(1) Let G be a nonabelian simply connected nilpotent Lie group. Does there exist a constant cG such
that we have the following?

c2(Br ) ≍ cG

√

log r , r ≥ 2.

Similarly, for r1,r2 > 1 with r1 ≥ 2r2, let Nr1,r2
be an (r2,Ω(r2))-net of Br1

. Does there exist a con-
stant c ′G such that we have the following?

c2(Nr1,r2
) ≍ c ′G

√

log(r1/r2) as R →∞.

If so, how are the values of cG and c ′G determined by the algebraic structure of G?
(2) Let Γ be a not virtually abelian finitely generated group of polynomial growth. Does there exist a

constant cΓ such that we have the following?

c2(BΓ

n) ≍ cΓ
√

log n as n →∞.

If so, how is the value of cΓ determined by the algebraic structure of Γ?

We know that, for Carnot groups G , cG is bounded above and below by functions of nh, since the

constants appearing in the upper bound due to the Assouad embedding theorem and in the lower bound

due to Theorem 14 can all be made depending on nh.

Note that the Carnot groups of lowest nonabelian step s = 2, such as the Heisenberg group H
3, already

give the worst dependence
√

log R. We however remark that the nonembeddability statements, both

qualitative and quantitative, for Carnot groups into uniformly convex spaces do not formally follow from

those of the Heisenberg group H
3, because it is not true that any nonabelian Carnot group contains a

bilipschitz copy of H3.5 For example, the aforementioned model filiform spaces J s−1(R) with s ≥ 3 do

4I thank Professor Assaf Naor for discussion on this matter and asking this question.
5I thank Professors Assaf Naor and Robert Young for this comment.
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not contain a bilipschitz copy of H3. Recalling the definition of the model filiform group, J s−1(R) admits

the s-step grading V1(js−1) = span{x, y0}, V2(js−1) = span{y1}, · · · , Vs (js−1) = span{ys−1}. If J s−1(R) were to

contain a bilipschitz copy of H3, then by the Pansu–Semmes differentiation theorem there would be a

Carnot group monomorphism H
3 → J s−1(R), namely a Lie group monomorphism that commutes with

the dilations. This would induce a Lie algebra monomorphism h3 → js−1 that sends Vi (h) → Vi (js−1)

for all i ; by matching dimensions, we actually have vector space isomorphisms V1(h)
≈→ V1(js−1) and

V2(h)
≈→V2(js−1), but now we have a contradiction since this implies we have a surjection

0 =V3(h) = [V1(h),V2(h)] → [V1(js−1),V2(js−1)] =V3(js−1) 6= 0.

Roadmap. The rest of the introduction is organized as follows. We first discuss in detail Dorronsoro’s

theorem on Carnot groups (Theorem 22) and describe the resulting more refined fractional vertical ver-

sus horizontal inequalities (Theorem 24) in subsection 1.1. In subsection 1.2, we present conjectural

quantitative nonembeddability statements of nonabelian simply connected nilpotent Lie groups into L1

(Conjecture 30) to suggest a candidate behavior for the L1 distortion of balls in groups of polynomial

growth (Question 31).

After the introduction, the rest of this paper is organized as follows. We begin by proving our main

Theorems 5 and 13 in Section 2, and we then prove the distortion bounds of Theorems 1, 2, 10, 11,

14, and 15 and Corollaries 3 and 4 in Section 3. We derive the discretized inequalities of Theorem 6

in Section 4. In Section 5, we prove Theorem 9 by analyzing cocycles. We then, in Section 6, derive the

fractional vertical versus horizontal inequalities of Theorem 24, and thereby also prove Theorem 17, from

the Dorronsoro Theorem 22. Finally, we prove the Dorronsoro Theorem 22 in Section 7.

1.1. Dorronsoro’s theorem on Carnot groups. As mentioned earlier, a byproduct of this paper is a for-

mulation and proof of a Dorronsoro theorem for Carnot groups, which is used to prove Theorem 17.

In this subsection, we state the Dorronsoro theorem and obtain more refined vertical versus horizontal

inequalities.

Let G be a Carnot group in this subsection. Following Folland [Fol75] and denoting by ∆=
∑k

i=1
X 2

i the

sub-Laplacian and Ht the corresponding heat kernel, we define the operator (−∆p )α for 1 < p <∞ and

Reα> 0 by

(−∆p )α f = lim
ε→0

1

Γ(⌊Reα⌋+1−α)

ˆ ∞

ε

t ⌊Reα⌋−α(−∆)⌊Reα⌋+1Ht f d t

for all f ∈ Lp (G) such that the limit exists in the Lp norm. Then, for 1 < p <∞ and α ≥ 0, the Sobolev

space Sp
α is the Banach space Dom((−∆p )α/2) with norm

‖ ·‖p,α := ‖ ·‖Lp (G) +‖(−∆p )α/2(·)‖Lp (G).

Fix a basis Xr,1, · · · , Xr,kr , where kr = dimVr , of each stratum Vr . As G is nilpotent and simply con-

nected, the exponential map exp : g→ G is a diffeomorphism. Thus, each point p ∈ G can be expressed

in the coordinates p = exp
(
∑s

r=1

∑kr

i=1
xr,i Xr,i

)

, xr,i ∈ R; let this be the single coordinate chart on G . For

polynomials of the coordinates xr,i , we assign weight r to the variable xr,i , r = 1, · · · , s, i = 1, · · · ,kr .

Recall that nh =
∑s

r=1 r kr is the Hausdorff dimension of G . We have nh ≥ 4, as we must have s ≥ 2,

k1 ≥ 2 and k2 ≥ 1, since G is nonabelian.

For r > 0, recall the notation for open balls

Br = {h ∈G : dG (h,eG) < r }, Br (g ) = {h ∈G : dG (h, g )< r } = g Br , g ∈G , r > 0.

Recall that δλ is a scaling in the Carnot–Carathéodory metric:

dG (δλ(p),δλ(p ′)) =λdG (p, p ′), p, p ′ ∈G .
12



Thus Br = δr (B1), r > 0. Also, by compactness we have

dG (y,eG) ≍G

s∑

r=1

kr∑

i=1

|yr,i |1/r .

Let d ∈ Z≥0 and let Ad denote the family of polynomials G → R of weighted degree d . (Note that

this family is left-invariant. Indeed, one can express the group law in this coordinate system using the

Baker–Campbell–Hausdorff formula

g h =
s∑

m=1

(−1)m−1

m

∑

r1+s1>0
···

rm+sm>0

[g r1 hs1 g r2 hs2 · · ·g rm hsm ]

(
∑m

j=1
(r j + s j )) ·

∏m
i=1

ri !si !
,

where the sum is finite since G is of step s, and we have used the following notation:

[g r1 hs1 · · ·g rm hsm ] = [g , [g , · · · [g
︸ ︷︷ ︸

r1

, [h, [h, · · ·[h
︸ ︷︷ ︸

s1

, · · · [g , [g , · · · [g
︸ ︷︷ ︸

rm

, [h, [h, · · ·h
︸ ︷︷ ︸

sm

]] · · · ]].

Thus, we can see that
(

s∑

r=1

kr∑

i=1

x0
r,i Xr,i

)(
s∑

r=1

kr∑

i=1

x1
r,i Xr,i

)

=
(

s∑

r=1

kr∑

i=1

x2
r,i Xr,i

)

where

x2
r,i = x0

r,i +x1
r,i + (homogeneous polynomial of {x0

r ′,i ′}r ′<r , {x1
r ′ ,i ′}r ′<r of weighted degree r ).

Therefore a polynomial of weighted degree d precomposed with a left translation is still of weighted

degree d .) This definition of Ad is in contrast from [FO20a], where they only considered horizontal

polynomials, i.e., polynomials that depend only on the ‘horizontal coordinates’ x1,1, · · · , x1,k1
; here we

are allowing for non-horizontal coordinates, provided they satisfy the weighted degree condition.

For a locally integrable function f : G →R, x ∈G and r > 0, let Ad
x,r f denote the unique element of Ad

such that
ˆ

Br (x)

( f (y)− Ad
x,r f (y))A(y)d y = 0, ∀A ∈Ad .

For example, A0
x,r f = 〈 f 〉Br (x), the average of f on Br (x), and a formula for A1

x,r f is given below in (54).

We measure how well Ad
x,r f approximates f in the ball Br (x) by the following quantity:

β f ,d ,q (Br (x)) =
( 

Br (x)

| f (y)− Ad
x,r f (y)|q d y

)1/q

, 1 ≤ q <∞.

Theorem 22 (Dorronsoro’s theorem for Carnot groups). Let 1 < p <∞, α> 0, and

1 ≤ q <
min{p,2}nh

nh −min{p,2}
.

Then for all f ∈ Lp (G),
(
ˆ

G

(ˆ ∞

0

[
1

rα
β f ,⌊α⌋,q (Br (x))

]2 dr

r

)p/2

dµ(x)

)1/p

≍G ,α,p,q ‖(−∆p )α/2 f ‖Lp (G). (8)

in the sense that f ∈ S
p
α(G) if and only if the left-hand side of (8) is finite, in which case the above relation

holds.

Our proof of Theorem 22 is based on Dorronsoro’s original proof [Dor85] and adds on ingredients from

Fässler and Orponen’s proof [FO20a]. Actually, in the case of α= 1 and G =H
2k+1 there is a simpler proof

of Dorronsoro’s theorem involving the Fourier transform [Azz16, Subsection 7.3].6 It seems likely that

6I thank Ian Fleschler for pointing out this reference.
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there would be a similar simpler proof of Theorem 22 for α = 1, but we have not pursued this direction

since we can obtain the full range α> 0 with our proof.

Remark 23. Fässler and Orponen’s version [FO20a] of the Dorronsoro theorem [Dor85] for Heisenberg
groups states the . portion of the above inequality (8) for f ∈ Sp

α(G) in the case G =H
2k+1 and 0 < α < 2.

(They did not prove the & portion because it is not needed when proving the vertical versus horizontal
inequalities.) The restriction 0 <α< 2 was necessary because they were approximating by horizontal poly-
nomials, i.e., polynomials that depend only on the horizontal coordinates; in the range 0 < α < 2 our
formulation of Theorem 22 agrees with that of [FO20a] because then A1 is precisely the family of hori-
zontal polynomials. To see why the restriction 0 < α < 2 is necessary when we consider only horizontal
polynomials, let α≥ 2, and suppose Ad were defined as the set of horizontal polynomials of degree at most
d. In the case of the Heisenberg group H

2k+1 the group structure is given by

exp

(
k∑

i=1

(x0
i ∂xi + y0

i ∂yi )+ z0∂z

)

·exp

(
k∑

i=1

(x1
i ∂xi + y1

i ∂yi )+ z1∂z

)

= exp

(
k∑

i=1

(

(x0
i +x1

i )∂xi + (y0
i + y1

i )∂yi

)

+
(

z0 + z1 +
1

2

k∑

i=1

(x0
i y1

i −x1
i y0

i )

)

∂z

)

and thus the left-invariant horizontal vector fields are given by

Xi =
∂

∂xi
+

yi

2

∂

∂z
, Yi =

∂

∂yi
−

xi

2

∂

∂z
, i = 1, · · · ,k ,

so that the Laplacian is given by

∆=
k∑

i=1

(X 2
i +Y 2

i ) =
k∑

i=1

(

∂2

∂x2
i

+
∂2

∂y2
i

+ yi
∂2

∂xi∂z
−xi

∂2

∂yi∂z

)

+
1

4

k∑

i=1

(x2
i + y2

i )
∂2

∂z2
.

Let f : H2k+1 → R be a function which is smooth, supported on B2 and agrees with the function z on B1.
Clearly ‖(−∆)α/2 f ‖Lp (G) is finite. However, for r ∈ (0, 1

2
), Ad

0,r f = Ad
0,r z = 0 because Br is symmetric about

reflection with respect to the plane z = 0; thus

β f ,d ,q (Br )=
( 

Br

|z|q dµ

)1/q

≍G ,q r 2.

Since Ad is invariant under left-translation and left-translation is measure-preserving, at

p = exp

(
k∑

i=1

(x0
i ∂xi + y0

i ∂yi )+ z0∂z

)

∈ B1/2

we have

Ad
p,r f = z0 +

1

2

k∑

i=1

(x0
i yi −xi y0

i ), β f ,d ,q (Br (x)) =β f ,d ,q (Br ) ≍G ,q r 2.

Therefore, the left-hand side of (8) is bounded below by
(
ˆ

B1/2

(
ˆ 1/2

0

[
1

rα
β f ,⌊α⌋,q (Br (x))

]2 dr

r

)p/2

dµ(x)

)1/p

≍G ,q µ(B1/2)1/p

(
ˆ 1/2

0

dr

r 1+2(α−2)

)1/2

=∞.

Thus (8) fails to hold when α≥ 2 when Ad is restricted to horizontal polynomials.

Of course, the purpose of the Dorronsoro Theorem 22 in this paper is to prove the vertical versus

horizontal inequality of Theorem 17. The proof of Theorem 17 from Theorem 22 is given in Section 6,

and uses the special case of α= 1 of Theorem 22 along with the fact that ‖(−∆p )1/2 f ‖Lp (G) ≍‖∇ f ‖Lp (G ;ℓk
2 )

[CRTN01, (52)] to see that it is enough to upper bound the left-hand side of (7) by the left-hand side of

(8).
14



However, one may wonder what vertical versus horizontal inequalities emerge when we don’t special-

ize to α= 1. In this case, we obtain fractional order generalizations of Theorem 5.

Theorem 24. Let 1 < p ≤ 2, α> 0, n ∈N, and let f ∈ Sp
α(G). Let v ∈ exp(V⌊α/n⌋+1⊕·· ·⊕Vs ) with dG(v,eG) = 1.

Then
(
ˆ ∞

0

[ˆ

G

(
1

rα

∣
∣
∣∆

n
δr (v) f (h)

∣
∣
∣

)p

dµ(h)

]2/p dr

r

)1/2

.G ,p,α,n ‖(−∆p )α/2 f ‖Lp (G), (9)

where for g ∈G and F : G →R, ∆g F (x) := F (xg )−F (x) denotes the finite difference.

The simple example n = 1 is given as follows.

Example 25. Let 1 < p ≤ 2, α> 0, and let f ∈ S
p
α(G). Let v ∈ exp(V⌊α⌋+1 ⊕·· ·⊕Vs ) with dG (v,eG) = 1. Then

(
ˆ ∞

0

[ˆ

G

( | f (h)− f (hδr (v))|
rα

)p

dµ(h)

]2/p dr

r

)1/2

.G ,p,α ‖(−∆p )α/2 f ‖Lp (G).

The case G =H
2k+1, n = 1, 0 <α< 2 of Example 25 has been obtained in [FO20b].

In the above, the Dorronsoro Theorem 22 was used for nonembeddings, but there are also other appli-

cations. For example, the case of the Heisenberg groups H2k+1, k ≥ 1, due to [FO20a], is used in the work

[CLY22];7 it stands to reason that our more general result will have similar applications, but we defer this

to future investigations.

1.2. L1-distortion: vertical perimeter versus horizontal perimeter. Given the discussion so far, one

may ask whether the results of this paper follows for L1(σ)-targets. Since ℓ1 is not uniformly convex, our

results in this paper do not apply; in fact, that general nonabelian simply connected nilpotent Lie groups

G do not embed bilipschitzly into L1 spaces was proven only recently by Eriksson-Bique, Gartland, Le

Donne, Naples, and Nicolussi-Golo [EBGLD+21]. For the Heisenberg group this was proven previously

by Cheeger and Kleiner [CK10].

The results of this paper give quantitative nonembeddability of nonabelian simply connected nilpo-

tent Lie groups into uniformly convex spaces. In this subsection, which closely follows Section 4 of

[LN14], we will present hypothetical analogues of the results of this paper for quantitative nonembed-

dability into L1.

Theorem 5 states in the case X = R and p ∈ (1, q] that for every smooth and compactly supported

f : G →R,

(
ˆ ∞

0

(ˆ

G
| f (hv t )− f (h)|p dµ(h)

)q/p d t

t 1+q/s

)1/q

.G (p −1)1/q−1

(ˆ

G

∥
∥∇ f (h)

∥
∥p

ℓk
2

dµ(h)

)1/p

. (10)

The constant (p −1)1/q−1 is unbounded as p → 1; nevertheless, we ask whether the endpoint case p = 1

of (10) does hold true.

Question 26. Let G be a nonabelian simply connected nilpotent Lie group, and let v ∈ Z (G) be as in The-
orem 5. For which exponents q ≥ 1 does every smooth and compactly supported f : G →R satisfy

(ˆ ∞

0

(ˆ

G
| f (hv t )− f (h)|dµ(h)

)q d t

t 1+q/s

)1/q

.G ,q

ˆ

G

∥
∥∇ f (h)

∥
∥
ℓk

2
dµ(h). (11)

Similarly, we may ask the following question.

7I thank Professor Tuomas Orponen for pointing out this fact.
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Question 27. Let Γ be a not virtually abelian finitely generated group of polynomial growth. Choose vΓ

and s > 0 as in Theorem 6. For which exponents q ≥ 1 do there exist c = c(Γ) ∈ N such that for any n ∈ N

and f : Γ→ L1 we have the following?
(

ns
∑

k=1

1

k1+q/s

∑

x∈BΓ
n

‖ f (xv k
Γ

)− f (x)‖q
L1

)1/q

.Γ,q

∑

x∈BΓ
cn

∑

a∈S
‖ f (xa)− f (x)‖L1 .

By the discretization argument of Section 4, an exponent q that answers Question 26 positively also

answers Question 27 positively.

Because the case q = ∞ formally holds for Question 26 (see Remark 18), it is clear that the set of q
that satisfies Question 26 is either of the form (qG ,∞) or [qG ,∞) for some qG ∈ [1,∞] depending on G .

The exponent range is [4,∞) for G =H
3 [NY20] and is [2,∞) for G =H

k , k ≥ 5 [NY18]. We wish to know

whether there are finite exponents q satisfying (11), since then not only would we have a quantitative

proof of [EBGLD+21], but we would also have quantitative nonembeddability statements analogous to

Theorem 10, namely that if Nr1,r2
is a r2-covering of Br1

, r1 ≥ 2r2, r1,r2 > 1, then

c1(Nr1 ,r2
)&G ,q (log(r1/r2))1/q .

Also, if Γ is a not virtually abelian finitely generated group of polynomial growth that is quasi-isometric

to G , we would have

c1(BΓ

n )&Γ,q (log n)1/q , n ≥ 2.

By the co-area formula it suffices to prove (11) when f is an indicator of a measurable set A ⊆ G , in

which case the right-hand side of (11) is interpreted as the horizontal perimeter PER(A) of A (see [Amb01]

and [CK10, Section 2] for a precise definition).

Definition 28 (Vertical perimeter at scale t [LN14, NY18]). Let v ∈ Z (G) be as in Theorem 5. Let A ⊆G be
measurable and t ∈ (0,∞). The vertical perimeter vt (A) of A at scale t is defined as the quantity

vt (A) :=µ
({

h ∈ A : hv t ∉ A or hv−t ∉ A
})

. (12)

By this definition, we may reformulate Question 26 into an isoperimetric inequality.

Question 29. For which exponents q is it true that for every measurable A ⊆G one has
(ˆ ∞

0

vt (A)q

t 1+q/s
d t

)1/q

.G ,q PER(A). (13)

Of course, the set of q that satisfies Question 29 is the same as that of Question 26. In light of the

nonembeddability result [EBGLD+21] and the situation in the Heisenberg group, we make the following

conjecture.

Conjecture 30. There exist finite exponents q that answer Questions 26 and 29 positively, and the infimum
qG among such q is attained.

Conditioned on Conjecture 30, we would have for a (r2,Ω(r2))-net Nr1,r2
of Br1

, where r1,r2 > 1 with

r1 ≥ 2r2, that c1(Nr1,r2
) &G (log(r1/r2))1/qG , and for a not virtually abelian finitely generated group of

polynomial growth Γ we would have c1(BΓ
n ) &Γ (log n)1/qG , n ≥ 2. However, for the 5 or higher dimen-

sional Heisenberg groups H
2k+1, k ≥ 2, with q

H2k+1 = 2 we have the matching upper bounds c1(Nr1,r2
) .

√

log(r1/r2) and c1(B
H

2k+1
Z

n ) .
√

log n by the Assouad embedding theorem, while for the 3-dimensional

Heisenberg groupH
3 we have the matching upper bound c1(Nr1,r2

). (log(r1/r2))1/4 and c1(B
H

3
Z

n ). (log n)1/4

by [NY20, Theorem 3.1]. We thus pose the following question as well.

Question 31. For a (r2,Ω(r2))-net Nr1,r2
of Br1

, does c1(Nr1,r2
) ≍G (log(r1/r2))1/qG , where r1,r2 > 1 with

r1 ≥ 2r2? Furthermore, let Γ be a not virtually abelian finitely generated group of polynomial growth
which is quasi-isometric to G. Then does c1(BΓ

n ,dW ) ≍G (log n)1/qG , n ≥ 2?
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2. PROOF OF THEOREM 5: DIFFERENTIATION ALONG RANDOM PATHS

We will prove a theorem slightly more general than Theorems 5 and 13, namely Theorem 32 below. We

first explain the terminology behind the statements.

A Lie group G is said to be unimodular if its left-invariant Haar measure µ is also right-invariant. Given

left-invariant vector fields X1, · · · , Xk , the pointwise span of X1, · · · , Xk forms a left-invariant vector sub-

bundle B over G , and on each fibre of the vector bundle B we may define a left-invariant Euclidean norm8

| · | that has X1, · · · , Xk as an orthonormal basis (this generalizes our earlier choice of X1, · · · , Xk , which we

took to be a basis at eG in the setting of nilpotent Lie groups and a basis of V1 in the case of Carnot

groups). We may define the associated sub-Riemannian distance as the Carnot-Carathéodory distance

associated to B to | · |, i.e.,

dG (p, q) := inf

{ˆ 1

0

|γ̇(t )|d t :γ ∈C∞
pw([0,1];G),γ(0) = p,γ(1) = q, γ̇ ∈ B

}

, p, q ∈G ,

If X1, · · · , Xk and their brackets generate g, and if G is connected, then dG (·, ·) is finite everywhere. The

center Z (g) of the Lie algebra (g, [, ]) of G consists of elements v ∈ g such that [g ,h] = 0 for all h ∈ g, and

has the property that if v ∈ Z (g) then exp(v) ∈ Z (G), the group theoretic center of G .

The following is an extension of Theorems 5 and 13; it is clear that Theorem 32 implies Theorems 5

and 13.

Theorem 32. Let G be a unimodular Lie group with Haar measureµ, left-invariant vector fields X1, · · · , Xk ,
and associated sub-Riemannian distance dG (·, ·). Suppose there is an element v ∈ Z (g) such that

dG (exp(t v),eG)≤ t 1/ρ ∀t > 0

for some real number ρ > 1 and such that there is a subset S of G with measure ν such that the push-
forward of the product measure of ν and the Lebesgue measure of R under the map S ×R → G, (s, t ) 7→
s exp(t v) is the Haar measure µ.

Suppose that p ∈ (1,∞) and q ∈ [2,∞). Let (X ,‖ · ‖X ) be a Banach space with Kq (X ) <∞. If p ≥ q, then
every smooth and compactly supported f : G → X satisfies

(ˆ ∞

0

ˆ

G

(‖ f (h exp(t v))− f (h)‖X

t 1/ρ

)p

dµ(h)
d t

t

)1/p

.
ρ

ρ−1
Kq (X )

(ˆ

G

∥
∥∇ f (h)

∥
∥p

ℓk
2 (X )

dµ(h)

)1/p

. (14)

If p < q, and if for any t > 0 we have limr→∞µ(Br+t )/µ(Br ) = 1, then
(
ˆ ∞

0

(ˆ

G

(‖ f (h exp(t v))− f (h)‖X

t 1/ρ

)p

dµ(h)

)q/p d t

t

)1/q

.
ρ

ρ−1
max

{

(p −1)1/q−1,Kq (X )
}
(ˆ

G

∥
∥∇ f (h)

∥
∥p

ℓk
2 (X )

dµ(h)

)1/p

.

(15)

The hypothesis for Theorem 32 is satisfied when G is a simply connected nilpotent group. The prod-

uct decomposition of the Haar measure easily follows from that of the Lebesgue measure on R
n . The

distance requirement follows by [BLD12, Proposition 2.13] and [Jea14, Theorem 2.1], which tells us that

if z ∈ Z (g) \ {0} then

dG (exp(t v),eG)≍G

{

t 1/s , t ≥ 1,

t 1/r , 0 ≤ t < 1,
(16)

8Again, we could also take any general left-invariant norm on B , in which case the distance is sub-Finsler. Compared to the

sub-Riemannian case, the resulting distance dG is then distorted by a factor of at most
√

dimV1 by the John ellipsoid theorem

[Joh48], and the results of this paper follow up to multiplicative factors of
√

dimV1.
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where s ≥ 2 is the nilpotency step of G and r is the smallest integer that v ∈ [B , [B , · · · ,B ]]
︸ ︷︷ ︸

r times

(recall B is the

left-invariant bundle spanned by X1, · · · , Xk ). By applying Theorem 32 with ρ = s and ρ = max{r,1+ε},

we obtain the following.

Corollary 33. Let G be a nonabelian simply connected nilpotent Lie group with left-invariant vector fields
X1, · · · , Xk such that the Xi ’s and their brackets generate g. Let v ∈ Z (g) \ {0}. Suppose that p ∈ (1,∞) and
q ∈ [2,∞). Let (X ,‖ · ‖X ) be a Banach space with Kq (X ) <∞, and let f : G → X be smooth and compactly
supported.

(1) Let v ∈ Z (g) \ {0} be normalized so that dG (v t ,eG ) ≤ t 1/s for t > 0, where s is the nilpotency step of
G. Then

(
ˆ ∞

1

(ˆ

G

(‖ f (hv t )− f (h)‖X

t 1/s

)p

dµ(h)

)max{p,q}/p
d t

t

)1/max{p,q}

.max
{

(p −1)1/q−1,Kq (X )
}
(ˆ

G

∥
∥∇ f (h)

∥
∥p

ℓk
2 (X )

dµ(h)

)1/p

.

(17)

(2) Let r be the smallest integer that v ∈ [B , [B , · · · ,B ]]
︸ ︷︷ ︸

r times

. If r ≥ 2, and if v ∈ Z (g) \ {0} is normalized so

that dG (v t ,eG) ≤ t 1/r for t > 0. Then
(
ˆ 1

0

(ˆ

G

(‖ f (hv t )− f (h)‖X

t 1/r

)p

dµ(h)

)max{p,q}/p
d t

t

)1/max{p,q}

. max
{

(p −1)1/q−1,Kq (X )
}
(ˆ

G

∥
∥∇ f (h)

∥
∥p

ℓk
2 (X )

dµ(h)

)1/p

.

(18)

If r = 1, then for any ε> 0, if v ∈ Z (g) \ {0} is normalized so that dG (v t ,eG ) ≤ t 1/(1+ε) for t > 0, then
(
ˆ 1

0

(ˆ

G

(‖ f (hv t )− f (h)‖X

t 1/(1+ε)

)p

dµ(h)

)max{p,q}/p
d t

t

)1/max{p,q}

.
1+ε

ε
max

{

(p −1)1/q−1,Kq (X )
}
(ˆ

G

∥
∥∇ f (h)

∥
∥p

ℓk
2 (X )

dµ(h)

)1/p

.

(19)

Based on these theorems, we have the following nonembeddability statements.

Theorem 34. Let the Lie group G, left-invariant vector fields X1, · · · , Xk , and v ∈ Z (g) satisfy the hypotheses
of Theorem 32. Suppose X1, · · · , Xk and their brackets generate g. Let X be a q-uniformly convex Banach
space, with q ≥ 2.

(1) If dG (exp(t v),eG) ≍G t 1/ρ for 0 < t < 1 for some ρ > 1, then any nonempty open subset U of G fails
to embed bilipschitzly into X .

(2) If dG (exp(t v),eG) ≍G t 1/ρ for t ≥ 1 for some ρ > 1, and if the Haar measure µ of G is close to being
Ahlfors regular at large scales in the sense that for any constant c ′ ≥ 1

µ(Bc ′r )/µ(Br )≍G 1, r ≥ 1,

then cX (Br )&G
ρ−1
ρ

· (ρ logr )1/q

Kq (X )
for r =ΩG (1). In particular, G fails to bilipschitzly embed into X . We

have cp (Br ) ≍ (log r )1/max{p,2} for 1 < p <∞.

Indeed, for (1), we may assume by translation that Br ⊂U for some r > 0. If f : U → X were a bilipschitz

embedding, dG (x, y)≤ ‖ f (x)− f (y)‖X ≤DdG (x, y), x, y ∈U , we may assume by translation that f (eG ) = 0.

Multiplying f by a smooth cutoff function, we may construct F : G → X which is Lipschitz, agrees with f
on Br /3, and is supported on B2r /3. By a smooth approximation argument, we may apply (14) to F . Let

18



c1,c2 > 0 be such that c1t 1/ρ ≤ dG (exp(t v),eG) ≤ c2t 1/ρ for 0 < t < 1. Then the right-hand side of (14) is a

finite quantity, whereas the left-hand side is at least
(
ˆ r ρ/c

ρ
2 6ρ

0

ˆ

Br /6

(‖ f (h exp(t v))− f (h)‖X

t 1/ρ

)q

dµ(h)
d t

t

)1/q

=
(

µ(Br /6)

ˆ r ρ/c
ρ
2 6ρ

0

c
q
1

d t

t

)1/q

=∞,

giving a contradiction.

For (2), if f : Br → X satisfied dG (x, y) ≤ ‖ f (x)− f (y)‖X ≤ DdG (x, y) for x, y ∈ Br and, then translating

and multiplying f by a cutoff function we may construct F : G → X which is 3D-Lipschitz, agrees with

f on Br /2, and is supported on Br . Again, let c1,c2 > 0 be such that c1t 1/ρ ≤ dG (exp(t v),eG) ≤ c2t 1/ρ for

t > 1. Applying (14), we have

c1µ(Br /4)1/q log(r ρ/c
ρ
2 4ρ)1/q .G

(
ˆ r ρ/c

ρ
2 4ρ

1

ˆ

Br /4

(‖ f (h exp(t v))− f (h)‖X

t 1/ρ

)q

dµ(h)
d t

t

)1/q

.
ρ

ρ−1
Kq (X )

(ˆ

Br

‖∇F‖q

ℓk
2 (X )

dµ

)1/q

.G
ρ

ρ−1
Kq (X )µ(Br )1/q D.

This gives the stated estimate.

By (16), we have the following.

Corollary 35. Let G be a nonabelian simply connected nilpotent Lie group with left-invariant vector fields
X1, · · · , Xk such that the Xi ’s and their brackets generate g. Suppose that q ∈ [2,∞) and let (X ,‖ · ‖X ) be a
Banach space with Kq (X )<∞.

(1) If Z (g)* span{X1, · · · , Xk }, then any nonempty open subset U of G fails to embed bilipschitzly into
X .

(2) If Z (g) ⊆ span{X1, · · · , Xk }, we have cX (Br ) &G
(logr )1/q

Kq (X )
for r ≥ 2. In particular, G fails to bilipschit-

zly embed into X .

Before we begin the proof of Theorem 32, for motivation we begin by proving Remark 18 which states

that the case q =∞ of Theorem 17 formally holds.

Proof of Remark 18. It is enough to prove that, for each r > 0,
[ˆ

G

( | f (h)− f (hδr (v))|
r

)p

dµ(h)

]1/p

≤‖∇ f ‖Lp (G ;ℓk
2 ).

Let γ : [0,r ] →G be a piecewise smooth horizontal curve of unit speed connecting eG to δr (v).Then

| f (h)− f (hδr (v))| ≤
ˆ r

0

|∇ f (hγ(s)) ·dLh γ̇(s)|d s ≤
ˆ r

0

|∇ f (hγ(s))|d s.

Thus, by Jensen’s inequality and right-invariance of the Haar measure µ,
[ˆ

G

( | f (h)− f (hδr (v))|
r

)p

dµ(h)

]1/p

≤
[

1

r

ˆ

G

ˆ r

0

|∇ f (hγ(s))|p d sdµ(h)

]1/p

≤ ‖∇ f ‖Lp (G ;ℓk
2 ),

and we are done. �

Likewise, it is not hard to obtain a proof of the q =∞ case of Theorem 32 by the above proof. This proof

basically just takes a path from h to hδr (v) and differentiates f along that path; however, the resulting

inequality is weak. To make up for this weakness, we will choose over a random distribution of paths,

the randomness arising from a heat flow on the line spanned by v . We will then apply the above proof

method to each of those random paths (in Lemma 37). This will result in an upper bound given in terms

of a convolution of ∇ f with a derivative of the heat kernel, which we treat using Littlewood–Paley–Stein

g -function estimates. This proof method is borrowed from and extends that of [LN14].

We set some notation and terminology.
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Recall there is v ∈ Z (g) and a subset S of G with measure ν such that the push-forward of the product

measure of ν and the Lebesgue measure of R under the map S ×R → G , (s, t ) 7→ s exp(t v) is the Haar

measure µ. We denote v t := exp(t v)∈G . For p ∈ [1,∞), the Lebesgue–Bochner spaces

Lp (R,Lebesgue; X )= Lp (R; X ), Lp (S,ν; X )= Lp (S; X ), Lp (G ,µ; X ) = Lp (G ; X )

are defined. For f ∈ Lp (G ; X ) define f v :R→ Lp (S; X ) by

f v (z)(x) = f (xv z ), x ∈ S, z ∈R. (20)

Given ψ ∈ L1(R), define the convolution ψ∗ f :=ψ∗ f v ∈ Lp (G ; X ),

ψ∗ f (xv z ) :=
ˆ

R

ψ(u) f (xv z−u)du ∈ X .

So ψ∗ f is the usual group convolution of f with the measure supported on exp(span(v)) whose density

is ψ.

We will take ψ to be the heat kernel or its derivatives. The heat kernel on R is defined for t > 0, x ∈R as

ht (x) :=
1

2
p
πt

e− x2

4t , x ∈R,

and has derivatives

ḣt (x) = ∂t ht (x) =
x2 −2t

8
p
πt 5/2

e− x2

4t , ∂x ht (x) =−
x

4
p
πt 3/2

e− x2

4t .

Then for a universal constant C ,

ˆ ∞

0

x1/ρht (x)d x = Γ

(
1

2
+

1

2ρ

)
(4t )1/ρ

2
p
π

, ‖ḣt‖L1(R) =
C

t
, ‖∂x ht‖L1(R) =

1
p
πt

t > 0. (21)

We now begin the proof of Theorem 32. First, note that the case p > q of Theorem 32 follows from

that of p = q , because Kq (X ) ≥ Kp (X ). Thus, it is enough to consider the cases p = q and p < q . The case

p < q will also be shown to follow from that of p = q , albeit in a more complicated way. We prove the

case p = q first.

2.1. The case p = q .

2.1.1. Step 1. The first step is to bound the vertical variations f (g v t )− f (g ) by the quantities ḣt ∗ f . This

corresponds to Lemma 2.6 of [LN14], which is a modification of the corresponding statement in [Ste16].

Lemma 36 (Analogue of [LN14, Lemma 2.6]). Fix p ∈ [1,∞) and let (X ,‖ · ‖X ) be a Banach space. Every
smooth and compactly supported f : G → X satisfies

(ˆ ∞

0

ˆ

G
‖ f (g v t )− f (g )‖p

X d g
d t

t 1+p/ρ

)1/p

.
ρ

ρ−1

(ˆ ∞

0

t p 2ρ−1

2ρ
−1 ∥

∥ḣt ∗ f
∥
∥

p
Lp (G ;X ) d t

)1/p

. (22)

This is the part of the argument that uses that ρ > 1. In the nilpotent setting, this means that our group

G has nilpotency step s > 1 and hence is nonabelian.

Proof. For every g ∈G and t > 0 we have

f (g v t )− f (g ) = [ f (g v t )−ht 2 ∗ f (g v t )]+ [ht 2 ∗ f (g v t )−ht 2 ∗ f (g )]+ [ht 2 ∗ f (g )− f (g )]
20



so by the triangle inequality

(ˆ ∞

0

ˆ

G
‖ f (g v t )− f (g )‖p

X d g
d t

t 1+p/ρ

)1/p

≤
(ˆ ∞

0

ˆ

G
‖ f (g v t )−ht 2 ∗ f (g v t )‖p

X d g
d t

t 1+p/ρ

)1/p

+
(ˆ ∞

0

ˆ

G
‖ht 2 ∗ f (g v t )−ht 2 ∗ f (g )‖p

X d g
d t

t 1+p/ρ

)1/p

+
(ˆ ∞

0

ˆ

G
‖ht 2 ∗ f (g )− f (g )‖p

X d g
d t

t 1+p/ρ

)1/p

.

We bound each term by the right-hand side of (22). First,

(ˆ ∞

0

ˆ

G
‖ f (g v t )−ht 2 ∗ f (g v t )‖p

X d g
d t

t 1+p/ρ

)1/p

=
(
ˆ ∞

0

ˆ

G

∥
∥
∥
∥
∥

ˆ t 2

0

ḣτ∗ f (g v t )dτ

∥
∥
∥
∥
∥

p

X

d g
d t

t 1+p/ρ

)1/p

≤
(
ˆ ∞

0

(
ˆ t 2

0

∥
∥ḣτ∗ f

∥
∥

Lp (G ;X ) dτ

)p
d t

t 1+p/ρ

)1/p

≤ 21−1/pρ

(ˆ ∞

0

t p 2ρ−1

2ρ
−1‖ḣt ∗ f ‖p

Lp (G ;X )
d t

)1/p

,

where in the first inequality we used the triangle inequality in Lp(G ; X ) and the fact that the Haar measure

on G is right-invariant, and in the second inequality we used Hardy’s inequality [HLP+52, Theorem 330]

(ˆ ∞

0

[

x−ν
ˆ x

0

f (t )d t

]p

d x

)1/p

≤
1

ν−1/p

(ˆ ∞

0

x(1−ν)p f (x)p d x

)1/p

, ν>
1

p
, (23)

with ν= 1
p + 1

2ρ . The third term of the right-hand side of (22) is bounded using the same method.

We now bound the second term of the right-hand side of (22). By the semigroup property we have

ht = ht /2 ∗ht /2 for t > 0, hence ḣt = ht /2 ∗ ḣt /2 and so

∂t∂x ht = ∂x ḣt = ∂x ht /2 ∗ ḣt /2.

Since by Young’s inequality

‖∂x ht ∗ f ‖Lp (G ;X ) ≤ ‖∂x ht‖L1(R)‖ f ‖Lp (G ;X ) =
1

p
πt

‖ f ‖Lp (G ;X ), (24)

we have limt→∞∂x ht ∗ f = 0 in Lp (G ; X ), and thus

∂x ht 2 ∗ f =−
ˆ ∞

t 2

∂τ(∂x hτ∗ f )dτ=−
ˆ ∞

t 2

∂x hτ/2 ∗ ḣτ/2 ∗ f dτ,

and we may write

ht 2 ∗ f (g v t )−ht 2 ∗ f (g ) =
ˆ t

0

∂x ht 2 ∗ f (g v u)du =−
ˆ t

0

ˆ ∞

t 2

∂x hτ/2 ∗ ḣτ/2 ∗ f (g v u)dτdu.
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Observe that for every t ∈ (0,∞) we have
(ˆ ∞

0

ˆ

G
‖ht 2 ∗ f (g v t )−ht 2 ∗ f (g )‖p

X d g
d t

t 1+p/ρ

)1/p

≤
(
ˆ ∞

0

ˆ

G

∥
∥
∥
∥

ˆ t

0

ˆ ∞

t 2

∂x hτ/2 ∗ ḣτ/2 ∗ f (g v u)dτdu

∥
∥
∥
∥

p

X
d g

d t

t 1+p/ρ

)1/p

≤
(
ˆ ∞

0

(
ˆ t

0

ˆ ∞

t 2

(ˆ

G

∥
∥∂x hτ/2 ∗ ḣτ/2 ∗ f (g v u)

∥
∥

p
X d g

)1/p

dτdu

)p
d t

t 1+p/ρ

)1/p

=
(ˆ ∞

0

(

t

ˆ ∞

t 2

∥
∥∂x hτ/2 ∗ ḣτ/2 ∗ f )

∥
∥

Lp (G ;X ) dτ

)p d t

t 1+p/ρ

)1/p

≤
(ˆ ∞

0

t p ρ−1

ρ
−1

(ˆ ∞

t 2

∥
∥∂x hτ/2 ∗ ḣτ/2 ∗ f

∥
∥

Lp (G ;X ) dτ

)p

d t

)1/p

≤
21−1/pρ

ρ−1

(ˆ ∞

0

t p 3ρ−1

2ρ
−1 ∥

∥∂x ht /2 ∗ ḣt /2 ∗ f
∥
∥

p
Lp (G ;X ) d t

)1/p

,

where the second inequality uses the triangle inequality in Lp (G ; X ), the first equality uses the right-

invariance of the Haar measure µ, and the fourth inequality uses the second form of Hardy’s inequality

[HLP+52, Theorem 330]
(ˆ ∞

0

[

tν
ˆ ∞

t
f (u)du

]p

d t

)1/p

≤
1

ν+1/p

(ˆ ∞

0

xp(1+ν) f (x)p d x

)1/p

, ν>−1/p (25)

with ν= ρ−1
2ρ − 1

p . (This is the step where we use ρ > 1.) By Young’s inequality,

‖∂x ht /2 ∗ ḣt /2 ∗ f ‖Lp (G ;X ) ≤‖∂x ht /2‖L1(R)‖ḣt /2 ∗ f ‖Lp (G ;X ) =
√

2

πt
‖ḣt /2 ∗ f ‖Lp (G ;X ).

Therefore
(ˆ ∞

0

ˆ

G
‖ht 2 ∗ f (g v t )−ht 2 ∗ f (g )‖p

X d g
d t

t 1+p/ρ

)1/p

≤
23/2−1/p−1/2ρρ

p
π(ρ−1)

(ˆ ∞

0

t p 2ρ−1

2ρ
−1‖ḣt ∗ f ‖p

Lp (G ;X )
d t

)1/p

.

This completes the proof. �

2.1.2. Step 2. We will next bound ḣt ∗ f using ḣt ∗∇ f . We first prove the following lemma.

Lemma 37. Suppose that p ∈ [1,∞) and t ∈ (0,∞). Then for every Banach space (X ,‖ · ‖X ) and every
smooth and compactly supported f : G → X we have

∥
∥ḣt ∗ f − ḣ2t ∗ f

∥
∥

Lp (G ;X ) . t 1/2ρ
∥
∥ḣt ∗∇ f

∥
∥

Lp (G ;ℓk
2 (X )) . (26)

Proof. Recalling the semigroup property ḣ2t =ht ∗ ḣt , we have

ḣt ∗ f (g )− ḣ2t ∗ f (g ) = ḣt ∗ f (g )−ht ∗ ḣt ∗ f (g ) =
ˆ

R

ht (u)
(

ḣt ∗ f (g )− ḣt ∗ f (g v−u)
)

du. (27)

For u ∈ [0,∞), let γu : [0,dG (v u ,eG )] → G be a measurable family of geodesics parametrized by ar-

clength joining eG to v u . (Such a measurable family exists by the Aumann measurable selection theorem

[Bog, Theorem 6.9.13]). For every u ∈ [0,∞) and g ∈G ,

ḣt ∗ f (g )− ḣt ∗ f (g v−u) = ḣt ∗ f (g v−uγu(dG (v u ,eG )))− ḣt ∗ f (g v−u)

=
ˆ dG (vu ,eG )

0

d

dθ
ḣt ∗ f (g v−uγu(θ))dθ.
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Because γu is horizontal and parametrized by arclength, and because convolution with ḣt commutes

with ∇ (this is because v is in the center of G), we have for every θ ∈ [0,dG (v u ,eG )]

∥
∥
∥
∥

d

dθ
ḣt ∗ f (g v−uγu(θ))

∥
∥
∥
∥

X
.

∥
∥ḣt ∗∇ f (g v−uγu(θ))

∥
∥
ℓk

2 (X ) . (28)

We thus obtain

(ˆ

G

∥
∥
∥
∥

ˆ ∞

0

ht (u)
(

ḣt ∗ f (g )− ḣt ∗ f (g v−u)
)

du

∥
∥
∥
∥

p

X
d g

)1/p

.G

ˆ ∞

0

ˆ dG (vu ,eG )

0

ht (u)

(ˆ

G

∥
∥ḣt ∗∇ f (g v−uγu(θ))

∥
∥

p

ℓk
2 (X )

d g

)1/p

dθdu

≤
(ˆ ∞

0

u1/2ρht (u)du

)

‖ḣt ∗∇ f ‖Lp (G ;ℓk
2 (X ))

(21)−(i )

. t 1/2ρ‖ḣt ∗∇ f ‖Lp (G ;ℓk
2 (X )),

where in the first equality we used the right-invariance of the Haar measure on G .

Similarly, for u ∈ (−∞,0],

ḣt ∗ f (g )− ḣt ∗ f (g v−u) =−
ˆ dG (vu ,eG )

0

d

dθ
ḣt ∗ f (gγ−u(θ))dθ,

and by the same reasoning,

(
ˆ

G

∥
∥
∥
∥

ˆ 0

−∞
ht (u)

(

ḣt ∗ f (g )− ḣt ∗ f (g v−u)
)

du

∥
∥
∥
∥

p

X
d g

)1/p

. t 1/2ρ‖ḣt ∗∇ f ‖Lp (G ;ℓk
2 (X )).

These two estimates along with (27) gives the stated inequality. �

Now we bound ḣt ∗ f using ḣt ∗∇ f .

Lemma 38. Fix p ∈ [1,∞). For every Banach space (X ,‖ · ‖X ), every smooth and compactly supported
f : G → X satisfies

(ˆ ∞

0

t p 2ρ−1

2ρ
−1 ∥

∥ḣt ∗ f
∥
∥

p
Lp (G ;X ) d t

)1/p

.G

(ˆ ∞

0

t p−1
∥
∥ḣt ∗∇ f

∥
∥

p

Lp (G ;ℓk
2 (X ))

d t

)1/p

.

Proof. By Young’s inequality,

‖ḣt ∗ f ‖Lp (G ;X ) ≤ ‖ḣt‖L1(R)‖ f ‖Lp (G ;X )
(21)−(i i )≍

1

t
‖ f ‖Lp (G ;X ),

so limt→∞ ḣt ∗ f = 0 in Lp (G ; X ). Therefore

ḣt ∗ f =
∞∑

m=1

(

ḣ2m−1t ∗ f − ḣ2m t ∗ f
)

,
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from which it follows that

(ˆ ∞

0

t p 2ρ−1

2ρ
−1 ∥

∥ḣt ∗ f
∥
∥

p
Lp (G ;X ) d t

)1/p

≤
∞∑

m=1

(ˆ ∞

0

t p 2ρ−1

2ρ
−1 ∥

∥ḣ2m−1t ∗ f − ḣ2m t ∗ f
∥
∥

p
Lp (G ;X ) d t

)1/p

.
∞∑

m=1

(ˆ ∞

0

t p 2ρ−1

2ρ
−1

(2m−1t )p/ρ
∥
∥ḣ2m−1t ∗∇ f

∥
∥

p

Lp (G ;ℓk
2 (X ))

d t

)1/p

=
( ∞∑

m=1

1

2(m−1)(2ρ−1)/2ρ

)(ˆ ∞

0

t p−1
∥
∥ḣt ∗∇ f

∥
∥

p

Lp (G ;ℓk
2 (X ))

d t

)1/p

,

where the second inequality uses Lemma 37. �

2.1.3. Step 3. We are now ready to prove the p = q case of Theorem 32.

Given a Banach space (B,‖ · ‖B), for every function φ ∈ Lp (R;B) its generalized Hardy–Littlewood g -

function Gp (φ) :R→ [0,∞] is defined as follows.

Gp (φ)(x) :=
(ˆ ∞

0

t p−1
∥
∥ḣt ∗φ(x)

∥
∥

p
B

d t

)1/p

. (29)

By [HN19, Theorem 17], which is a quantitative version of9 [MTX06, Theorem 2.1] and [Xu20, Theorem

2]

φ ∈ Lp (R;B) =⇒
∥
∥Gp (φ)

∥
∥

Lp (R;B)
.Kp (B)‖φ‖Lp (R;B). (30)

We will apply (30) to B= Lp (S;ℓk
2 (X )). By [MN14, Corollary 6.4],

Kp (B) ≤
(

5p2

(p −1)2

)1−1/p

Kp (ℓk
2 (X )) ≤

(
50p3

(p −1)3

)1−1/p

Kp (X ).Kp (X ),

since p ≥ 2.

Recalling (20), we choose φ= (∇ f )v : R→B. Then,

(ˆ ∞

0

t p−1
∥
∥ḣt ∗∇ f

∥
∥

p

Lp (G ;ℓk
2 (X ))

d t

)1/p

=
(ˆ ∞

0

ˆ

R

(

t
∥
∥ḣt ∗φ(z)

∥
∥
B

)p
d z

d t

t

)1/p

≤
(ˆ

R

ˆ ∞

0

(

t
∥
∥ḣt ∗φ(z)

∥
∥
B

)p d t

t
d z

)1/p

=
∥
∥Gp (φ)

∥
∥

Lp (R;B)

.Kp (X )‖φ‖Lp (R;B) = Kp (X )‖∇ f ‖Lp (G ;ℓk
2 (X )).

By this discussion and Lemmas 37 and 38, the proof for the case p = q is complete.

9More precisely, [MTX06] proves inequality (30) for ‘subordinated’ semigroups, such as the Poisson semigroup subordinated

by the heat semigroup, and [Xu20] proves the inequality for general symmetric diffusion semigroups. The work [HN19] has the

advantage that it obtains, for the heat semigroup, the explicit constant mp (B), the martingale cotype p constant of B, which in

turn is bounded by Kp (B) by [Pis75]. Since [HN19] and [Xu20] were unavailable when [LN14] was written, [LN14] worked with

the Poisson semigroup. We could have also started with the Poisson semigroup Pt , which gives the same constant in (30) due

to semigroup subordination. See [NY20, Appendix A] for a detailed account of this discussion.
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2.2. The case p < q . The following is an imitation of the argument of [NY20, Appendix A]. Recall that for

all t > 0, limr→∞µ(Br+t )/µ(Br )= 1.

For M > 1, let βM : G → [0,1] be an O(1)-Lipschitz smooth bump function with βM = 1 on BM and

suppβM ⊂BM+1. For f : G → X , define FM : G → Lp (G ;E ) by

FM (h)(g ) =βM (h) f (g h), g ,h ∈G .

Then by FM is compactly supported and smooth, so by the p = q case,
(ˆ ∞

0

‖D t
v FM‖q

Lq (G ;Lp (G ;X ))

d t

t

)1/q

.
ρ

ρ−1
Kq (Lp (G ; X ))‖∇FM‖Lq (G ;ℓk

q (Lp (G ;X ))),

where D t
v is shorthand for D t

v f (g ) = f (g v t )− f (g )

t 1/ρ .

For q ∈ (1,2], the q-uniform smoothness constant of X is defined by

Sq (X ) := inf






K > 0 : ∀x, y ∈ E

(

‖x‖q
X +K q‖y‖q

X

)1/q ≥
(

‖x + y‖q
X +‖x − y‖q

X

2

)1/q





.

Then we have

Kq (Lp (G ; X )) = Sq/(q−1)(Lp/(p−1)(G ; X ∗)) ≤ max

{(
p

p −1

)(q−1)/q

,Sq/(q−1)(X ∗)

}

≍max
{

(p −1)
1
q −1

,Kq (X )
}

Where the equality and ≍ follow from [BCL94, Lemma 5] and the inequality follows from equation (4.4)

of [Nao14]. Therefore we have
(ˆ ∞

0

‖D t
v FM‖q

Lq (G ;Lp (G ;X ))

d t

t

)1/q

.
ρ

ρ−1
max{(p −1)1/q−1,Kq (E )}‖∇FM‖Lq (G ;ℓk

q (Lp (G ;X ))). (31)

As

∇FM (h)(g ) = f (g h)∇βM (h)+βM (h)∇ f (g h)

from left-invariance of ∇, we have (with the normalization µ(B1) = 1)

‖∇FM (h)‖ℓk
2 (Lp (G ;X )) . ‖ f ‖Lp (G ;X )1BM+1\BM (h)+‖∇ f ‖Lp (G ;X )1BM+1

(h), h ∈G ,

and thus (with the normalization µ(B1) = 1)

‖∇FM‖Lq (G ;ℓk
2 (Lp (G ;X ))) .µ(BM+1 \ BM )1/q‖ f ‖Lp (G ;X ) +µ(BM )1/q‖∇ f ‖Lp (G ;ℓk

2 (X )). (32)

If 0 < t < M s and h ∈ BM−t 1/s , then hv t ∈ BM so βM (h) = βM (hv t ) = 1. Thus, for any h ∈ BM−t 1/s ,

‖D t
v FM (h)‖Lp (G ;X ) =‖D t

v f ‖Lp (G ;X ). We have

‖D t
v FM‖Lq (G ;Lp (G ;X )) &µ(BM−t 1/s )1/q‖D t

v f ‖Lp (G ;X ),

and for 0< T < M ,
(
ˆ T s

0

‖D t
v FM‖q

Lq (G ;Lp (G ;X ))

d t

t

)1/q

&µ(BM−T )1/q

(
ˆ T s

0

‖D t
v f ‖q

Lp (G ;X )

d t

t

)1/q

. (33)

Combining (31), (32), and (33), we are left with

µ(BM−T )1/q

(
ˆ T s

0

‖D t
v f ‖q

Lp (G ;X )

d t

t

)1/q

.
ρ

ρ−1
max{(p −1)1/q−1,Kq (X )}

(

µ(BM+1 \ BM )1/q‖ f ‖Lp (G ;X ) +µ(BM )1/q‖∇ f ‖Lp (G ;ℓk
2 (X ))

)

for all 0 < T < M . Taking M →∞ and then T →∞, we obtain the stated inequality. This completes the

proof of Theorem 32.
25



3. PROOF OF THEOREMS 1, 2, 10, 11, 14, AND 15 AND COROLLARIES 3 AND 4: DISTORTION BOUNDS

In this section we prove Theorems 1 and 2, Corollaries 3 and 4, and Theorems 10, 11, 14 and 15. Theo-

rems 1, 10, 11, 14 and 15 will follow from Theorem 5, Theorem 2 will follow from Theorem 6, and Corol-

laries 3 and 4 will follow from Theorems 1 and 2, respectively.

First we show the proof of Theorem 1 from Theorem 5.

Proof of Theorem 1 from Theorem 5. Suppose f : Br → X satisfies dG (x, y) ≤ ‖ f (x)− f (y)‖X ≤ DdG (x, y)

for x, y ∈ Br . Translating and multiplying f by a cutoff function we may construct F : G → X which is

3D-Lipschitz, agrees with f on Br /2, and is supported on Br . Supposing Theorem 5 and applying (2), we

have, using ‖ f (hv t )− f (h)‖X ≥ dG (v t ,eG)&G t 1/ρ for t ≥ 1,

µ(Br /4)1/q log(r s /4s )1/q .G

(
ˆ r s /4s

1

ˆ

Br /4

(‖ f (hv t )− f (h)‖X

t 1/s

)q

dµ(h)
d t

t

)1/q

. Kq (X )

(ˆ

Br

‖∇F‖q

ℓk
2 (X )

dµ

)1/q

.G Kq (X )µ(Br )1/q D.

But by [Kar94, Corollary 4.11], we have µ(Br ) ≍G r nh for r = Ω(1) for a fixed positive integer nh . We

therefore obtain Theorem 1. �

The proof of Theorem 2 from Theorem 6 is similar.

Proof of Theorem 2 from Theorem 6. Let c be as in Theorem 6. It is enough to show that cX (B(c+1)n) &Γ

(logn)1/q

Kq (X ) . Suppose that f : Γ → X satisfies dW (x, y) ≤ ‖ f (x)− f (y)‖X ≤ DdW (x, y) for all x, y ∈ BΓ

(c+1)n .

Recall that

dW (v k
Γ

,eΓ) ≍Γ k1/s, k ∈N,

and also that |Bm | ≍Γ mnh for every m ∈ N (see [BLD12, Theorem 1.1]). Thus, Theorem 6 applied to f
yields the following estimate.

nnh /q (log n)1/q .Γ

(
ns
∑

k=1

nnh
k q/s

k1+q/s

)1/q

.Γ Kq (X )nnh /q D, (34)

which gives Theorem 2. �

Proof of Corollary 4. The lower bound of Corollary 4 follows from Theorem 2. The upper bound follows

from a version [LMN05, Theorem 5.1] of the Assouad embedding theorem [Ass83]:

cp (Γ,d 1−ε
Γ

).Γ,p 1/ε1/max{p,2}, 0 < ε< 1,

Also, (BΓ
n ,d

1−1/2 logn
W ) is O(1)-bilipschitz equivalent to (BΓ

n ,dW ), so we have the upper bound. �

Proof of Corollary 3. The lower bound of Corollary 3 follows from Theorem 2. To show the upper bound,

we note that the proof of the aforementioned version [LMN05, Theorem 5.1] of the Assouad embedding

theorem [Ass83], with ε = 1
2 logR , produces a mapping ψ : G → Lp such that ψ is OG

(

(log R)1/max{p,2}
)

-

Lipschitz and satisfies

‖ψ(g )−ψ(h)‖Lp &G dG (g ,h)1−1/2 logR , g ,h ∈G such that dG (g ,h) =Ω(1).

It is thus enough to construct a mapping φ : G →R
d such that φ is O(1)-Lipschitz and

|φ(g )−φ(h)|&G dG (g ,h), g ,h ∈G such that dG (g ,h)≤ 1,

for then ψ⊕φ : G → Lp ⊕R
d = Lp gives the desired mapping.

Since G is Riemannian and exp : g→ G is a diffeomorphism, exp is O(1)-bilipschitz on balls of radius

O(1). The idea is to ‘glue’ these mappings together to produce the mapping φ.
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Let N be a (1,1)-net of G . Since G is doubling, there is a constant K such that N = ∪K
i=1

Ni , where Ni

are 8-packings of G . For each i = 1, · · · ,K extend the mapping

∪g∈Ni g B2 → g, h ∈ g B2 7→ exp−1(g−1h)

to an O(log K )-Lipschitz mapping φi : G → g by [LN05], and set φ =
⊕K

i=1φi . Then φ has the desired

properties. �

Proof of Theorem 10. Let Nr1,r2
be an r2-covering of Br1

and let f : Nr1,r2
→ X be a mapping with

dG (x, y)≤ ‖ f (x)− f (y)‖ ≤DdG (x, y), x, y ∈ Nr1,r2
.

By [LN05] there is an extension F : G → X of f that is C D log K -Lipschitz for a universal constant C > 0.

Let ξ be a smooth bump function that equals 1 on Br1
, is supported on B2r1

and is O(1)-Lipschitz. Then

φ := ξF is O(D log K )-Lipschitz, equals F on Br1
and is supported on B2r1

. To apply Theorem 5 with p = q ,

we note that
(ˆ

G

∥
∥∇φ(h)

∥
∥q

ℓk
2 (X )

dµ(h)

)1/q

.
p

kD(log K )µ(B2r1
)1/q .

On the other hand, for x ∈ Br1/2 and t ∈ ((
(4+4CD logK )r2

C1
)s , (r1/2)s ] (we may assume (

(4+4CD logK )r2

C1
)s ≤

(r1/2)s since otherwise D > C1(r1/r2)
16C logK and the proof is complete), we haveφ(x) = F (x) andφ(xv t ) = F (xv t ).

Choosing n1,n2 ∈ N such that dG (x,n1) < r2, dG (xv t ,n2) < r2, we have

‖F (xv t )−F (x)‖ ≥ ‖ f (n1)− f (n2)‖−2C Dr2 log K ≥ d (n1,n2)−2C Dr2 log K ≥ (C1t 1/s−2r2)−2C Dr2 log K >
C1

2
t 1/s .

Thus
(ˆ ∞

0

ˆ

G

(‖φ(hv t )−φ(h)‖X

t 1/s

)q

dµ(h)
d t

t

)1/q

≥
(
ˆ (r1/2)s

(
(4+4CD log K )r2

C1
)s

ˆ

Br1/2

C
q
1

2q
dµ(h)

d t

t

)1/q

≥
C1s1/q

2

(

log(r1/2)− log(
(4+4C D log K )r2

C1
)

)1/q

µ(Br1/2)1/q .

Thus by Theorem 5 with p = q ,

C1s1/q

2

(

log(r1/2)− log(
(4+4C D log K )r2

C1
)

)1/q

µ(Br1/2)1/q . Kq (X )
p

kD(log K )µ(B2r1
)1/q .

But we may also assume log(r1/2)− log(
(4+4CD logK )r2

C1
) ≥ 1

2
log(r1/r2), for otherwise D > C1

p
r1/r2

16C logK and the

proof is complete. Thus

C1s1/q (log(r1/r2))1/q .Kq (X )
p

kDK 2/q log K ,

from which it follows that

D &

(

C1s1/q

p
kK 2/q log K

)

(log(r1/r2))1/q

Kq (X )
.

�

Proof of Theorem 11. Let N := N ′
c1,c2

be a (c1,c2)-net of G and let f : N → X be a mapping with

dG (x, y)1−ε ≤ ‖ f (x)− f (y)‖ ≤DdG (x, y)1−ε, x, y ∈ N .

Then f is c−ε2 D-Lipschitz, so by [LN05] there is an extension F : G → X of f that is C c−ε2 D log K -Lipschitz

for a universal constant C > 0. Fix R > 0 sufficiently large, let ξ be a smooth bump function that equals

1 on BR , is supported on B2R and is O(1)-Lipschitz. Then φ := ξF is O(c−ε2 D log K )-Lipschitz, equals F on

BR and is supported on B2R . To apply Theorem 5 with p = q , we note that
(ˆ

G

∥
∥∇φ(h)

∥
∥q

ℓk
2 (X )

dµ(h)

)1/q

.
p

kc−ε2 D(log K )µ(B2R )1/q .
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On the other hand, for x ∈ BR/2 and t ∈ ((8c1c−ε2 D log K )s/(1−ε)/C s
1, (R/2)s ] (this interval is nonempty since

we took R > 0 sufficiently large) (8c1c−ε2 D log K )s/(1−ε)/C s
1 ≥ 2s c s

1C s
1, we have φ(x) = F (x) and φ(xv t ) =

F (xv t ). Choosing n1,n2 ∈ N such that dG (x,n1) < c1, dG (xv t ,n2)< c1, we have

‖F (xv t )−F (x)‖ ≥ ‖ f (n1)− f (n2)‖−2c1c−ε2 C D log K ≥ d (n1,n2)1−ε−2c1c−ε2 C D log K

≥ (C1t 1/s −2c1)1−ε−2c1c−ε2 C D log K >
C 1−ε

1

4
t (1−ε)/s .

Thus

(ˆ ∞

0

ˆ

G

(‖φ(hv t )−φ(h)‖X

t 1/s

)q

dµ(h)
d t

t

)1/q

≥
(
ˆ (R/2)s

(8c1c−ε
2 D logK )s/(1−ε)/C s

1

ˆ

BR/2

C
q(1−ε)
1

4q
dµ(h)

d t

t 1+εq/s

)1/q

≥
C 1−ε

1

4

(
s

εq

[

(8c1c−ε2 D log K )−εq/(1−ε)/C
−εq
1 − (R/2)−εq]

)1/q

µ(BR/2)1/q .

Thus by Theorem 5 with p = q ,

C 1−ε
1

4

(
s

εq

[

(8c1c−ε2 D log K )−εq/(1−ε)/C
−εq
1 − (R/2)−εq ]

)1/q

µ(BR/2)1/q .Kq (X )
p

kc−ε2 D(log K )µ(B2R )1/q .

Since R > 0 was arbitrarily large,

C 1−ε
1 s1/q

ε1/q
(8c1c−ε2 D log K )−ε/(1−ε)/C−ε

1 .Kq (X )
p

kc−ε2 DK 2/q log K .

It follows that

D &

(

C 1−ε
1 (c2/c1)εs(1−ε)/q

k (1−ε)/2K 2(1−ε)/q log K

)

1

Kq (X )1−εε1/q
.

�

The proof of Theorem 14 is similar to that of Theorem 10 and the proof of Theorem 15 is similar to

that of Theorem 11 and we thus omit them. To see the dependence on the constants, we only need to

distinguish when K is used as the metric doubling constant or the measure doubling constant.

4. PROOF OF THEOREM 6: DISCRETIZATION

In this section, we prove Theorem 6 by discretizing the inequality of Theorem 5.

Finitely generated groups of polynomial growth have nilpotent subgroups of finite index [Gro81], so

let Γ′ ≤ Γ be a finite index nilpotent subgroup. We first can see that it is enough to prove Theorem 6 for Γ′,
i.e., we may assume Γ is a not virtually abelian finitely generated nilpotent group. Indeed, the distance

requirement dW (v n
Γ

,eΓ) ≍G n1/s carries over from Γ
′ to Γ because a finitely generated word metric on a

group and its finite index subgroup are known to be quasi-isometric. Also, once we know (3) for Γ′ and

S ′ ⊂ Γ
′, it automatically follows that it holds for Γ and S ⊃ S ′. (Observe that changing the generating set

only affects the right-hand side of (3) up to universal constant factors.)

Let T := {x ∈ Γ
′ : ∃n ∈ Z>0 such that xn = eΓ′} be the torsion subgroup of Γ′. It is well-known that T

is a finite normal subgroup of Γ′, so that Γ′′ := Γ
′/T is a torsion-free finitely generated nilpotent group.

We now see that it is enough to prove Theorem 6 for Γ′′, i.e., we may assume Γ is a torsion-free finitely

generated nonabelian nilpotent group. Indeed, again the distance requirement dW (v n
Γ

,eΓ) ≍G n1/s car-

ries over from Γ
′′ to Γ

′ because a finitely generated word metric on a group and its quotient by a finite

normal subgroup are known to be quasi-isometric. Also, suppose we know (3) for Γ′′ and S ′′ ⊂ Γ
′′. Let

S ′ be the union of T and a set of representatives for S ′′ in Γ
′, and let vΓ′ be a representative for vΓ′′ in Γ

′.
Let π : Γ′ → Γ

′′ denote the quotient map, and let C > 0 be such that π(BΓ
′

k (x)) ⊂ BΓ
′′

Ck (π(x)) for k ∈Z>0 and
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x ∈ Γ
′ and π−1(BΓ

′′

k (y)) ⊂ BΓ
′

Ck (x) for k ∈ Z>0, y ∈ Γ
′′ and x ∈ π−1(y). Given f : Γ′ → X , let [ f ] : Γ′′ → X be

given as

[ f ](y) :=
1

|T |
∑

x∈π−1(y)

f (x), y ∈ Γ
′′.

Then





ns
∑

k=1

1

k1+max{p,q}/s




∑

x∈BΓ′
n

‖ f (xv k
Γ′)− f (x)‖p

X





max{p,q}/p 



1/max{p,q}

≤





ns
∑

k=1

1

k1+max{p,q}/s




∑

x∈BΓ′
n

∥
∥
∥

(

f (xv k
Γ′)− [ f ]([xv k

Γ′])
)

−
(

f (x)− [ f ]([x])
)
∥
∥
∥

p

X





max{p,q}/p 



1/max{p,q}

+





ns
∑

k=1

1

k1+max{p,q}/s




∑

x∈BΓ′
n

∥
∥
∥[ f ]([xv k

Γ′])− [ f ]([x])
∥
∥
∥

p

X





max{p,q}/p 



1/max{p,q}

.

(35)

The second term is at most





ns
∑

k=1

1

k1+max{p,q}/s



|T |
∑

y∈BΓ′′
Cn

‖[ f ](y v k
Γ′′)− [ f ](y)‖p

X





max{p,q}/p 



1/max{p,q}

.Γ max
{

(p −1)1/q−1,Kq (X )
}




∑

y∈BΓ′
cCn

∑

a∈S ′′
‖[ f ](y a)− [ f ](y)‖p

X





1/p

= max
{

(p −1)1/q−1,Kq (X )
}




∑

y∈BΓ′
cCn

∑

a∈S ′′

∥
∥
∥
∥
∥

1

|T |
∑

x∈π−1(y)

( f (xa′)− f (x))

∥
∥
∥
∥
∥

p

X





1/p

≤ max
{

(p −1)1/q−1,Kq (X )
}




∑

y∈BΓ′
cCn

∑

a∈S ′′

1

|T |
∑

x∈π−1(y)

∥
∥ f (xa′)− f (x)

∥
∥p

X





1/p

≤ max
{

(p −1)1/q−1,Kq (X )
}






∑

x∈BΓ′
cC2 n

∑

a∈S ′′

1

|T |
∥
∥ f (xa′)− f (x)

∥
∥p

X






1/p

,

and is thus bounded by the right-hand side of (3), where for a ∈ S ′′, a′ ∈ S ′ denotes an element of π−1(a).
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It remains to show that the first term of the right-hand side of (35) is bounded by the right-hand side

of (3). Indeed, it is equal to





ns
∑

k=1

1

k1+max{p,q}/s




∑

x∈BΓ′
n

∥
∥
∥
∥
∥

1

|T |
∑

b∈T

(

f (xv k
Γ′)− f (xv k

Γ′b)− f (x)+ f (xb)
)
∥
∥
∥
∥
∥

p

X





max{p,q}/p 



1/max{p,q}

≤





ns
∑

k=1

1

k1+max{p,q}/s




2p−1

|T |
∑

x∈BΓ′
n

∑

b∈T

(∥
∥
∥ f (xv k

Γ′)− f (xv k
Γ′b)

∥
∥
∥

p

X
+

∥
∥ f (x)− f (xb)

∥
∥p

X

)





max{p,q}/p 



1/max{p,q}

≤





ns
∑

k=1

1

k1+max{p,q}/s




2p

|T |
∑

x∈BΓ′
c′n

∑

b∈T

∥
∥ f (x)− f (xb)

∥
∥p

X





max{p,q}/p 



1/max{p,q}

.Γ




∑

x∈BΓ′
c′n

∑

b∈T

∥
∥ f (x)− f (xb)

∥
∥p

X





1/p

where c ′ > 0 is such that BΓ
′

n v k
Γ′ ⊂ BΓ

′

c ′n for n ∈N and k = 1, · · · ,ns .

This completes our reduction of Theorem 6 to proving it for Γ being a torsion-free finitely generated

nonabelian nilpotent group. By the Malcev embedding theorem [Mal49], there exists a simply connected

nilpotent Lie group G , called the Malcev completion of Γ, such that Γ embeds as a cocompact subgroup

of G . Because Γ is nonabelian, G is nonabelian, so Theorem 5 applies to G .

There exist choices of s and vΓ as stated. It is enough to take v ∈ Z (Γ) \ {eΓ} with dW (v n ,eΓ) ≍Γ n1/s

for some integer s ≥ 2. For example, let s denote the nilpotency step of G , i.e., the largest integer so that

[[G ,G] · · · ,G]
︸ ︷︷ ︸

s times

is a nontrivial subgroup. If we choose vΓ ∈ [[Γ,Γ] · · · ,Γ]
︸ ︷︷ ︸

s times

\{eΓ} ⊂ Z (Γ′) \ {eΓ}, then

dW (v k
Γ

,eΓ) ≍Γ,vΓ
k1/s , k ∈N

because by [BLD12, Theorem 1.3], |dW (v k
Γ

,eΓ)−dG (v k
Γ

,eG )| =OΓ,vΓ
(dG (v k

Γ
,eG )1−α) for some fixed α=αG ,

and dG (v k ,eG ) ≍G k1/s by [BLD12, Proposition 2.13].

Also, |BΓ
m | ≍Γ mnh for every m ∈ N [BLD12, Theorem 1.1], where nh is given by the Bass–Guivarc’h

formula

nh :=
s∑

k=1

k dim



[[G ,G] · · · ,G]
︸ ︷︷ ︸

k times

/[[G ,G] · · · ,G]
︸ ︷︷ ︸

k+1 times



 .

The rest of this section follows closely the argument of Section 3 of [LN14].

Before we begin the proof of Theorem 6, we prove two metric-space valued local Poincaré inequali-

ties on Γ for preparation. Lemma 39 is an extension of the local Poincaré inequality of Kleiner [Kle10,

Thm. 2.2] and was essentially proven in [LN14, Lemma 3.2] for all finitely generated groups. We repeat

the proof for completeness.

Lemma 39 (Analogue of [LN14, Lemma 3.2]). Fix p ∈ [1,∞) and n ∈N. Let (M ,dM ) be a metric space. For
every f : Γ→ M,

∑

x,y∈BΓ
n

dM ( f (x), f (y))p ≤ (2n)p |BΓ

2n|
∑

x∈BΓ

3n

∑

a∈S
dM ( f (xa), f (x))p .

Proof. For every z ∈ BΓ

2n choose s1(z), . . . , s2n(z) ∈ S ∪ {eΓ} such that z = s1(z) · · · s2n(z). For i ∈ {1, . . . ,2n}

write wi (z) = s1(z) · · · si (z) and set w0(z) = eΓ. By the triangle inequality and Hölder’s inequality, for every
30



x, y ∈ BΓ
n we have

dM ( f (x), f (y))p ≤ (2n)p−1
2n−1∑

i=0

dM
(

f
(

xwi
(

x−1 y
))

, f
(

xwi
(

x−1 y
)

si+1

(

x−1 y
)))p

.

Consequently,

∑

x,y∈BΓ
n

dM ( f (x), f (y))p ≤ (2n)p−1
∑

z∈BΓ

2n

2n−1∑

i=1

∑

x∈BΓ
n

dM
(

f (xwi (z)) , f (xwi (z) si+1 (z))
)p

= (2n)p−1
∑

z∈BΓ

2n

2n−1∑

i=0

∑

g∈BΓ
n wi (z)

dM
(

f (g ), f (g si+1(z))
)p

≤ (2n)p−1 · |BΓ

2n | ·2n
∑

x∈BΓ

3n

∑

a∈S
dM ( f (xa), f (x))p .

�

The following lemma is an analogue of [LN14, Lemma 3.4], which was again proven essentially for all

finitely generated groups. A mapping f : Γ → M is said to be finitely supported if there exists m0 ∈ M
such that | f −1(M \ {m0})| <∞.

Lemma 40 (Analogue of [LN14, Lemma 3.4]). Fix p ∈ [1,∞) and n ∈N. Let (M ,dM ) be a metric space. For
every finitely supported f : Γ→ M,

∑

x∈Γ

∑

z∈BΓ
n

dM ( f (xz), f (x))p ≤np |BΓ

n |
∑

x∈Γ

∑

a∈S
dM ( f (xa), f (x))p .

Proof. Let si and wi be as in the proof of Lemma 39. By the triangle inequality and Hölder’s inequality,

∑

x∈Γ

∑

z∈BΓ
n

dM ( f (xz), f (x))p ≤ np−1
∑

x∈Γ

∑

z∈BΓ
n

n−1∑

i=0

dM
(

f (xwi (z)) , f (xwi (z) si+1 (z))
)p

.

≤ np |BΓ

n |
∑

x∈Γ

∑

a∈S
dM ( f (xa), f (x))p .

�

With Lemmas 39 and 40, we begin by discretizing the inequality of Theorem 5, as in the following

theorem. After this, we will localize the statement into that of Theorem 6, which states a local version of

Theorem 41 on balls in Γ.

The following theorem corresponds to Theorem 3.3 of [LN14], whose proof is in turn a variant of the

proof of Claim 7.3 in [ANT13]. We may state it in terms of discrete groups of polynomial growth.

Theorem 41 (Analogue of [LN14, Theorem 3.3]). Let Γ be a not virtually abelian finitely generated group
of polynomial growth. There exist vΓ ∈ Γ, s ∈N with s ≥ 2, and c = c(Γ) ∈N such that the following is true.
First, dW (v n

Γ
,eΓ) ≍Γ n1/s for n ∈N. Second, let p ∈ (1,∞) and q ∈ [2,∞). Suppose that (X ,‖·‖X ) is a Banach

space satisfying Kq (X ) <∞. Then for every finitely supported f : Γ→ X we have

(
ns
∑

k=1

1

k1+max{p,q}/s

(

∑

x∈Γ
‖ f (xv k

Γ
)− f (x)‖p

X

)max{p,q}/p )1/max{p,q}

.Γ,vΓ
max

{

(p −1)1/q−1,Kq (X )
}

(

∑

x∈Γ

∑

a∈S
‖ f (xa)− f (x)‖p

X

)1/p

.

Proof. With the same argument as in the beginning of this section, we may assume Γ is a torsion-free

nonabelian finitely generated nilpotent group, and take vΓ and s as before.
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The idea of the proof is that given a finitely supported function f : Γ → X , we extend it to a global

function F : G → X via a partition of unity, and then Theorem 5 for F will give Theorem 41 for f .

Let G be the Malcev completion of Γ. Since Γ is a co-compact lattice of G , there exists a compactly

supported smooth function χ : G → [0,1] with

∀h ∈G ,
∑

x∈Γ
χx (h)= 1, (36)

where for each x ∈ Γ, χx : G → X is given by χx (h) = χ(x−1h), h ∈ G . Let A = suppχ; we may assume

A−1 = A. Note that suppχx = x A and
⋃

x∈Γ
x A =G .

As A is compact, we may fix m ∈N for which A2 ∩Γ⊆ BΓ
m.

Let f : Γ→ X be finitely supported. Define F : G → X by

F (h) :=
∑

x∈Γ
χx (h) f (x). (37)

For a fixed x ∈Γ and h ∈ x A, we have
∑

y∈Γ
∇χy (h)= 0,

with ∇χy (h) 6= 0 implying y−1h ∈ supp∇χ ⊂ A, which implies y ∈ h A−1 ⊂ x A2, hence y ∈ xBΓ

m . We thus

have the bound

‖∇F (h)‖ℓk
2 (X ) =

∥
∥
∥
∥
∥

∑

y∈xBΓ
m

∇χy (h)( f (y)− f (x))

∥
∥
∥
∥
∥

ℓk
2 (X )

≤
∥
∥∇χ

∥
∥

L∞(G ;ℓk
2 )

∑

z∈BΓ
m

‖ f (xz)− f (x)‖X

.Γ |BΓ

m |1−1/p

(

∑

z∈BΓ
m

‖ f (y z)− f (y)‖p
X

)1/p

.

By integrating over y A and summing over y ∈Γ,

(ˆ

G
‖∇F (h)‖p

ℓk
2 (X )

dh

)1/p

≤
(

∑

y∈Γ

ˆ

y A
‖∇F (h)‖p

ℓk
2 (X )

dh

)1/p

.Γ

(

∑

y∈Γ

∑

z∈BΓ
m

‖ f (y z)− f (y)‖p
X

)1/p

Lemma 40
.Γ

(

∑

x∈Γ

∑

a∈S
‖ f (xa)− f (x)‖p

X

)1/p

.

(38)

Since Γ induces a covering space action on G , we may find a bounded open neighborhood U ⊆ G of

eG such that U ∩ (xU ) = ; for all x ∈ Γ \ {eΓ}. As v [0,1]
Γ

:= {vτ
Γ

: τ ∈ [0,1]} and U are bounded in G , we can

choose r ∈N such that (U v [0,1]
Γ

A)∩Γ⊆ BΓ
r . For x ∈Γ, h ∈ xU , k ∈N, and t ∈ [k ,k +1], we have by (36) and

(37)

F (hv t
Γ

)− f (xv k
Γ

) =
∑

w∈Γ
χw (hv t

Γ
)( f (w )− f (xv k

Γ
)).

Every w ∈ Γ that satisfies χw (hv t
Γ

) 6= 0 should have hv t
Γ
∈ w A, and since A = A−1 and vΓ ∈ Z (G), we have

w ∈ hv t
Γ

A ⊆ xv k
Γ

U v [0,1]
Γ

A, so that w ∈ xv k
Γ

BΓ

r . Therefore

‖F (hv t
Γ

)− f (xv k
Γ

)‖X .Γ

(

∑

z∈BΓ
r

‖ f (xv k
Γ

z)− f (xv k
Γ

)‖p
X

)1/p

.
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The case k = t = 0 gives

‖F (h)− f (x)‖X .Γ

(

∑

z∈BΓ
r

‖ f (xz)− f (x)‖p
X

)1/p

.

Therefore by the triangle inequality,

‖ f (xv k
Γ

)− f (x)‖X .Γ ‖F (hv t
Γ

)−F (h)‖X +
(

∑

z∈BΓ
r

(

‖ f (xv k
Γ

z)− f (xv k
Γ

)‖p
X +‖ f (xz)− f (x)‖p

X

)
)1/p

.

Integration over h ∈ xU gives

‖ f (xv k
Γ

)− f (x)‖X .Γ

(ˆ

xU
‖F (hv t

Γ
)−F (h)‖p

X dh

)1/p

+
(

∑

z∈BΓ
r

(

‖ f (xv k
Γ

z)− f (xv k
Γ

)‖p
X +‖ f (xz)− f (x)‖p

X

)
)1/p

.

Summing over x ∈Γ and using that the sets {xU }x∈Γ are pairwise disjoint,
(

∑

x∈Γ
‖ f (xv k

Γ
)− f (x)‖p

X

)1/p

.Γ

(ˆ

G
‖F (hv t

Γ
)−F (h)‖p

X dh

)1/p

+
(

∑

x∈Γ

∑

z∈BΓ
r

(

‖ f (xv k
Γ

z)− f (xv k
Γ

)‖p
X +‖ f (xz)− f (x)‖p

X

)
)1/p

Lemma 40
.Γ

(ˆ

G
‖F (hv t

Γ
)−F (h)‖p

X dh

)1/p

+
(

∑

x∈Γ

∑

a∈S
‖ f (xa)− f (x)‖p

X

)1/p

.

Integrating over t ∈ [k ,k +1] yields

1

k1+max{p,q}/s

(

∑

x∈Γ
‖ f (xv k

Γ
)− f (x)‖p

X

)max{p,q}/p

≤C max{p,q}

ˆ k+1

k

(ˆ

G
‖F (hv t

Γ
)−F (h)‖p

X dh

)max{p,q}/p d t

t 1+max{p,q}/s

+
C max{p,q}

k1+max{p,q}/s

(

∑

x∈Γ

∑

a∈S
‖ f (xa)− f (x)‖p

X

)max{p,q}/p

,

where C =CG ∈ (0,∞) is a constant depending on G . Summing over k ∈N,

(
∞∑

k=1

1

k1+max{p,q}/s

(

∑

x∈Γ
‖ f (xv k

Γ
)− f (x)‖p

X

)max{p,q}/p )1/max{p,q}

.Γ

(
ˆ ∞

0

(ˆ

G
‖F (hv t

Γ
)−F (h)‖p

X dh

)max{p,q}/p d t

t 1+max{p,q}/s

)1/max{p,q}

+
(

∑

x∈Γ

∑

a∈S
‖ f (xa)− f (x)‖p

X

)1/p

.

(39)

The desired inequality follows from (38) and (39) along with Theorem 5 for F (although it may be the

case that dG (v t
Γ

,eG )� t 1/s , a simple rescaling argument gives the same inequality up to constant factors

depending on vΓ). �

Now we are ready to prove Theorem 6. Of course, assume Γ is torsion-free nonabelian finitely gener-

ated nilpotent, and choose vΓ and s as before.

Proof of Theorem 6. The argument follows the proof of Theorem 3.1 of [LN14], which in turn follows the

proof of Claim 7.2 in [ANT13]. Recall c is such that

dW (eΓ, v k
Γ

) ≤ ck1/s.
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Fix n ∈N and an f : Γ→ X . By translation, we may assume
∑

x∈BΓ

(c+3)n
f (x) = 0. Then




∑

x∈BΓ

(c+3)n

‖ f (x)‖p
X





1/p

=




∑

x∈BΓ

(c+3)n

∥
∥
∥
∥
∥
∥

1

|BΓ

(c+3)n |
∑

y∈BΓ

(c+3)n

( f (x)− f (y))

∥
∥
∥
∥
∥
∥

p

X





1/p

≤




1

|BΓ

(c+3)n|
∑

x,y∈BΓ

(c+3)n

‖ f (x)− f (y)‖p
X





1/p

Lemma 39
.Γ n




∑

x∈BΓ

3(c+3)n

∑

a∈S
‖ f (xa)− f (x)‖p

X





1/p

.

(40)

Define the cutoff function ξ :Γ→ [0,1] as

ξ(x) :=







1 x ∈ BΓ

(c+1)n ,

c +2− dW (x,e)
n x ∈ BΓ

(c+2)n \ BΓ

(c+1)n ,

0 x ∈Γ\ BΓ

(c+2)n .

Then φ := ξ f is supported on BΓ

(c+2)n and we may apply Theorem 41. As ξ is 1
n -Lipschitz and takes values

in [0,1], we have for all a ∈ S and x ∈Γ

‖φ(x)−φ(xa)‖X ≤ |ξ(x)−ξ(xa)| · ‖ f (x)‖X +|ξ(xa)| · ‖ f (x)− f (xa)‖X

≤
1

n
‖ f (x)‖X +‖ f (x)− f (xa)‖X .

(41)

We have dW (eΓ, v k
Γ

) ≤ cn for all k ∈ {1, . . . ,ns}. Thus, for every x ∈ BΓ

n we have xv k
Γ
∈ BΓ

(c+1)n and thus

φ(x) = f (x) and φ(xv k
Γ

) = f (xv k
Γ

), so

(
ns
∑

k=1

1

k1+q/s

(

∑

x∈BΓ
n

‖ f (xv k
Γ

)− f (x)‖p
X

)q/p )1/q

≤
(

∞∑

k=1

1

k1+q/s

(

∑

x∈Γ
‖φ(xv k

Γ
)−φ(x)‖p

X

)q/p )1/q

. (42)

On the other hand,

(

∑

x∈Γ

∑

a∈S
‖φ(xa)−φ(x)‖p

X

)1/p

=




∑

x∈BΓ

(c+3)n

∑

a∈S
‖φ(xa)−φ(x)‖p

X





1/p

(41)
≤

|S|1/p

n




∑

x∈BΓ

(c+3)n

‖ f (x)‖p
X





1/p

+




∑

x∈BΓ

(c+3)n

∑

a∈S
‖ f (xa)− f (x)‖p

X





1/p

(40)

.Γ




∑

x∈BΓ

3(c+3)n

∑

a∈S
‖ f (xa)− f (x)‖p

X





1/p

,

where the first equality holds since φ is supported on BΓ

(c+2)n . The desired inequality now follows from

the above two inequalities combined with Theorem 41 for φ. �

5. PROOF OF THEOREM 9: SUBLINEAR GROWTH OF COCYCLES

Our goal in this section is to prove Theorem 9. The proof follows closely that of [ANT13].

Let (X ,‖ · ‖X ) be a q-uniformly convex space. We will see by [NP11] that is enough to prove Theorem

9 for 1-Lipschitz 1-cocycles. Here, f ∈ Z 1(π) be a 1-cocycle with respect to an action π : Γ→ Aut(X ) of Γ

on X by linear isometric automorphisms if the function f : Γ→ X satisfies f (x y)=π(x) f (y)+ f (x) for all

x, y ∈Γ. The 1-Lipschitz requirement for f is equivalent to ‖ f (a)‖X ≤ 1 for all a ∈ S.
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We first recall the following property of q-uniformly convex spaces.

Lemma 42 ([ANT13, Lemma 3.1]). Let (X ,‖ · ‖X ) be q-uniformly convex. For a fixed z ∈ X and linear
operator T : X → X with ‖T ‖≤ 1, define

sn :=
1

2n

2n−1∑

j=0

T j z, n ≥ 0.

Then we have
∞∑

i=0

1

2l

2l−1∑

j=0

∥
∥
∥s(i+1)l −T j 2i l

si l

∥
∥
∥

q

X
≤ (2Kq (X ))q‖z‖q

X , l ∈N. (43)

On the other hand, as X is reflexive, X is ergodic [DS88, p.662], i.e., for every linear isometry T : X → X

and x ∈ X the sequence
{

1
n

∑n−1
j=0 T j x

}∞

n=1
converges in norm. Thus, the operator P : X → X defined by

P x := lim
N→∞

1

N

N−1∑

n=0

π(v)n x, x ∈ X ,

is well-defined, has norm ≤ 1, is a contraction onto the subspace X0 of π(v)-invariant vectors, and is

idempotent. As v is a central element of Γ, P commutes with π(g ) for all g ∈ Γ, and so the maps P f , (I −
P) f : Γ→ X are both Lipschitz and are 1-cocycles.

Now define linear operators Pn : X → X , n ∈N, by

Pn :=
1

2n

2n−1∑

j=0

π(v) j .

Of course, ‖Pn‖≤ 1 and Pn commutes with π(g ) for all g ∈Γ.

Lemma 43 (Analogue of [ANT13, Lemma 4.1]). Let (X ,‖ · ‖X ) be a q-uniformly convex space. Then for
every l ,k ,m ∈N there exist integers i ∈ [k +1,k +m] and j ∈ [0,2l −1] such that

∥
∥
∥π

(

v− j 2i l
)

P(i+1)l f
(

v ⌊nρ⌋
)

−Pi l f
(

v ⌊nρ⌋
)∥
∥
∥

X
.G

Kq (X )n

m1/p
. (44)

Proof. By Lemma 42 and the fact that ‖ f (a)‖X ≤ 1, we have for each a ∈ S

k+m∑

i=k+1

1

2l

2l−1∑

j=0

∥
∥
∥π

(

v− j 2i l
)

P(i+1)l f (a)−Pi l f (a)
∥
∥
∥

q

X
=

k+m∑

i=k+1

1

2l

2l−1∑

j=0

∥
∥
∥P(i+1)l f (a)−π

(

v j 2i l
)

Pi l f (a)
∥
∥
∥

q

X
≤ (2Kq (X ))q .

Thus

|S|(2Kq (X ))q ≥
k+m∑

i=k+1

1

2l

2l−1∑

j=0

∑

a∈S

∥
∥
∥π

(

v− j 2i l
)

P(i+1)l f (a)−Pi l f (a)
∥
∥
∥

q

X

≥m min
k+1≤i≤k+m

1≤ j≤2l−1

∑

a∈S

∥
∥
∥π

(

v− j 2i l
)

P(i+1)l f (a)−Pi l f (a)
∥
∥
∥

q

X
,

and so there exist i ∈ [k +1,k +m], j ∈ [0,2l −1] such that

max
a∈S

∥
∥
∥π

(

v− j 2i l
)

P(i+1)l f (a)−Pi l f (a)
∥
∥
∥

X
.Γ

Kq (X )

m1/q
.

As v ⌊nρ⌋ = a1 · · ·ab for some ai ∈ S, where b =OΓ(n), we have by the cocycle identity

f (v ⌊nρ⌋) =
b∑

i=1

π(a1 · · ·ai−1) f (ai ).
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Since Pr , r ≥ 0, and π(g ), g ∈ Γ, commute, and v and g ∈ Γ commute, and π(g ) is an isometry for g ∈ Γ,

we have

∥
∥
∥π

(

v− j 2i l
)

P(i+1)l f
(

v ⌊nρ⌋
)

−Pi l f
(

v ⌊nρ⌋
)∥
∥
∥

X
≤

b∑

i=1

∥
∥
∥π

(

v− j 2i l
)

P(i+1)l f (ai )−Pi l f (ai )
∥
∥
∥

X
.Γ

Kq (X )n

m1/q
,

as claimed. �

Lemma 44 (Analogue of [ANT13, Lemma 4.2]). For every m,n ∈N,

∥
∥
∥Pm f

(

v ⌊nρ⌋
)∥
∥
∥

X
.Γ

n(ρ2+ρ−1)/(2ρ−1)

2m(ρ−1)/(2ρ−1)
.

Proof. If nρ

2m ≥ ρ−1 then we have the obvious bound

∥
∥
∥Pm f

(

v ⌊nρ⌋
)∥
∥
∥

X
≤

∥
∥
∥ f

(

v ⌊nρ⌋
)∥
∥
∥

X
≤ dW

(

eΓ, v ⌊nρ⌋
)

.Γ n

(
nρ

2m

)(ρ−1)/(2ρ−1)

.

Thus we assume nρ

2m < ρ−1.

Because

Pm −π(v k )Pm =
1

2m

k−1∑

j=0

π(v) j −
1

2m

2m+k−1∑

j=2m

π(v) j ,

we have
∥
∥
∥Pm −π(v k )Pm

∥
∥
∥≤

2k

2m
.

By the cocycle identity,

f
(

v ⌊kρ⌋⌊nρ⌋
)

=
⌊kρ⌋−1∑

j=0

π
(

v j ⌊nρ⌋
)

f
(

v ⌊nρ⌋
)

Because f is 1-Lipschitz, dW
(

eΓ, v ⌊kρ⌋⌊nρ⌋).Γ kn, and ‖Pm‖≤ 1,

kn &Γ

∥
∥
∥Pm f

(

v ⌊kρ⌋⌊nρ⌋
)∥
∥
∥

X
=

∥
∥
∥
∥
∥
⌊kρ⌋Pm f

(

v ⌊nρ⌋
)

−
⌊kρ⌋−1∑

j=0

(

Pm −π
(

v j ⌊nρ⌋
)

Pm

)

f
(

v ⌊nρ⌋
)
∥
∥
∥
∥
∥

X

≥ ⌊kρ⌋
∥
∥
∥Pm f

(

v ⌊nρ⌋
)∥
∥
∥

X
−

⌊kρ⌋−1∑

j=0

∥
∥
∥Pm −π

(

v j ⌊nρ⌋
)

Pm

∥
∥
∥ ·

∥
∥
∥ f

(

v ⌊nρ⌋
)∥
∥
∥

X

≥ ⌊kρ⌋
∥
∥
∥Pm f

(

v ⌊nρ⌋
)∥
∥
∥

X
−

⌊kρ⌋−1∑

j=0

2 j ⌊nρ⌋
2m

dW

(

eΓ, v ⌊nρ⌋
)

and rearranging terms,
∥
∥
∥Pm f

(

v ⌊nρ⌋
)∥
∥
∥

X
.Γ

n

kρ−1
+

nρ+1kρ

2m
.

Since this is true for all k , choosing k =
⌈(

(ρ−1)2m

ρnρ

)1/(2ρ−1)
⌉

gives the stated bound. Indeed, by nρ

2m < ρ−1

we have k ≍
(

(ρ−1)2m

ρnρ

)1/(2ρ−1)
and plugging in gives the desired bound. �

Lemma 45 (Analogue of [ANT13, Lemma 4.3]). For every m,n ∈N,
∥
∥
∥ f

(

v ⌊nρ⌋
)

−Pm f
(

v ⌊nρ⌋
)∥
∥
∥

X
.Γ 2m/(ρ+1)n1/(ρ+1).

Proof. If we define f̃ :Γ→ X by

f̃ (h) := f (h)−Pm f (h)= (I −Pm) f (h),
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then f̃ ∈ Z 1(π). Let k ≥ 1 be an integer to be determined later. If we set

w :=−
1

k

k−1∑

j=0

f̃ (v j ),

then

‖w‖X .Γ

1

k

k−1∑

j=0

j 1/ρ . k1/ρ.

For every h ∈Γ we have the following identity:

−π(h)w + f̃ (h)=
1

k

k−1∑

j=0

(

π(h) f̃ (v j )+ f̃ (h)
)

=
1

k

k−1∑

j=0

f̃ (hv j ) =
1

k

k−1∑

j=0

f̃ (v j h)

=
1

k

k−1∑

j=0

(

π(v j ) f̃ (h)+ f̃ (v j )
)

=
1

k

k−1∑

j=0

π(v j ) f̃ (h)−w.

(45)

But

1

k

k−1∑

j=0

π(v j ) f̃ (h) =
1

k

k−1∑

j=0

(

π(v j ) f (h)−
1

2m

2m−1∑

i=0

π(v j+i ) f (h)

)

=
1

2m

2m−1∑

i=0

(

1

k

k−1∑

j=0

π(v j )−
1

k

i+k−1∑

j=i
π(v j )

)

f (h),

so that ∥
∥
∥
∥
∥

1

k

k−1∑

j=0

π(v j ) f̃ (h)

∥
∥
∥
∥
∥

X

≤
dW (h,eΓ)

2m

2m−1∑

i=0

2i

k
≤

2m

k
dW (h,eΓ).

Because of (45), f̃ is close to a coboundary in the following sense:

∥
∥ f̃ (h)− (π(h)w −w )

∥
∥≤

2m

k
dW (h,eΓ).

Writing v ⌊nρ⌋ = a1 · · ·ab for some ai ∈ S, where b =OΓ(n), we have

∥
∥
∥ f̃

(

v ⌊nρ⌋
)∥
∥
∥

X
=

∥
∥
∥
∥
∥

b∑

i=1

π(a1 · · ·ai−1) f̃ (ai )

∥
∥
∥
∥
∥

X

.Γ

∥
∥
∥
∥
∥

b∑

i=1

π(a1 · · ·ai−1)(π(ai )w −w )

∥
∥
∥
∥
∥

X

+
n2m

k

=
∥
∥
∥π

(

v ⌊nρ⌋
)

w −w
∥
∥
∥

X
+

n2m

k
.Γ k1/ρ+

n2m

k
.

With k = ⌈n
ρ

ρ+1 2
mρ

ρ+1 ⌉, we have the stated bound. �

We now prove theorem 9.

Proof of Theorem 9. By [NP11, Theorem 9.1], by amenability of Γ, if X is q-uniformly convex and f :

Γ → X is 1-Lipschitz, then there exists a Banach space (Y ,‖ · ‖Y ) that is also q-uniformly convex with

Kq (Y ) = Kq (X ), an action π of Γ on Y by linear isometric automorphisms, and a 1-cocycle F : Γ → Y
such that ωF = ω f , where F : Γ → Y is a 1-cocycle if F (x y) = π(x)F (y)+F (x) for all x, y ∈ Γ. Thus, we

may assume without loss of generality that f ∈ Z 1(π) for some action π of Γ on X by linear isometric

automorphisms.

Let C1 <C2 be constants depending on Γ such that

C1n ≤ dW

(

v ⌊nρ⌋,eΓ
)

≤C2n, n ∈N.

We may assume t is sufficiently large so that if m is the largest integer such that

2C1

C2
2

m
ρ m

m(ρ2+2ρ−2)

pρ(ρ−1) ≤
p

t , (46)
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then
p(ρ−1)

ρ2 +2ρ−2
≤

1

2
log2 m. (47)

Given m, let k be the smallest integer such that

m
ρ+1

ρp + (ρ2+2ρ−2)(k+1)

pρ(ρ−1) ≥ t , (48)

and define

ℓ :=
⌈
ρ2 +2ρ−2

p(ρ−1)
log2 m

⌉

. (49)

Using Lemma 43, we may find integers i ∈ [k +1,k +m] and j ∈ [0,2ℓ−1] such that for all n ∈N,

∥
∥
∥π

(

v− j 2i l
)

P(i+1)l f
(

v ⌊nρ⌋
)

−Pi l f
(

v ⌊nρ⌋
)∥
∥
∥

X
.Γ

Kq (X )n

m1/p
. (50)

Finally, define

n :=
⌈

1

C1
m

ρ+1

ρp 2
iℓ
ρ

⌉

, (51)

Expanding, we have

f
(

v ⌊nρ⌋
)

=π
(

v− j 2iℓ
)

P(i+1)ℓ f
(

v ⌊nρ⌋
)

+
(

Piℓ f
(

v ⌊nρ⌋
)

−π
(

v− j 2iℓ
)

P(i+1)ℓ f
(

v ⌊nρ⌋
))

+
(

f
(

v ⌊nρ⌋
)

−Piℓ f
(

v ⌊nρ⌋
))

.

Thus by Lemmas 44 and 45 and inequality (50), we obtain:

ω f

(

dW

(

v ⌊nρ⌋,eΓ
))

≤
∥
∥
∥ f

(

v ⌊nρ⌋
)∥
∥
∥

X
.Γ

n(ρ2+ρ−1)/(2ρ−1)

2(i+1)l(ρ−1)/(2ρ−1)
+

Kq (X )n

m1/p
+2i l/(ρ+1)n1/(ρ+1)

(49)∧(51)

.Γ

Kq (X )n

m1/p
.

(52)

We compute

dW

(

v ⌊nρ⌋,eΓ
)

≥C1n
(51)
≥ m

ρ+1

ρp 2
iℓ
ρ ≥ m

ρ+1

ρp 2
(k+1)ℓ

ρ
(49)
≥ m

ρ+1

ρp + (ρ2+2ρ−2)(k+1)

pρ(ρ−1)
(48)
≥ t

and

dW

(

v ⌊nρ⌋,eΓ
)

≤C2n
(51)
≤

2C2

C1
m

ρ+1

ρp 2
iℓ
ρ ≤

2C2

C1
m

ρ+1

ρp 2
(k+m)ℓ

ρ
(49)
≤

2C1

C2
2

k+m
ρ m

ρ+1

ρp + k(ρ2+2ρ−2)

pρ(ρ−1) m
m(ρ2+2ρ−2)

pρ(ρ−1)

(48)
<

2C1

C2
2

k+m
ρ t m

m(ρ2+2ρ−2)

pρ(ρ−1)
(48)
≤

2C1

C2
2

p(ρ−1)

ρ2+2ρ−2
logm t

2
m
ρ t m

m(ρ2+2ρ−2)

pρ(ρ−1)
(46)
≤ t 3/22

p(ρ−1)

ρ2+2ρ−2
logm t (47)

≤ t 2.

Therefore t ≤ dW
(

v ⌊nρ⌋,eΓ
)

≤ t 2. The definition of m implies m &Γ min
{

log n,
p log n

loglogn

}

, and thus by (52),

we have

ω f
(

dW
(

v ⌊nρ⌋,eΓ
))

n
. Kq (X )

(
log log n

log n

)1/p

.

The proof of Theorem 9 is complete. �

6. DERIVATION OF THEOREM 24 FROM DORRONSORO’S THEOREM 22

In this section, we prove Theorem 24, which proves Theorem 17 since it is a special case. This section

follows Section 7 of [FO20a] closely.

Using an argument similar to the Vitali covering lemma, we may find a collection Br of balls B of

radius r whose union covers G , and such that the concentric balls B̂ of radius (n + 1)r have bounded
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overlap. Then
ˆ

G

(

1

rα

∣
∣
∣
∣
∣

n∑

j=0

(−1) j

(

n

j

)

f (x(δr (v)) j )

∣
∣
∣
∣
∣

)p

d x

≤
∑

B∈Br

ˆ

B

(

1

rα

∣
∣
∣
∣
∣

n∑

j=0

(−1) j

(

n

j

)

f (x(δr (v)) j )

∣
∣
∣
∣
∣

)p

d x

.p

n∑

j=0

(

n

j

)p
∑

B∈Br

ˆ

B

(
1

rα

∣
∣
∣( f (x(δr (v)) j )− A⌊α⌋

B̂
f (x(δr (v)) j )

∣
∣
∣

)p

d x

+
ˆ

B

(

1

rα

∣
∣
∣
∣
∣

n∑

j=0

(−1) j

(

n

j

)

A⌊α⌋
B̂

f (x(δr (v)) j )

∣
∣
∣
∣
∣

)p

d x

.n,p

∑

B∈Br

ˆ

B̂

(
1

rα

∣
∣
∣ f (x)− A⌊α⌋

B̂
f (x)

∣
∣
∣

)p

d x +0

=
∑

B∈Br

[
1

rα
β f ,⌊α⌋,p (B̂ )

]p

|B̂ |.G ,α

ˆ

G

[
1

rα
·β f ,⌊α⌋,p (B2(n+1)r (x))

]p

d x.

We have used in the penultimate inequality the fact that since A⌊α⌋
B̂

f is a polynomial of weighted degree

at most ⌊α⌋, and since δr (v) ∈ V⌊α/n⌋+1 ⊕·· ·⊕Vs , A⌊α⌋
B̂

f (x(δr (v)) j ) is a polynomial in j of degree at most

n −1, and hence

∆
n
δr (v) f (x)=

n∑

j=0

(−1)n− j

(

n

j

)

A⌊α⌋
B̂

f (x(δr (v)) j ) = 0.

In the last inequality we used Corollary 47. Now, the inequality (9) follows from Minkowski’s integral

inequality and Theorem 22 with q = p :




ˆ ∞

0

[
ˆ

G

(

1

rα

∣
∣
∣
∣
∣

n∑

j=0

(−1) j

(

n

j

)

f (x(δr (v)) j )

∣
∣
∣
∣
∣

)p

d x

]2/p
dr

r





1/2

.G ,α,n,p

(
ˆ ∞

0

[ˆ

G

[
1

rα
β f ,⌊α⌋,p (B2(n+1)r (x))

]p

d x

]2/p dr

r

)1/2

≤
(
ˆ

G

[ˆ ∞

0

[
1

rα
β f ,⌊α⌋,p (B2(n+1)r (x))

]2 dr

r

]p/2

d x

)1/p

.G ,α,n,p ‖(−∆p )α/2 f ‖Lp (G).

The proof of Theorem 24 is complete.

7. PROOF OF DORRONSORO’S THEOREM 22 FOR CARNOT GROUPS

We need to prove two directions. In one direction, we assume f ∈ Sp
α(G) and prove the . direction of

(8). In the other direction, we assume f ∈ Lp (G) with the left-hand side of (8) finite, and prove f ∈ Sp
α(G)

along with the & direction of (8). Our proof will be based on Dorronsoro’s original proof of the G = R
n

case in [Dor85] and will borrow modifications inspired by the proof of G = H
k case in [FO20a] to deal

with general Carnot groups.

We will first prove Theorem 22 for q = 1, the . direction in subsection 7.2 and the & direction in

subsection 7.3. Since the left-hand side of (8) is minimized when q = 1, this will finish the proof of the &
direction; for the . direction, we will see in subsection 7.4 that the . inequality for q = 1 implies the .

inequality for 1 ≤ q < min{p,2}nh

nh−min{p,2} .

For the . direction, we will first see by an approximation argument that it is enough to look at smooth

functions f (subsubsection 7.2.1), for which it turns out that we may as well approximate at all scales
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simultaneously by Taylor polynomials (subsubsection 7.2.2). Then, for 0 < α < 1, it will turn out that

the desired inequality has already been proven in [CRTN01, Theorem 5] (subsubsection 7.2.4), and for

α> 1 nonintegral we may use an induction argument on α (subsubsection 7.2.5). We finish off the case

of α≥ 1 integral by an interpolation argument (subsubsection 7.2.6), with the extra terms arising in this

process having been taken care of by a homogenization argument (subsubsection 7.2.3).

For the & direction, we assume f ∈ Lp (G) and the finiteness of a certain singular integral and need to

derive f ∈ S
p
α(G). We first see again that we may approximate by a fixed polynomial for all scales (which

we suspect to be the Taylor polynomial in the distributive sense but we can only prove this up to first

derivatives) in Proposition 54. For 0 < α ≤ 1 we again use characterizations of the fractional Laplacian

given by [CRTN01, Theorem 5] for 0 <α< 1 and [DNM21, Theorem 1.4] for α= 1 (subsubsection 7.3.1).

We then prove the case α> 1 by induction (subsubsection 7.3.2).

For simplicity, we define the L1-beta numbers

β f ,d (Br (x)) :=β f ,d ,1(Br (x)).

If we define the function

Gα f (x) :=
(
ˆ ∞

0

(
β f ,⌊α⌋(Br (x))

rα

)2 dr

r

)1/2

, x ∈G ,

then Theorem 22 states that

‖Gα f ‖Lp (G) ≍G ,α,p ‖(−∆p )α/2 f ‖Lp (G), f ∈ S
p
α. (53)

Before we begin the proof, we briefly remark on coordinate and multi-index notation on G . Recall

the coordinate system x = exp
(
∑s

r=1

∑kr
i=1

xr,i Xr,i

)

. A multi-index γ = ((γr,i )
kr
i=1

)s
r=1 is a multi-index on

∑s
r=1 kr entries, and we denote

|γ| :=
s∑

r=1

kr∑

i=1

r |γr,i | ∈N, γ! :=
s∏

r=1

kr∏

i=1

γr,i !, xγ :=
s∏

r=1

kr∏

i=1

x
γr,i

r,i ∈R.

The latter should not be confused with the previous notation x t = exp
(
∑s

r=1

∑kr

i=1
t xr,i Xr,i

)

for t ∈R.

We now define the weighted degree of linear combinations of ‘polynomial differential operators’, that

is, linear combinations of differential operators of the form

xγ1

(
∂

∂x

)γ2

,

by assigning weight |γ2| − |γ1| to the above term. Then, a polynomial differential operator of homoge-

neous weighted degree d1 will act on a polynomial of homogeneous weighted degree d2 to produce a

polynomial of homogeneous weighted degree d2 −d1. We observe that the left-invariant differential op-

erators Xr,i is a polynomial differential operator of homogeneous weighted degree r for r = 1, · · · , s and

i = 1, · · · ,kr .

Recall from subsection 1.1 that the polynomials of weighted degree ≤ r are left-invariant.

7.1. L1-optimality of the Ad
x,r f ’s. We begin the proof by discussing some basic properties of Ad

x,r f and

β f ,d (Br (x)).

It is well-known that Ad
x,r f is the optimal L2(Br (x))-approximation of f in Ad . It turns out that it is

also an optimal L1(Br (x))-approximation up to constants. To see this, we first observe that for all d ≥ 0,

there exists an integral formula for the coefficients of Ad
x,r f , given by the Gram–Schmidt process. For

example in d = 1,

A1
x,r f (x y)= 〈 f 〉Br (x) +

k∑

j=1

ffl

Br (x) f (z)(z1, j −x1, j )d z
ffl

Br (x)(z1, j −x1, j )2d z
y j , y ∈G . (54)
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More generally, for each d ≥ 0, there exists a family {pd
γ }|γ|≤d of polynomials such that

Ad
0,1 f (y) =

∑

|γ|≤d

(ˆ

B1

f pd
γ

)

yγ, y ∈G ,

and by rescaling we have for x ∈G and r > 0 that

Ad
x,r f (x y)=

∑

|γ|≤d
r−nh−|γ|

(ˆ

Br (x)

f (z)pd
γ (δ1/r (x−1z))d z

)

yγ.

Therefore

‖Ad
x,r f ‖L∞(Br (x)) .G ,d

 

Br (x)

| f (y)|d y. (55)

In other words, Ad
x,r is a linear projection of L1(Br (x)) onto Ad |Br (x) which is bounded in the L1 → L∞

norm.

We now prove the L1-optimality of the Ad
x,r f ’s.

Lemma 46. For x ∈G, r > 0, f ∈ L1
loc

(Br (x)), and d ∈Z≥0,

 

Br (x)

| f (y)− Ad
x,r f (y)|d y .G ,d

 

Br (x)

| f (y)− A(y)|d y, A ∈Ad .

Proof. From (55),

 

Br (x)

| f − Ad
x,r f | ≤

 

Br (x)

| f − A|+
 

Br (x)

|Ad
x,r ( f − A)|.G ,d

 

Br (x)

| f − A|.

�

It follows that β possesses a weak monotonicity property.

Corollary 47. Let x, y ∈G, 0 < r < s <∞, d ∈Z≥0 be such that Br (x) ⊂ Bs(y). Then

β f ,d (Br (x)) .G ,d

( s

r

)nh

β f ,d (Bs (y)).

By Corollary 47, we have that

β f ,d (x,r ).G ,d β f ,d (x, s).G ,d β f ,d (x,2r ), r ≤ s ≤ 2r.

Thus Gα f (x) is comparable to the series

(
∞∑

i=−∞

[

2−iαβ f ,d (x,2i )
]2

)1/2

.

One can also see that, if X is a left-invariant differential operator of weighted order n, then because

Ad
x,r f is a polynomial of weighted degree d ,

‖X Ad
x,r f ‖L∞(Br (x)) .G ,n,d ,X r−n‖Ad

x,r f ‖L∞(Br (x)) .G ,d r−n
 

Br (x)

| f |. (56)

7.2. Proof of the . direction, q = 1.
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7.2.1. Approximation by smooth compactly supported functions. It is enough to prove the . statement

of Theorem 22 for f in the space D of smooth compactly supported functions on G . Indeed, by [Fol75,

Theorem 4.5], D is dense in S
p
α for all 1 < p <∞ and α≥ 0. Given f ∈ S

p
α, choose a sequence { f j }∞j=1

⊂ D

that converges to f in Sp
α. Then f j → f in Lp (G), so by the contraction property (55) we have

β f j ,⌊α⌋(Br (x)) →β f ,⌊α⌋(Br (x)) as j →∞, x ∈G , r > 0.

Now, by two applications of Fatou’s lemma, it follows that

‖Gα f ‖Lp (G) ≤ liminf
j→∞

‖Gα f j‖Lp (G) .G ,α,p liminf
j→∞

‖(−∆p )α/2 f j‖Lp (G) = ‖(−∆p )α/2 f ‖Lp (G).

This completes the proof of our claim.

7.2.2. Taylor polynomials. Recall the coordinate system on G where each y ∈G is uniquely expressed as

y = exp
(
∑s

r=1

∑kr

i=1
yr,i Xr,i

)

, yr,i ∈R. Let f ∈D and x ∈G . The well-known Taylor formula tells us that for

n ∈Z≥0,

f (x y)= f (x)+
n∑

j=1

1

j !

d j

d t j

∣
∣
∣
∣
t=0

f (x y t )+
1

n!

ˆ 1

0

(1− t )n d n+1

d t n+1
f (x y t )d t .

As y t is the one-parameter subgroup generated by
∑s

r=1

∑kr

i=1
yr,i Xr,i , we have

f (x y) = f (x)+
n∑

j=1

1

j !

(
s∑

r=1

kr∑

i=1

yr,i Xr,i

) j

f (x)+
1

n!

ˆ 1

0

(1− t )n

(
s∑

r=1

kr∑

i=1

yr,i Xr,i

)n+1

f (x y t )d t .

For each multi-indexγ, if we denote by Sym(X γ) the ‘coefficient operator’ of yγ in
γ!
j !

(
∑s

r=1

∑kr

j=1
yr, j Xr, j

)|γ|

where j =
∑s

r=1

∑kr

i=1
γr,i , then the above expression can be rewritten as

f (x y)=
∑

γ multi−index
∑s

r=1

∑kr
i=1

γr,i≤n

1

γ!

[

Sym(X γ) f (x)
]

yγ+ (n +1)

ˆ 1

0

∑

γ multi−index
∑s

r=1

∑kr
i=1

γr,i=n+1

1

γ!

[

Sym(X γ) f (x y t )
]

yγd t .

By isolating the terms with multi-index γ such that |γ| ≤ n, we see that there exist for each multi-index γ

with |γ| ≥ n +1 and
∑s

r=1

∑kr

i=1
γr,i ≤ n +1 a function qx,γ f ∈D such that

f (x y)=
∑

|γ|≤n

1

γ!

[

Sym(X γ) f (x)
]

yγ

︸ ︷︷ ︸

=:T n
x f (x y)

+
∑

|γ|≥n+1
∑s

r=1

∑kr
i=1

γr,i≤n+1

qx,γ f (y)yγ

︸ ︷︷ ︸

=o(dG (y,eG )n ) as dG (y,eG )→0

, y ∈G ,

where we denote the first sum to be the Taylor polynomial of f of degree n at x ∈G , while we observe the

second term to be o(dG (y,eG)n ) as dG (y,eG) → 0 because dG (y,eG) ≍G
∑s

r=1

∑kr

i=1
|yr,i |1/r .

We may observe that if Y is a left-invariant homogeneous differential operator of degree d ≤ n, then

Y f (x y)=
∑

|γ|≤n

1

γ!

[

Sym(X γ) f (x)
]

Y yγ

︸ ︷︷ ︸

=T n−d
x Y f (x y)

+
∑

|γ|≥n+1
∑s

r=1

∑kr
i=1

γr,i≤n+1

Y (qx,γ f (y)yγ)

︸ ︷︷ ︸

=o(dG (y,eG )n−d ) as dG (y,eG )→0

, y ∈G ,

with the second sum being o(dG (y,eG)n−d ) and the first sum being a polynomial of weighted degree at

most n −d and hence is the Taylor polynomial of Y f of degree n −d at x ∈G . This proves that

Y T n
x f = T n−d

x Y f .
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In particular, we have for the left-invariant horizontal vector fields that with d ≥ 1,

Xi T d
x f =T d−1

x Xi f , i = 1, · · · ,k .

We may define the β-numbers and G-function using the Taylor polynomial instead.

β̃ f ,d (Br (x)) :=
 

Br (x)

| f −T ⌊α⌋
x,r f |,

and

G̃α f (x) :=
(ˆ ∞

0

(
1

rα
β̃ f ,⌊α⌋(Br (x))

)2 dr

r

)1/2

, x ∈G .

Proposition 48. If f ∈D and α is nonintegral, then Gα f (x) ≍G ,α G̃α f (x) for all x ∈G.

Proof. That Gα f (x).G ,α G̃α f (x) follows from Lemma 46. Denote d = ⌊α⌋ and

Ad
x,r f (x y) =

∑

|γ|≤d

fγ(x,r )yγ,

then

fγ(x,r )=
1

γ!
Sym(X γ)Ad

x,r f (x).

Also denote

T d
x f (x y) =

∑

|γ|≤d

fγ(x)yγ,

then, in the case f ∈ D, fγ(x,r ) → fγ(x) as r → 0 by Taylor expansion. Indeed, recalling that f (x y) =
T d

x f (x y)+O f (dG (y,eG )d+1),

‖Ad
x,r f −T d

x f ‖L∞(Br (x)) =‖Ad
x,r [ f −T d

x f ]‖L∞(Br (x))

(55)

. G ,d

 

Br (x)

| f −T d
x f | =OG ,d , f (r d+1) as r → 0.

By the above expansions for Ad
x,r f and T d

x f , we have

‖
∑

|γ|≤d

( fγ(x,r )− fγ(x))r |γ|yγ‖L∞(B1) = ‖
∑

|γ|≤d

( fγ(x,r )− fγ(x))yγ‖L∞(Br ) =OG ,d , f (r d+1).

But because the space A
d of polynomials of weighted degree ≤ d normed by L∞(B1) is finite dimen-

sional, all norms are equivalent, and hence

max
|γ|≤d

r |γ|| fγ(x,r )− fγ(x)| =OG ,d , f (r d+1).

This completes the proof of the convergence fγ(x,r ) → fγ(x) as r → 0.

With this, we provide a different bound on | fγ(x,r )− fγ(x)| using the β numbers. For each x ∈G ,

| fγ(x,r )− fγ(x)| ≤
0∑

i=−∞
| fγ(x,2i r )− fγ(x,2i−1r )|

=
1

γ!

0∑

i=−∞

∣
∣
∣Sym(X γ)(Ad

x,2i r f − Ad
x,2i−1r f )(x)

∣
∣
∣

(56)

.G ,|γ|
0∑

i=−∞
2−i |γ|r−|γ|

 

B
2i−1r (x)

| f − Ad
x,2i r

f |

=
0∑

i=−∞
2−i |γ|r−|γ|β f ,d (B2i r (x))

Corollary 47
.G ,d

ˆ 2r

0

β f ,d (Bu(x))u−|γ| du

u
.

(57)
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(With the Cauchy–Schwartz inequality, we may prove that | fγ(x,r )− fγ(x)|.G ,α rα−|γ|Gα f (x) for |γ| <α;

see Proposition 54 for the computation. This is weaker than the OG ,d , f (r d+1−|γ|) bound we get using

Taylor approximation. This is because the Taylor approximation argument leverages on the fact that f
has (d +1) and higher derivatives, whereas the Gα f (in principle) only measures the “α-th derivative” of

f at x; however, the latter approach is more natural since we have to work with Gα f .)

Now we bound

β̃ f ,d (Br (x)) =
 

Br (x)

| f −T d
x f |

≤
 

Br (x)

| f − Ad
x,r f |+

 

Br (x)

|T d
x f − Ad

x,r f |

≤β f ,d (Br (x))+C
∑

|γ|≤d

| fγ(x,r )− fγ(x)|r |γ|

≤β f ,d (Br (x))+C
d∑

i=0

r i
ˆ 2r

0

β f ,d (Bu(x))u−i du

u
,

where C is a constant depending on G and d . By plugging into the definition of G̃ and using the triangle

inequality,

G̃α f (x) ≤Gα f (x)+C
d∑

i=0

(
ˆ ∞

0

[

r i−α
ˆ 2r

0

β f ,d (Bu(x))u−i du

u

]2
dr

r

)1/2

.

But by Hardy’s inequality (23), we have

G̃α f (x)≤Gα f (x)+C
d∑

i=0

1

α− i

(
ˆ ∞

0

[
β f ,d (Br (x))

rα

]2 dr

r

)1/2

.G ,α Gα f (x).

This is where we use the fact that α is nonintegral. �

7.2.3. Inhomogeneous estimates to homogeneous estimates. We provide one more reduction in the proof

of Theorem 22. It is enough to prove the weaker estimate

‖Gα f ‖Lp (G) .G ,p,α ‖ f ‖p,α = ‖ f ‖Lp (G) +‖(−∆p )α/2 f ‖Lp (G), f ∈D.

(In fact, the inequality Dorronsoro proves in [Dor85, Theorem 2] is

‖ f ‖Lp (G) +‖Gα f ‖Lp (G) ≍α,p ‖ f ‖p,α

when G = R
n .) This is because a dimensional analysis reveals that the above inequality is inhomoge-

neous, so by exploiting scaling properties we may remove the inhomogeneous term ‖ f ‖Lp (G).

Lemma 49. For 1 < p <∞ and α> 0, if we have the estimate,

‖Gα f ‖Lp (G) ≤CG ,p,α‖ f ‖p,α, f ∈D, (58)

then with the same constant CG ,p,α,

‖Gα f ‖Lp (G) ≤CG ,p,α‖(−∆p )α/2 f ‖Lp (G), f ∈D. (59)

Proof. Given f ∈ D, set fs := f ◦δs ∈ D, for s > 0, where δs is the Carnot group dilation. It is easy to see

that {

‖ fs‖Lp (G) = s−nh /p‖ f ‖Lp (G),

‖Gα fs‖Lp (G) = sα−nh /p‖Gα f ‖Lp (G),
s > 0.

Also, it is morally clear that we should have

‖(−∆p )α/2 fs‖Lp (G) = sα−nh /p‖(−∆p )α/2 f ‖Lp (G), s > 0,
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and one may indeed verify this using the definition of (−∆p )α/2; see the proof of [FO20a, Lemma 2.6] for

details.

We now obtain (59) for f from (58) for fs and taking s →∞. �

7.2.4. The case 0 <α< 1. We now begin proving Theorem 22.

Fix 1 < p <∞ and 0 <α< 1. Note that we have

G̃α f (x)=
(ˆ ∞

0

[
1

rα

 

Br

| f (x y)− f (x)|d y

]2 dr

r

)1/2

, f ∈D, x ∈G ,

then by Proposition 48

Gα f (x) ≍G ,α G̃α f (x), x ∈G .

But by [CRTN01, Theorem 5],

‖G̃α f ‖Lp (G) ≍G ,α,p ‖(−∆p )α/2 f ‖Lp (G), f ∈D.

Therefore . of Theorem 22 follows in this case. Note that we haven’t proven both directions of the in-

equalities yet due to the restriction f ∈D.

7.2.5. The case α nonintegral, α> 1. We will reduce to the case 0 <α< 1.

For induction, we need the following result. Although we are currently working with f ∈ D, we state

the proposition below for f ∈ S
p
α(G), because we will need it later again in the proof of the & direction of

Dorronsoro’s theorem.

Proposition 50 ([Fol75, Theorem 4.10]). Let 1 < p <∞ and α > 1, and let f ∈ Lp (G). Then f ∈ Sp
α(G) if

and only if f ∈ Sp
α−1(G) and the distributional derivatives Xi f ∈ Sp

α−1(G) for i = 1, · · · ,k, in which case

k∑

j=1

‖(−∆p )(α−1)/2 X j f ‖Lp (G) ≍G ,α,p ‖(−∆p )α/2 f ‖Lp (G), f ∈ Sp
α(G). (60)

Remark 51. To be precise, Theorem 4.10 of [Fol75] states the inhomogeneous estimate

‖ f ‖Lp (G) +‖(−∆p )(α−1)/2 f ‖Lp (G) +
k∑

j=1

‖X j f ‖Lp (G) +‖(−∆p )(α−1)/2 X j f ‖Lp (G)

≍G ,α,p ‖ f ‖Lp (G) +‖(−∆p )α/2 f ‖Lp (G), f ∈ Sp
α(G).

But now (60) easily follows using the homogenization argument of subsubsection 7.2.3.

The following is an analogue of [Dor85, Theorem 5] and [FO20a, Proposition 4.2].

Proposition 52 (Analogue of [Dor85, Theorem 5] and [FO20a, Proposition 4.2]). Let 1 < p <∞ and α> 0.
Then,

‖Gα+1 f ‖Lp (G) .G ,α

k∑

j=1

‖Gα(X j f )‖Lp (G), f ∈D.

Proof. Let d = ⌊α⌋. Define a function Ãd+1
x,r f ∈Ad+1 for x ∈G and r > 0 as

Ãd+1
x,r f (x y) :=T d+1

x f (x y)−〈T d+1
x f 〉Br (x) +〈 f 〉Br (x).

We choose C ≥ 1 depending on G such that the weak 1-Poincaré inequality due to Jerison [Jer86] holds:
 

Bs (y)

|g −〈g 〉Bs (y)|.G s

 

BC s (y)

|∇g |, y ∈G , s > 0, g ∈D.
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As 〈 f − Ãd+1
x,r f 〉Br (x) = 0, we have

β f ,d+1(Br (x))
Lemma 46
.G ,d

 

Br (x)

| f − Ãd+1
x,r f |

weak 1−Poincaré

.G r

 

BCr (0)

|∇ f (x y)−∇T d+1
x f (x y)|d y

≍G r
k∑

j=1

 

BCr (0)

|X j f (x y)−X j T d+1
x f (x y)| = r

k∑

j=1

β̃X j f ,d (BCr (x)).

because X j T d+1
x f = T d

x X j f . Now, by definition,

Gα+1 f (x) =
(ˆ ∞

0

[
1

rα+1
β f ,d+1(Br (x))

]2 dr

r

)1/2

.G ,d

k∑

j=1

(ˆ ∞

0

[
1

rα
β̃X j f ,d (BCr (x))

]2 dr

r

)1/2

=Cα
k∑

j=1

G̃α(X j f )(x), x ∈G .

By Proposition 48, the proof is complete. �

If we suppose . of Theorem 22 for a < d nonintegral, d ∈N, then from the above two Propositions, for

d <α< d +1 and f ∈D,

‖Gα f ‖Lp (G) .G ,α

k∑

j=1

‖Gα−1(X j f )‖Lp (G) .G ,α,p

k∑

j=1

‖(−∆p )(α−1)/2 X j f ‖Lp (G) ≍G ,α,p ‖(−∆p )α/2 f ‖Lp (G).

This completes the proof of Theorem 22 for α nonintegral.

7.2.6. Interpolation and the case α integral. The case α= d ∈Z is proven by complex interpolation. This

subsubsection follows Section 5 of [FO20a] closely.

For 1 < p <∞ and 0 <α0 <α1 <∞, the pair (Sp
α0

,Sp
α1

) of Banach spaces is an interpolation pair in the

sense of Calderón, as they embed continuously in the space S
′(G) of tempered distributions on G . Thus,

we may define the complex interpolation space [Sp
α0

,Sp
α1

]θ , θ ∈ (0,1).

The following lemma asserts that we have a continuous embedding

S
p
(1−θ)α0+θα1

,→ [S
p
α0

,S
p
α1

]θ.

Lemma 53 ([FO20a, Lemma 5.1]). Let 1 < p <∞, 0 <α0 <α1 <∞, and θ ∈ (0,1). Then

‖ f ‖[S
p
α0

,S
p
α1

]θ
.G ,α0,α1,p ‖ f ‖p,(1−θ)α0+θα1

.

The proof is exactly the same as in [FO20a, Lemma 5.1].

Next, we define, for α> 0, the Banach space Hα of functions F : B1 × (0,∞) →R with norm

‖F‖Hα
:=

(ˆ ∞

0

[
1

rα

 

B1

|F (y,r )|d y

]2 dr

r

)1/2

<∞.

Then, for 1 < p <∞, we may define the function space Lp (G , Hα). Now, for 0 <α0 <α1 <∞,

(Lp (G , Hα0
),Lp (G , Hα1

))

is a compatible couple, as both embed continuously into L1
loc

(G ×B1 × (0,∞)). As in [Dor85, FO20a], we

apply the results of [BL12, p. 107, 121] so that for θ ∈ (0,1),

[Lp (G , Hα0
),Lp (G , Hα1

)]θ = Lp (G , [Hα0
, Hα1

]θ)= Lp (G , H(1−θ)α0+θα1
).

Now, for d −1<α0 < d <α1 < d +1 (recall d =α) and θ ∈ (0,1), consider the linear map T : Sp
α0

+Sp
α1

→
Lp (G , Hα0

)+Lp (G , Hα1
) given by

f 7→ T f (x,r, y)= f (xδr (y))− Ad
x,r (xδr (y)).
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By Lemma 46 and Theorem 22 for α ∈ (d −1,d )∪ (d ,d +1), we have

‖T f ‖Lp (G ,Hα) .G ,d ‖Gα f ‖Lp (G) .G ,α0,α1,p ‖ f ‖p,α, f ∈ S
p
α, α=α0,α1,

i.e., T : S
p
α0

→ Lp (G , Hα0
) and T : S

p
α1

→ Lp (G , Hα1
) are bounded. By complex interpolation,

T : [Sp
α0

,Sp
α1

]θ → [Lp (G , Hα0
),Lp (G , Hα1

)]θ = Lp (G , H(1−θ)α0+θα1
)

is bounded.

Now set α0 = d −1/2, α1 = d +1/2, and θ= 1/2. Then

‖Gd f ‖Lp (G) =‖T f ‖Lp (G ,Hd ) .G ,d ‖ f ‖[S
p
d−1/2

,S
p
d+1/2

]1/2

Lemma 53
.G ,d ,p ‖ f ‖p,d , f ∈D.

This completes the proof of Theorem 22 for α= d ∈Z.

7.3. Proof of the& direction. Now, given a f ∈ Lp (G) and α> 0 with Gα f ∈ Lp (G), we need to prove that

f ∈ Sp
α(G) and that the & direction of (8) holds.

We first prove the following preparatory result.

Proposition 54. Let f ∈ Lp (G) and α> 0 with Gα f ∈ Lp (G). Denote

A⌊α⌋
x,r f (x y)=

∑

|γ|≤⌊α⌋
fγ(x,r )yγ,

Then

(1) For each multi-index γ with |γ| <α, | fγ(x,r )− fγ(x, s)|.G ,α rα−|γ|Gα f (x) for x ∈G and 0 < s < r ,
and | fγ(x,r )|.G ,α Gα f (x)+M f (x) for x ∈G and 0 < r < 1, where M denotes the Hardy–Littlewood
maximal operator. In particular, fγ(·,r ) ∈ Lp (G) with ‖ fγ(·,r )‖Lp (G) .G ,α ‖Gα f ‖Lp (G) +‖ f ‖Lp (G).

(2) For each multi-index γ with |γ| < α, there exists fγ ∈ Lp (G) such that fγ(·,r ) → fγ(·) as r → 0,
satisfying

| fγ(x,r )− fγ(x)|.G ,|γ|

ˆ 2r

0

β f ,d (Bu(x))u−|γ| du

u
.G ,α rα−|γ|Gα f (x)

for a.e. x ∈G and r > 0.
(3) If α is nonintegral, then

(
ˆ ∞

0

(

1

rα

 

Br

| f (x y)−
∑

|γ|≤⌊α⌋
fγ(x)yγ|d y

)2
dr

r

)1/2

≍G ,α Gα f (x), a.e. x ∈G ,

(4) If α is integral and |γ| = α, then | fγ(x,r )|.G ,α log(2/r )Gα f (x)+M f (x), 0 < r < 1. Thus, fγ(·,r ) ∈
Lp (G) with ‖ fγ(·,r )‖Lp (G) .G ,α log(2/r )‖Gα f ‖Lp (G) +‖ f ‖Lp (G).

(5) If 0 <α< 1, then f0(x) = f (x) for a.e. x ∈G.

Proof. (1) By repeating the computation (57) made in the proof of Proposition 48, it follows that

| fγ(x,r )− fγ(x, s)|.G ,|γ|

ˆ 2r

s
β f ,d (Bu(x))u−|γ| du

u
, x ∈G , 0< s < r.

In particular, by Cauchy–Schwartz,

| fγ(x,r )− fγ(x, s)|.G ,|γ|

(
ˆ 2r

s

[
β f ,d (Bu(x))

uα

]2 du

u

)1/2 (ˆ 2r

s
(uα−|γ|)2 du

u

)1/2

.α rα−|γ|Gα f (x), x ∈G , 0< s < r.

Also, for 0 < r < 1, | fγ(x,r )| ≤ | fγ(x,r )− fγ(x,1)| + | fγ(x,1)|.G ,α Gα f (x)+M f (x), where the lat-

ter inequality used the fact that fγ(x,1) is given as the integral of f multiplied by a polynomial

determined by γ and ⌊α⌋. In particular, this implies that fγ(·,r ) ∈ Lp .

(2) By (1) and the fact that Gα f ∈ Lp (G), { fγ(·,r )}r>0 is a Cauchy sequence in Lp as r → 0. Thus, there

exists fγ(·) ∈ Lp (G) so that fγ(·,r ) → fγ(·) in Lp (G) as r → 0.
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(3) The & follows from Lemma 47. For ., we bound
 

Br

| f (x y)−
∑

|γ|≤⌊α⌋
fγ(x)yγ| ≤

 

Br (x)

| f − A⌊α⌋
x,r f |+

 

Br

|
∑

|γ|≤⌊α⌋
fγ(x)yγ− A⌊α⌋

x,r f (x y)|d y

.G ,α β f ,⌊α⌋(Br (x))+
∑

|γ|≤⌊α⌋
| fγ(x,r )− fγ(x)|r |γ|

.G ,α β f ,⌊α⌋(Br (x))+
⌊α⌋∑

i=0

r i
ˆ 2r

0

β f ,⌊α⌋(Bu(x))u−i du

u
.

By plugging into the definition of G̃ and using the triangle inequality,

(
ˆ ∞

0

(

1

rα

 

Br

| f (x y)−
∑

|γ|≤⌊α⌋
fγ(x)yγ|d y

)2
dr

r

)1/2

.G ,α Gα f (x)+
⌊α⌋∑

i=0

(
ˆ ∞

0

[

r i−α
ˆ 2r

0

β f ,⌊α⌋(Bu(x))u−i du

u

]2
dr

r

)1/2

.G ,α Gα f (x)+
⌊α⌋∑

i=0

1

α− i

(
ˆ ∞

0

[
β f ,⌊α⌋(Br (x))

rα

]2 dr

r

)1/2

.α Gα f (x).

where in the second inequality we used Hardy’s inequality (23) with ν=α− i + 1
2

and p = 2 along

with the fact that α is nonintegral.

(4) By Cauchy–Schwartz,

| fγ(x,r )− fγ(x,1)|.G ,|γ|

(
ˆ 2

r

[
β f ,d (Bu(x))

uα

]2 du

u

)1/2 (ˆ 2

r

du

u

)1/2

.α log(2/r )Gα f (x).

(5) If 0 <α< 1, then f0(x,r ) =
ffl

Br (x) f . Taking r → 0, the claim follows by the Lebesgue differentiation

theorem for doubling metric measure spaces [HKST15, (3.4.10)].

�

Remark 55. It seems likely that for |γ| <α we have fγ = 1
γ! Sym(X γ) f , with the latter derivative existing in

the distributive sense. This is evident when 0 < α < 1 and γ = 0, and we will prove this holds when α > 1

and |γ| = 1 in Lemma 57. We will not prove this statement in full generality since we do not need it in this
paper.

7.3.1. The case 0 < α ≤ 1. The case 0 < α < 1 is a repetition and strengthening of subsubsection 7.2.4. If

we denote

G̃α f (x) =
(ˆ ∞

0

[
1

rα

 

Br

| f (x y)− f (x)|d y

]2 dr

r

)1/2

, x ∈G ,

then by Proposition 54 (3) and (5)

Gα f (x) ≍G ,α G̃α f (x), for a.e. x ∈G .

But by [CRTN01, Theorem 5],

‖G̃α f ‖Lp (G) ≍G ,p ‖(−∆p )α/2 f ‖Lp (G).

For α= 1, it is known from [DNM21, Theorem 1.4] that for 0 <α< 2, if we define

Sα f (x) =
(ˆ ∞

0

[

r−α
 

Br (0)

|∆2,sym
y f (x)|d y

]2 dr

r

)1/2

,
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where we denote the symmetric difference

∆
2,sym
y f (x) = f (x y)+ f (x y−1)−2 f (x),

then

‖ f ‖p,α ≍G ,p,α ‖ f ‖Lp (G) +‖Sα f ‖Lp (G).

By the scaling argument of subsubsection 7.2.3,

‖(−∆p )α/2 f ‖Lp (G) ≍G ,p,α ‖Sα f ‖Lp (G).

Let f be a locally integrable function, d ∈N, x = z0 ∈G and r > 0. For any y ∈ Br (z0) and ball B2−kr (zk )

with y ∈ B2−kr (zk ) ⊂ Br (z0), let B2−k r (zk ) ⊂ B2−k+1r (zk−1) ⊂ ·· · ⊂ B2−1r (z1) ⊂ Br (x) be a sequence of balls.

We have
 

B
2−k r (zk )

| f − Ad
z0,r f | ≤

 

B
2−k r (zk )

| f − Ad
zk ,2−k r

f |+
k−1∑

i=0

 

B
2−k r (zk )

|Ad
zi ,2−i r

f − Ad
zi+1,2−i−1r

f |

≤
 

B
2−k r (zk )

| f − Ad
zk ,2−k r

f |+
k−1∑

i=0

∥
∥
∥Ad

zi+1,2−i−1r
( f − Ad

zi ,2−i r
f )

∥
∥
∥

L∞(B
2−i−1r (zi+1))

(55)

.G ,d

 

B
2−k r (zk )

| f − Ad
zk ,2−k r

f |+
k−1∑

i=0

 

B
2−i−1r (zi+1)

| f − Ad
zi ,2−i r

f |

.G

k∑

i=0

 

B
2−i r (zi )

| f − Ad
zi ,2−i r f |

Corollary 47
.G ,d

ˆ 2r

0

β f ,d (Bs (y))
d s

s

so by Lebesgue’s differentiation theorem for doubling metric measure spaces, for a.e. y ∈ Br (x),

| f (y)− Ad
x,r f (y)| = lim

B
2−k r (zk )→y

 

B
2−k r (zk )

| f − Ad
z0,r f |.G ,d

ˆ 2r

0

β f ,d (Bs (y))
d s

s
.

As the operator ∆
2,sym

h annihilates polynomials of weighted degree 1, we obtain for a.e. x ∈G
 

Br

|∆2,sym

h f (x)|dh =
 

Br

|∆2,sym

h ( f − A1
x,2r f )(x)|dh

=
 

Br

|( f − A1
x,2r f )(xh)+ ( f − A1

x,2r f )(xh−1)−2( f − A1
x,2r f )(x)|dh

.G ,d

 

Br

(ˆ 2r

0

β f ,d (Bs(xh))
d s

s
+
ˆ 2r

0

β f ,d (Bs (xh−1))
d s

s
+2

ˆ 2r

0

β f ,d (Bs (x))
d s

s

)

dh

.

ˆ 2r

0

Mβ f ,1(Bs (·))(x)
d s

s
.

By Hardy’s inequality (23) with ν= 3
2

and p = 2, we obtain

S1 f (x) =
(ˆ ∞

0

[

r−1

 

Br

|∆2,sym
y f (x)|d y

]2 dr

r

)1/2

.G ,d

(ˆ ∞

0

[

Mβ f ,1(Br (·))(x)
]2 dr

r

)1/2

.

Now we argue that
(
ˆ

G

(ˆ ∞

0

[

Mβ f ,1(Br (·))(x)
]2 dr

r

)p/2

d x

)1/p

.G max{p,
1

p −1
}

(
ˆ

G

(ˆ ∞

0

[

β f ,1(Br (·))(x)
]2 dr

r

)p/2

d x

)1/p

This is an instance of the Fefferman–Stein vector-valued maximal function inequality

(
ˆ

G

[

∑

j∈Z
M (g j )u(x)

]v/u

d x

)1/v

.G max{1,
1

u −1
}max{v,

1

v −1
}

(
ˆ

G

[

∑

j∈Z
g j (x)u

]v/u

d x

)1/v

(61)
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on nh-regular metric measure spaces for measurable functions (g j : G → R) j∈Z and u, v ∈ (1,∞), due to

[GLY09, Theorem 1.2]. Indeed, we apply (61) to the functions

g j (x) =β f ,1(B2− j (x))

and exponents u = 2 > 1 and v = p > 1, noting by Corollary 47 that

M (β f ,1(Br (·))) .G M (g j ), r ∈ [2− j−1,2− j ],

and

g j .G β f ,1(Br (·)), r ∈ [2− j ,2− j+1],

Thus, we have ‖S1 f ‖Lp (G) .G ,p ‖G1 f ‖Lp (G), 1 < p <∞, as desired.

7.3.2. The case α> 1. We use induction on α.

The following lemma is an analogue of [Dor85, Lemma 1], and the proof proceeds in the same manner.

Lemma 56 (Analogue of [Dor85, Lemma 1]). Let f ∈ Lp (G) such thatGα f ∈ Lp (G), and γ be a multi-index
with |γ| <α. With fγ as in Proposition 54, ‖Gα−|γ| fγ‖Lp (G) .G ,α ‖Gα f ‖Lp (G).

Proof. Fix x ∈G and r > 0. For y ∈ Br (x), by Proposition 54 and (56),

| fγ(y)−
1

γ!
Sym(X γ)Ad

x,2r f (y)| ≤ | fγ(y)− fγ(y,r )|+ |
1

γ!
Sym(X γ)(Ad

y,r − Ad
x,2r f )(y)|

.G ,α

ˆ r

0

β f ,d (Bs (y))s−|γ|−1d s + r−|γ|β f ,d (B2r (x)).

Thus, by Lemma 46,

β fγ,d−|γ|(Br (x)).G ,α

 

Br (x)

(ˆ r

0

β f ,d (Bs(y))s−|γ|−1d sd y + r−|γ|β f ,d (B2r (x))

)

d y

≤
ˆ r

0

M (β f ,d (Bs(·)))(x)s−|γ|−1d s + r−|γ|β f ,d (B2r (x)).

By Hardy’s inequality with ν=α−|γ|+ 1
2 and p = 2,

Gα−|γ| fγ(x).G ,α Gα f (x)+
(ˆ ∞

0

[

r−αMβ f ,d (Br (·))(x)
]2 dr

r

)1/2

,

and the lemma follows by the aforementioned Fefferman–Stein inequality (61) on vector-valued maximal

operators with u = v = 2 > 1 and

g j (x) = 2α jβ f ,d (B2− j+1 (x)).

�

The following lemma is an analogue of [Dor85, Lemma 2], and the proof proceeds in the same manner.

Lemma 57 (Analogue of [Dor85, Lemma 2]). Let f ∈ Lp (G) with Gα f ∈ Lp (G), α > 1. Then the weak
partials Xi f exist and coincide with f(1,i ) a.e., where (1, i ) stands for the multi-indexγ withγr, j =δ(r, j ),(1,i ).

Proof. Denote er,i = exp(xr,i ) for r = 1, · · · , s and i = 1, · · · ,kr . It is enough to show that ( f (xer
1,i )− f (x))/r

tends to f(1,i ) in Lp as r → 0. First,
∣
∣
∣
∣
∣

f (xer
1,i )− f (x)

r
− f(1,i )(x)

∣
∣
∣
∣
∣

≤
| f (xer

1,i )− f0(xer
1,i ,2r )|

r
+
| f (x)− f0(x,2r )|

r
+

∣
∣
∣
∣
∣

f0(xer
1,i ,2r )− f0(x,2r )

r
− f(1,i )(x)

∣
∣
∣
∣
∣

Proposition 54(2)

.G ,α rα−1
(

Gα f (xer
1,i )+Gα f (x)

)

+

∣
∣
∣
∣
∣

f0(xer
1,i ,2r )− f0(x,2r )

r
− f(1,i )(x)

∣
∣
∣
∣
∣
.
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Next, since f0(y,r )= A⌊α⌋
y,r f (y),

f0(xer
1,i ,2r )− f0(x,2r ) = A⌊α⌋

xer
1,i ,2r f (xer

1,i )− A⌊α⌋
x,2r f (xer

1,i )+ A⌊α⌋
x,2r f (xer

1,i )− A⌊α⌋
x,2r f (x)

= A⌊α⌋
xer

1,i ,2r f (xer
1,i )− A⌊α⌋

x,2r f (xer
1,i )+

⌊α⌋∑

j=1

f j (1,i )(x,2r )r j / j !.

Thus
∣
∣
∣
∣
∣

f0(xer
1,i ,2r )− f0(x,2r )

r
− f(1,i )(x)

∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣

f0(xer
1,i ,2r )− f0(x,2r )

r
− f(1,i )(x,2r )

∣
∣
∣
∣
∣
+| f(1,i )(x,2r )− f(1,i )(x)|

Proposition 54(2)

.G ,α

|A⌊α⌋
xer

1,i ,2r f (xer
1,i )− A⌊α⌋

x,2r f (xer
1,i )|

r
+

⌊α⌋∑

j=2

| f j (1,i )(x,2r )|r j−1 + rα−1Gα f (x)

.G ,α r−1

 

Br (xer
1,i )

|A⌊α⌋
xer

1,i ,2r f (y)− A⌊α⌋
x,2r f (y)|d y +

⌊α⌋∑

j=2

| f j (1,i )(x,2r )|r j−1 + rα−1Gα f (x)

≤ r−1

 

Br (xer
1,i )

| f − A⌊α⌋
xer

1,i ,2r f (y)|d y + r−1

 

Br (xer
1,i )

| f − A⌊α⌋
x,2r f (y)|d y +

⌊α⌋∑

j=2

| f j (1,i )(x,2r )|r j−1 + rα−1Gα f (x)

= r−1β f ,⌊α⌋(B2r (xer
1,i ))+ r−1β f ,⌊α⌋(B2r (x))+

⌊α⌋∑

j=2

| f j (1,i )(x,2r )|r j−1 + rα−1Gα f (x),

where in the penultimate inequality we used the fact that the L1(B1) and L∞(B1) norms on the space of

polynomials of weighted degree ≤ ⌊α⌋ are equivalent. Taking Lp norms,
∥
∥
∥
∥
∥

f (·er
1,i )− f (·)

r
− f(1,i )(·)

∥
∥
∥
∥
∥

Lp (G)

.G ,α r−1‖β f ,⌊α⌋(B2r (·))‖Lp (G)+
⌊α⌋∑

j=2

r j−1‖ f j (1,i )(·,2r )‖Lp (G)+rα−1‖Gα f ‖Lp (G).

By Corollary 47, ‖β f ,⌊α⌋(B2r (·))‖Lp (G) .G ,α rα‖Gα f ‖Lp (G). By Proposition 54, if j < ⌊α⌋, then

‖ f j (1,i )(·,2r )‖Lp (G) .G ,α ‖Gα f ‖Lp (G) +‖ f ‖Lp (G),

and if j = ⌊α⌋ =α, then

‖ f j (1,i )(·,2r )‖Lp (G) .G ,α (log r−1)(‖Gα f ‖Lp (G) +‖ f ‖Lp (G)).

Thus
∥
∥
∥

f (·er
1,i )− f (·)

r − f(1,i )(·)
∥
∥
∥

Lp (G)
→ 0 as r → 0. �

The following lemma is an analogue of [Dor85, Lemma 3], and the proof proceeds in the same manner.

Lemma 58 (Analogue of [Dor85, Lemma 3]). Let f ∈ Lp (G) with Gα f ∈ Lp (G), α> 1. Then Gα−1 f ∈ Lp (G)

with
‖Gα−1 f ‖Lp (G) .G ,α ‖Gα f ‖Lp (G) +‖ f ‖Lp (G).

Proof. Write

A⌊α⌋
x,r f (x y) =

∑

|γ|<⌊α⌋
fγ(x,r )yγ

︸ ︷︷ ︸

=:A<⌊α⌋
x,r f (x y)

+
∑

|γ|=⌊α⌋
fγ(x,r )yγ

︸ ︷︷ ︸

=:A=⌊α⌋
x,r f (x y)

.

Then by Lemma 46,

β f ,⌊α⌋−1(Br (x)).G ,α

 

Br (x)

| f − A<⌊α⌋
x,r f | ≤β f ,⌊α⌋(Br (x))+‖A=⌊α⌋

x,r f ‖L∞(Br (x)). (62)
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By (56), for i ∈Z≥0 and |γ| = ⌊α⌋,

| fγ(x,2i r )|.G ,α (2i r )−⌊α⌋
 

B
2i r (x)

| f |.G (2i r )−⌊α⌋−nh /p‖ f ‖Lp (G) → 0 as i →∞

and thus

| fγ(x,r )| ≤
∞∑

i=0

| fγ(x,2i r )− fγ(x,2i+1r )|
(56)

.G ,α

∞∑

i=0

(2i r )−⌊α⌋‖A⌊α⌋
x,2i r

f − A⌊α⌋
x,2i+1r

f ‖L∞(B
2i r (x))

(55)

.G ,α

∞∑

i=0

(2i r )−⌊α⌋
 

B
2i r (x)

| f − A⌊α⌋
x,2i+1r

f |.G ,α

∞∑

i=0

(2i r )−⌊α⌋β f ,⌊α⌋(B2i+1r (x)).

Corollary 47
.G ,α

ˆ ∞

r
β f ,⌊α⌋(Bρ(x))ρ−⌊α⌋−1dρ.

Plugging these results into (62), we have

β f ,⌊α⌋−1(Br (x)).G ,α β f ,⌊α⌋(Br (x))+ r ⌊α⌋
ˆ ∞

r
β f ,⌊α⌋(Bρ(x))ρ−⌊α⌋−1dρ,

and

Gα−1 f (x) =
(
ˆ ∞

0

[
β f ,⌊α⌋−1(Br (x))

rα−1

]2 dr

r

)1/2

.G ,α

(
ˆ ∞

0

[
β f ,⌊α⌋(Br (x))

rα−1

]2 dr

r

)1/2

+
(
ˆ ∞

0

[

r ⌊α⌋−α+1/2

ˆ ∞

r
β f ,⌊α⌋(Bρ(x))ρ−⌊α⌋−1dρ

]2

dr

)1/2

.

(
ˆ ∞

0

[
β f ,⌊α⌋(Br (x))

rα−1

]2 dr

r

)1/2

≤
(
ˆ 1

0

[
β f ,⌊α⌋(Br (x))

rα−1

]2 dr

r

)1/2

+
(
ˆ ∞

1

[
β f ,⌊α⌋(Br (x))

rα−1

]2 dr

r

)1/2

(55)

.G ,α

(
ˆ 1

0

[
β f ,⌊α⌋(Br (x))

rα

]2 dr

r

)1/2

+
(ˆ ∞

1

[
M f (x)

rα−1

]2 dr

r

)1/2

.α Gα f (x)+M f (x),

where the second inequality uses the second form of Hardy’s inequality (25) with p = 2 and ν= ⌊α⌋−α+
1/2. This completes the proof. �

To complete the induction, suppose the & direction of Theorem 8 holds for α−1. If f ∈ Lp (G) with

Gα f ∈ Lp (G), by Lemma 58, Gα−1 f ∈ Lp (G), so that f ∈ Sp
α−1 by induction. On the other hand, by Propo-

sition 54 (2) and Lemmas 56 and 57, for i = 1, · · · ,k , Xi f ∈ Lp (G) with Gα−1(Xi f ) ∈ Lp (G), so again by

induction Xi f ∈ Sp
α−1(G). Now, by Proposition 50, f ∈ Sp

α(G). Tracking the norms involved in this argu-

ment, we have that

‖Gα f ‖Lp (G)

Lemma 56
&G ,α

k∑

i=1

‖Gα−1 f(1,i )‖Lp (G)
Lemma 57=

k∑

i=1

‖Gα−1(Xi f )‖Lp (G)

induction

&G .α,p

k∑

i=1

‖(−∆p )(α−1)/2 Xi f ‖Lp (G)
Proposition 50

≍G ,α,p ‖(−∆p )α/2 f ‖Lp (G).

This completes the & direction of Theorem 8.
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7.4. Lq β-numbers, q > 1. The extension of Theorem 22 to β numbers defined in the Lq sense are dis-

cussed in [Dor85, Section 5] and [FO20a, Section 6]. We will follow their presentation.

By the discussion so far, it is enough to show that the left-hand side of (8) is maximized up to constants

when q = 1.

Denote d = ⌊α⌋. We compute that for all x ∈ G , r > 0, y ∈ Br (x) and n ∈N so that B2−nr (y) ⊂ Br (x), we

have
 

B2−n r (y)

| f (z)− Ad
x,r f (z)|d z

≤
 

B2−n r (y)

| f (z)− Ad
y,2−n r f (z)|d z +

n+1∑

k=1

 

B2−n r (y)

|Ad
y,2k−1−n r

f (z)− Ad
y,2k−n r

f (z)|d z

+
 

B2−n r (y)

|Ad
y,2r f (z)− Ad

x,r f (z)|d z

=β f ,d (B2−nr (y))+
n+1∑

k=1

 

B2−n r (y)

|Ad
y,2k−1−n r

[ f − Ad
y,2k−n r

f ]|+
 

B2−n r (y)

|Ad
x,r [Ad

y,2r f − f ]|

≤β f ,d (B2−nr (y))+
n+1∑

k=1

∥
∥
∥Ad

y,2k−1−n r
[ f − Ad

y,2k−n r
f ]

∥
∥
∥

L∞(B
2k−1−n r (y))

+
∥
∥
∥Ad

x,r [Ad
y,2r f − f ]

∥
∥
∥

L∞(Br (x))

(55)

.G ,d β f ,d (B2−n r (y))+
n+1∑

k=1

 

B
2k−1−n r (y)

| f − Ad
y,2k−n r

f |+
 

Br (x)

|Ad
y,2r f − f |

.G ,d β f ,d (B2−n r (y))+
n+1∑

k=1

β f ,d (B2k−n r (y))+β f ,d (B2r (y))

Corollary 47
.G ,d

ˆ 2−n+1r

2−nr
β f ,d (Bs (y))

d s

s
+

n+1∑

k=1

ˆ 2k+1−n r

2k−n r
β f ,d (Bs (y))

d s

s
+
ˆ 4r

2r
β f ,d (Bs (y))

d s

s

.

ˆ 4r

2−n r
β f ,d (Bs (y))

d s

s
.

Thus by Lebesgue’s differentiation theorem for doubling metric measure spaces and Corollary 47, we

infer that for x ∈G and r > 0,

| f (y)− Ad
x,r f (y)|.G ,d

ˆ 4r

0

β f ,d (Bs (y))
d s

s
.G ,d

ˆ 4r

0

 

Bs (y)

β f ,d (B2s(z))d z
d s

s
, a.e. y ∈ Br (x). (63)

Now fix

p > 1 and 1 ≤ q <
min{p,2}nh

nh −min{p,2}
.

Then, choose some 1 < w < min{p,2} and 0 < η< min{nh/w,α} such that

q =
wnh

nh −ηw
. (64)

Given this choice of q, w , and η, [HLNT13, Theorem 4.1] tells us that in nh-regular metric measure

spaces, the following fractional Hardy–Littlewood maximal function is a bounded operator Lw (G) →
Lq (G):

Mηg (y) := sup
s>0

{

sη
 

Bs (y)

|g (z)|d z

}
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It follows that

r nh /qβ f ,d ,q (Br (x))
(63)

.G ,α

(
ˆ

Br (x)

[
ˆ 4r

0

 

Bs (y)

β f ,d (B2s(z))d z
d s

s

]q

d y

)1/q

≤
ˆ 4r

0

(
ˆ

Br (x)

[
 

Bs (y)

β f ,d (B2s (z))d z

]q

d y

)1/q
d s

s

≤
ˆ 4r

0

s−η
(ˆ

Br (x)

Mη(β f ,d (B2s (·))χB5r (x)(·))(y)q d y

)1/q d s

s

.p,q

ˆ 4r

0

s−η
(ˆ

B5r (x)

β f ,d (B2s (z))w d z

)1/w d s

s

.G

ˆ 4r

0

s−ηr nh /w [

M (β f ,d (B2s (·))w )(x)
]1/w d s

s
,

where in the second inequality we used Minkowski’s inequality and in the fourth inequality we used the

boundedness of Mη : Lw (G) → Lq (G). By (64), we have

β f ,d ,q (Br (x)).G ,α,p,q r η

ˆ 4r

0

s−η−1
[

M (β f ,d (B2s(·))w )(x)
]1/w d s.

Next, noting that α> η and using Hardy’s inequality (23) with ν=α−η+1/2, we obtain

(ˆ ∞

0

[
1

rα
β f ,d ,q (Br (x))

]2 dr

r

)1/2

.G ,α,p,q

(
ˆ ∞

0

r 2η−2α−1

[ˆ 4r

0

s−η−1
[

M (β f ,d (B2s (·))w )(x)
]1/w

d s

]2

dr

)1/2

.α,q

(ˆ ∞

0

[

M (r−wαβ f ,d (B2r (·))w )(x)
]2/w dr

r

)1/2

.

We conclude that
(
ˆ

G

(ˆ ∞

0

[
1

rα
β f ,d ,q (Br (x))

]2 dr

r

)p/2

d x

)1/p

.G ,α,p,q

(
ˆ

G

(ˆ ∞

0

[

M (r−wαβ f ,d (B2r (·))w )(x)
]2/w dr

r

)p/2

d x

)1/p

.G ,α,p,q

(
ˆ

G

(ˆ ∞

0

[
1

rα
β f ,d (Br (x))

]2 dr

r

)p/2

d x

)1/p

,

where in the second inequality we applied the Fefferman–Stein vector-valued maximal function inequal-

ity (61) with functions

g j (x) = 2αw jβ f ,d (B2− j+1 (x))

and exponents u = 2/w > 1 and v = p/w > 1, along with Corollary 47.

This completes the proof of Theorem 22.
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