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THE INDEX OF EQUIDIMENSIONAL FLAG MANIFOLDS

SAMIK BASU AND BIKRAMJIT KUNDU

Abstract. In this paper, we consider the flag manifold of p orthogonal subspaces of equal
dimension which carries an action of the cyclic group of order p. We provide a complete
calculation of the associated Fadell-Husseini index. This may be thought of as an odd
primary version of the computations of Baralić et al [2] for the Grassmann manifold Gn(R

2n).
These results have geometric consequences for p-fold orthogonal shadows of a convex body.

1. Introduction

Many combinatorial problems that rely on topological methods for their solution involve
the non-existence of equivariant maps between G-spaces [9] for a finite group G. The spaces
that arise here typically have a free G-action, and one computes the “index” of such spaces
to answer questions about the existence of equivariant maps out of them. There are many
variants of the “index”, which are invariants of G-spaces. The Fadell-Husseini index [6] is
one of the most widely used, defined for a G-space X as the ideal of H∗(BG) given by

IndexG(X) = Ker(H∗(BG) → H∗(XhG)),

where BG stands for the classifying space, EG → BG the universal G-bundle, and XhG =
EG×G X stands for the Borel construction. The use of the index to prove the non-existence
of an equivariant map X → Y lies in the condition

IndexG(Y ) ⊂ IndexG(X).

This has been very useful in the solution of the topological Tverberg problem for prime powers
[12], [13]. For certain Stiefel manifolds, index computations in the context of Kakutani’s
theorem are made in [4]. This is usually computed using the spectral sequence associated to
the fibration X → XhG → BG, and may also be related to Bredon cohomology computations
[3]. In this paper, we carry out computations in the case of certain flag manifolds using an
analogue of the novel technique of evaluating characteristic classes of wreath powers started
in [2].

Let p be an odd prime. For the field k = R or C, consider the flag manifold

Fn(k) = {(V1, · · · , Vp) | Vi ⊂ knp, dim(Vi) = n, Vi ⊥ Vj if i 6= j}.

Later we will denote Fn(C) by FU
n , and Fn(R) by FSO

n . The symmetric group Σp acts on
Fn(k) by permuting the Vi, which is a free action. If we used 2 instead of p, the flag manifold
would be equivalent to the Grassmannian Gn(k

2n), and the Σ2-action is the one which takes
a subspace to its orthogonal complement. The index computations for this action are carried
out in [2].

We restrict the Σp action on Fn(k) to the cyclic group Cp, and we fix the coefficients for
the cohomology as Z/p. The flag manifold is the homogeneous space Fn(C) = U(pn)/U(n)p,
and Fn(R) = O(pn)/O(n)p. As p is odd, for a calculation involving cohomology with Z/p
coefficients, we may work with SO(n) instead of O(n). Our first observation is that the
cohomology of this flag manifold is concentrated in even degrees, and the spectral sequences
associated to the fibrations

Fn(C) →
(

BU(n)
)p

→ BU(pn), Fn(R) →
(

BSO(n)
)p

→ BSO(pn),
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lead us to a nice expression for it. Recall that the cohomology of BCp is given by

H∗(BCp;Z/p) ∼= Z/p[u, v]/(u2), |u| = 1, |v| = 2.

In terms of this notation, we have the following result in the complex case. (see Theorems
5.4, 5.17)

Theorem A. Let n = paq with p ∤ q. Then,

IndexCp(Fn(C)) = (uvp
a+1−1, vp

a+1
).

The expression in the real case is quite analogous to the complex case with a slight difference
when q = 1. We have (see Theorems 5.21, 5.27)

Theorem B. Let n = paq with p ∤ q. Then,

IndexCp(Fn(R)) =

{

(vp
a+1−1) if q = 1

(uvp
a+1−1, vp

a+1
) if q > 1.

We now describe geometric consequences associated with the index computation above. For
a convex body C inside kpn, we consider the p-fold orthogonal shadow : (pV1(C), · · · pVp(C)),
where Vi are mutually orthogonal subspaces of dimension n, and pVi is the projection. We
have the following conclusion about continuous functions defined on the space Convex(kpn)
of convex bodies inside kpn, the distance function being the Hausdorff metric.

Theorem 1.1. a) Let n = paq such that p ∤ q, and r ≤ 2(p
a+1−1
p−1 ). Let α1, · · · , αr :

Convex(Cpn) → R. For every proper convex body C ⊂ Cpn, there exist p mutually orthogonal
n-dimensional subspaces V1, · · · , Vp of Cpn such that

αi(pVi(C)) = · · · = αi(pVp(C)) for all 1 ≤ i ≤ r.

b) Let n, p, a and q as above, and r < 2(p
a+1−1
p−1 ). Let α1, · · · , αr : Convex(Rpn) → R.

For every proper convex body C ⊂ Rpn, there exist p mutually orthogonal n-dimensional
subspaces V1, · · · , Vp of Rpn such that

αi(pVi(C)) = · · · = αi(pVp(C)) for all 1 ≤ i ≤ r.

Proof. We write the proof in the real case. The complex case is entirely similar. For a
given convex C ⊂ Rpn, α = (α1, · · · , αr) may be used to construct a continuous function
FC : Fn(R) → Rpr by

FC(V1, · · · , Vp) = (α(pV1(C)), · · · , α(pVp(C)),

which is Cp-equivariant, where the right hand side is identified with ρr, a direct sum of r-
copies of the regular representation. If the hypothesis is not true, then the map FC avoids the
diagonal, and the image of the projection F̃C onto the complementary subspace is non-zero
at every point. The latter is a direct sum of r-copies of the reduced regular representation
(denoted by ρ). Thus we obtain a Cp-equivariant map Fn(R) → S(ρr), the unit sphere inside

ρr. Now, IndexCp(S(ρ
r)) = (v

(p−1)r
2 ) [4, Page 4] and can not sit inside IndexCp(Fn(R)),

which is either (vp
a+1−1) or (uvp

a+1−1, vp
a+1

). This implies F̃C must be zero for some flag
(V1, · · · , Vp), a contradiction. �

There are interesting examples of continuous functions on the space of convex bodies
which come from various measures. The following corollary is a direct consequence of the
proof above, as in [2, Corollary 1.4].

Corollary 1.2. With n, p, q, a and r as above, let α1, α2, · · · , αr : Convexpnn → R. Then,
for every proper convex body C ⊂ Rpn containing the origin in its interior there exists p
mutually orthogonal n-dimensional subspaces V1, · · · , Vp such that

αi(C ∩ V1) = · · · = αi(C ∩ Vp)

for all 1 ≤ i ≤ r.
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This result has multiple implications as was pointed out in [2]. We prove the p-fold version
of orthogonal transformations of inertia tensors in the following theorem.

Theorem 1.3. Let a ≥ 0 and n = pa or 2pa. Let X ⊂ Rpn be a finite set of points.
There exist projections P1, P2, · · · , Pp : Rpn → Rpn onto mutually orthogonal n-dimensional
subspaces such that the p inertia tensors

IPi =
∑

x∈X

Pi(x)⊗ Pi(x)

for i = {1, · · · , p} are transformable from one to another by orthogonal transformations.

Proof. The configuration space of all projections (P1, · · · , Pp) onto mutually orthogonal n-
dimensional subspaces has an action of Cp by cyclic permutations. This can be identified
equivariantly with flag manifold Fn(R) by sending the Pi to its image. If we can show the char-
acteristic polynomials det(IPi−λIpn) are same for all the matrices of the bilinear forms defined
by IPi , we are done. Note that as Ker(Pi) are (p−1)n-dimensional, the characteristic polyno-
mials have at least (p−1)n zero roots. In all the characteristic polynomials we have n non-zero
coefficients in λpn−1, · · · , λpn−n. Let us denote them by α(Pi) = (αpn−1(Pi), · · · , αpn−n(Pi))
for i ∈ {1, · · · , p}. Now consider the Cp-equivariant map

FI : Fn(R) → Rpn, given by (P1, · · · , Pp) 7→ (α(P1), · · · , α(Pp)),

which intersects the diagonal by Theorem 1.1. Therefore, there exists a (P1, · · · , Pp) such
that FI(P1, · · · , Pp) = (α(P1), · · · , α(Pp)) lies in the diagonal subspace ∆(Rn) ⊂ Rpn and
thus, α(P1) = · · · = α(Pp). This proves the theorem. �

1.4. Organization. In §2, we compute the cohomology of the equidimensional flag man-
ifolds used in the document. In §3, the cohomology of the wreath power of spaces is noted
down, and using this expression, we reduce the index computation to that of certain char-
acteristic classes. In §4, the characteristic classes of the wreath power of vector bundles are
computed with a view towards index calculations. In §5, we complete the index calculations.

Notation 1.5. Throughout the document, p denotes an odd prime. We fix the notation σ
for a fixed generator of the cyclic group Cp of order p. We use the following notation

• Grk(C
n) denotes the complex grassmannian of k-planes in Cn. As a homogeneous

space, Grk(C
n) ∼= U(n)/U(k)× U(n− k).

• Grk(R
n) denotes the real grassmannian of k-planes in Rn. As a homogeneous space,

Grk(R
n) ∼= O(n)/O(k) ×O(n− k).

• G̃rk(C
n) denotes the oriented grassmannian of oriented k-planes in Rn. As a homo-

geneous space, G̃rk(R
n) ∼= SO(n)/SO(k) × SO(n− k).

• γnU stands for the universal n-plane bundle over BU(n), and γnSO stands for the
universal n-plane bundle over SO(n).

• FU
n denotes the flag manifold

FU
n = {V1 ⊂ V2 ⊂ · · · ⊂ Vp ⊂ Cpn | dim(Vi) = ni}

= {(W1, · · · ,Wp), Wi ⊂ Cpn | dim(Wi) = n; Wi ⊥ Wk if i 6= k}.

Observe that as a homogeneous space, FU
n

∼= U(pn)/(U(n))p.
• FO

n denotes the flag manifold

FO
n = {V1 ⊂ V2 ⊂ · · · ⊂ Vp ⊂ Rpn | dim(Vi) = ni}

= {(W1, · · · ,Wp), Wi ⊂ Rpn | dim(Wi) = n; Wi ⊥ Wk if i 6= k}.

Observe that as a homogeneous space, FO
n

∼= O(pn)/(O(n))p.
• We define FSO

n = SO(pn)/(SO(n))p. For the purposes of this paper, it suffices to
work with FSO

n instead of FO
n .

• For r ≤ p, FU
n,r denotes the flag manifold

FU
n,r = {(W1, · · · ,Wr), Wi ⊂ Cpn | dim(Wi) = n; Wi ⊥ Wk if i 6= k}.
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As a homogeneous space, FU
n,r

∼= U(pn)/(U(n)r × U((p − r)n).

• For r ≤ p, FSO
n,r = SO(pn)/(SO(n)r × SO((p − r)n).

In the case where the coefficient group in H∗(X) is not specified, it is assumed to be Z/p.
For a formal sum of cohomology classes φ ∈ H∗X, we denote the degree 2k part of φ by [φ]k.

1.6. Acknowledgements. The first author would like to thank Surojit Ghosh for certain
helpful conversations. The research of the second author was supported by CSIR-SRF
09/934(0008)/2017-EMR1.

2. Cohomology of flag manifolds

The main objective of this section is to compute the cohomology of FU
j and FSO

j . We

start with the unitary case. Along the way we also compute the cohomology of FU
j,r which is

defined as

FU
j,r = {(W1, · · · ,Wr), Wi ⊂ Cpj | dim(Wi) = j; Wi ⊥ Wk if i 6= k}.

One directly observes that FU
j,r is homeomorphic to U(jp)/U(j)r × U(pj − rj). Forgetting

the last subspace Wr gives the fibration

(2.1) Grj(C
(p−r+1)j)

i
−→ FU

j,r → FU
j,r−1,

whereGrk(C
n) is the grassmannian of k-planes in Cn. Recall that the cohomology of Grk(C

n)
is computed via the fibration

Grk(C
n) → BU(k)×BU(n− k) → BU(n).

We denote the graded algebra H∗(Grk(C
n)) by Hn,k. Recall that

H∗(BU(n)) ∼= Z/p[c1, · · · , cn],

where ci are the (mod p) reductions of the integral Chern classes. That is, ci is the (mod p)
reduction of the ith Chern class of γnU , the universal n-plane bundle over BU(n). The algebra
Hn,k has the form

(2.2) Hn,k = Z/p[c1, · · · , ck, c
′
1, · · · , c

′
n−k]/(ĉ1, · · · , ĉn) = Z/p[c1, · · · , ck]/(c̃n−k+1, · · · , c̃n).

The elements ci and c′i are pull-backs of the Chern classes over BU(k) and BU(n − k)
respectively. Here, ĉi are defined by the equation

1 + ĉ1 + · · ·+ ĉn = (1 + c1 + · · ·+ ck)(1 + c′1 + · · ·+ c′n−k).

In this equation, for i ≤ n − k, ĉi has the form ci + c′i plus lower order terms in the ci and
c′i. Therefore, it serves as a means of expressing the c′i inductively in terms of the ci in the
algebra Hn,k. Finally for i > n− k, we may incorporate this formula of the c′i in terms of the
ci into ĉi to obtain c̃i in the expression above. We now proceed towards the computation for
FU
j .

Proposition 2.3. The cohomology groups of FU
j,r are concentrated in even degrees.

Proof. Using (2.1), we proceed by induction on r. For r = 1, FU
j,1 is homeomorphic to

Grj(C
jp), which by (2.2) is concentrated only in even degrees. Now assume that H∗(FU

j,r−1)

is concentrated in even degrees. Then, in the Serre spectral sequence for (2.1), the E2-page
is concentrated in even bidegrees. Therefore, all the differentials are forced to be 0 for degree
reasons, and the result follows. �

An explicit formula for the cohomology ring of FU
j is now derived. It involves computations

with the fibration

(2.4) FU
j,r → B(U(j)r × U(p − r)j)

p
−→ BU(jp).

The map

BU(j)r ×BU((p− r)j) → BU(pj)
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classifies the bundle ⊕r
i=1π

∗
i γ

j
U ⊕ π∗

0γ
(p−r)j
U , where

πi : BU(j)r ×BU((p− r)j) → BU(j) (ith factor),

π0 : BU(j)r ×BU((p− r)j) → BU((p− r)j).

We now have the formula xi = p∗(ci) for 1 ≤ i ≤ jp, where the xi are defined by

1 + x1 + · · ·+ xpj =
[

r
∏

i=1

(1 + c1,i + · · ·+ cj,i)
]

(1 + c1,0 + · · ·+ c(p−r)j,0).

Here the notation is defined as

ci,l = π∗
l (ci) for 1 ≤ i ≤ j, ci,0 = π∗

0(ci) for 1 ≤ i ≤ (p− r)j.

In the following theorem, the notation ci,l also refers to the image in the cohomology of the

flag manifold FU
j,r.

Theorem 2.5. In terms of the notations above,

H∗(FU
j,r) = Z/p[ci,l]/(x1, · · · , xjp).

Proof. The Serre spectral sequence for (2.4) collapses at the E2-page as both H∗(FU
j,r) (by

Proposition 2.3) and H∗(BU(pj)) are concentrated in even degrees. From the convergence
of the spectral sequence, we see that the cohomology of the fibre FU

j is obtained from the
cohomology of the total space by quotienting out the ideal generated by pulling back the
positive degree elements from the base. The result is now immediate. �

In the case G = SO, the arguments are slightly more delicate as it is no longer true that
the corresponding grassmannian has a CW complex structure with only even degree cells.
Recall the cohomology of BSO(n) and SO(n), [5]

H∗(BSO(n)) ∼=

{

Z/p[p1, p2, · · · , pn−1
2
] if n odd,

Z/p[p1, p2, · · · , pn
2
−1, en] if n even

where pi are the Pontrjagin classes of the universal bundle with deg(pi) = 4i, and en is the
Euler class with deg(en) = n which is non-zero only in the even case; and

H∗(SO(n);Z/p) ∼=

{

ΛZ/p[y1, y2, · · · , yn−1
2
] if n odd,

ΛZ/p[y1, y2, · · · , yn
2
−1, σn−1] if n even,

where deg(yi) = 4i − 1 and deg(σn−1) = n − 1. In the following proposition we describe

the cohomology of the oriented grassmannian G̃rn,k = SO(n)/SO(k) × SO(n − k). We use
the notation H ′

n,k to denote the graded algebra which is abstractly isomorphic to Hn,k via a
degree doubling isomorphism. That is,

H
′(2s)
n,k = H

(s)
n,k, and H

′(2s−1)
n,k = 0.

We suggestively write pi and p′i instead of ci and c′i in the algebra H ′
n,k to denote the corre-

sponding image via the degree doubling isomorphism.

Proposition 2.6. We have the following formula for the cohomology of G̃rj(R
n) if j > 1

H∗(G̃rj(R
n)) ∼=































H ′
n−1
2

, j−1
2

[en−j ]/(e
2
n−j = p′n−j

2

) if n, j are odd

H ′
n−1
2

, j
2

[ej ]/(e
2
j = p j

2
) if n is odd and j is even

H ′
n
2
, j
2

[ej , en−j]/(e
2
n−j = p′n−j

2

, e2j = p j
2
, ejen−j) if n, j are even

H ′
n
2
, j−1

2

[σn−1]/(σ
2
n−1) if n is even and j is odd.
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Proof. The proof of this proposition follows from the Serre spectral sequence associated to
the fibration

(2.7) G̃rj(R
n) → BSO(j)×BSO(n− j) → BSO(n).

This may be computed via the techniques of [5]. For example all the cases other than the
last one follow from [5, Theorem 26.1]. In the last case, one observes that in the spectral
sequence for (2.7), the Euler class en pulls back to 0 in BSO(j) × BSO(n − j). The class
σn−1 transgresses to this element. The rest of the spectral sequence works analogously as the
spectral sequence for

Gr j−1
2
(C

n
2 ) → BU(

j − 1

2
)×BU(

n− j + 1

2
) → BU(

n

2
).

�

Proposition 2.6 directly yields the following corollary

Corollary 2.8. The cohomology of G̃rj(R
n) for j > 1 is concentrated in even degrees unless

n is even and j is odd.

Now we turn our attention to FSO
j and consider the real flag manifold FSO

j,r defined as

the homogeneous space FSO
j,r = SO(jp)/SO(j)r × SO((p − j)r). As in the unitary case, we

consider the fibration

(2.9) FSO
j,r → B(SO(j)r × SO(p − r)j)

p
−→ BSO(jp).

The map
BSO(j)r ×BSO((p− r)j) → BSO(pj)

classifies the bundle ⊕r
i=1π

∗
i γ

j
SO ⊕ π∗

0γ
(p−r)j
SO , where

πi : BSO(j)r ×BSO((p− r)j) → BSO(j) (ith factor),

π0 : BSO(j)r ×BSO((p− r)j) → BSO((p− r)j).

We now have the formula xi = p∗(pi) for 1 ≤ i ≤ ⌊jp/2⌋, where the xi are defined by

1 + x1 + · · · + x⌊pj/2⌋ = [
r
∏

i=1

(1 + p1,i + · · · + p⌊j/2⌋,i)](1 + p1,0 + · · · + p⌊(p−r)j/2⌋,0).

Here the notation is defined as

pi,l = π∗
l (pi) for 1 ≤ i ≤ ⌊j/2⌋, pi,0 = π∗

0(pi) for 1 ≤ i ≤ ⌊(p− r)j/2⌋.

If j is even, we also have Euler classes ej,l = π∗
l (ej) for 1 ≤ l ≤ r. In this case (p− r)j is also

even, and so we also have the Euler class e(p−r)j,0 = π∗
0e(p−r)j . We have the formula,

p∗(ejp) =

r
∏

l=1

ej,l · e(p−r)j,0.

If j is odd, and r is also odd, then (p−r)j is even, and we have the element e(p−r)j,0 = π∗
0e(p−r)j

in the cohomology ring of BSO(j)r × BSO((p − r)j). As in Theorem 2.5, we use the same
notation to denote the image in the cohomology of the flag manifold FSO

j,r .

Theorem 2.10. The cohomology of FSO
j,r for j > 1 is concentrated in even degrees, and we

have in terms of the notation above,

H∗(FSO
j,r ) ∼=











































Z/p[pi,l]
(x1,··· ,x⌊pj/2⌋)

if r is even, j is odd,

Z/p[pi,l,e(p−r)j,0]

(x1,··· ,x⌊pj/2⌋,e
2
(p−r)j,0

−p (p−r)j
2 ,0

)
if r is odd, j is odd,

Z/p[pi,l,ej,l,e(p−r)j,0]

(x1,··· ,x⌊pj/2⌋,p∗ejp,e
2
j,l−pj,l,e

2
(p−r+1)j,0

−p (p−r)j
2 ,0

)
if j is even.
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Proof. We proceed by induction on r. For r = 1 this is just the oriented real Grassmannian
manifold G̃rj(R

jp), and the result is implied by Proposition 2.6 and Corollary 2.8. In the
induction step, we compute via the Serre spectral sequence associated to the fibration

(2.11) G̃rj(R
(p−r+1)j) → FSO

j,r → FSO
j,r−1,

assuming the expression for FSO
j,r−1. We have 2 cases to consider.

Case I: Either j is even or r is odd.
The assumptions on r and j imply using Corollary 2.8 thatH∗(G̃rj(R

(p−r+1)j) is concentrated
in even degrees. This implies via induction that the cohomology of FSO

j,r is concentrated in

even degrees. Now we compute the Serre spectral sequence for the fibration (2.9), which
degenerates at the E2-page due to degree reasons. This implies that H∗(FSO

j,r ) is the quotient

of H∗(BSO(j)r ×BSO((p− r)j)) by the ideal generated by p∗ applied to the positive degree
classes of H∗(BSO(pj)). The result now follows.

Case II: j is odd and r is even.
In this case there is an odd degree class σ(p−r+1)j−1 in H∗(G̃rj(R

(p−r+1)j)). We show that
this class does not survive the spectral sequence for (2.11). Inductively, we have

H∗(FSO
j,r−1)

∼=
Z/p[pi,l, e(p−r+1)j,0]

(x1, · · · , x⌊pj/2⌋, e
2
(p−r+1)j,0 − p (p−r)j

2
,0
)
.

We prove that σ(p−r+1)j−1 transgresses to the class e(p−r+1)j,0. This implies that the odd
degree classes in the spectral sequence for (2.11) support a differential, and do not survive to
E∞. The rest follows as in the previous case via the fibration (2.9).

Consider the vector bundle over FSO
j,r−1 classified by the map

ξ(p−r+1)j : F
SO
j,r−1 → BSO((p− r + 1)j)

whose fibres are (⊕r−1
1 Wi)

⊥. The quotient map

q : SO((p − r + 1)j) → G̃rj(R
(p−r+1)j)

induces the following map between the fibrations.

SO((p− r + 1)j) //

��

G̃rj(R
(p−r+1)j)

��

Fr(ξ(p−r+1)j) //

��

G̃rj(ξ(p−r+1)j) ≃ FSO
j,r

��

FSO
j,r−1 FSO

j,r−1

Here Fr(ξ(p−r+1)j) denotes the oriented frame bundle of ξ(p−r+1)j . The differentials for the
Serre spectral sequence of the right hand fibration are computed via the left hand fibration.
The differentials for left hand fibration are computed via pulling back the universal bundle
by the following commutative diagram.

SO((p − r + 1)j)

��

SO((p − r + 1)j)

��

Fr∗(ξ(p−r+1)j) //

��

ESO((p − r + 1)j)

��

FSO
j,r−1

// BSO((p− r + 1)j)
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We now easily compute that

di(σ(p−r+1)j−1) = 0 if i < (p − r + 1)j, and

d(p−r+1)j(σ(p−r+1)j−1) = e(p−r+1)j,0.

�

3. Cohomology of the wreath power of spaces

In this section, we reduce the computation of the index of the flag manifold to the calcula-
tion of characteristic classes via the wreath power construction. These characteristic classes
are computed in §4. The p-fold wreath power construction is an odd primary analogue of the
wreath squares of [2].

For a CW-complex X, the cyclic group Cp of order p acts on Xp by

σ · (x1, · · · , xp) = (xp, x1, · · · , xp−1)

where σ is the generator of Cp. The p-th wreath power of X is the Borel construction on Xp

denoted by Xp
hCp

, and we have the usual fibre bundle

(3.1) Xp → Xp
hCp

→ BCp.

Recall that the cohomology of BCp has the form

(3.2) H∗(BCp) ∼= Z/p[u, v]/(u2), |u| = 1, |v| = 2.

The E2-term of the Serre spectral sequence of the fibration (3.1) is given by

Ei,j
2 := H i(Cp;H

j(Xp)).

Here, the local coefficient system is determined by the action of π1(BCp) = Cp = 〈σ〉 on
H∗(Xp) ∼= H∗(X)⊗ · · · ⊗H∗(X), which is given by

σ · (x1 ⊗ · · · ⊗ xp) = (xp ⊗ x1 ⊗ · · · ⊗ xp−1).

Finally the E2-term of the Serre spectral sequence associated to the fibration (3.1) is given
by [1, Corollary IV.1.6]

(3.3) Ei,j
2 =











Hj(Xp)
Cp if i = 0,

Hr(X) if i > 0 and j = pr,

0 otherwise.

Proposition 3.4. [1, Theorem IV.1.7] The Serre spectral sequence for the fibration (3.1)
degenerates at E2-page.

We introduce the following maps in order to give a description of the E2-page = E∞-page.

(3.5)

P : Hr(X) → Hpr(Xp) ∼= E0,pr
∞ , given by x 7→ x⊗p,

I : Hj(Xp) → Hj(Xp)
Cp

, given by x1 ⊗ · · · ⊗ xp 7→
∑

g∈Cp

g · (x1 ⊗ · · · ⊗ xp).

Note that the map P is multiplicative, and I is additive. Now we may write the E∞-page
with the help of the maps P and I, and one has the following identifications

(3.6)

Ei,0
∞

∼= H i(BCp) ∼= Z/p[u, v]/(u2),

E0,j
∞

∼= Hj(Xp)
Cp
,

E0,pr
∞

∼= P (Hr(X))⊕ I(Hpr(Xp)),

Ei,pr
∞

∼= P (Hr(X)) ⊗H i(BCp),

I(Hj(Xp)) · u = 0, I(Hj(Xp)) · v = 0.

These relations describe the complete ring structure of E∞-page. There are no multiplicative
extension problems from [7, Remark after Theorem 2.1]. We summarize this in the following
result.
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Theorem 3.7. The cohomology of Xp
hCp

is generated over H∗(BCp) by P (Hr(X)) and

I(Hr(Xp)) modulo of the ideal generated by terms I(y) · v, I(y) · u for y ∈ Hr(Xp).

The following proposition follows from the description of the E∞-page above.

Proposition 3.8. If f : B1 → B2 induces an injective map f∗ : H∗(B2) → H∗(B1), then

(fp
hCp

)∗ : H∗(B2
p
hCp

) → H∗(B1
p
hCp

)

is injective.

Proof. We have the following commutative diagram of fibrations

Bp
1

��

// Bp
2

��

B1
p
hCp

fp
hCp

//

��

B2
p
hCp

��

BCp BCp.

The description of the E2-page of the Serre spectral sequence of both the fibrations are given
by (3.3). The map between the two fibrations induces a map between the corresponding spec-
tral sequences, and from Proposition 3.4, it follows that E2 = E∞, and the spectral sequence
converges to the cohomology of p-th wreath power of corresponding Bi. The description of
the E2-page shows that the map is injective on the E2-page, and as the spectral sequence
degenerates at E2, this is also injective on the E∞-page. �

3.9. The wreath power of BU(n) and BSO(n). Let G denote one of U or SO. Using
the action of Cp on G(n)p via the cyclic permutation of coordinates, we define

WG
n := G(n)p ⋊ Cp,

the semidirect product induced by the action of Cp on G(n)p. That is, the notation WG
n

refers to WU
n = U(n)p ⋊Cp if G = U , and W SO

n = SO(n)p ⋊Cp if G = SO. This gives us an
exact sequence of groups

(3.10) 0 → G(n)p → WG
n → Cp → 0.

The exact sequence of groups induces the fiber bundle

(3.11) B(G(n)p) → BWG
n

π
−→ BCp.

The Serre spectral sequence associated to (3.11) is the Lyndon-Hochschild-Serre spectral
sequence associated to (3.10). We also observe that (3.11) identifies BWG

n as the wreath
power of BG(n). The associated spectral sequence has all differentials 0 from the second
page onwards (Proposition 3.4). Therefore,

Proposition 3.12. π∗ : H∗(BCp;Z/p) → H∗(BWG
n ;Z/p) is injective.

3.13. The index of the flag manifold. We now describe an useful reduction for the
index of flag manifold. The techniques are analogous to [2]. We again let G be one of U or
SO, and the cyclic group Cp acts on the complex flag manifold FG

n by cyclically permuting
the orthogonal subspaces

σ · (W1, · · · ,Wp) = (Wp,W1, · · · ,Wp−1).

The group WG
n = G(n)p ⋊ Cp embeds in G(np) via the maps

(A1, · · · , Ap) ∈ G(n)p 7→









A1 0 · · · 0
0 A2 · · · 0
· · · ·
0 0 · · · Ap









, σ 7→









0 0 · · · I
0 · · · I 0
· · · ·
I 0 · · · 0









.
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This leads to the homeomorphism

FG
n /Cp

∼=
[

G(pn)/G(n)p
]

/Cp
∼= G(pn)/(G(n)p ⋊ Cp) ∼= G(pn)/WG

n .

Since the action of W on U(jp) is free we can further assert that

(3.14) FG
n hCp

= ECp ×Cp F
G
n ≃ FG

n /Cp
∼= G(pn)/WG

n ≃ EG(pn)×WG
n
G(pn).

Thus we have the following diagram whose columns are fibrations

(3.15) FG
n

��

G(pn)oo

��

G(pn)

��

(FG
n )hCp

��

EG(pn)×WG
n
G(pn) //

p1
��

≃
oo EG(pn)

��

BCp BWG
n

iB //πoo BG(pn).

The homotopy equivalence (3.14) induces the left part of the commutative diagram. The
right part of the diagram is induced by WG

n −֒→ G(pn), which gives the map iB on classifying
spaces, and then p1 is the pullback of the universal G(pn)-fibration to BWG

n via iB . Recall
that the index of FG

n is given by

IndexCp(F
G
n ) = Ker(H∗(BCp) → H∗(FG

n hCp
).

Applying Proposition 3.12, we see that π∗ is injective, and via the diagram (3.15), we have,

IndexCp(F
G
n ) = Ker(p∗1 ◦ π

∗) = (π∗)−1Ker(p∗1).

In the right fibration of (3.15), the differentials in the Serre spectral sequence are computed
using characteristic classes. The cohomology of G(pn) is an exterior algebra (only additively
if p = 2 and G = SO) and the generators transgress to appropriate characteristic classes [5].
This implies that the kernel of p∗1 is the ideal generated by the pullbacks of the characteristic
classes under i∗B . Appropriate formulae for these are computed in §4.

Inspecting the cohomology ring Z/p[u, v]/(u2) of BCp in which IndexCp(F
G
n ) is an ideal, we

see that this may have the form (vl) or (uvl, vr). In the latter case, we also notice that as the
Böckstein sends u to v, the ideal must be of the form (uvl−1, vl). Therefore, the computation
of the index reduces to the following.

Proposition 3.16. The Fadell-Husseini index IndexCp(F
G
n ) equals either (uvl−1, vl) or (vl),

where π∗(uvl−1) or π∗(vl) is the lowest degree non-zero element of Im(π∗) ∩Ker(p∗1).

4. The wreath power of vector bundles

In this section, we construct the wreath power of a vector bundle, and compute it’s charac-
teristic classes in terms of those of the original vector bundle. This is the p-power analogue of
the wreath square defined in [2] for odd primes p. We compute the Chern classes in the case
of complex bundles, and the Pontrjagin classes in the case of real bundles. The expressions
obtained are used in the computation of the index of FG

n for G = U and G = SO in the
following section.

4.1. The p-fold wreath power of a vector bundle. Let ξ : E → B be a n-dimensional
real or complex vector bundle. The p-fold product bundle ξ×· · ·× ξ with total space Ep and
base Bp is equipped with a Cp-action by cyclically permuting the factors via

σ · (y1, · · · , yp) = (yp, y1, · · · , yp−1)

where σ is the generator of Cp. The pullback bundle induced by the projection

p1 : B
p × ECp → Bp
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has total space Ep × ECp. Note that the diagonal Cp-action on the space Bp × ECp is free,
it induces a bundle on the quotient spaces

ξ ≀ Cp : E
p
hCp

→ Bp
hCp

.

The bundle ξ ≀ Cp is of dimension pn, and is called p-fold wreath power of ξ. We note

Proposition 4.2. The wreath power construction preserves direct sums. That is, for two
bundles ξ1 and ξ2,

(ξ1 ⊕ ξ2) ≀ Cp
∼= (ξ1 ≀ Cp)⊕ (ξ2 ≀ Cp).

Proof. The obvious choice of isomorphism

a : (Fξ1 ⊕ Fξ2)× · · · × (Fξ1 ⊕ Fξ2) → (Fξ1 × · · · × Fξ1)⊕ (Fξ2 × · · · × Fξ2)

induces isomorphism between the fibers of p-th wreath power of Whitney sum of bundles and
Whitney sum of p-th wreath power of bundles, and hence the proposition follows. �

One also has the following naturality result for the wreath power construction.

Proposition 4.3. The wreath power of vector bundles behaves naturally with respect to
pull-backs of vector bundles. In other words,

(f ≀ Cp)
∗(ξ ≀ Cp) = f∗ξ ≀ Cp

where ξ : E → B is a vector bundle, and f : X → B is a continuous map.

Proof. The proof follows verbatim from [2, §3.3] replacing the wreath square by the p-fold
wreath power. �

4.4. The Chern class of a wreath power. We now compute the ( (mod p) reduction
of the) Chern classes of ξ ≀ Cp for a complex vector bundle ξ. These lie in the cohomology
groups H∗(Xp

hCp
), whose expression we note from Theorem 3.7. We introduce the following

notation using the definitions in (3.6).

Notation 4.5. Let φ ∈ H∗(X) be a sum of homogeneous classes φ =
∑r

i=1 φi. We define
z(φ) ∈ H∗(Xp

hCp
) by the formula

z(φ) = P (φ)−
r

∑

i=1

P (φi).

Note that z(φ) lies in the image of I. We also write zk(φ) to denote the degree k homogeneous
part of z(φ). Observe that if φ = c0 + c1 with |c0| = 0 and |c1| = 1, then

z(φ) =
∑

qi∈{0,1}
(q1,··· ,qp)6=(0,··· ,0)
(q1,··· ,qp)6=(1,··· ,1)

cq1(ξ)⊗ · · · ⊗ cqp(ξ).

If we further put c0 = 1, the homogeneous parts of z(1+c1) are just the elementary symmetric
polynomials on the terms 1⊗ · · · ⊗ c1 ⊗ · · · ⊗ 1.

We start by computing the Chern classes of the wreath power of complex line bundles.
Note that for a complex bundle ξ : E → B and a map f : X → B , Proposition 4.3 implies

(f ≀ Cp)
∗(c(ξ ≀ Cp)) = c(f∗(ξ) ≀ Cp),

where c(ξ ≀Cp) denotes the total Chern class of bundle ξ ≀Cp. Recall that the cohomology of
BCp is given by (3.2)

H∗(BCp) = Z/p[u, v]/(u2)

where deg(u) = 1 and deg(v) = 2.
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Proposition 4.6. Let ξ be a 1-dimensional complex vector bundle over a CW-complex B.
Then

c(ξ ≀ Cp) = (1 + vp−1) + P (c1(ξ)) +
∑

qi∈{0,1}
(q1,··· ,qp)6=(0,··· ,0)
(q1,··· ,qp)6=(1,··· ,1)

cq1(ξ)⊗ · · · ⊗ cqp(ξ)

= (1 + vp−1) + P (c1(ξ)) + z(c(ξ)).

where P is as defined in (3.5).

Proof. We proceed as in [2, Proposition 3.5]. Consider the map between bundles

Ep
hCp

E(p∗1(ξ
p))/Cp

��

E(p∗1(ξ
p))oo

��

// Ep

ξp

��

Bp
hCp

Bp ×Cp ECp Bp × ECp
p2

oo
p1

// Bp.

Note that the total Chern class may be computed as (where πi : B
p → B is the ith projection)

c(ξp) =c(π∗
1(ξ)⊕ · · · ⊕ π∗

p(ξ))

=

p
∏

i=1

c(π∗
i (ξ))

=

p
∏

i=1

(1 + 1⊗ · · · ⊗ c1(ξ)⊗ · · · ⊗ 1)

=1 + c1(ξ)⊗ · · · ⊗ c1(ξ) +
∑

qi∈{0,1}
(q1,··· ,qp)6=(0,··· ,0)
(q1,··· ,qp)6=(1,··· ,1)

cq1(ξ)⊗ · · · ⊗ cqp(ξ).

This gives

p∗2(c(ξ ≀ Cp)) =p∗1(c(ξ
p))

=p∗1

(

1 + c1(ξ)⊗ · · · ⊗ c1(ξ) +
∑

qi∈{0,1}
(q1,··· ,qp)6=(0,··· ,0)
(q1,··· ,qp)6=(1,··· ,1)

cq1(ξ)⊗ · · · ⊗ cqp(ξ)
)

.

The total Chern class of ξ ≀ Cp is concentrated in degrees ≤ 2p. From Theorem 3.7, we have
that in these degrees, the cohomology of [BU(1)]phCp

is a sum of P (c1), monomials in u and

v, and elements in the image of I. The map p2 is homotopic to the inclusion of the fibre in
(3.1), therefore, p∗2c(ξ ≀ Cp) computes the part of c(ξ ≀ Cp) that are not monomials in u or v.
It follows that

c(ξ ≀ Cp) = 1 + P (c1(ξ)) + z(c(ξ)) + sum of monomials in u and v.

Let x ∈ B, be a point. The inclusion i : x −֒→ B gives rise to a map between fibrations

ξx ≀ Cp
//

��

Ep
hCp

��

BCp
i≀Cp

// Bp
hCp

.

Note that the pull-back (i ≀ Cp)
∗(ξ ≀ Cp) is the dimension p-bundle induced by the regular

representation of Cp. In other words, let λ denote one dimensional complex representation
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of Cp where the chosen generator of Cp acts by rotation of angle 2π
p . The pull-back bundle

has the following structure
p−1
∑

i=0

ξx ⊗ λi.

Thus the total Chern class of the pull-back bundle is

c(ξx ≀ Cp) =

p−1
∏

i=0

c(ξx ⊗ λi) =

p−1
∏

i=0

c(λi) =

p−1
∏

i=0

(1 + λv) = 1 + vp−1.

Therefore,

(i ≀ Cp)
∗(c(π ≀ Cp)) = 1 + vp−1

which implies

c(ξ ≀ Cp) = (1 + vp−1) + P (c1(ξ)) + z(c(ξ)),

proving the proposition. �

We now compute the Chern classes of ξ ≀ Cp for a general vector bundle ξ.

Theorem 4.7. Let ξ be a n-dimensional complex vector bundle over a CW-complex B. Then

(4.8) c(ξ ≀ Cp) =
∑

0≤r≤n

P (cr(ξ))(1 + vp−1)n−r + z(c(ξ)).

Proof. We proceed by induction on the dimension of the bundle. Using the splitting principle,
together with the relation of the wreath power with direct sums (Proposition 4.2) and pull-
backs (Proposition 4.3), it suffices to assume the theorem for ξ and prove it for ξ ⊕ L where
L is a line bundle. In this reduction, we are also using that an injective map on cohomology
induces an injective map on wreath powers (Proposition 3.8). Assume that dim(ξ) = n − 1,
so that we have

c((ξ ⊕ L) ≀ Cp) = c(ξ ≀ Cp)c(L ≀ Cp)

=
[

∑

0≤r≤n−1

P (cr(ξ))(1 + vp−1)n−1−r + z(c(ξ))
](

(1 + vp−1) + P (c1(L)) + z(c(L))
)

.

The last formula comes from Proposition 4.6. For the ease of doing the calculation, we denote

(4.9)

I :=
∑

0≤r≤n−1

P (cr(ξ))(1 + vp−1)n−1−r

II := z(c(ξ))

III := (1 + vp−1) + P (c1(L))

IV := z(c(L)),

so that in terms of (4.9),

c((ξ ⊕ L) ≀ Cp) = I · III + I · IV + II · III + II · IV.

Since P is multiplicative, I· III gives
∑

0≤r≤n−1

P (cr(ξ))(1 + vp−1)n−r +
∑

0≤r≤n−1

P (cr(ξ)c1(L))(1 + vp−1)n−1−r.

We write Z ′(x, y) = P (x + y) − P (x) − P (y) for two elements x, y in the cohomology of B,
and observe from

cr(ξ ⊕ L) = cr(ξ) + cr−1(ξ)c1(L)

that

P (cr(ξ ⊕ L)) = ⊗p(cr(ξ) + cr−1(ξ)c1(L))

= P (cr(ξ)) + P (cr−1(ξ)c1(L)) + Z ′(cr(ξ), cr−1(ξ)c1(L)).
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Note that Z ′(cr(ξ), cr−1(ξ)c1(L)) lies in the image of the operator I, so that it gives 0 when
multiplied by v. Thus,

I· III =
∑

0≤r≤n

[

P (cr(ξ)) + P (cr−1(ξ)c1(L))
]

(1 + vp−1)n−r

=
∑

0≤r≤n

P (cr(ξ ⊕ L))(1 + vp−1)n−r −
∑

0≤r≤n

Z ′(cr(ξ), cr−1(ξ)c1(L))

=
∑

0≤r≤n

P (cr(ξ ⊕ L))(1 + vp−1)n−r −
∑

0≤r≤n

P (cr(ξ ⊕ L))− P (cr(ξ))− P (cr−1(ξ)c1(L)).

For the rest of the products we use the fact that the image of the operator z is contained in
the image of I, so that v multiplies to 0. Therefore we have

I · IV =
∑

0≤r≤n−1

P (cr(ξ))z(1 + c1(L)).

II · III = z(c(ξ)) + z(c(ξ))P (c1(L)).

II · IV = z(c(ξ))z(1 + c1(L)).

We simplify the first expression as

I · IV =
∑

0≤r≤n−1

P (cr(ξ))z(1 + c1(L))

=
∑

0≤r≤n−1

P (cr(ξ))
(

P (1 + c1(L)) − 1− P (c1(L))
)

=
∑

0≤r≤n−1

P (cr(ξ)(1 + c1(L)))− P (cr(ξ))− P (cr(ξ)c1(L)).

Therefore, we get that
(4.10)

I·III+I·IV =
∑

0≤r≤n

P (cr(ξ⊕L))(1+vp−1)n−r+
∑

0≤r≤n−1

(

P (cr(ξ)(1+c1(L)))−P (cr+1(ξ⊕L))
)

.

We next have

II · III = z(c(ξ)) + z(c(ξ))P (c1(L))

=
(

P (c(ξ)) −
∑

0≤r≤n−1

P (cr(ξ))
)

(1 + P (c1(L))

= P (c(ξ)) + P (c(ξ)c1(L))−
∑

0≤r≤n−1

(

P (cr(ξ)) + P (cr(ξ)c1(L))
)

.

The last expression gives

II · IV = z(c(ξ))z(1 + c1(L))

=
[

P (c(ξ)) −
∑

0≤r≤n−1

P (cr(ξ))
]

(P (1 + c1(L))− 1− P (c1(L)))

= P (c(ξ ⊕ L))− P (c(ξ)) − P (c(ξ)c1(L))−
∑

0≤r≤n−1

[

P (cr(ξ)(1 + c1(L))− P (cr(ξ)) − P (cr(ξ)c1(L))
]

.

Adding the last two expressions together we get

(4.11) II · III + II · IV = P (c(ξ ⊕ L))−
∑

0≤r≤n−1

P (cr(ξ)(1 + c1(L)).
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Now summing all the terms together using (4.10) and (4.11), we get

I · III + I · IV + II · III + II · IV

= P (c(ξ ⊕ L)) +
∑

0≤r≤n

P (cr(ξ ⊕ L))(1 + vp−1)n−r −
∑

0≤r≤n−1

P (cr+1(ξ ⊕ L))

=
∑

0≤r≤n

P (cr(ξ ⊕ L))(1 + vp−1)n−r + z(c(ξ ⊕ L)).

This calculcation completes the proof of the theorem. �

4.12. The Pontrjagin class of a wreath power. The computations for the Pontrjagin
classes of the p-th wreath power of a real vector bundle ξ : E → B is now straightforward
using Theorem 4.7. Recall that pi(ξ) = (−1)ic2i(ξ ⊗ C). One readily observes

(4.13) (ξ ⊗C) ≀ Cp
∼= (ξ ≀ Cp)⊗ C.

Now apply Theorem 4.7 along with (4.13) to deduce the following formula.

Proposition 4.14. The (mod p) reduction of the Pontrjagin classes of a real n-dimensional
vector bundle ξ are given by,

pi(ξ ≀ Cp) =
[

∑

0≤r≤⌊n
2
⌋

(−1)r−iP (pr(ξ))(1 + vp−1)n−2r
]

2i
+ z4i(p(ξ)).

Proof. Theorem 4.7 implies that

c(ξ ≀ Cp ⊗ C) =
∑

0≤r≤n

P (cr(ξ ⊗ C))(1 + vp−1)n−r + z(c(ξ ⊗ C)).

We know that the odd Chern classes of complexification of real vector bundle are 2-torsion
[11, Pg 174]. Since we are working over Z/p for odd p, the odd Chern classes c2i+1(ξ⊗C) = 0.
This gives

(−1)ic2i(ξ ≀ Cp ⊗C) = (−1)i
[

∑

0≤r≤n

P (cr(ξ ⊗ C))(1 + vp−1)n−r
]

2i
+ (−1)iz4i(c(ξ ⊗ C))

=⇒ pi(ξ ≀ Cp) = (−1)i
[

∑

0≤r≤[n
2
]

P (c2r(ξ ⊗ C))(1 + vp−1)n−2r
]

2i
+ (−1)iz4i(c(ξ ⊗ C))

=
[

∑

0≤r≤[n
2
]

(−1)rp+iP (pi(ξ))(1 + vp−1)n−2r
]

2i
+ (−1)i

∑

qi∈{0,1,··· ,[
n
2
]}

(q1,··· ,qp)6=(j,··· ,j)∑
qj=i

(−1)q1pq1 ⊗ · · · ⊗ (−1)qppqp

=
[

∑

0≤r≤[n
2
]

(−1)r+iP (pr(ξ))(1 + vp−1)n−2r
]

2i
+ z4i(p(ξ)).

The last equality comes from the fact that the signs on the second term cancel out and
(−1)rp = (−1)r. �

4.15. The Euler class of a wreath power. For computation of the (mod p) reduction
of the Euler class we use the generalized splitting principle for any G-vector bundle which
states,

Theorem 4.16. [10, Theorem 4] Let T be a maximal torus of a compact connected Lie group
G of rank n. For every principal G-bundle ξ : E → X, there exists q : Y → X with fibre G/T ,
and a reduction of the structure group of q∗(ξ) to T such that H∗(Y ) = H∗(X)⊗H∗(G/T )
and q∗ is the canonical inclusion.

Let G be SO(2n) and T be SO(2)n embedded in G. Theorem 4.16 implies that if ξ is an
oriented real 2n-vector bundle then q∗(ξ) splits as sum of 2-plane bundles [10, Example 10]
with q∗ injective in cohomology. This enables us to compute the (mod p) reduction of Euler
class of p-th wreath power of a bundle by first computing the same for line bundles, and then
applying the generalized splitting principle.
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Proposition 4.17. The (mod p) reduction of the Euler class of the wreath power of an even
dimensional real bundle ξ is given by,

e(ξ ≀ Cp) = P (e(ξ)).

Proof. The proof starts at 2-dimensional bundles ξ which is analogous to Proposition 4.6.
We observe that

e(ξ ≀ Cp) = P (e(ξ)) + sum of monomials in u and v.

We form the following diagram for a point x ∈ B

ξx ≀ Cp
//

��

Ep
hCp

��

BCp
i≀Cp

// Bp
hCp

,

and notice that the pull-back (i ≀ Cp)
∗(ξ ≀ Cp) is the dimension 2p-bundle induced by the

regular representation of Cp. Since the regular representation has a trivial summand, the
Euler class is zero, and hence, the monomial part in u and v does not contribute. This proves
the Proposition for 2-dimensional bundles.

We proceed by induction on n where the dimension of the bundle is 2n. Using the gener-
alised splitting principle described above it suffices to assume the theorem for ξ and prove it
for ξ ⊕ L where L is a 2-plane bundle. In this case,

e(ξ ⊕ L ≀ Cp) = e(ξ ≀ Cp)e(L ≀ Cp)

= P (e(ξ))P (e(L))

= P (e(ξ)(e(L))

= P (e(ξ ⊕ L)),

which completes the proof. �

5. Index computations

In §3, the index computation for FG
n was reduced to computing the pull-back of appropriate

characteristic classes (Proposition 3.16). These pull-backs are the universal characteristic
classes for the p-fold wreath powers in the notation of §4.

5.1. The unitary case. We denote the n-dimensional universal bundle by γnG over G(n)
where G could be U or SO. Observe that in the notation of the diagram (3.15),

BWG
n ≃ BG(n)phCp

, i∗B(γ
n
G) = γnG ≀ Cp.

In the spectral sequence for the fibration G(n) → EG(n) → BG(n), the cohomology of G(n)
is an exterior algebra on transgressive elements, and the image of the transgression are the
universal characteristic classes. Using this we can figure out the kernel of p∗1 in (3.15), which
for G = U yields

(5.2) Ker(p∗1) =
(

c1(γ
n
U ≀ Cp), · · · , cpn(γ

n
U ≀ Cp)

)

.

We first simplify the notation to be used in the computations below.

Notation 5.3. We denote ck(γ
n
U ) by ck, pk(γ

n
SO) by pk, and ek(γ

n
SO) by ek. Recall the

notation z(φ) for φ ∈ H∗(X) from Notation 4.5. We denote the degree k part of z(φ) as
zk(φ). For a formal sum of cohomology classes φ we denote the degree 2k part of φ by [φ]k.

Our target is to find out the value of l as defined in Proposition 3.16. We start with the
easy case where p ∤ n which is done by a direct computation.

Theorem 5.4. Suppose that p ∤ n. Then the index of FU
n is given by the formula

IndexCp(F
U
n ) = (uvp−1, vp).
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Proof. First we consider the case for n = 1. Using the equation (4.8), we compute the Chern
classes of p-th wreath power of γnU as

c(γnU ≀ Cp) =
∑

0≤r≤n

P (cr)(1 + vp−1)n−r + z(c),

where c = 1 + c1. Therefore, the i-th Chern classes are

c1(γ
1
U ≀ Cp) = I(c1 ⊗ 1⊗ · · · ⊗ 1),

c2(γ
1
U ≀ Cp) =

∑

I(c1 ⊗ 1⊗ · · · ⊗ c1 ⊗ 1⊗ · · · ⊗ 1),

· · · ,

cp−1(γ
1
U ≀ Cp) = vp−1 + z2(p−1)(c),

· · · .

Multiplying cp−1 respectively by u and v we get ucp−1 = uvp−1 and vcp−1 = vp. Here we are
using the fact that multiplying zk(c) with u and v yields zero. Note that z2(p−1)(c) is not zero
modulo z2i(c) for i ≤ p− 2 by using the fact that the elementary symmetric polynomials are
algebraically independent and the expressions of Notation 4.5. Therefore, p− 1 is the lowest
among l such that π∗(uvl−1) and π∗(vl) are in Ker(p∗1) ∩ Im(π∗). So by Proposition 3.16 we
get IndexCp(F

U
1 ) is (uvp−1, vp).

Now we turn to the case when n 6= 1. We again compute the Chern classes,

c1(γ
n
U ≀ Cp) = z2(c),

c2(γ
n
U ≀ Cp) = z4(c),

· · · ,

cp−1(γ
n
U ≀ Cp) = vp−1 + z2(p−1)(c),

· · · .

Proceeding as for the case n = 1, we see that π∗(uvp−1) and π∗(vp) are in Ker(p∗1) ∩ Im(π∗).
We will show this is the smallest degree term in Ker(p∗1) ∩ Im(π∗). Observe that there is a
Cp-equivariant map

i : FU
1 → FU

n

(V1, V2, · · · , Vp) 7→ (⊕nV1, · · · ,⊕nVp).

This gives that IndexCp(F
U
n ) ⊂ IndexCp(F

U
1 ) = (uvp−1, vp) implying the theorem. �

The following proposition serves as a key step in determining l such that uvl−1 or vl are 0
in the quotient algebra H∗(BWU

n )/Ker(p∗1) in the case p | n.

Proposition 5.5. Suppose that p | n and write n = paq for a ≥ 1 and p ∤ q. Then for every
1 ≤ k ≤ pa+1 − 1, the relation ck(γ

n
U ≀ Cp) = 0 in the quotient algebra

H∗(BWU
n )/

(

c1(γ
n
U ≀ Cp), · · · , ck−1(γ

n
U ≀ Cp)

)

is equivalent to the following relations:

(i) If p ∤ k and 1 ≤ k ≤ pa+1 − 2, then

(5.6) z2k(c) = 0.

(ii) If p | k and k 6∈ {pa+1 − pa, · · · , pa+1 − p}, then

(5.7) P (ck
p
) + z2k(c) = 0.

(iii) If k = pa+1 − pm+1, where m ∈ {0, 1 · · · , a− 1}, then

(5.8) P (cpa−pm) + αmvp
a+1−pm+1

+ z2k(c) = 0, where αm ∈ Z/p×.

(iv) If k = pa+1 − 1, then

(5.9) vp−1P (cpa−1) + z2(pa+1−1)(c) = 0.
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Proof. The proof is analogous to [2, Proposition 6.1]. We proceed by induction on k using
the equation (4.8)

(5.10) c(γnU ≀ Cp) =
∑

0≤r≤n

P (cr)(1 + vp−1)n−r + z(c).

This implies

ck(γ
n
U ≀ Cp) =

[

∑

0≤r≤n

P (cr)(1 + vp−1)n−r + z(c)
]

k

=
∑

0≤r≤n

[

P (cr)(1 + vp−1)n−r
]

k
+ z2k(c).

This already explains the terms z2k(c) occurring in the proposition. We show by induction

that for k ≤ pa+1 − 1,
∑

0≤r≤n

[

P (cr)(1 + vp−1)n−r
]

k
equals the other terms claimed in the

four parts of the proposition modulo ci(γ
n
U ≀ Cp) for i ≤ k − 1.

Start with the case p ∤ k and k ≤ (p − 1)pa − 1. As p is an odd prime, vp−1 is in degree
2(p − 1) ≥ 4, so that the proposition is clear when k = 1. Now we compute the degree 2k
part of (5.10). We note that

(5.11)

[

(1 + vp−1)n
]

k
=

[

(1 + vp−1)p
aq
]

k

=
[

(1 + v(p−1)pa)q
]

k

=

q
∑

j=0

[

(

q

j

)

(v(p−1)pa)j
]

k

which does not have any degree 2k part as (p− 1)pa > k. Now examine (1 + vp−1)n−rP (cr)
for each r ≥ 1. In order to contribute to the degree 2k part of (5.10), we must have rp < k,
so that we may apply (5.7) and replace P (cr) with −z2rp(c). Consequently,

(1 + vp−1)n−rP (cr) = −(1 + vp−1)n−rz2rp(c) = −z2rp(c) by (3.6),

which does not contribute in degree 2k, proving (i) in this case.
Now suppose p | k and k ≤ (p− 1)pa − 1. An entirely analogous argument as above shows

that the degree 2k part of (1 + vp−1)n−rP (cr) may be non-zero only when r = k/p. In this
case

[

(1 + vp−1)n−
k
pP (ck

p
)
]

k
= P (ck

p
)

which proves (ii) in this case.
Now consider k = (p − 1)pa = pa+1 − pa. Now (5.11) changes to

[

(1 + vp−1)n
]

k
=

q
∑

j=0

[

(

q

j

)

(v(p−1)pa)j
]

k

= qvk = αa−1v
k,

where αa−1 ≡ q (mod p). The rest of the argument proceeds as above for the case (ii) to
imply (iii) for m = a− 1.

Next we prove (i) for (p − 1)pa < k < pa+1 − 1. The equation (5.11) still does not yield
any term in degree 2k, as p ∤ k. Also unless rp is one of pa+1 − pm+1 for 0 ≤ m ≤ a − 1,
the term P (cr)(1+ vp−1)n−r does not contribute in degree k as in the cases above. Finally if
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rp = pa+1 − pm+1 where 0 ≤ m ≤ a− 1, we may apply (5.8) to obtain

(5.12)

[

P (cr)(1 + vp−1)n−r
]

k
=

[

(−zrp(c)− αmvrp)(1 + vp−1)n−r
]

k

=
[

− zrp(c)− αmvrp(1 + vp−1)n−r
]

k

=

{

−αm

( n−r
k−rp
p−1

)

vk if p− 1 | k − rp

0 if p− 1 ∤ k − rp.

Hence, we are done unless (p − 1) | k − rp. Now suppose that k = rp + λ(p − 1). Observe
that n − r = paq − pa + pm. This implies pm | n − r. On the other hand, p ∤ k implies that
p ∤ λ. Therefore,

(n−r
λ

)

= 0 unless m = 0. But this means that

k − rp < pa+1 − 1− (pa+1 − p) < p− 1.

Thus, we end up with (5.6).
If p | k for (p − 1)pa < k < pa+1 − 1, and k 6= pa+1 − pm+1 for 0 ≤ m ≤ a − 1, we work

out that (5.11) does not have any elements in degree 2k as there are no divisors of (p− 1)pa

in the given range of values of k. Proceeding as in the previous case, we only need to figure
out the degree 2k part of P (cr)(1 + vp−1)n−r where rp < k is of the form pa+1 − pm+1 for

0 ≤ m ≤ a− 1. The formula (5.12) still holds, and here λ = k−rp
p−1 is divisible by p. However

pm | n− r implies λ = j · pm. If j = 1,

k = rp+ pm(p− 1) = pa+1 − pm+1 + pm+1 − pm = pa+1 − pm,

which contradicts the assumption on k, and if j ≥ 2,

k = pa+1 − pm + pm(p− 1)(j − 1) > pa+1 − 2.

This completes the proof of (ii).
Now we consider k = pa+1 − pm+1, where 0 ≤ m ≤ a− 1, and note that k

p = pa − pm. We

have already completed the calculation for m = a−1. For the remaining, we check that (5.11)
does not contribute in degree 2k as (p− 1)pa ∤ k. As in the above cases, the contributions in
degree 2k apart from z2k(c) and P (cpa−pm) may only come from terms P (cr)(1 + vp−1)n−r

for r = pa − ps where a− 1 ≥ s > m. In this case,
[

P (cr)(1 + vp−1)n−r
]

k
=

[

(−z2rp(c)− αsv
rp)(1 + vp−1)n−r

]

k

=
[

− z2(pa+1−ps+1)(c) − αsv
pa+1−ps+1

(1 + vp−1)p
aq−pa+ps

]

k

= −αs

(

paq − pa + ps

ps+1−pm+1

p−1

)

vk.

Note that ps divides paq − pa + ps, while the highest power of p dividing ps+1−pm+1

p−1 is pm+1.

Therefore, this is 0 unless s = m+ 1, in which case the binomial coefficient is
(paq−pa+pm+1

pm+1

)

which is 6≡ 0 (mod p) by Lucas’ theorem [8].
Finally, suppose k = pa+1−1. As in the above cases other than z2k(c), the only contributing

terms in degree 2k in (5.10) may arise in P (cr)(1 + vp−1)n−r for rp = pa+1 − pm+1 (0 ≤ m ≤
a− 1). As in the cases above, we have
[

P (cr)(1 + vp−1)n−r
]

pa+1−1
=

[

(−z2rp(c)− αmvrp)(1 + vp−1)n−r
]

pa+1−1

=
[

− z2(pa+1−pm+1)(c)− αmvp
a+1−pm+1

(1 + vp−1)p
aq−pa+pm

]

pa+1−1

= −αm

(

paq − pa + pm

pm+1−1
p−1

)

vp
a+1−1,
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which is 0 unless m = 0, as p | paq − pa + pm but p ∤ pm+1−1
p−1 . At m = 0, we have

[

P (cpa−1)(1 + vp−1)n−pa+1
]

pa+1−1
= (pa(q − 1) + 1)P (cpa−1)v

p−1

= P (cpa−1)v
p−1.

This implies (5.9) and completes the proof. �

The computations of Proposition 5.5 allow us to deduce

Corollary 5.13. Let n = paq, where p ∤ q. Then in the quotient algebra H∗(BWU
n )/

(

c1(γ
n
U ≀

Cp), · · · , cpa+1−1(γ
n
U ≀ Cp)

)

we have the following two relations.

uvp
a+1−1 = 0,

vp
a+1

= 0.

Proof. From the Proposition (5.5)(iii) and (5.5)(iv) we have following two equations.

(5.14) vp−1P (cpa−1) + z2(pa+1−1)(c) = 0

(5.15) P (cpa−1) + α0v
pa+1−p + z2(pa+1−p)(c) = 0

where α0 ∈ Z/p×. Multiplying (5.15) with vp−1 and then subtracting from (5.14) we get

(5.16) α0v
pa+1−1 − z2(pa+1−1)(c) = 0.

Multiplying the above equation further with u and v gives our desired result. Here we are
using the fact u · zk(c) = 0 and v · zk(c) = 0. �

We are now in a position to compute the index in the case G = U .

Theorem 5.17. Suppose n = paq for a ≥ 1, and p ∤ q. Then,

IndexCp(F
U
n ) = (uv(p

a+1−1), vp
a+1

).

Proof. Let us first prove the theorem for the case pa. From Proposition 3.16, we know that
the index is (uvk−1, vk) where π∗(uvk−1) or π∗(vk) is the lowest degree non-zero element in

H∗(BWU
n )/

(

c1(γ
n
U ≀ Cp), · · · , cpn(γ

n
U ≀ Cp)

)

∩ Im(π∗).

By corollary (5.13) we already have uvp
a+1−1 = 0 and vp

a+1
= 0. If we can show

vp
a+1−1 6∈

(

c1(γ
n
U ≀ Cp), · · · , cpn(γ

n
U ≀ Cp)

)

and

uvp
a+1−2 6∈

(

c1(γ
n
U ≀ Cp), · · · , cpn(γ

n
U ≀ Cp)

)

we are done. Let us take a bigger ideal

J =
(

{c1(γ
n
U ≀ Cp), · · · , cpn(γ

n
U ≀ Cp)} ∪ {I(cq1 ⊗ cq2 · · · ⊗ cqp) | 1 ≤

p
∑

1

qi ≤ pa+1 − p}
)

where I is as described in (3.5) and show vp
a+1−1 is not in J . Now (5.16) gives

vp
a+1−1 = α′z2(pa+1−1)(c),

where α′ = α−1
0 . Expressing z2(pa+1−1) in terms of I,

z2(pa+1−1) =
∑

∑
qi=pa+1−1

cq1 ⊗ · · · ⊗ cqp

= I(cpa−1 ⊗ cpa · · · ⊗ cpa).
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which is non-zero in H∗(BWU
n )/J . Thus we have proved vp

a+1−1 6= 0 in H∗(BWU
n )/

(

c1(γ
n
U ≀

Cp), · · · , cpn(γ
n
U ≀ Cp)

)

proving the theorem for n = pa.

For the general case n = paq where p ∤ q, consider the Cp-equivariant map

FU
pa → FU

paq

(V1, V2, · · · , Vp) 7→ (⊕qV1, · · · ,⊕qVp).

The existence of such Cp-equivariant map will guarantee IndexCpF
U
paq ⊂ IndexCpF

U
pa . Thus

by Corrollary (5.13) we conclude the theorem. �

5.18. The real case. The computation of IndexCpF
SO
n is analogous to its complex coun-

terpart IndexCpF
U
n . Observe that for G = SO the kernel of p∗1 in (3.15) is

(5.19) Ker(p∗1)
∼=







(

p1(γ
n
SO ≀ Cp), · · · , p pn

2
(γnSO ≀ Cp), epn(γ

n
SO ≀ Cp)

)

if n is even,
(

p1(γ
n
SO ≀ Cp), · · · , p pn

2
−1(γ

n
SO ≀ Cp)

)

if n is odd.

For a real even dimensional bundle the Euler class appears in the index of its p-th wreath
power. This is where the computation could have been different from the complex case,
however, a simple comparison allows us to prove this case.

Theorem 5.20. Let n be even and n = paq with a ≥ 0, p ∤ q. Then,

IndexCp(F
SO
n ) = (uv(p

a+1−1), vp
a+1

).

Proof. Consider the maps between flag manifold

FU
n
2
→ FSO

n → FU
n

where the first map is the underlying real subspace of complex subspaces and the second map
is the complexification. This will imply

IndexCpF
U
n ⊂ IndexCpF

SO
n ⊂ IndexCpF

U
n
2
.

But we already have IndexCpF
U
n = IndexCpF

U
n
2
= (uv(p

a+1−1), vp
a+1

) which forces IndexCpF
SO
n

to be (uv(p
a+1−1), vp

a+1
). �

Now we will turn to the case when n is odd. The proof of Theorem 5.20 already shows
that if n = paq with p ∤ q,

IndexCp(F
SO
n ) ⊂ (uv(p

a+1−1), vp
a+1

),

using the map FSO
n → FU

n . First we investigate what happens when n does not involve any
non-trivial power of p.

Theorem 5.21. Suppose that p ∤ n. The index of FSO
n is given by the formula

IndexCp(F
SO
n ) =

{

(vp−1) if n = 1,

(uvp−1, vp) if n > 1.

Proof. In the case for n = 1, FSO
n ≃ SO(p), and W SO

1 ≃ Cp. The total Pontrjagin class of
the wreath power equals the total Pontrjagin class of the regular representation from which
we obtain IndexCp(F

SO
1 ) is (vp−1).

Now we turn to the case when n > 1. We compute according to (5.19) the Pontrjagin
classes using Proposition 4.14,

p1(γ
n
SO ≀ Cp) = z4(p(γ

n
SO)),

p2(γ
n
SO ≀ Cp) = z8(p(γ

n
SO)),

· · · ,

p p−1
2
(γnSO ≀ Cp) = vp−1 + z2(p−1)(p(γ

n
SO)),

· · · .
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Let p = 1+ p1 + · · ·+ pn−1
2
. We observe now that if n > 1, z2(p−1)(p) does not belong to the

ideal generated by z4(p), · · · , z2(p−1)−4(p). Suppose on the contrary that there is a relation

z2(p−1)(p) =

p−3
2

∑

i=1

λiz4i(p),

We may put pi = 0 for i ≥ 2 in the expression above and obtain a relation among the
homogeneous terms in z4i(1 + p1). These are elementary symmetric polynomials as observed
in Notation 4.5, and so we obtain a contradiction. �

To compute the index for general n odd we need results analogous to Proposition 5.5 for
the Pontrjagin classes. The proofs are similar so we skip them and state the result below.

Proposition 5.22. Suppose that p | n, and write n = paq for a ≥ 1 and p ∤ q. For every
1 ≤ 2k ≤ pa+1 − 1, the relation pk(γ

n
SO ≀ Cp) = 0 in the quotient algebra

H∗(BW SO
n )/

(

p1(γ
n
SO ≀ Cp), · · · , pk−1(γ

n
SO ≀ Cp)

)

is equivalent to the following relations:

(i) If p ∤ k and 1 ≤ 2k ≤ pa+1 − 2, then

(5.23) z4k(p) = 0.

(ii) If p | k and 2k 6∈ {pa+1 − pa, · · · , pa+1 − p}, then

(5.24) P (p k
p
) + z4k(p) = 0.

(iii) If 2k = pa+1 − pm+1, where m ∈ {0, 1 · · · , a− 1}, then

(5.25) P (p pa−pm

2
) + αmv(p

a+1−pm+1) + z4k(p) = 0, where αm ∈ Z/p×.

(iv) If 2k = pa+1 − 1, then

(5.26) v(p−1)P (p pa−1
2

) + z2(pa+1−1)(p) = 0.

Using Proposition 5.22 we complete the computation IndexCp(F
SO
n ) for general odd n.

Theorem 5.27. Let n be odd and n = paq with a ≥ 1, p ∤ q. Then,

IndexCp(F
SO
n ) =

{

(vp
a+1−1) if q = 1,

(uvp
a+1−1, vp

a+1
) if q > 1.

Proof. Let us first prove the theorem for n = pa. This is analogous to Theorem 5.17. Taking
m = 0 in (5.25) and multiplying it with vp−1 and subtracting it from (5.26) we get

vp
a+1−1 = α′

0z2(pa+1−1)(p)

where α′
0 = α−1

0 . However, observe

z2(pa+1−1)(p) =
∑

∑
qi=

pa+1−1
2

pq1 ⊗ · · · ⊗ pqp,

is 0 for degree reasons, as the maximum value each qi can attain is pa−1
2 . Thus, vp

a+1−1 = 0

in H∗(BW SO
n )/

(

p1(γ
n
SO ≀Cp), · · · , p pn−1

2
(γnSO ≀Cp)

)

. Now if we can show vp
a+1−2 6∈

(

p1(γ
n
SO ≀

Cp), · · · , p pn−1
2

(γnSO ≀ Cp)
)

we are done for the case pa. From (5.25) we have

vp
a+1−2 = α′

0v
p−2P (p pa−1

2
)

This is clearly non-zero, as the only relation on P (p pa−1
2

) in degrees ≤ 2(pa+1 − 2) is given

by (5.25) for m = 0.
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For the general case, where q > 1 we already have

vp
a+1

= 0, uvp
a+1−1 = 0,

from the proof of Theorem 5.20. The proof is complete once we observe that

vp
a+1−1 = α′

0z2(pa+1−1)(p)

and z2(pa+1−1)(p) is non-zero modulo the ideal
(

p1(γ
n
SO ≀Cp), · · · , p pn−1

2
(γnSO ≀Cp)

)

. We have

z2(pa+1−1)(p) =
∑

∑
qi=

pa+1−1
2

pq1 ⊗ · · · ⊗ pqp,

contains a term I(p pa+1
2

⊗ · · · p pa+1
2

⊗ p pa−p
2

) which may be used to show that the above

expression is non-zero by arguments similar to the ones in the proof of Theorem 5.21. Hence
the theorem follows for q > 1. �

References

[1] A. Adem and R. J. Milgram, Cohomology of finite groups, vol. 309 of Grundlehren der mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, second ed.,
2004.
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