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EXTENDING PROPER METRICS

YOSHITO ISHIKI

Abstract. We first prove a version of Tietze-Urysohn’s theorem
for proper functions taking values in non-negative real numbers
defined on σ-compact locally compact Hausdorff spaces. As an ap-
plication, we prove an extension theorem of proper metrics, which
states that if X is a σ-compact locally compact Hausdorff space,
A is a closed subset of X , and d is a proper metric on A that gen-
erates the same topology of A, then there exists a proper metric D
on X such that D generates the same topology of X and D|A2 = d.
Moreover, if A is a proper retract, we can chooseD so that (A, d) is
quasi-isometric to (X,D). We also show analogues of the theorems
explained above for ultrametrizable spaces.

1. Introduction

Tietze–Urysohn’s theorem states that every continuous function on
a closed subset of a normal space can be extended to the whole space
as a continuous function. This theorem has played an important role
in topology and analysis (for example, the existence of a partition of
unity). There are many generalizations of Tietze–Urysohn’s theorem
(see for instance [10], [23], [16] and [12]).

For a metrizable space X , we denote by Met(X) the set of all metrics
on X generating the same topology of X . Hausdorff’s extension theo-
rem states that for every metrizable space X , for every closed subset
A of X , and for every d ∈ Met(A), there exists a metric D ∈ Met(X)
such that D|A2 = d. This theorem can be considered as an analogue of
Tietze–Urysohn’s theorem for metric spaces, and some variants have
been investigated by some authors (see [2], [9], [8], and [15]).

Tietze–Urysohn’s theorem and Hausdorff’s extension theorem are
not only analogous, but also logically connected with each other. In
fact, according to [1], Hausdorff’s extension theorem can be proven us-
ing Dugundji’s theorem (see [10]), which is an improvement of Tietze–
Urysohn’s theorem. For more discussion on connections between ex-
tensions of maps and metrics, we refer the readers to [14].
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In [15], the author proved an ultrametric analogue of Hausdorff’s
extension theorem using the method described above, namely, using
the property that every continuous function on a closed subsets of an
ultrametrizable space can be extended to the whole space. Remark that
since every non-empty closed set in an ultrametric space is a retract
of the whole space (see [3, Theorem 2.9]), all extension problems of
continuous maps defined on a closed subsets of an ultrametric space
are solved affirmatively.

Let X and Y be topological spaces. A map f : X → Y is said to be
proper if for every compact subset K of Y , the inverse image f−1(K)
is compact. A metric d on X is said to be proper if all bounded closed
subsets of (X, d) are compact. In this case, for a fixed point p ∈ X , the
function defined by x 7→ d(p, x) is a proper map. These two concepts
are the main subjects of this paper.

In the present paper, we prove a new variant of Hausdorff’s extension
theorem for proper metrics. The key idea is, as mentioned above, that
an extension theorem of continuous maps implies an extension theorem
of metrics. We first show Tietze–Urysohn’s theorem for proper func-
tions (Theorem 2.3), and then, as an application, we prove Hausdorff’s
extension theorem for proper metrics (Theorem 3.9).

To show Tietze–Urysohn’s theorem for proper functions, we use
the so-called controlling Tietze–Urysohn’s theorem (see [12] and [23]),
which includes not only an extension of a given function, but also an
extension of the zero set of the function.

Similarly, using the fact that every non-empty closed subset of an
ultrametric space is a retract of the whole space, we prove an extension
theorem of proper ultrametrics (Theorem 3.15).

In this paper, we also prove an extension theorem of proper metrics
focusing on large scale structures of metric spaces (Theorem 4.8) using
Michael’s continuous selection theorems, which are also generalizations
of Tietze–Urysohn’s theorem. More precisely, we prove that for every
σ-compact locally compact space X , and for every closed subset A of
X , if A is a proper retract of X , then for every proper metric d ∈
Met(X), there exists a proper metric D ∈ Met(X) such that (A,D) is
quasi-isometric to (X,D). We also prove an ultrametric version of this
extension theorem (Theorem 4.9).

2. Extension of proper functions

A main purpose of this section is to prove Tietze–Urysohn’s theorem
for proper functions (Theorem 2.3).

A topological space is said to be σ-compact if it is a countable union
of compact subspaces. A topological space is said to be locally compact

if every point in the space has a compact neighborhood.



EXTENDING PROPER METRICS 3

Remark 2.1. As a consequence of Urysohn’s metrization theorem (see
[19, Theorem 34.1]), all σ-compact locally compact Hausdorff spaces
are metrizable. Indeed, they are second countable and regular.

The following theorem is deduced from Yamazaki’s theorem [23,
Corollary 2.1] or Frantz’s theorem [12, Theorem 1].

Theorem 2.1. Let X be a normal space, A a closed subset of X, and

Z a closed Gδ subset of X. Assume that f : A→ [0, 1] is a continuous

function such that Z ∩ A = f−1(0). Then there exists a continuous

function F : X → [0, 1] satisfying that F |A = f and F−1(0) = Z.

For a σ-compact locally compact Hausdorff space X , we put α̃X =
X ⊔ {∞}. We define a topology on α̃X by declaring neighborhood
systems of α̃X as follows: If p ∈ X , then the neighborhood system of
p in α̃X is the family of all subsets V of X such that V \ {∞} is a
neighborhood of p in X , and the neighborhood system of ∞ in α̃X is
the set of all subsets V of α̃X satisfying that α̃X \ V is a relatively
compact subset of X . In what follows, we always consider that α̃X is
equipped with this topology. If X is non-compact, then α̃X coincides
with the one-point compactification of X . If X is compact, then α̃X is
nothing but the topological direct sum of X and the point ∞. Remark
that if X = ∅, then α̃X = {∞}.

Let X and Y be σ-compact locally compact Hausdorff spaces. For
a map f : X → Y , we define an induced map α̃f : α̃X → α̃Y by
α̃f |X = f and α̃f(∞) = ∞.

Proposition 2.2. Let X and Y be σ-compact locally compact Haus-

dorff spaces. Then the following statements hold:

(1) For every proper map f : X → Y , the map α̃f : α̃X → α̃Y is

continuous.

(2) If a continuous map F : α̃X → α̃Y satisfies F−1(∞) = {∞},
then the restriction F |X : X → Y is proper.

Proof. We first prove (1). Let A be a closed subset of α̃Y . Then A is
compact and it is contained in Y , or A = B ∪ {∞} for some closed
subset B of Y . In any case, the inverse image (α̃f)−1(A) is closed.
Thus α̃f is continuous.

To prove (2), we take an arbitrary compact subset K of Y . Since
∞ 6∈ K, we have F−1(∞) ∩ F−1(K) = ∅. By F−1(∞) = {∞}, we
obtain ∞ 6∈ F−1(K). This means that F−1(K) is compact in X . Thus
F |X is proper. �

Theorem 2.3. Let X be a σ-compact locally compact Hausdorff space,

and A a closed subset of X. If f : A → [0,∞) is a continuous proper

function, then there exists a continuous proper function F : X → [0,∞)
such that F |A = f .
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Proof. Notice that α̃[0,∞) is homeomorphic to [0,∞]. According to
(1) in Proposition 2.2, the map α̃f : α̃A → [0,∞] is continous. The
space α̃A can be considered as a closed subset of α̃X . Since X is
σ-compact, the singleton {∞} is a closed Gδ set in α̃X . The space
[0,∞] is homeomorphic to [0, 1]. Since α̃X is compact and Hausdorff,
it is normal. Thus, due to Theorem 2.1, there exists a continuous map
h : α̃X → [0,∞] such that h|α̃A = α̃f and h−1(∞) = {∞}. By (2)
in Proposition 2.2, the function F = h|X : X → [0,∞) is proper and
satisfies F |A = f . This finishes the proof of Theorem 2.3. �

Remark 2.2. In Theorem 2.3, it is important that the target space is
[0,∞). In general, a proper function f : A → R can not be extended
to the ambient space as a proper function. For example, if we define a
map f : Z → R by f(n) = (−1)n ·n, then f is proper. However, for any
continuous extension F : R → R of f , the set F−1(0) is non-compact
by the intermediate value theorem.

The following proposition is well-known. However, for the sake of
self-containedness, we provide a proof.

Proposition 2.4. A Hausdorff space is σ-compact and locally compact

if and only if there exists a continuous proper function f : X → [0,∞).

Proof. We first assume that X is σ-compact and locally compact. Ap-
plying Theorem 2.3 to A = ∅ and the empty map from ∅ into [0,∞),
we obtain a proper function from X into [0,∞).

Next assume that there exists a continuous proper function f : X →
[0,∞). By X =

⋃∞

i=0
f−1([0, i]), the space X is σ-compact. Since X =⋃∞

i=0
f−1([0, i)) and each f−1([0, i)) is open and relatively compact, the

space X is locally compact. �

3. Extension of proper metrics

In this section, we shall prove two extension theorems of proper
metrics and ultrametrics (Theorems 3.9 and 3.15).

A metric d on X is said to be ultrametric if it satisfies d(x, y) ≤
d(x, z)∨d(z, y) for all x, y, z ∈ X , where ∨ is the maximum operator on
R. A topological space is said to be metrizable (resp. ultrametrizable)
if there exists a metric (resp. ultrametric) that generates the same
topology of the space. Let X be a metrizable space, and S a subset of
[0,∞) with 0 ∈ S. We denote by Met(X ;S) (resp. UMet(X ;S)) the
set of all metrics (resp. ultrametrics) that generate the same topology
of X taking values in S. We often write Met(X) = Met(X ; [0,∞)).

A topological space X is said to be ultranormal if for every pair
A and B of disjoint closed subsets of X , there exists a clopen set V
such that A ⊂ V and V ∩ B = ∅. Note that a topological space X is
ultrametrizable if and only if it is metrizable and ultranormal (see [5,
Theorem II]). For a topological space X , a pair of subsets A and B ofX
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is said to be completely separated if there exists a continuous function
f : X → [0, 1] such that f−1(0) = A and f−1(1) = B. A topological
space X is strongly 0-dimensional if X is completely regular and any
two completely separated subsets ofX are separated by a clopen subset
of X . Remark that the class of ultranormal spaces coincides with the
class of strongly 0-dimensional normal spaces. In particular, a metriz-
able space is ultranormal if and only if it is strongly 0-dimensional.

The next is Hausdorff’s extension theorem [13] (see also [2] and [21]).

Theorem 3.1. Let X be a metrizable space, and A a closed subset A of

X. If d ∈ Met(A), then there exists D ∈ Met(X) such that D|A2 = d.

A subset S of [0,∞) is said to be characteristic if 0 ∈ S and if for
all r ∈ (0,∞), there exists s ∈ S \ {0} with s ≤ r.

We next explain the author’s extension theorem of ultrametrics [15,
Theorem 1.2], which is an analogue of Hausdorff’s extension theorem
for ultrametrics:

Theorem 3.2. Let S be a characteristic subset of [0,∞). Let X be an

ultrametrizable space, and A a closed subset of X. If d ∈ UMet(A;S),
then there exists D ∈ UMet(X ;S) such that D|A2 = d.

The following proposition can be considered as a 0-dimensional ana-
logue of Proposition 2.4.

Proposition 3.3. Let S be an unbounded subset of [0,∞), and X an

ultranormal σ-compact locally compact Hausdorff space. Then there

exists a continuous proper function f : X → S.

Proof. Let {Ui}i∈I be an open covering of X consisting of relatively
compact subsets. Since X is paracompact and ultranormal, using [11,
Corollary 1.4], we obtain an open covering {Vj}j∈J ofX refining {Ui}i∈I
such that Vj ∩ Vj′ = ∅ if j 6= j′. In this case, each Vj is clopen and
compact. SinceX is σ-compact, the set J is at most countable. We may
assume that J ⊂ Z≥0. Take a strictly increasing sequence {aj}j∈Z≥0

taking values in S such that limj→∞ aj = ∞. We define a map f : X →
S by f(x) = aj if x ∈ Vj. From the fact that {Vj}j∈J is a mutually
disjoint clopen covering of X , it follows that the map f is continuous.
Since each Vj is compact, we conclude that f is proper. �

Recall that the symbol ∨ stands for the maximum operator on R.
Namely, x ∨ y = max{x, y}.

Definition 3.1. Let S be a subset of [0,∞) with 0 ∈ S. We define an
ultrametric MS by

MS(x, y) =

{
0 if x = y;

x ∨ y if x 6= y.
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Remark 3.1. The construction of the metric MS was given by Del-
hommé–Laflamme–Pouzet–Sauer [6, Proposition 2], which also can be
found in [15] and [7].

Let (X, d) be a metric space, x ∈ X , and ǫ ∈ (0,∞). We denote
by U(x, ǫ; d) (resp. B(x, ǫ; d)) the open (resp. closed) ball centered at
x with radius ǫ.

A subset S of [0,∞) is said to be sporadic if there exists a se-
quence {sn}n∈Z such that S = {0} ∪ { sn | n ∈ Z }, limn→−∞ sn = 0,
limn→∞ sn = ∞ and si < si+1 for all i ∈ Z. Note that every sporadic
subset of [0,∞) is unbounded and characteristic in [0,∞), and every
unbounded characteristic subset of [0,∞) contains a sporadic subset.

Lemma 3.4. Let S be a sporadic subset of [0,∞). Then the Euclidean

topology on S coincides with that induced from MS.

Proof. For all x ∈ S\{0}, we have U(x, x;MS) = {x} and U(0, x;MS) =
S ∩ [0, x). This proves the lemma. �

Definition 3.2. Let X be a topological space, and f : X → R a con-
tinuous map. We define a pseudo-metric E[f ] on X by E[f ](x, y) =
|f(x) − f(y)|. Let S be a subset of [0,∞). Let f : X → S be a
continuous map. We also define a pseudo-metric MS [f ] on X by
MS[f ](x, y) =MS(f(x), f(y)).

Definition 3.3. Let X be a set and d, e : X2 → R be arbitrary maps.
We define d ∨ e : X2 → R by (d ∨ e)(x, y) = d(x, y) ∨ e(x, y). Notice
that if d is a metric on X and e is a pseudo-metric on X , then d ∨ e is
a metric on X .

Note that a metric d on X is proper if and only if all closed balls of
(X, d) are compact.

Lemma 3.5. Let X be a metrizable space. Let f : X → [0,∞) be a

continuous proper function, and d ∈ Met(X). Then the map d ∨ E[f ]
is a proper metric in Met(X).

Proof. Since f is continuous, the map E[f ] : X2 → [0,∞) is also con-
tinuous. Then the assumption d ∈ Met(X) yields d ∨ E[f ] ∈ Met(X).
For all r ∈ (0,∞) and p ∈ X , we notice that B(p, r; d ∨ E[f ]) ⊂
f−1([f(p)− r, f(p) + r]). Since f is proper, the set B(p, r; d ∨ E[f ]) is
compact. Thus, we conclude that d ∨ E[f ] is a proper metric. �

Lemma 3.6. Let S be an unbounded characteristic subset of [0,∞),
and T a sporadic subset of [0,∞) with T ⊂ S. Let X be an ultrametriz-

able space. Assume that f : X → T is a continuous proper function,

and d ∈ UMet(X ;S). Then the map d ∨MT [f ] is a proper metric in

UMet(X ;S).

Proof. Lemma 3.4 implies that MT [f ] : X
2 → T is continuous. Thus,

by d ∈ UMet(X ;S), and by T ⊂ S, we have d ∨MT [f ] ∈ UMet(X ;S).
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For all r ∈ (0,∞) and p ∈ X , we obtain B(p, r; d∨MT [f ]) ⊂ f−1([0, r]∪
{f(p)}). Since f is proper, the set B(p, r; d∨MT [f ]) is compact. There-
fore d ∨MT [f ] is a proper metric. This completes the proof. �

Lemma 3.5 gives a new proof of the following well-known corollary:

Corollary 3.7. Let X be a σ-compact locally compact Hausdorff space.

Then there exists a proper metric in Met(X). In particular, the space

X is completely metrizable.

Proof. Take d ∈ Met(X) and take a proper continuous function f : X →
[0,∞) (see Proposition 2.4). By Lemma 3.5, the map d ∨ E[f ] is a
proper metric in Met(X). This proves the first part of the corollary.
The latter part follows from the fact that every proper metric is com-
plete. �

Corollary 3.8. Let S be an unbounded characteristic subset of [0,∞),
andX an ultranormal σ-compact locally compact Hausdorff space. Then

there exists a proper metric in UMet(X ;S). In particular, the space X
is completely ultrametrizable.

Proof. Since S is unbounded and characteristic, there exists a sporadic
set of T such that T ⊂ S. According to Proposition 3.3, there exists a
continuous proper function f : X → T . Using [15, Proposition 2.14] or
applying Theorem 3.2 to A = ∅, we can take d ∈ UMet(X ;S). Then,
Lemma 3.6 implies that d∨MT [f ] is a proper metric in UMet(X ;S). �

Using Theorem 2.3, we obtain an extension theorem of proper met-
rics.

Theorem 3.9. Let X be a σ-compact locally compact Hausdorff space,

and A a non-empty closed subset of X. If d ∈ Met(A) is a proper

metric, then there exists a proper metric D ∈ Met(X) with D|A2 = d.

Proof. Fix p ∈ A and define a map f : A → [0,∞) by f(x) = d(p, x).
Then f is a continuous proper function. According to Theorem 2.3,
there exists a continuous proper function F : X → [0,∞) with F |A = f .
Due to Hausdorff’s extension theorem (Theorem 3.1), we can take a
metric e ∈ Met(X) such that e|A2 = d. We define a map D : X2 →
[0,∞) by

D(x, y) = e(x, y) ∨ E[F ](x, y)

Lemma 3.5 implies that the map D is a proper metric in Met(X). We
shall prove that D|A2 = d. If x, y ∈ A, we have e(x, y) = d(x, y) and
E[F ](x, y) = |F (x)−F (y)| = |d(x, p)−d(y, p)|. The triangle inequality
yields |d(x, p)−d(y, p)| ≤ d(x, y). Thus, we obtain E[F ](x, y) ≤ d(x, y)
for all x, y ∈ A. Therefore, by the definition of D, we have D|A2 = d.
This completes the proof. �

Let X be a topological space. A subset A of X is said to be a retract

if there exists a continuous map r : X → A such that r(a) = a for all
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a ∈ A. In this case, the continuous map r is said to be a retraction.
A subset A is said to be a proper retract if there exists a retraction
r : X → A, which is a proper map. For more discussion of proper
retracts, we refer the readers to [18].

The next lemma follows from the strong triangle inequality.

Lemma 3.10. Let X be a set, and d be an ultrametric on X. Then for

all x, y, z ∈ X, the inequality d(x, z) < d(y, z) implies d(y, z) = d(x, y).

Let (X, d) and (Y, e) be metric spaces, and f : X → Y be a map. We
say that f is metrically proper if the inverse image f−1(A) is bounded
in (X, d) for every bounded subset A of Y .

The proof of the following theorem is presented in [3, Theorem 2.9].

Theorem 3.11. Let (X, d) be an ultrametric space, and A be a closed

subset of X. Let τ ∈ (1,∞). Then there exists a τ 2-Lipschitz retraction
r : X → A. Moreover, if A is unbounded, the retraction r associated

with A can be chosen to be metrically proper.

By proving the existence of a proper ultrametric on an ultranormal
σ-compact locally compact Hausdorff space (Corollary 3.8), we show
that a non-compact closed subset of an ultranormal σ-compact locally
compact Hausdorff space is not only just a retract, but also a proper
retract.

Theorem 3.12. Let X be an ultranormal σ-compact locally compact

Hausdorff space, and A a non-empty non-compact closed subset of X.

Then A is a proper retract of X.

Proof. Using Corollary 3.8, we can take a proper ultrametric d ∈
UMet(X ; [0,∞)). Since A is non-compact and d is proper, it is un-
bounded in (X, d). The latter part of Theorem 3.11 implies that there
exists a metrically proper retraction r : X → A with respect to d. To
prove that r is proper, we take an arbitrary compact subset K of A.
Since K is bounded, and since r is metrically proper, the inverse im-
age r−1(K) is bounded and closed. Since d is a proper metric, the set
r−1(K) is compact, and hence r is proper. This finishes the proof of
Theorem 3.12. �

Before proving the following corollary, notice that the composition
of two proper maps is proper.

Corollary 3.13. Let X be an ultranormal σ-compact locally compact

Hausdorff space, and A a non-empty closed subset of X. If Y is a non-

compact metrizable space, then every continuous proper map f : A→ Y
can be extended into a continuous proper map F : X → Y .

Proof. We divide the proof into two cases.
Case 1. (A is non-compact): Theorem 3.12 guarantees the existence

of a proper retraction r : X → A. Put F = f ◦ r. Then F : X → Y is
a desired extension.
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Case 2. (A is compact): In this case, let Z be the countable discrete
space. Fix ω ∈ A. Put Z = { ai | i ∈ Z≥0 }, where a∗ : Z≥0 → Z is
injective. Note that X × Z is an ultranormal non-compact σ-compact
locally compact Hausdorff space. Put C = A× {a0} ∪ {ω} × Z. Then
C is a non-compact closed subset of X × Z. Since Y is non-compact,
we can take a countable closed discrete subset { bi | i ∈ Z≥1 } of Y .
We define a map g : C → Y by g((x, a0)) = f(x) for all x ∈ A and
g((ω, ai)) = bi for all i ∈ Z≥1. Then g is continuous and proper. Thus,
using Case 1, we can take a continuous proper map G : X × Z → Y
such that G|C = g. We define a map F : X → Y by F (x) = G(x, a0).
Then F is a continuous proper map and satisfies F |A = f . �

Proposition 3.14. Let S be an unbounded characteristic subset of

[0,∞), and T a sporadic subset of [0,∞) with T ⊂ S. Let X be an ultra-

normal σ-compact locally compact Hausdorff space. If d ∈ UMet(X ;S),
then there exists a metric w ∈ UMet(X ;T ) such that w(x, y) ≤ d(x, y)
for all x, y ∈ X. Moreover, if d is proper, so is w.

Proof. Take a real sequence {an}n∈Z such that T = {0}∪{ an | n ∈ Z },
limn→∞ an = ∞, limn→−∞ an = 0, and ai < ai+1 for all i ∈ Z. We define
a map ψ : [0,∞) → [0,∞) by

ψ(x) =

{
0 if x = 0;

ai if ai ≤ x < ai+1.

Put w = ψ ◦ d. According to [15, Lemma 2.2], we observe that w ∈
UMet(X ;T ). By the definition of ψ, we have w(x, y) ≤ d(x, y) for all
x, y ∈ X . This completes the first part of the proposition. To prove
the latter part, assume that d is proper and take p ∈ X and r ∈ (0,∞).
Put ψ(r) = ai. Then we have B(p, r;w) = B(p, ai;w) ⊂ B(p, ai+1; d).
Since d is proper, the set B(p, r;w) is compact. Thus w is proper. �

Theorem 3.12 provides an ultrametric version of Theorem 3.9.

Theorem 3.15. Let S be an unbounded characteristic subset of [0,∞).
Let X be an ultranormal σ-compact locally compact Hausdorff space,

and A a non-empty closed subset of X. If d ∈ UMet(A;S) is proper,

then there exists a proper metric D ∈ UMet(X ;S) such that D|A2 = d.

Proof. The proof is similar to that of Theorem 3.9. Fix p ∈ A. Take
a sporadic subset T of [0,∞) with T ⊂ S. Using Proposition 3.14, we
can take w ∈ UMet(X ;T ) with w(x, y) ≤ d(x, y) for all x, y ∈ X . We
define a map f : A → T by f(x) = w(p, x). Then f is a continuous
proper function. According to Corollary 3.13, we can take a continuous
proper function F : X → T such that F |A = f . By Theorem 3.2, there
exists a metric e ∈ UMet(X ;S) such that e|A2 = d. We define a map
D : X2 → S by

D(x, y) = e(x, y) ∨MT [F ](x, y).
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Lemma 3.6 implies that the map D is a proper metric in UMet(X ;S).
We shall prove D|A2 = d. Take x, y ∈ A. We may assume that
w(p, x) ≤ w(p, y). If w(p, x) < w(p, y), Lemma 3.10 yields w(x, y) =
w(p, y). Thus MT [F ](x, y) = w(x, y) ≤ d(x, y). If w(p, x) = w(p, y),
then, by the definition of MT , we have MT [F ](x, y) = 0 ≤ d(x, y).
Thus, due to e|A2 = d and the definition of D, we obtain D|A2 = d.
This finishes the proof of Theorem 3.15. �

4. Proper metrics at large scales

For a topological space Y , we denote by P (Y ) the set of all non-
empty subsets of Y . For topological spaces X and Y , we say that a
map φ : X → P (Y ) is lower semi-continuous if for every open subset
O of Y , the set { x ∈ X | φ(x) ∩ O 6= ∅ } is open in X . For a map
φ : X → P (Y ), a map f : X → Y is said to be a selection of φ if it is
continuous and satisfies f(x) ∈ φ(x) for all x ∈ X .

The following proposition from E. Michael [16, Proposition 1.4] states
that the existence of a selection of a set-valued map is equivalent to
the extension of a selection defined on a closed subset of the domain.

Proposition 4.1. Let X and Y be topological space. If S is a sub-

set of P (Y ) containing all one-point subsets of Y , then the following

statements are equivalent to each other:

(1) For all lower semi-continuous map φ : X → S, there exists a

selection of φ.
(2) If A is a closed subset of X, and φ : X → S is a lower semi-

continuous map, and if f : X → Y is a selection of the restricted

map φ|A : A→ S, then there exists a map F : X → Y , which is

a selection of φ : X → S such that F |A = f .

Let V be a Banach space. We denote by CC(V ) the set of all non-
empty closed convex subsets of V . The next theorem is known as
Michael’s selection theorem on paracompact spaces (see [16, Theorem
3.2′′]):

Theorem 4.2. Let X be a paracompact space, and V a Banach space.

If φ : X → CC(V ) is a lower semi-continuous map, then there exists a

selection of φ.

For a topological space Z, we denote by C(Z) the set of all non-
empty closed subsets of Z. Recall that every ultranormal paracompact
space is 0-dimensional (i.e., it has covering dimension 0). The following
theorem is known as the 0-dimensional Michael selection theorem (see
[17, Theorem 2]):

Theorem 4.3. Let X be a 0-dimensional paracompact space, Z a com-

pletely metrizable space. If φ : X → C(Z) is a lower semi-continuous

map, then there exists a selection of φ.
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For every Banach space V (resp. completely metrizable space Z),
the set CC(V ) (resp. C(Z)) contains all one-point sets of V (resp. Z).
Thus, we can apply Proposition 4.1 to Theorems 4.2 and 4.3, and then
we obtain the next two theorems on extending selections:

Theorem 4.4. Let X be a paracompact space, and A a closed subset

of X. Let V be a Banach space, and φ : X → CC(V ) a lower semi-

continuous map. If f : A → V is a selection of φ|A : A → CC(V ), then
there exists a selection F : X → V of φ such that F |A = f .

Theorem 4.5. Let X be an ultranormal paracompact space, and A
a closed subset of X. Let Z be a completely metrizable space, and

φ : X → C(Z) a lower semi-continuous map. If f : A→ Z is a selection

of φ|A : A → C(Z), then there exists a selection F : X → Z of φ such

that F |A = f .

Propositions 4.6 can be deduced from [20, Theorem 0.48] or [22,
Lemma 1.4.6]. The proof of Proposition 4.7 is presented in [15, Corol-
lary 2.24]. The definition of ultra-normed modules can be found in
[15].

Proposition 4.6. Let X be a topological space, and let (V, ‖ ∗ ‖) be a

Banach space. Let H : X → V be a continuous map and r ∈ (0,∞).
Then the map φ : X → CC(V ) defined by φ(x) = B(H(x), r; ‖ ∗ ‖) is

lower semi-continuous.

Proposition 4.7. Let X be a topological space, R be a commutative

ring, and let (V, h) be an ultra-normed R-module. Let H : X → V be a

continuous map and r ∈ (0,∞). Then a map φ : X → C(V ) defined by

φ(x) = B(H(x), r; h) is lower semi-continuous.

Let (Z, h) be a metric space and η ∈ (0,∞). A subset E of Z is said
to be η-dense in (Z, h) if for all x ∈ Z, there exists y ∈ E such that
h(x, y) ≤ η.

Theorem 4.8. Let η ∈ [0,∞). Let X be a σ-compact locally compact

Hausdorff space, and A a proper retract of X. If d ∈ Met(X) is a

proper metric, then there exists a proper metric D ∈ Met(X) such that

D|A2 = d and A is η-dense in (X,D).

Proof. We first take a Banach space (V, ‖ ∗ ‖) and an isometric embed-
ding l : (A, d|A2) → (V, ‖∗‖). For example, we can choose (V, ‖∗‖) as the
space of all real-valued bounded continuous functions on A, and l : A→
V as the Kuratowski embedding defined by l(x)(y) = d(x, y)− d(ξ, y)
for a fixed point ξ ∈ A.

We take a proper retraction r : X → A and define φ : X → CC(V ) by
φ(x) = B(l(r(x)), η; ‖ ∗ ‖). Applying Proposition 4.6 to H = l ◦ r, we
can assert that the map φ is lower semi-continuous. For all a ∈ A, the
equality r(a) = a implies that l(a) ∈ φ(a), namely, the map l : A → V
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is a selection of φ|A : A → CC(V ). Then Theorem 4.4 guarantees the
existence of a selection L : X → V of φ such that L|A = l.

Due to Hausdorff’s extension theorem (Theorem 3.1), we can take
e ∈ Met(X) with e|A2 = d. We define a map u : X2 → [0,∞) by
u(x, y) = min{e(x, y), η}. Then u ∈ Met(X). We also define a map
v : X2 → [0,∞) by v(x, y) = ‖L(x)−L(y)‖∨u(x, y). Since u ∈ Met(X)
and L is continuous, we have v ∈ Met(X). Using L|A = l, we obtain
‖L(a) − L(b)‖ = d(a, b) for all a, b ∈ A. Then, from u(x, y) ≤ e(x, y)
for all x, y ∈ X , and e|A2 = d, it follows that v|A2 = d.

Next we fix p ∈ A (note that A 6= ∅). We define a continuous proper
function f : A→ [0,∞) by f(x) = d(p, x), and define F = f ◦ r. Then
F : X → [0,∞) is a continuous proper function with F |A = f . We also
define a metric D on X by D(x, y) = v(x, y) ∨ E[F ](x, y).

Lemma 3.5 implies that D is a proper metric in Met(X). In a similar
way to the proof of Theorem 3.9, we obtain D|A2 = d.

We now show that A is η-dense in (X,D). Take an arbitrary point
x ∈ X . The relations L(r(x)) = l(r(x)) and L(x) ∈ φ(x) yield

‖L(x)− L(r(x))‖ ≤ η.(4.1)

From (4.1), the inequality u(x, r(x)) ≤ η, and the definition of v, it
follows that

v(x, r(x)) ≤ η.(4.2)

Since r is a retraction, we have r(r(x)) = r(x). Thus E[F ](x, r(x)) =
|F (x)− F (r(x))| = |f(r(x))− f(r(x))| = 0, and hence

E[F ](x, r(x)) = 0.(4.3)

Therefore, by (4.2), (4.3), and the definition of D, we conclude that

D(x, r(x)) ≤ η.(4.4)

Since r(x) ∈ A, and x ∈ X is arbitrary, the inequality (4.4) proves that
A is η-dense in (X,D). This completes the proof of Theorem 4.8. �

The proof of Theorem 4.9 is analogous with Theorems 4.8.

Theorem 4.9. Let η ∈ (0,∞), and S an unbounded characteristic

subset of [0,∞). Let X be an ultranormal σ-compact locally compact

Hausdorff space, and A a non-empty non-compact closed subset of X.

If d ∈ UMet(A;S) is proper, then there exists a proper metric D ∈
UMet(X ;S) such that D|A2 = d and A is η-dense in (X,D).

Proof. We put R = Z/2Z. However, as long as R is an integral domain,
the choice of R does not affect the proof of the theorem. We first ver-
ify that there exists an isometric embedding (A, d|A2) into a complete
ultra-normed R-module. Let (Y,m) be the completion of (A, d|A2).
Since the set d(A2) is invariant under the completion (see (12) in [4,
Theorem 1.6]), we have m(Y 2) = d(A2), and hence m ∈ UMet(Y ;S).
According to [15, Theorem 1.1], we can take a complete ultra-normed
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R-module (V, h) with h ∈ UMet(V ;S) and an isometric embedding
J : (Y,m) → (V, h). We put l = J |A : A→ V .

Theorem 3.12 enables us to take a proper retraction r : X → A. Since
S is characteristic, we can also take θ ∈ S \ {0} with θ ≤ η. We define
a map φ : X → C(V ) by φ(x) = B(l(r(x)), θ; h). Applying Proposition
4.7 to H = l ◦ r, we notice that the map φ is lower semi-continuous.
For all a ∈ A, the equality r(a) = a implies that l(a) ∈ φ(a), namely,
the map l : A → V is a selection of φ|A : A → C(V ). Using Theorem
4.5, there exists a selection L : X → V of φ such that L|A = l.

Due to Theorem 3.2, we can take e ∈ UMet(X ;S) such that e|A2 = d.
Put u(x, y) = min{e(x, y), θ}. Then u ∈ UMet(X ;S). We define a
map v : X2 → [0,∞) by v(x, y) = h(L(x), L(y)) ∨ u(x, y). From u ∈
UMet(X ;S) and the continuity of L, it follows that v ∈ UMet(X ;S).
Using L|A = l, we have h(L(a), L(b)) = d(a, b) for all a, b ∈ A. Then,
by u(x, y) ≤ e(x, y) for all x, y ∈ X , and by e|A2 = d, we obtain
v|A2 = d.

Next we fix p ∈ A and take a sporadic subset T of [0,∞) with T ⊂ S.
Due to Proposition 3.14, there exists w ∈ UMet(A;T ) with w(a, b) ≤
d(a, b) for all a, b ∈ A. We define a continuous proper function f : A→
T by f(x) = w(p, x), and define a map F = f ◦ r. Then F : X → T is
a continuous proper function with F |A = f . We also define a metric D
on X by D(x, y) = v(x, y) ∨MT [F ](x, y).

Lemma 3.6 implies that D is a proper ultrametric in UMet(X ;S).
In a similar way to the proof of Theorem 3.15, we obtain D|A2 = d.

We now show that A is η-dense in (X,D). Take an arbitrary point
x ∈ X . The relations L(r(x)) = l(r(x)) and L(x) ∈ φ(x) yield

h(L(x), L(r(x))) ≤ θ.(4.5)

From (4.5), the inequalities u(x, r(x)) ≤ θ and θ ≤ η, and the definition
of v, it follows that

v(x, r(x)) ≤ η.(4.6)

Since r is a retraction, we have r(r(x)) = r(x). Then MT [F ](x, r(x)) =
MT (F (x), F (r(x))) =MT (f(r(x)), f(r(x))) = 0, and hence

MT [F ](x, r(x)) = 0.(4.7)

Therefore, by (4.6), (4.7), and the definition of D, we conclude that

D(x, r(x)) ≤ η.(4.8)

Since r(x) ∈ A and x ∈ X is arbitrary, the inequality (4.8) proves that
A is η-dense in (X,D). This completes the proof of Theorem 4.9. �
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