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Existence of planar non-symmetric stationary flows

with large flux in an exterior disk

Mitsuo Higaki

Abstract. This paper is concerned with the two-dimensional stationary Navier-Stokes sys-

tem in the domain exterior to the unit disk. The existence of solutions with critical decay

O(|x|−1) is established around some explicit flows with large flux. The solutions are ob-

tained for non-symmetric external forces, and moreover, are unique in a certain class.

1 Introduction

We consider the two-dimensional stationary Navier-Stokes system in the exterior disk Ω =
{x = (x1, x2) ∈ R

2 | |x| > 1}:





−∆u+∇p = −u · ∇u+ f in Ω
div u = 0 in Ω
u = αx⊥ − γx on ∂Ω
u(x) → 0 as |x| → ∞.

(NS)

The unknown functions u = (u1(x), u2(x)) and p = p(x) are respectively the velocity

field and the pressure field. The function f = (f1(x), f2(x)) is a given external force in

L2(Ω)2. We assume that both α and γ are constants. The vector x⊥ refers to (−x2, x1).
The system (NS) describes the motion of a viscous incompressible fluid around the disk

rotating at angular velocity α and whose surface subjects to a normal suction velocity −γx.

The existence and uniqueness theories for the problem (NS) are generally open. As

for the existence, there are two fundamental difficulties. The first one is lack of certain

embeddings. Let f be smooth and compactly supported in Ω for brevity. Under smallness

conditions, adapting the proof by Leray [15] or relying on Fijita [2], we can actually find

weak solutions of (NS) having a finite Dirichlet integral, called D-solutions. Nevertheless,

the bound ‖∇u‖L2 <∞ itself cannot verify the condition at spatial infinity in (NS) in two-

dimensional unbounded domains; see Korobkov, Pileckas and Russo [10, 11, 12] for recent

progress on this topic. The other one is the logarithmic growth in the Green function of the

exterior Stokes system, which is the source of the famous Stokes paradox; see [1, 3, 4, 14]

for descriptions. The uniqueness of solutions will be discussed in Remark 1.2 (iii) below.

These issues illustrate a delicate aspect concerning the zero condition at infinity in (NS).

Most existing results treating (NS) assume both smallness and symmetry on the data. The

latter is useful for making quantities decay in space by cancellation. The reader is referred

to Galdi [3, 4], Russo [20], Yamazaki [22, 23, 24] and Pileckas and Russo [19] for the exis-

tence of solutions, and to Nakatsuka [18] and [24] for the uniqueness. Relevant numerical

simulations are carried out in Guillod and Wittwer [7]. We note that, if another condition
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were imposed at infinity, the situation would be quite different. Indeed, the recent work by

Korobkov and Ren [13] proves the uniqueness in the class of D-solutions for plane exterior

Navier-Stokes flows converging to a small but non-zero constant vector field at infinity.

In this paper, we examine the problem (NS) from a different angle. Note that, when the

external force f is trivial, there is an explicit solution (αU − γW,∇Pα,γ) given by

U(x) =
x⊥

|x|2 , W (x) =
x

|x|2 , ∇Pα,γ(x) = −∇
( |αU(x) − γW (x)|2

2

)
, (1.1)

which is invariant under the scaling of the Navier-Stokes equations. A (non-trivial) solu-

tion in this class is called scale-critical and it represents the balance between the nonlinear

and linear parts of the equations. Given this nature, it is expected that the Navier-Stokes

flows around a scale-critical flow differ quantitatively from those around the trivial flow.

In fact, Hillairet and Wittwer [9] consider the Navier-Stokes problem in an exterior disk

by perturbating the system around (αU,∇Pα,0). A crucial observation is that the decay of

solutions to the corresponding linearized system is improved when |α| is sufficiently large,

more precisely, when |α| >
√
48. This is possible because of the structure of the equation

for vorticities. Then, based on iteration to the nonlinear problem with subcritialized non-

linearity, they show the existence of solutions in the form of u(x) = αU(x) + o(|x|−1)
when |x| → ∞. These solutions are driven by inhomogeneous boundary data, on which no

symmetries are imposed thanks to the mechanism of the proof.

The result in [9] can be read as the scale-critical flow αU producing a stabilizing effect

in view of spatial decay. In this context, we here consider such an effect of αU − γW

and address the existence of solutions to the problem (NS). Briefly, we will see that the

stabilization is effective for any α if γ > 2. As an application, we obtain the Navier-Stokes

flows for non-symmetric external forces based on the perturbation. We also describe the

asymptotics near spatial infinity in terms of the decay rate of external forces.

Let us introduce some notations to state the main result. For s ≥ 0, we define

L∞
s (Ω) = {f ∈ L∞(Ω) | ‖f‖L∞

s
<∞}, ‖f‖L∞

s
:= ess sup

x∈Ω
|x|s|f(x)|, (1.2)

which is a Banach space under the norm ‖ · ‖L∞

s
. Taking advantage of symmetry, we

introduce the polar coordinates on Ω as

x1 = r cos θ, x2 = r sin θ, r = |x| ≥ 1, θ ∈ [0, 2π),

er =
x

|x| , eθ =
x⊥

|x| = ∂θer.

For given vector field v = (v1, v2) on Ω and n ∈ Z, we set

v = vr(r, θ)er + vθ(r, θ)eθ, vr = v · er, vθ = v · eθ
and denote by Pn the projection on the Fourier mode n:

Pnv(r, θ) = vr,n(r)e
inθ

er + vθ,n(r)e
inθ

eθ,

vr,n(r) :=
1

2π

∫ 2π

0
vr(r cos θ, r sin θ)e

−inθ dθ,

vθ,n(r) :=
1

2π

∫ 2π

0
vθ(r cos θ, r sin θ)e

−inθ dθ.

(1.3)

Now the result is stated as follows.
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Theorem 1.1 Let α ∈ R and γ > 2. Then, for any 2 < ρ < 3 with ρ ≤ min{γ, 3}, there

is a constant ε = ε(α, γ, ρ) > 0 such that if f ∈ L∞
2ρ−1(Ω)

2 satisfies

∑

n∈Z

‖Pnf‖L∞

2ρ−1
≤ ε, (1.4)

then there is a solution (u,∇p) ∈
(
Ŵ 1,2(Ω) ∩W 2,2

loc (Ω) ∩ L∞
1 (Ω)

)2 × L2
loc(Ω)

2 of (NS)

unique in a suitable set of functions (see Section 4 for the precise definition). Moreover,

when |x| → ∞, the solution u = u(x) behaves as

u(x) =
(
α
x⊥

|x|2 − γ
x

|x|2
)
+O(|x|−ρ+1), rotu(x) = O(|x|−ρ). (1.5)

Remark 1.2 (i) As far as the author knows, Theorem 1.1 is the first result obtaining the

plane exterior Navier-Stokes flows zero at spatial infinity, non-symmetric and unique

in a certain class. In [9] dealing with the case γ = 0, the uniqueness of solutions seems

not to be provided. More to the point, the proof should not be easy since the existence

of solutions in [9] is verified by the intermediate value theorem. The inconvenience is

closely related to the structure of the zero mode of the linearized system (1.8) below.

(ii) Contrary to [9] where |α| >
√
48 is assumed, we do not need any restrictions on α

in Theorem 1.1. Thus it is interpreted that the stabilization from −γW with γ > 2
exceeds that from αU , and hence, the theorem holds thanks to the presence of γ.

(iii) Theorem 1.1 does not state the uniqueness of D-solutions of (NS), which is violated

even when f = 0 by the following Hamel solutions. For γ > 2 and t ∈ R, we set

A(x) =
1

γ − 2
(1− |x|−γ+2)U(x),

∇Q(x) = −∇
( |αU(x) − γW (x) + tA(x)|2

2

)

−∇
[
t|x|−γ

{α
γ
+

t

γ − 2

( 1
γ
− 1

2(γ − 1)
|x|−γ+2

)}]
.

Then {(αU − γW + tA,∇Q)}t∈R is a family of explicit D-solutions of (NS) with

f = 0. For more detailed discussion, the reader is referred to [3, Section XII.2].

(iv) The stability of the flows in Theorem 1.1 is an open problem. The global L2-stability

of −γW is proved by Guillod [6] and the local L2-stability of αU −γW by Maekawa

[16, 17] without any symmetries on initial perturbations. However, these results es-

sentially rely on the smallness of the coefficients and, therefore, cannot be adapted to

the flows in Theorem 1.1, even if the Hardy inequality applies to u− (αU − γW ).

The ingredients of the proof of Theorem 1.1 are the following.

(I) Perturbation. We will construct the solution (u,∇p) of (NS) in the form of

u = αU − γW + v, ∇p = ∇
(
− |u|2

2
+ q

)
. (1.6)

The pair (v,∇q) is understood as the perturbation from (αU − γW,∇Pα,γ) in response to

the external force f . Inserting the ansatz (1.6) into (NS) and using the relation

u · ∇u = u⊥rot u+∇
( |u|2

2

)
, rotu := ∂1u2 − ∂2u1, (1.7)
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as well as rotU = rotW = 0, we see that (v,∇q) solves the perturbed system





−∆v + (αU − γW )⊥rot v +∇q = −v⊥rot v + f in Ω
div v = 0 in Ω
v = 0 on ∂Ω
v(x) → 0 as |x| → ∞.

(ÑS)

Our next task is to prove the existence of solutions to the problem (ÑS).

(II) Linear analysis. The linearized system of (ÑS) around v = 0 is written as





−∆v + (αU − γW )⊥rot v +∇q = f in Ω
div v = 0 in Ω
v = 0 on ∂Ω
v(x) → 0 as |x| → ∞.

(S̃)

Since (S̃) is invariant under the action of Pn in (1.3), one can study it in each Fourier mode.

As mentioned in Remark 1.2 (ii), the presence of the parameter γ > 2 stabilizes the

decay of solutions of (S̃). A sharp contrast with [9] is that this effect is exerted on the zero

mode of the velocity P0v = vr,0(r)er + vθ,0(r)eθ. Indeed, while vr,0(r) = 0 follows from

the second and third lines in (S̃), vθ,0(r) satisfies the ordinary differential equation

− d2vθ,0
dr2

− 1 + γ

r

dvθ,0
dr

+
1− γ

r2
vθ,0 = fθ,0, r > 1, (1.8)

which is independent of α. Then, since the Green functions of equation are r−γ+1 and r−1,

the solution vθ,0(r) decays subcritically if the data fθ,0(r) decays fast enough.

The stabilization from γ displays also in the non-zero modes. However, to prove Theo-

rem 1.1, we need to make precise the relationship between the decay of solutions and that

of external forces. For this purpose, we derive the representation formula for the n-mode of

the velocity Pnv = vr,n(r)e
inθ

er+vθ,n(r)e
inθ

eθ using the streamfunction-vorticity variant

of the system in [9] and the Biot-Savart law in [16, 17, 5, 8]. When verifying the formula,

we essentially use the decay of the vorticity subcritically improved by γ.

This paper is organized as follows. In Section 2, we collect preliminary results from

vector calculus in the polar coordinates. In Section 3, we study the linear problem (S̃)

decomposed into the Fourier modes. In Section 4, we prove Theorem 1.1.

Notations. We denote by C the constant and by C(a, b, c, . . .) the constant depending

on a, b, c, . . .. Both of these may vary from line to line. We use the function spaces

Ŵ 1,2(Ω) = {p ∈ L2
loc(Ω) | ∇p ∈ L2(Ω)2}, C∞

0,σ(Ω) = {ϕ ∈ C∞
0 (Ω)2 | divϕ = 0}

and L2
σ(Ω) which is the completion of C∞

0,σ(Ω) in the L2-norm. If there is no confusion, we

use the same notation to denote the quantities concerning scalar-, vector- or tensor-valued

functions. For example, 〈·, ·〉 denotes to the inner product on L2(Ω), L2(Ω)2 or L2(Ω)2×2.

2 Preliminaries

This section collects useful facts about the vector calculus in the exterior disk Ω.
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2.1 Operators in the polar coordinates

The following formulas will be used:

div v = ∂1v1 + ∂2v2 =
1

r
∂r(rvr) +

1

r
∂θvθ,

rot v = ∂1v2 − ∂2v1 =
1

r
∂r(rvθ)−

1

r
∂θvr,

|∇v|2 = |∂rvr|2 + |∂rvθ|2 +
1

r2
(|∂θvr − vθ|2 + |vr + ∂θvθ|2),

(2.1)

and

−∆v =
{
− ∂r

(1
r
∂r(rvr)

)
− 1

r2
∂2θvr +

2

r2
∂θvθ

}
er

+
{
− ∂r

(1
r
∂r(rvθ)

)
− 1

r2
∂2θvθ −

2

r2
∂θvr

}
eθ.

2.2 Fourier series

Let n ∈ Z. We define, for a vector field v = v(r, θ) on Ω,

vn(r, θ) = Pnv(r, θ), (2.2)

where Pn is the projection defined in (1.3), for a scalar function ω = ω(r, θ) on Ω,

Pnω(r, θ) =

(
1

2π

∫ 2π

0
ω(r cos s, r sin s)e−ins ds

)
einθ,

ωn(r) = (Pnω)e
−inθ,

(2.3)

and for a function space X(Ω) ⊂ L1
loc(Ω)

2 or X(Ω) ⊂ L1
loc(Ω),

PnX(Ω) =
{
Pnf

∣∣ f ∈ X(Ω)
}
.

Our definition of fn differs according to whether f is vectorial or scalar. The former and

latter are respectively defined in (2.2) as fn = Pnf and in (2.3) as fn = (Pnf)e
−inθ.

2.3 Biot-Savart law

For a given ω ∈ L∞
2 (Ω), we consider the Poisson equation

{
−∆ψ = ω in Ω
ψ = 0 on ∂Ω.

The solution ψ is called the streamfunction. Let ω ∈ PnL
∞
2 (Ω) with |n| ≥ 1 and set

ψn = (Pnψ)e
−inθ and ωn = (Pnω)e

−inθ. In the polar coordinates, ψn = ψn(r) solves the

ordinary differential equation

− d2ψn

dr2
− 1

r

dψn

dr
+
n2

r2
ψn = ωn, r > 1, ψn(1) = 0. (2.4)
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The decaying solution ψn = ψn[ωn] of (2.4) is given by

ψn[ωn](r) =
1

2|n|

(
− dn[ωn]r

−|n|

+ r−|n|

∫ r

1
s|n|+1ωn(s) ds+ r|n|

∫ ∞

r

s−|n|+1ωn(s) ds

)
,

dn[ωn] :=

∫ ∞

1
s−|n|+1ωn(s) ds.

(2.5)

Then the following vector field Vn[ωn] is called the Biot-Savart law:

Vn[ωn](r, θ) = Vr,n[ωn](r)e
inθ

er + Vθ,n[ωn](r)e
inθ

eθ,

Vr,n[ωn] =
in

r
ψn[ωn], Vθ,n[ωn] = − d

dr
ψn[ωn].

(2.6)

It is straightforward to see that

div Vn[ωn] = 0, rotVn[ωn] = ωne
inθ, (er · Vn[ωn])|∂Ω = 0. (2.7)

If additionally ω ∈ L∞
ρ (Ω) with ρ > 2, one can check that Vn[ωn] ∈W 1,2(Ω)2.

We state two propositions related to the Biot-Savart law. The first one is implicitly

contained in [16, Proposition 2.6 and Lemma 3.1] and the second one has the same content

as [16, Corollary 2.7]. However, we provide slightly more concise proofs for completeness.

Proposition 2.1 Let |n| ≥ 1 and vn ∈ PnW
1,2
0 (Ω)2. Set ωn = (rot vn)n. Then, if div vn =

0 and ωn ∈ L∞
ρ (Ω) for some ρ > 2, we have vn = Vn[ωn] and dn[ωn] = 0 in (2.5).

Proof: Define u = vn − Vn[ωn]. Then one has u ∈ PnW
1,2(Ω)2 and

div u = 0, rot u = 0, (er · u)|∂Ω = 0.

In particular, we have ∆u = 0 in the sense of distributions and hence ‖∇u‖L2 = 0. Thus

u is a constant. Then ur = 0 follows from (er · u)|∂Ω = 0 and uθ = 0 from div u =
1
r
∂r(rur) +

in
r
∂θuθ = 0. Consequently, we have vn = Vn[ωn] and, from (2.5) and (2.6),

dn[ωn] =
d

dr
ψn[ωn](1) = −Vθ,n[ωn](1) = −vθ,n(1) = 0.

The proof is complete. ✷

Proposition 2.2 Let |n| ≥ 1 and fn ∈ PnL
2(Ω)2. Then, if rot fn = 0 in the sense of

distributions, we have f = ∇Pnp for some Pnp ∈ PnŴ
1,2(Ω).

Proof: We only need to show that 〈fn, ϕn〉 = 0 for all ϕn ∈ PnC
∞
0,σ(Ω). Then the assertion

follows from the Helmholtz decomposition in L2(Ω)2. Note that, for fn ∈ PnC
∞
0 (Ω)2 and

Pnψ ∈ PnC
∞
0 (Ω), by integration by parts we have

〈rot fn, ψn〉 =
∫ 2π

0

∫ ∞

1

(1
r

d

dr
(rfθ,n(r))−

in

r
fr,n(r)

)
ψn(r)r dr dθ

=

∫ 2π

0

∫ ∞

1

(
fr,n(r)

in

r
ψn(r)− fθ,n(r)

d

dr
ψn(r)

)
r dr dθ.
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Let ϕn ∈ PnC
∞
0,σ(Ω) and set ωn = (rotϕn)n. By Proposition 2.1, ϕn is represented

by the Biot-Savart law as ϕn = Vn[ωn]. Then the definition of Vr,n[ωn](r) in (2.6) implies

that the streamfunction ψ(r, θ) = ψn[ωn](r)e
inθ is smooth and compactly supported in Ω.

Thus the condition that rot fn = 0 in the sense of distributions leads to

∫ 2π

0

∫ ∞

1

(
fr,n(r)

in

r
ψn[ωn](r)− fθ,n(r)

d

dr
ψn[ωn](r)

)
r dr dθ = 0.

The left-hand side can be rewritten as 〈fn, Vn[ωn]〉 = 〈fn, ϕn〉. Consequently, we have

〈fn, ϕn〉 = 0 for all ϕn ∈ PnC
∞
0,σ(Ω). This completes the proof. ✷

3 Linearized problem

In this section, we study the linearized problem





−∆v + (αU − γW )⊥rot v +∇q = f in Ω
div v = 0 in Ω
v = 0 on ∂Ω
v(x) → 0 as |x| → ∞.

(S̃)

Let n ∈ Z. Applying Pn in (1.3) to (S̃), we see that (vr,n(r), vθ,n(r)) and qn(r) satisfy

− d

dr

(1
r

d

dr
(rvr,n)

)
+
n2

r2
vr,n +

2in

r2
vθ,n

− α

r2

( d

dr
(rvθ,n)− invr,n

)
+ ∂rqn = fr,n, r > 1,

(3.1)

− d

dr

(1
r

d

dr
(rvθ,n)

)
+
n2

r2
vθ,n − 2in

r2
vr,n

− γ

r2

( d

dr
(rvθ,n)− invr,n

)
+
in

r
qn = fθ,n, r > 1,

(3.2)

the divergence-free and the no-slip boundary conditions

d

dr
(rvr,n) + invθ,n = 0, vr,n(1) = vθ,n(1) = 0, (3.3)

and the condition at infinity

|vr,n(r)|+ |vθ,n(r)| → 0, r → ∞. (3.4)

3.1 Zero mode

Proposition 3.1 For α ∈ R, γ > 2, 2 < ρ ≤ γ and f = f0 ∈ P0L
∞
2ρ−1(Ω)

2, there

is a unique solution (v0,∇P0q) of (S̃) with v0 ∈ P0L
2
σ(Ω) ∩W 1,2

0 (Ω)2 ∩W 2,2(Ω)2 and

P0q ∈ P0Ŵ
1,2(Ω) satisfying v0(r, θ) = vθ,0(r)eθ and

rρ|ω0(r)| ≤
C

ρ− 2
‖f0‖L∞

2ρ−1
, (3.5)

rρ−1|v0(r, θ)|+
1

γ − 1
rρ|∇v0(r, θ)| ≤

C

(γ − 2)(ρ− 2)
‖f0‖L∞

2ρ−1
. (3.6)

Here ω0 := (rot v0)0. The constant C is independent of α, γ and ρ.
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Proof: Let n = 0 in (3.1)–(3.4). The first condition in (3.3) leads to that vr,0(r) =
C
r

with

some constant C . Then the second condition leads to C = 0, which yields that vr,0 = 0.

Thus we focus on the angular part vθ,0 = vθ,0(r). From (3.2) and (3.3), we find that

− d2vθ,0
dr2

− 1 + γ

r

dvθ,0
dr

+
1− γ

r2
vθ,0 = fθ,0, r > 1, vθ,0(1) = 0. (3.7)

The linearly independent solutions of the homogeneous equation of (3.7) are

r−γ+1 and r−1,

and their Wronskian is (γ − 2)r−γ−1. Hence the solution of (3.7) in L2(Ω) is given by

vθ,0(r) =
1

γ − 2

{
−

(∫ ∞

1
s2fθ,0(s) ds

)
r−γ+1

+ r−γ+1

∫ r

1
sγfθ,0(s) ds+ r−1

∫ ∞

r

s2fθ,0(s) ds

}
.

Then we have

ω0(r) =
1

r

d

dr
(rvθ,0)(r) =

(∫ ∞

1
s2fθ,0(s) ds

)
r−γ − r−γ

∫ r

1
sγfθ,0(s) ds.

By the assumption f ∈ P0L
∞
2ρ−1(Ω)

2 with 2 < ρ ≤ γ and the computations

r−γ+1

∫ r

1
sγ−2ρ+1 ds ≤ 1

ρ− 2
r−ρ+1, r−1

∫ ∞

r

s−2ρ+3 ds ≤ 1

ρ− 2
r−ρ+1,

one can check that ω0 satisfies (3.5) and that v0 = vθ,0eθ belongs to P0L
2
σ(Ω)∩W 1,2

0 (Ω)2∩
W 2,2(Ω)2 and satisfies (3.6). The pressure P0q ∈ Ŵ 1,2(Ω) is obtained by (3.1). Clearly,

(v0,∇P0q) is the unique solution of (3.1)–(3.4). The proof is complete. ✷

3.2 Non-zero modes

By Proposition 3.1, the zero mode of the solution of (S̃) decays as fast as desired, if the

external force does correspondingly. On the other hand, for the non-zero mode, the decay

rate is governed by the Biot-Savart law (2.6). Taking this into account, we will build a

solution vn of the non-zero mode of (S̃) satisfying, for 2 < ρ ≤ min{γ, 3},

rot vn = (|x|−ρ), vn = O(|x|−ρ+1), (3.8)

under suitable assumptions on the external force fn.

For |n| ≥ 1, we define

nγ =
{
n2 +

(γ
2

)2} 1

2

, ζn = (n2γ + iαn)
1

2 . (3.9)

This definition of ζn coincides with the one in [9] if γ = 0. We compute

|ζn| = nγ

{
1 +

(αn
n2γ

)2} 1

4

,

ℜ(ζn) =
nγ√
2

[{
1 +

(αn
n2γ

)2} 1

2

+ 1

] 1

2

,

ℑ(ζn) = sgn(αn)
nγ√
2

[{
1 +

(αn
n2γ

)2} 1

2 − 1

] 1

2

.

(3.10)
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Let us set ξn = ℜ(ζn) for simplicity. Then we have

ξn ≤ |ζn| ≤
√
2ξn,

ξn

|n| ≤ (|α| 12 + γ), 0 <
(
ξn − γ

2

)−1
< 2γ (3.11)

with C independent of n, α and γ.

Proposition 3.2 For |n| ≥ 1, α ∈ R, γ > 2, 2 < ρ ≤ 3 with 2 < ρ ≤ min{γ, 3}
and f = fn ∈ PnL

∞
2ρ−1(Ω)

2, there is a unique solution (vn,∇Pnq) of (S̃) with vn ∈
PnL

2
σ(Ω) ∩W 1,2

0 (Ω)2 ∩W 2,2
loc (Ω)

2 and Pnq ∈ PnW
1,2
loc (Ω) satisfying the following.

(1) For |n| ≥ 1,

rρ|ωn(r)| ≤
C

|n|
(
ξn +

γ

2

)(
ξn − γ

2

)−1
‖fn‖L∞

2ρ−1
. (3.12)

(2) If 2 < ρ ≤ γ < 3 or 2 < ρ < 3 ≤ γ, for |n| ≥ 1,

rρ−1|vn(r, θ)| +
rρ

|n| |∇vn(r, θ)|

≤ C

|n|(|n| − ρ+ 2)

(
ξn +

γ

2

)(
ξn − γ

2

)−1
‖fn‖L∞

2ρ−1
.

(3.13)

(3) If γ ≥ 3 and ρ = 3, for |n| = 1,

r2(log r)−1|vn(r, θ)|+ r3(log r)−1|∇vn(r, θ)|

≤ C
(
ξn +

γ

2

)(
ξn − γ

2

)−1
‖fn‖L∞

5
,

(3.14)

and for |n| > 1,

r2|vn(r, θ)|+
r3

|n| |∇vn(r, θ)| ≤
C

|n|2
(
ξn +

γ

2

)(
ξn − γ

2

)−1
‖fn‖L∞

5
. (3.15)

Here ωn := (rot vn)n. The constant C is independent of n, α, γ and ρ.

Proof: The proof is divided into two parts. First we show the existence of solutions using

the representation formula. Second we verify the uniqueness by Proposition 2.1.

(Existence) Initially, let us assume that fn ∈ PnC
∞
0 (Ω)2. Operating rot and Pn to the

first line of (S̃), we see that ωn = ωn(r) satisfies the ordinary differential equation

− d2ωn

dr2
− 1 + γ

r

dωn

dr
+
n2 + iαn

r2
ωn = (rot fn)n, r > 1. (3.16)

By the transformation

ωn(r) = r−
γ

2 ω̃n(r),

we find that ω̃n solves

− d2ω̃n

dr2
− 1

r

dω̃n

dr
+
ζ2n
r2
ω̃n = r

γ

2 (rot fn)n, r > 1. (3.17)

9



The linearly independent solutions of the homogeneous equation of (3.17) are

r−ζn and rζn ,

and their Wronskian is 2ζnr
−1. Hence the decaying solution of (3.17) is given by

ω̃n(r) = cn[fn]r
−ζn +Ψn[fn](r), (3.18)

where the constant cn[fn] is to be determined later and Ψn[fn] is defined by

Ψn[fn](r) =
r−ζn

ζn

∫ r

1
sζn+

γ

2
+1(rot fn)n(s) ds

+
rζn

ζn

∫ ∞

r

s−ζn+
γ

2
+1(rot fn)n(s) ds

= −r
−ζn

ζn

∫ r

1
sζn+

γ

2

{(
ζn +

γ

2

)
fθ,n(s) + infr,n(s)

}
ds

+
rζn

ζn

∫ ∞

r

s−ζn+
γ

2

{(
ζn − γ

2

)
fθ,n(s)− infr,n(s)

}
ds.

(3.19)

Here we performed integration by parts using (rot fn)n(r) =
1
r

d
dr (rfθ,n)(r) − in

r
fr,n(r).

Going back to the equation (3.16), we see that the decaying solution is given by

ωn(r) = cn[fn]r
−ζn−

γ

2 +Φn[fn](r), Φn[fn](r) := r−
γ

2Ψn[fn](r). (3.20)

Let us determine cn[fn] in (3.18). From fn ∈ PnC
∞
0 (Ω)2, we have |Φn[fn](r)| ≤

C(f, n)r−ξn−
γ

2 . We choose cn[fn] so that dn[ωn] in (2.5) is zero, namely,

cn[fn] = −
(
ζn + |n|+ γ

2
− 2

) ∫ ∞

1
s−|n|+1Φn[fn](s) ds. (3.21)

Then the Biot-Savart law Vn[ωn] =: vn in (2.6) is written as

vn(r, θ) = vr,n(r)e
inθ

er + vr,n(r)e
inθ

eθ,

vr,n(r) =
in

2|n|
(
r−|n|−1

∫ r

1
s|n|+1ωn(s) ds+ r|n|−1

∫ ∞

r

s−|n|+1ωn(s) ds
)
,

vθ,n(r) =
1

2

(
r−|n|−1

∫ r

1
s|n|+1ωn(s) ds− r|n|−1

∫ ∞

r

s−|n|+1ωn(s) ds
)
.

(3.22)

Let us show that, for vn in (3.22), there is a pressure Pnq ∈ PnŴ
1,2(Ω) such that the

pair (vn,∇Pnq) is a solution of (S̃). From fn ∈ PnC
∞
0 (Ω)2 and ξn >

γ
2 implied by (3.11),

we see that ωn in (3.20) is smooth and satisfies |∇kωn(r)| ≤ C(f, n, k)r−min{γ,3} for any

k ∈ Z≥0. This, combined with the choice of cn[fn] in (3.21) and Lemma A.1, ensures that

vn is smooth and satisfies vn|∂Ω = 0 and ‖∇kvn‖L2 < ∞ for any k ∈ Z≥0. Accordingly,

we can apply Proposition 2.2 because of (rot vn)n = ωn and

(
rot (−∆vn + (αU − γW )⊥rot vn − fn)

)
n

= − d2ωn

dr2
− 1 + γ

r

dωn

dr
+
n2 + iαn

r2
ωn − (rot fn)n = 0.

Hence there is a pressure Pnq ∈ PnŴ
1,2(Ω) such that (vn,∇Pnq) is a solution of (S̃).

10



Now, let fn ∈ PnL
∞
2ρ−1(Ω)

2 in (3.19)–(3.22). We will prove the estimates (3.12)–

(3.15). For Φn[fn] in (3.20) and cn[fn] in (3.21), using Lemma A.1, we have

‖Φn[fn]‖L∞

ρ
+ |cn[fn]| ≤ C

(
1 +

|ζn|+ |n|+ γ

2
− 2

|n|+ ρ− 2

)
‖Φn[fn]‖L∞

ρ

≤ C

|n|
(
ξn +

γ

2

)(
ξn − γ

2

)−1
‖fn‖L∞

2ρ−1
,

where (3.11) is used in the second inequality and C is independent of n, α, γ and ρ. Hence

we see from (3.20) that ωn satisfies (3.12). For vn in (3.22), using (2.1) and (3.12), we have

|vn(r, θ)|+
r

|n| |∇vn(r, θ)|

≤ C

|n|
(
ξn +

γ

2

)(
ξn − γ

2

)−1
‖fn‖L∞

2ρ−1

×
(
r−|n|−1

∫ r

1
s|n|−ρ+1 ds+ r|n|−1

∫ ∞

r

s−|n|−ρ+1 ds

)
.

Hence we see from Lemma A.1 (2) that vn satisfies (3.13)–(3.15).

It remains to verify that vn given by (3.22) is a solution of (S̃) for general fn ∈
PnL

∞
2ρ−1(Ω)

2. The condition vn ∈W
1,2
0 (Ω)2 follows from (3.13)–(3.15) and the choice of

cn[fn] in (3.21). By Lemma A.2 and direct computation, one has

‖Φn[fn]‖L∞

2
+ |cn[fn]|+ ‖ωn‖L∞

2
+ ‖∇vn‖L2

≤ C(n, α, γ)‖µfn‖L2 , µ(x) := |x|2.
(3.23)

To show that vn satisfies the weak formulation of (S̃), we take {ψ(m)
n }∞m=1 ⊂ PnC

∞
0 (Ω)2

such that lim
m→∞

‖µ(fn − ψ(m)
n )‖L2 = 0. Let v

(m)
n denote the smooth solution given by

(3.22) replacing fn by ψ
(m)
n . Also, let Pnq

(m)
n ∈ PnŴ

1,2(Ω) be an associated pressure.

Then, using (3.23) and linearity of the equations, we have, for any ϕ ∈ C∞
0,σ(Ω),

〈∇vn,∇ϕ〉+ 〈(αU − γW )⊥rot vn − fn, ϕ〉
= lim

m→∞
〈−∆v(m)

n + (αU − γW )⊥rot v(m)
n − ψ(m)

n , ϕ〉

= lim
m→∞

〈∇Pnq
(m)
n , ϕ〉 = 0.

Here we performed integration by parts in the first and last equalities. Consequently, we

see that vn is a weak solution of (S̃). Then, by regarding (αU − γW )⊥rot vn − fn as the

external force, one can prove the local regularity vn ∈ W
2,2
loc (Ω)

2 and the existence of an

associated pressure Pnq ∈ PnW
1,2
loc (Ω) by standard theory for the Stokes system; see Sohr

[21, Chapter III] for example. This completes the existence part of the proof.

(Uniqueness) Assume that (vn,∇Pnq) ∈
(
PnL

2
σ(Ω) ∩ W

1,2
0 (Ω)2 ∩ W

2,2
loc (Ω)

2
)
×

PnL
2
loc(Ω)

2 is a solution of (S̃) with f = 0. By the elliptic regularity, vn is smooth in

Ω. Since ωn = (rot vn)n satisfies the homogeneous equation of (3.16), due to the summa-

bility ∇vn ∈ L2(Ω)2×2, we have ωn = c̃nr
−ζn−

γ

2 with some constant c̃n. Then Proposition

2.1 implies that vn = Vn[ωn] and dn[ωn] = 0. The latter condition is rewritten as

0 = dn[ωn] = c̃n

∫ ∞

1
s−ζn−|n|− γ

2
+1 ds =

c̃n

ζn + |n|+ γ

2
− 2

.
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Thus we have c̃n = 0 and hence ωn = 0. Then the uniqueness follows from vn = Vn[ωn] =
0. This completes the uniqueness part of the proof. Hence we conclude. ✷

4 Nonlinear problem

In this section we prove Theorem 1.1 by showing the unique solvability of the system





−∆v + (αU − γW )⊥rot v +∇q = −v⊥rot v + f in Ω
div v = 0 in Ω
v = 0 on ∂Ω
v(x) → 0 as |x| → ∞.

(ÑS)

Let us collect two lemmas needed in the proof. For ρ ≥ 0, we define the Banach space

l1
(
L∞
ρ (Ω)

)
=

{
f =

∑

n∈Z

Pnf

∣∣∣∣ ‖f‖l1L∞

ρ
:=

∑

n∈Z

‖Pnf‖L∞

ρ
<∞

}
.

Lemma 4.1 For α ∈ R, γ > 2, 2 < ρ < 3 with 2 < ρ ≤ min{γ, 3} and f ∈
l1
(
L∞
2ρ−1(Ω)

)2
, there is a unique solution (v,∇q) of (S̃) with v ∈ L2

σ(Ω) ∩W 1,2
0 (Ω)2 ∩

W
2,2
loc (Ω)

2 and q ∈W 1,2
loc (Ω) satisfying

‖v‖l1L∞

ρ−1
+ ‖∇v‖l1L∞

ρ
≤ κ‖f‖l1L∞

2ρ−1
, κ = κ(α, γ, ρ) :=

C0(|α|
1

2 + γ)γ

(ρ− 2)2(3− ρ)
. (4.1)

The constant C0 is independent of α, γ and ρ.

Proof: This follows from Propositions 3.1 and 3.2 and an estimate obtained from (3.11):

1

|n|
(
ξn +

γ

2

)(
ξn − γ

2

)−1
≤ 4(|α| 12 + γ)γ.

Indeed, we see from the propositions that there is a weak solution v ∈ L2
σ(Ω) ∩W 1,2

0 (Ω)2

of (S̃) satisfying (4.1). Then, as in the proof of Proposition 3.2, we have the local regularity

v ∈ W
2,2
loc (Ω)

2 and an associate pressure q ∈ W
1,2
loc (Ω). The uniqueness of (v,∇q) follows

from that of (vn,∇Pnq) for n ∈ Z. This completes the proof. ✷

Lemma 4.2 For v ∈ l1
(
L∞
γ1
(Ω)

)2
and ω ∈ l1

(
L∞
γ2
(Ω)

)
, we have

‖vω‖l1L∞

γ1+γ2

≤ ‖v‖l1L∞

γ1

‖ω‖l1L∞

γ2

.

Proof: The identity

Pn(vω) =
∑

m∈Z

(Pmv)(Pn−mω), n ∈ Z
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and the Young inequality for sequences imply

‖vω‖l1L∞

γ1+γ2

≤
∑

n∈Z

∑

m∈Z

‖Pmv‖L∞

γ1
‖Pn−mω‖L∞

γ2

≤ ‖v‖l1L∞

γ1

‖ω‖l1L∞

γ2

.

This completes the proof. ✷

Proof of Theorem 1.1: Firstly we show the unique solvability of (ÑS) under smallness

conditions on f . We define the Banach space

Xρ =
{
w ∈ L2

σ(Ω) ∩W 1,2
0 (Ω)2 ∩ l1

(
L∞
ρ−1(Ω)

)2 ∣∣∣ ∇w ∈ l1
(
L∞
ρ (Ω)

)2×2
}
,

equipped with the norm ‖w‖Xρ
:= ‖w‖l1L∞

ρ−1
+ ‖∇w‖l1L∞

ρ
, and consider the closed subset

Bρ(δ) = {w ∈ Xρ | ‖w‖Xρ
≤ δ}, δ > 0.

For any w ∈ Xρ, by Lemma 4.1, there is a unique solution (vw,∇qw) to the problem





−∆vw + (αU − γW )⊥rot vw +∇qw = −w⊥rotw + f in Ω
div vw = 0 in Ω
vw = 0 on ∂Ω
vw(x) → 0 as |x| → ∞

satisfying

‖vw‖Xρ
= ‖vw‖l1L∞

ρ−1
+ ‖∇vw‖l1L∞

ρ
≤ κ

(
‖w⊥rotw‖l1L∞

2ρ−1
+ ‖f‖l1L∞

2ρ−1

)

≤ κ
(
‖w‖l1L∞

ρ−1
‖rotw‖l1L∞

ρ
+ ‖f‖l1L∞

2ρ−1

)
,

(4.2)

where Lemma 4.2 is applied in the second inequality. Hence, by denoting vw by T (w), we

see that T defines a linear map from Xρ to itself.

Let us show that T is a contraction on Bρ(δ) ⊂ Xρ if both ‖f‖l1L∞

2ρ−1
and δ are suffi-

ciently small depending on κ = κ(α, γ, ρ). Then the unique existence of solutions of (ÑS)

follows from the Banach fixed-point theorem. For any w ∈ Bρ(δ), by (4.2), we have

‖T (w)‖Xρ
≤ κ

(
δ2 + ‖f‖l1L∞

2ρ−1

)
. (4.3)

On the other hand, for any w1, w2 ∈ Bρ(δ), by Lemma 4.2 again, we have

‖T (w2)− T (w1)‖Xρ
≤ κ‖w⊥

2 rotw2 − w⊥
1 rotw1‖l1L∞

2ρ−1

≤ 2κδ‖w2 − w1‖Xρ
.

(4.4)

Therefore, fixing δ and ‖f‖l1L∞

2ρ−1
so that

δ <
1

2κ̃
and ‖f‖l1L∞

2ρ−1
≤ δ2, (4.5)

we see that T : Bρ(δ) → Bρ(δ) is contractive. Then the Banach fixed-point theorem yields

that there is a unique element v ∈ Bρ(δ) such that T (v) = v. Thus we obtain a solution

(v,∇q) ∈
(
L2
σ(Ω) ∩W 1,2

0 (Ω)2 ∩W 2,2
loc (Ω)

2
)
× L2

loc(Ω)
2 of (ÑS) with v unique in Bρ(δ).
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By the argument so far, for a given f ∈ l1
(
L∞
2ρ−1(Ω)

)2
satisfying (4.5), the pair

u := αU − γW + v, ∇p := ∇
(
− |u|2

2
+ q

)

is a solution of (NS) in
(
Ŵ 1,2(Ω) ∩W 2,2

loc (Ω) ∩ L∞
1 (Ω)

)2 × L2
loc(Ω)

2 unique in the set

{(u,∇p) | u = αU − γW + v, v ∈ Bρ(δ)}.
The asymptotics (1.5) can be checked easily. The proof of Theorem 1.1 is complete. ✷

A Integral estimates

We summarize the integral estimates used in the proof of Proposition 3.2. The proof only

uses elementary calculations and thus we will just state the results. Recall that

nγ =
{
n2 +

(γ
2

)2} 1

2

, ξn =
nγ√
2

[{
1 +

(αn
n2γ

)2} 1

2

+ 1

] 1

2

.

Lemma A.1 For α ∈ R, we have the following.

(1) Let 2 < ρ ≤ γ. For |n| ≥ 1,

r−ξn−
γ

2

∫ r

1
sξn+

γ

2
−2ρ+1 ds ≤ min

{ 1

ρ− 2
,
(
ξn − γ

2

)−1}
r−ρ,

rξn−
γ

2

∫ ∞

r

s−ξn+
γ

2
−2ρ+1 ds ≤

(
ξn − γ

2

)−1
r−ρ.

(2) Let 2 < ρ ≤ 3.

(i) If 2 < ρ < 3, for |n| ≥ 1,

r−|n|−1

∫ r

1
s|n|−ρ+1 ds ≤ 1

|n| − ρ+ 2
r−ρ+1.

(ii) If ρ = 3, for |n| = 1,

r−|n|−1

∫ r

1
s|n|−ρ+1 ds = r−2 log r,

and for |n| > 1,

r−|n|−1

∫ r

1
s|n|−ρ+1 ds ≤ 1

|n| − 1
r−2.

(iii) For |n| ≥ 1,

r|n|−1

∫ ∞

r

s−|n|−ρ+1 ds ≤ 1

|n|+ ρ− 2
r−ρ+1.

Lemma A.2 Under the assumption in Proposition 3.2,

r−ξn−
γ

2

∫ r

1
sξn+

γ

2 |fn|(s) ds ≤
(
ξn − γ

2

)− 1

2

(∫ r

1
s4|fn|2(s)s ds

)1

2

r−2,

rξn−
γ

2

∫ ∞

r

s−ξn+
γ

2 |fn|(s) ds ≤
(
ξn − γ

2

)− 1

2

(∫ ∞

r

s4|fn|2(s)s ds
)1

2

r−2.
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