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Canonical formulation of embedding gravity

in a form of General Relativity with dark matter
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Abstract

We study embedding gravity, a modified theory of gravity, in which our space-time is

assumed to be a four-dimensional surface in flat ten-dimensional space. Based on a simple

geometric idea, this theory can be reformulated as General Relativity with additional

degrees of freedom and contribution to action, which can be interpreted as describing dark

matter. We study the canonical formalism for such a formulation of embedding gravity.

After solving simple constraints, the Hamiltonian is reduced to a linear combination of

four first class constraints with Lagrange multipliers. There still remain six pairs of second

class constraints. Possible ways of taking these constraints into account are discussed. We

show that one way of solving the constraints leads to the canonical system going into

the previously known canonical formulation of the complete embedding theory with an

implicitly defined constraint.
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1 Introduction

The embedding approach to describe gravity was proposed by Regge and Teitelboim in [1]. The
main object in this approach is some four-dimensional surface in a generally ten-dimensional flat
ambient space with pseudo-Euclidean metric ηab, described by the embedding function ya(xµ).
Here xµ are the coordinates on the surface; the function ya takes values in the ambient space;
the Greek indices run through four values 0, 1, 2, 3, while the Latin ones run through ten values
0, 1, . . . , 9. This surface is understood as our four-dimensional space-time. Its metric is induced
by the embedding function, which means that the distance between infinitely close points of
the surface is defined as the distance between these points in the ambient space:

gµν = (∂µy
a)(∂νy

b)ηab. (1)

The embedding gravity action (description of gravity as an embedding theory) is the usual
Einstein-Hilbert action

S =
1

2κ

∫
d4x

√−gR + Sm, (2)

in which the embedding function ya is chosen as the independent variable, while the metric
is considered to be induced, that is, it is uniquely determined from the embedding function
by (1). The term Sm denotes the contribution of matter. In this work, we use the signature
−+++.

Initially, the embedding theory was intended to solve some problems associated with the
quantization of General Relativity. The fact is, the quantization procedure has proven itself well
for field theories in a flat (pseudo-Euclidean) space. However, in the case of General Relativity,
the space-time metric is a dynamic variable itself, and the known recipes stop working. A
detailed review of the gravity quantization problems can be found in [2]. In the embedding
theory, however, there is a flat background metric, which can help in solving the problems of
gravity quantization, so rewriting GR in this form may be useful. After the pioneering work [1]
embedding approach was analysed in [3]. In subsequent years the ideas of this approach were
used repeatedly in the works of different authors to describe gravity, including in connection
with its quantization, see, for example, [4–11].

It is worth noting that embedding gravity is not equivalent to General Relativity due to the
presence of the so-called extra solutions. Indeed, by varying the action (2) with respect to the
independent variable ya, one can obtain equations called the Regge-Teitelboim equations

Dµ

((
Gµν − κ T µν

)
∂νy

a
)
= 0, (3)

where Gµν is the Einstein tensor, T µν is the matter energy-momentum tensor, Dµ is the co-
variant derivative. These equations are more general than the Einstein equations, that is, in
addition to the solutions of the Einstein equations, they also contain the so-called «extra»
solutions. One can get rid of extra solutions by artificially imposing the so-called Einstein
constraints [1], which are four out of ten Einstein equations:

Gµ0 − κ T µ0 = 0. (4)

One can show [12] that, being imposed at the initial moment, they are further satisfied due to
the equations of motion (3).

Later, extra solutions began to be considered not as a disadvantage of embedding gravity,
but, on the contrary, as a virtue. The reason for this was some interesting property of the em-
bedding theory. It turns out that the Regge-Teitelboim equations can be rewritten in the form
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corresponding to the Einstein equations with the contribution of some additional (fictitious)
matter with the energy-momentum tensor τµν :

Gµν = κ

(
T µν + τµν

)
, (5)

Dµ(τ
µν∂νy

a) = 0, (6)

this was first noticed in [13]. In the emerging fictitious embedding matter, one can try to see
dark matter, the riddle of which is one of the unsolved problems of modern theoretical physics.
As a result, the dark matter phenomenon is explained as a purely gravitational effect, while
the equation (6) plays the role of the embedding matter equation of motion. To analyse the
properties of embedding matter, it may be convenient to equivalently reformulate embedding
gravity as General Relativity with some additional contribution to the action [14]. Various
possibilities for writing down this contribution are analysed in [15]. In particular, it is possible
to obtain the nonrelativistic limit for the equations of embedding matter motion [16].

When trying to quantize a theory, an important step is to construct its canonical descrip-
tion. Since when substituting (1) into the action (2) it contains the second time derivatives
of the independent variable ya, special methods [4, 8, 17] can be used for canonical description
construction. However, one can see that after discarding the surface term in action, it can
be written in a form containing only the first derivatives. Therefore, one can use the usual
canonical approach. For an embedding theory with an additional imposition of Einstein con-
straints (4), the construction of a canonical formalism in this way was started in the pioneering
work [1] and completed in the works [12, 18]. The Hamiltonian of the theory turns out to be
a linear combination of first class constraints. When the ideal-forming part of the emerging
constraints is satisfied, the complete constraint algebra goes [18] into the well-known ADM
constraint algebra [19].

However, without imposing Einstein constraints, i.e. for full embedding gravity, the con-
struction of the canonical formalism becomes much more complicated. The reason for this is
the fact that one of the constraints cannot be written explicitly, since this requires solving a
multidimensional cubic equation, see details in [20]. Writing this "lapse" constraint was also
discussed in [21]. Nevertheless, by carrying out the analysis in the presence of an implicitly
defined constraint, one can show that in this case the Hamiltonian of the theory also reduces to
a linear combination of the first class constraints, and also find the form of the algebra formed
by these four constraints [20]. An interesting question is a connection between the constructed
canonical description of full embedding gravity and the previously found canonical formalism
with an additional imposition of Einstein constraints, but we are unable to trace this connection
due to the complexity of the resulting expressions.

In this paper, we explore the canonical description of embedding gravity in the above for-
mulation in the form of General Relativity with some additional contribution to the action,
corresponding to embedding matter. Such a canonical description is useful for the embedding
matter properties better understanding. In particular, when analysing the nonrelativistic limit
of embedding matter motion equations, it is useful to classify the equations of motion accord-
ing to the number of differentiations with respect to time, i.e. as constraints or dynamical
equations, while in the canonical description such a classification occurs automatically.

In section 2, we reformulate the embedding theory as General Relativity with embedding
matter at the level of action. By analogy with the Arnowitt-Deser-Mizner [19] variables, new
variables for embedding matter description are introduced that are more convenient for the
Hamiltonian formalism construction. In section 3, we move to the Hamiltonian description
of the system and calculate all primary and secondary constraints. The section 4 discusses
whether the resulting constraints belong to the first or second class, and also solves some of the
constraints that turn out to be quite simple. Possible ways of further work with the remaining
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second class constraints are also discussed. Their solution on the way of elimination of metric
variables is considered in section 5. It is shown that, as a result, the canonical description of
the complete embedding theory obtained earlier in [20] is reproduced.

2 Embedding gravity as GR with additional matter

As mentioned in the Introduction, the equivalence between embedding theory and GR with
fictitious embedding matter at the level of equations of motion allows one to achieve the same
equivalence at the level of action. That is, one can rewrite the action of embedding theory in
the form

S = SEH + Sadd + Sm, (7)

where SEH is the Einstein-Hilbert action depending on the metric gµν , which is one of the
independent variables, and Sadd is some additional contribution containing, in addition to the
metric, other independent variables that describe the embedding matter. The simplest choice
for this contribution is [14]:

Sadd =
1

2

∫
d4x

√
−g

(
gµν − (∂µy

a)(∂νya)
)
τµν . (8)

In this case, the embedding matter is described by the independent variables ya and τµν . The
τµν tensor is assumed to be symmetric.

One can easily check that varying the action (7) with respect to τµν gives the condition of the
induced metric (1) while varying with respect to the metric gµν gives the Einstein equation (5),
and the independent variable τµν gets the meaning of the embedding matter energy-momentum
tensor. To obtain a complete set of equations of motion, one still needs to vary with respect
to the remaining independent variable ya. This leads to the equation (6). As a result, one can
see that the equations of motion corresponding to the action (7) are exactly equivalent to the
Regge-Teitelboim equations. In what follows, we will omit the contribution of ordinary matter
Sm; if necessary, it can be restored easily.

It is well known using the Arnowitt-Deser-Mizner (ADM) variables [19]

βik = gik, Nk = g0k, N =
1√
−g00

(9)

simplifies the canonical formalism for GR. The determinant of the three-dimensional metric βik

will be denoted as β. Its connection with the determinant g of the four-dimensional metric gµν is
known:

√−g = N
√
β. Let us introduce the following notation: we will write the number 3 over

the quantities describing the three-dimensional internal geometry of the surfaces x0 = const.

For example,
3

R stands for the scalar curvature of three-dimensional space with the metric βik.
Such quantities depend only on βik, and, as a consequence, do not depend on N , Nk or on
derivatives ∂0βik. We will also use the notation

eaµ = ∂µy
a, (10)

calling this quantity the non-square vielbein. From a non-square vielbein, one can compose
longitudinal and transverse projectors for the space tangent to the surface ya(xµ) at a given
point:

Π‖
a

b
= eaµe

µ
b , Π⊥

a
b = δab − eaµe

µ
b . (11)

However, three-dimensional projectors will be more useful for us:

3

Π‖
a
b = eai ebj β̃

ij,
3

Π⊥
a
b = δab − eai ebj β̃

ij, (12)
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where β̃ij ≡ eai ea,j is the three-dimensional induced metric, and β̃ij is its inverse. Here and
below i, j, . . . = 1, 2, 3. Note that in the described approach, the embedding function and the
metric are independent variables, so β̃ij generally does not coincide with βij . They start to
coincide only on-shell.

By discarding the surface terms, the Einstein-Hilbert action SEH can be rewritten in a form
called the ADM action [19]:

SADM =

∫
d4x

(
2NKikL

ik,lmKlm +
1

2κ
N
√

β
3

R
)
. (13)

Here the quantity

Kik =
1

2N

(
3

DiNk +
3

DkNi − ∂0βik

)
(14)

is called the second quadratic form, and

Lik,lm =

√
β

8κ

(
βilβkm + βimβkl − 2βikβlm

)
(15)

is called the Wheeler-de-Witt metric. The metric inverse to it has the form

Lik,lm =
2κ√
β

(
βilβkm + βimβkl − βikβlm

)
, (16)

so that

Lik,lmL
lm,pr =

1

2

(
δpi δ

r
k + δpkδ

r
i

)
. (17)

Just as ADM variables simplify calculations when constructing the canonical formalism for
General Relativity, in this theory it is convenient to pass from the variables τµν to the new
variables φ, φk, and φij:

φ = −1

2
N2

√
βτ 00, (18)

φk = −N
√

βτk0 − φ

N
(Nk + βikebieb0), (19)

φij = −1

2
N
√

βτ ij + βikβ̃jm φ

N
eake

b
me0ae0b. (20)

Here Nk = βkiNi, i.e. we assume that the three-dimensional indices are raised and lowered
by the independent metric βik rather than the induced β̃ik. As a result, embedding matter is
described by a set of variables φ, φi, φij and the corresponding contribution to the Sadd action
has the form:

Sadd =

∫
d4x

(
(β̃ij − βij)φ

ij + (eai ea0 −Ni)φ
i +

(
N +

1

N
ea0

3

Πab
⊥ eb0

)
φ

)
. (21)

The corresponding GR gravitational degrees of freedom are described by the ADM variables
βik, Nk, N .

3 Transition to canonical variables and constraints

We will construct canonical formalism for the theory with action (7), in which Sadd is written
in the form (21), and the matter contribution Sm is omitted for simplicity.

First, it is necessary to find expressions for the generalized momenta for each of the inde-
pendent variables, both for βik, Nk, N and for φ, φi, φik, ya. Since Sadd does not contain time
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derivatives (hereinafter denoted by a dot) Ṅ , Ṅk and β̇ik, the generalized momenta πik, πk
N , πN

corresponding to the ADM variables βik, Nk, N have the usual form

πik =
δS

δβ̇ik

= −2Lik,lmKlm, πk
N = 0, πN = 0, (22)

which gives rise to the standard primary constraints

Φ = πN ≈ 0, Φk = πk
N ≈ 0. (23)

Here and below, the symbol ≈ means the fulfilment of the constraint equations in the weak
sense, that is, the constraints cannot be assumed to be equal to zero before the calculation of
the Poisson brackets.

Note that the velocities φ̇, φ̇i, and φ̇ik do not appear in the action, which means that
the corresponding momenta πφ, πφ

i and πφ
ik vanish. This means the appearance of additional

primary constraints:

Ψ = πφ ≈ 0; Ψi = πφ
i ≈ 0; Ψik = πφ

ik ≈ 0. (24)

For momentum pa conjugate to the remaining variable ya, we find the expression (note that
ẏa = ea0)

pa =
δS

δẏa
= φkeak +

2

N
φ

3

Π⊥ab ẏ
b. (25)

From this expression one can see that if we assume that φ 6= 0, then the transverse part of the
velocity vector ẏa can be expressed in terms of momenta and coordinates. For the longitudinal
part, this cannot be done, since it does not appear in the equation (25). The branch of the
solution corresponding to φ = 0 at all points x must be studied separately, and we will leave
this analysis outside the scope of this paper. We only note that we can assume that this path
corresponds to the possibility to additionally impose Einstein constraints (4) when constructing
the canonical formalism, which was mentioned in the Introduction. Here we also assume that
φ 6= 0 is almost everywhere. The impossibility of expressing the longitudinal part of the velocity
from (25) corresponds to the appearance of another primary constraint:

Ωj = pae
a
j − φkβ̃kj ≈ 0. (26)

We introduce notation that will be useful in what follows. We will denote

pa⊥ ≡
3

Πab
⊥ pb =

2

N
φ

3

Π⊥
a
b ẏ

b, (27)

where (25) is used. Since both ẏb and its transverse projection
3

Π⊥
a
b ẏ

b must be timelike vectors,

then pa
3

Πab
⊥ pb < 0 (recall that the signature −+++ is used), so it is convenient to denote

p⊥ =

√
−pa

3

Πab
⊥ pb. (28)

One can also note that the zero components of both the vector ẏa and the vector
3

Π⊥
a
b ẏ

b must
be positive, so the quantities p0⊥ and φ must have the same sign, we denote it as

ζ ≡ signφ = sign p0⊥ = ±1, (29)

where the function sign returns the sign of a number. Note that since pa⊥ is a timelike vector,
the sign of its component p0⊥ can change only at the points where all 7 independent components
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of the vector pa⊥ vanish. This allows us to assume in a general situation that p0⊥ 6= 0, and hence
also φ 6= 0 for all points x. Thus, the value ζ = ±1 is a global constant, which singles out one
of the two possible branches of the solution in the resulting system of Hamilton equations and
constraints. Let us also introduce the normalized transverse velocity vector

na =

3

Π⊥
a
b ẏ

b

√
−ẏc

3

Π⊥cdẏd
= ζ

pa⊥
p⊥

, (30)

where we use (25) again.
After obtaining expressions for all generalized momenta, one can write down the total Hamil-

tonian of the theory by doing the Legendre transformation in a standard way and adding all
primary constraints with Lagrange multipliers to the result. The expression for the correspond-
ing Hamiltonian density is obtained by adding primary constraints with Lagrange multipliers
to the quantity

πikβ̇ik + paẏ
a −L, (31)

where L is the Lagrangian density. Note that primary constraints can be used in the expression
for the Hamiltonian density. The resulting Hamiltonian density can be conveniently broken
down into two terms

H = HADM +Hadd, (32)

where

HADM =
1

2
NπikLik,lmπ

lm + πik
(

3

DiNk +
3

DkNi

)
− 1

2κ
N
√

β
3

R + λΦ+ λkΦ
k (33)

is a well-known expression from the ADM formalism, and

Hadd =
N

4φ
pa

3

Πab
⊥ pb + φij(βij − β̃ij) + pae

a
i β̃

ikNk − φN + χΨ+ χiΨi + χijΨij + ξiΩi (34)

corresponds to the embedding matter. Here λ, λk, χ, χ
i, χij , ξi are Lagrange multipliers. Note

that in addition to the assumption N 6= 0 that is always made, we have also used the above
assumption φ 6= 0.

Further, according to Dirac’s recipe [22] for constructing the canonical description of the
theory, it is necessary to require primary constraints to be preserved with time by calculating
their Poisson brackets with the total Hamiltonian H and requiring them to vanish. If the
resulting equations cannot be satisfied by the choice of Lagrange multipliers, then this means
the appearance of secondary constraints in the theory.

It is easy to show that the conditions for preserving the constraints Ψi and Ωi are satisfied
by fixing the Lagrange multipliers ξi and χi. The results of calculating the remaining Poisson
brackets are:

{H,Φ} = HADM

0 − 1

4φ
p2⊥ − φ; (35)

{H,Φk} = βikHADM

i + β̃ikeai pa; (36)

{H,Ψ} =
N

4φ2
p2⊥ −N ; (37)

{H,Ψij} = βij − β̃ij. (38)

Here we use the standard notation for secondary constraints in the ADM formalism for General
Relativity:

HADM

0 =
1

2
πikLik,lmπ

lm − 1

2κ

√
β

3

R; (39)

HADM

i = −2βik

√
β

3

Dj

πjk

√
β
. (40)
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It is more convenient to use as constraints not the set (35)-(38) itself, but another, equivalent
set. To do this, we rewrite the expression (37) as

−N

φ2
(φ− p⊥

2
)(φ+

p⊥
2
). (41)

This expression must be equal to zero. There are two possibilities for this: φ = p⊥/2 and
φ = −p⊥/2. To consider them in a unified way, we use the notation (29) introduced above and
declare the expression as a constraint

Ξ = φ− ζ

2
p⊥ ≈ 0. (42)

Thus, we replace the set of constraints (35)-(38) with the set (42)-(45):

H0 = HADM

0 − ζp⊥ ≈ 0, (43)

Hk = HADM

k + eakpa ≈ 0, (44)

Σij = βij − β̃ij ≈ 0. (45)

It is convenient to write the Hamiltonian density (32) as a linear combination of the constraints
already introduced:

H = NH0+NkHk +Σij

(
φij +βikβ̃jmeakpaNm

)
+λΦ+λkΦ

k +χΨ+χiΨi+χijΨij + ξiΩi. (46)

With this way of writing down the Hamiltonian density, the emerging contribution −NΞ2/φ
was omitted, since the term of the Hamiltonian containing the square of the constraint Ξ does
not play a role, since when calculating the secondary constraints and writing out the Hamilton
equations, it will always make zero contributions.

Next, one has to check the preservation of secondary constraints. It is easy to see that
the constraint Ξ is preserved by fixing the Lagrange multiplier χ. Calculating the Poisson
brackets of the constraint Hi, one can check that the given constraint is a generator of 3-
dimensional diffeomorphisms, which means that its Poisson bracket with the Hamiltonian will
be proportional to the constraints and Hi is preserved automatically. By a direct and rather
cumbersome calculation, one can obtain that in order to preserve the constraints H0 and Σij ,
it is necessary to introduce a new constraint

Λik = Lik,lmπ
lm − 2na

3

baik ≈ 0, (47)

where
3

baik is the second fundamental form of x0 = const surfaces. The condition of preserving
this constraint generates the new constraint Υij:

Υij = {Λij , H} = Υ
(1)
ij − φkmΥ

(2)
ij,km, (48)

where it is important to note further that the quantities Υ
(1)
ij and Υ

(2)
ij,km do not depend on φkm.

The explicit form of these quantities is given in the Appendix.
This completes the list of constraints, since the constraint Υij is preserved by choosing the

Lagrange multiplier χij . Summing up this section, we list all the constraints obtained. Primary
constraints are Φ, Φk (23); Ψ, Ψi, Ψik (24); Ωj (26). Secondary constraints are Ξ (42); H0 (43);
Hk (44); Σij (45); Λij (47); Υij (48). The Lagrange multipliers ξi, χ, χi, χij are fixed. The
Lagrange multipliers λ and λi remain arbitrary.
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4 Constraints classification and their partial solution

The next step in the Dirac scheme is the classification of all constraints into the first and
second class [22]. First class constraints are constraints whose Poisson brackets with all other
constraints are just constraints linear combinations. If a constraint has a non-zero Poisson
bracket with any constraint, then it is called a second class constraint. An important feature
of first class constraints is that they can be correctly taken into account when quantizing the
theory by imposing them on the state vectors. Second class constraints must be either solved
before quantization, by excluding some pairs of conjugate canonical variables, or Dirac brackets
must be introduced.

As already mentioned, the constraint Hi is the three-dimensional diffeomorphisms generator,
which means it is a first class constraint. Since the theory under consideration is invariant
under four-dimensional diffeomorphisms, one should expect that, in addition to Hi, the list
of constraints should also contain a first class constraint, corresponding to one more general
covariant transformation. In GR, this is the HADM

0 constraint. In the considered theory, it
corresponds to the H0 constraint (43). However, not all of its Poisson brackets with other
constraints vanish on the constraints surface. This means that the first class constraint must
be some linear combination of H0 with other constraints. It is not very useful to look for an
explicit form of such a combination since it is much more convenient to simplify the canonical
system by solving at least a part of the existing second class constraints. The same can be said
about primary constraints Φ and Φk (23) (in General Relativity they are first class constraints):
one can show that their complicated linear combinations with the constraint Ψik (24) also turn
out to be first class constraints, but there is no point in obtaining the explicit form of these
combinations.

An interesting question is the calculation of the number of degrees of freedom for the re-
sulting Hamiltonian system. This number can be defined as the number of conjugate canonical
variables pairs that remain after eliminating some of the variables by solving all of the existing
constraints. Although it is rarely possible to solve all the constraints explicitly, this number
can be calculated by subtracting the number of arising equations from the number of initial
coordinates and momenta. It will be more convenient to do this when all first class constraints
are already explicitly distinguished from the set of constraints.

To solve constraints means to express any pair of canonical coordinate-momentum variables
in terms of other variables and thus eliminate some pair of constraints. This procedure is
directly applicable to second class constraints. However, if it is required to solve some constraint
T belonging to the first class, one can introduce an additional condition T̃ such that {T, T̃} 6= 0;
then some pair of canonical variables can be expressed from the conditions that T ≈ 0 and
T̃ ≈ 0. Expressed coordinates and momenta must be substituted into the first order action,
which in this case has the form

S(1) =

∫
dt

∫
d3x

(
πikβ̇ik + paẏ

a + πNṄ + πk
N Ṅk + πφφ̇+ πφ

i φ̇
i + πφ

ijφ̇
ij −H

)
. (49)

Note that if the momentum in the resolvable pair is equal to zero, then the step with the first
order action can be skipped and the solution can be substituted into the Hamiltonian directly.
This happens, for example, with a pair of constraints Ψ and Ξ, from which we can express
variables

φ =
ζ

2
p⊥, πφ = 0, (50)

where ζ = sign p0⊥ according to (29). Similarly, we can directly substitute into the Hamiltonian
the solutions of the Ψi and Ωi constraint, from which we can express the variables

φi = β̃ikeakpa, πφ
i = 0; (51)
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and finally pairs of constraints Ψij and Υij , from which we can express variables

φik = −Υ
(1)
jl

(
Υ(2) −1

)jl,ik

, πφ
ik = 0. (52)

After solving the listed constraints, the remaining constraints are: Φk, Φ, Hk, H0, Σij , Λij .
One can verify that now the first class constraints are Φk, Φ, Hk, and the combination

H′
0 = H0 +

1

N

(
φij + βirβ̃jqearpaNq

)
Σij , (53)

and the Hamiltonian density (46) takes the form

H = NH′
0 +NkHk + λΦ+ λkΦ

k. (54)

This form of the Hamiltonian density, which reduces to a linear combination of eight first class
constraints, four of which have the form (23), exactly corresponds to the situation that takes
place in GR. The difference is the additional presence of the remaining second class constraints
Σij and Λij.

Now it is easy to count the number of degrees of freedom in the system under considera-
tion. Eliminating φ, φi, φik leaves 20 independent variables βik, Nk, N, ya. Together with their
conjugate momenta, we have 40 canonical field variables as a result. At the same time, 8 first
class and 12 second class constraints remained (recall that Σij and Λij are symmetric 3 × 3
matrices so each have 6 independent components). For each first class constraint, it is neces-
sary to introduce additional condition, so that the total number of equations arising from the
constraints is 8 ∗ 2 + 12 = 28. Subtracting it from the number of canonical variables, we get
40 − 28 = 12 remaining canonical variables after taking into account the constraints, i.e. 6
pairs. As a result, we conclude that there are 6 degrees of freedom in the considered system.

Further, it is convenient, as in the usual ADM formalism, to exclude the pairs of variables
N , πN and Nk, π

k
N . Although the Φ and Φk constraints are first class constraints, they can be

solved by adding additional conditions (actually, these are gauge conditions) on N and Nk. We

write these conditions as Φ̃ = N − Ñ ≈ 0 and Φ̃k = Nk − Ñk ≈ 0, where Ñ , Ñk are arbitrary
functions. The choice of some specific functions as Ñ , Ñk would mean the use of some specific
gauge. As a result, there remains only the H′

0 (53), Hk (44), Σij (45) and Λij (47) constraints,
and the Hamiltonian (54) density is reduced to the expression

H = ÑH′
0 + ÑkHk. (55)

In what follows, instead of Ñ , Ñk we will write N , Nk, i.e. by N and Nk we will now mean
arbitrary functions, which are usually the Lagrange multipliers.

After eliminating the variables N , πN and Nk, π
k
N , four first class constraints Hk and H′

0

remain, as well as Σij and Λij. Since {Σij ,Λkm} 6≈ 0, the latter are still second class constraints.
If they are solved, then only the first class constraints will remain in the canonical system. There
are two possibilities for solving the constraints Σij and Λik: either use them to eliminate the
embedding function ya and its conjugate momentum pa, leaving the metric βij and its conjugate
momentum πij as independent variables, or vice versa, eliminate βij and πij. The first option
is an interesting problem from the point of view of studying the embedding matter properties,
but it is very difficult to solve. This is due to the fact that the constraint Σij (45), understood
as an equation on ya, is a non-linear partial differential equation:

(∂iy
a)(∂kya) = βik. (56)

As an alternative to this method of solving second class constraints, one can try to use the
formalism of Dirac brackets [22]. However, such approaches are beyond the scope of this paper.
Instead, we explore the possibility of solving constraints in a second, simpler way, eliminating
the variables βij and πij.
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5 Solving the remaining second class constraints

Let’s solve pair of constraints Σij (45) and Λij (47) with respect to variables βij and πij :

βij = β̃ij , πij = 2na

3

balkL
lk,ij. (57)

We substitute the resulting solution into the first order action (49). Since some constraints
have already been solved, it takes the form

S(1) =

∫
dt

∫
d3x

(
πij β̇ij + paẏ

a −NH0 −NkHk

)
, (58)

where the form (55) of the Hamiltonian density is used and it is taken into account that one
can replace H′

0 by H0 when the constraint Σij is implied.
Consider separately the contribution of the term πijβ̇ij . After substituting βij in accordance

with (57), we replace the ordinary derivative ∂i with the covariant
3

Di and integrate by parts:

∫
d3x πij β̇ij = −2

∫
d3x

(√
β ẏaeaj

3

Di

πij

√
β
+ πij ẏa

3

Dieaj

)
. (59)

Note that in this expression the first term can be rewritten in terms of HADM

i using (40), and

the second term contains the second fundamental form of the surface
3

baij =
3

Dieaj . Expressing
πij according to (57) we get

∫
d3x πijβ̇ij =

∫
d3x

(
HADM

i β̃ijeaj − 4nc

3

bclkL
lk,ij

3

baij

)
ẏa. (60)

We emphasize that the quantities βij and πij appearing in this expression (the latter appearing
via HADM

k ) are considered to be expressed via ya and pa according to (57).
We substitute the resulting expression into (58), introducing the notation

Bab = −4
3

baikL
ik,lm

3

bblm = −
√
β

2κ

3

baik
3

bblm

(
βilβkm + βimβkl − 2βikβlm

)
(61)

and using the constraint (44) to replace HADM

i with −eai pa. Such a change is equivalent to some
change in the Lagrange multiplier Nk, which is insignificant because of its arbitrariness. As a
result, we get

S(1) =

∫
d4x

((
Babn

b + p⊥a

)
ẏa −NH0 −NkHk

)
. (62)

Further, we note that, according to (30), we can write p⊥a = ζp⊥na, which, using the relation
(43) (at which the Lagrange multiplier N now insignificantly changes) allows us to replace p⊥a

in (62) with −HADM

0 na. In turn, the quantity HADM

0 , as can be shown (see [12]), in terms of
the variables ya and pa is written as

HADM

0 = −1

2
(ncB

cbnb +Bc
c). (63)

This allows to rewrite the first order action (62) in the final form

S(1) =

∫
d4x

((
Babn

b +
1

2
(ncB

cbnb +Bc
c)na

)
ẏa −NH0 −NkHk

)
. (64)

Now we need to construct the Hamiltonian formulation for the theory given by such an
action, following the same Dirac scheme that was used for the original theory in the previous
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sections. In this case, it is necessary to consider all the fields included in the action (64) as
generalized coordinates, i.e. ya, pa, N , and Nk (it is the variation with respect to the last two
that leads to the appearance of the constraints H0 and Hk among the equations of motion),
introducing the associated generalized momentum for each of them. Next, we need to find and
classify constraints, and then solve those of them for which this is possible.

First, let us write out the expressions for the new generalized momenta:

πa =
δS(1)

δẏa
= Babn

b +
1

2
(ncB

cbnb +Bc
c)na, (65)

πa
p =

δS(1)

δṗa
= 0, πN =

δS(1)

δṄ
= 0, πk

N =
δS(1)

δṄk

= 0. (66)

We obtain primary constraints from the expression for πa, taking into account the definition

(61) (note that the second fundamental form
3

baik is always transverse in its index a) and the
fact that na is normalized (see (30)):

πae
a
i ≈ 0, n(ya, πa)

2 + 1 ≈ 0. (67)

Here n(ya, πa) is an implicitly defined function that is a solution to (65) considered as a cubic
equation on na; see [20] for details. From (65), as well as from (66), other, independently of
(67), primary constraints follow, which can be written as

na(ya, πa)− ζ
pa⊥
p⊥

≈ 0, (68)

πa
p ≈ 0, πN ≈ 0, πk

N ≈ 0. (69)

Next, we write an expression for the new Hamiltonian of the theory, which reduces to a linear
combination of H0 (43) and Hk (44) with coefficients N and Nk respectively, and first class
constraints (67)-(69) with new Lagrange multipliers.

From the requirement to preserve the πN ≈ 0 and πk
N ≈ 0 constraints, we obtain secondary

constraints

H0 ≈ 0, Hk ≈ 0, (70)

and from the requirement to preserve the πa
p ≈ 0 constraint, we obtain secondary constraints

N ≈ 0, Nk ≈ 0. (71)

The appearance of the last two constraints is since the longitudinal part of the variable pa

enters the Hamiltonian only through Hk, and the modulus of its transverse part p⊥ enters only
through H0. Further analysis shows that no other secondary constraints arise.

As a further step, the easiest way is to solve some constraints by eliminating the pairs of
variables N , πN ; Nk, π

k
N ; pa, π

a
p . Since, according to (69), all generalized momenta in these

pairs are equal to zero, the expressed variables can be substituted directly into the Hamiltonian,
avoiding the need to consider the first order action again. The generalized coordinates of these
pairs of variables are expressed from (71) and the relation

pa = −eai β
ikHADM

k + na(ya, πa)HADM

0 , (72)

which follows from (68) and (70) given (43),(44).
As a result, only the constraints (67) remain unresolved, and the final expression for the

Hamiltonian density reduces to their linear combination with Lagrange multipliers:

H = λieai πa + λ4
(
n(ya, πa)

2 + 1
)
. (73)
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This expression for the Hamiltonian density exactly coincides with the one found in [20] when
constructing a canonical formalism for a complete embedding theory described only by the
embedding function ya. Thus, if within the framework of the embedding theory in the from
of GR with additional matter the Einstein variables βij , π

ij are eliminated when solving the
last pair of second class constraints (45),(47), then we obtain the canonical formulation of the
complete embedding theory with an implicitly defined constraint known from [20]. This fact
confirms the consistency of the approach used and is also a verification of the results obtained
in the previous sections.

After the additional solution of the constraints, we can return to the question already
discussed in the 4 section about counting the number of degrees of freedom in the system under
consideration. The independent variables are now only 10 components of ya, which together
with conjugate momenta give 20 canonical field variables. The remaining constraints are 4
constraints (67). They are first class constraints, this is shown in [20], where the exact form
of the algebra formed by these constraints is obtained. Taking into account the introduction
of additional conditions for first class constraints, the number of equations arising from the
constraints is 4∗2 = 8. Subtracting it from the number of canonical variables, we get 20−8 = 12
remaining canonical variables after taking into account the constraints, i.e., as before, 6 pairs,
which means 6 degrees of freedom. In addition to the two degrees of freedom corresponding to
General Relativity, we see 4 more degrees of freedom corresponding to embedding matter. The
τ 0µ components of the embedding matter energy momentum tensor, which are related to its
density and velocity, can be considered as such independent degrees of freedom. The remaining
components τ ik are expressed in terms of φik from (75) and are found when solving the relation
(52). This corresponds to some complex embedding matter equation of state.

6 Conclusions

For the complete embedding theory formulated in the form of GR with an additional contribu-
tion of the so-called embedding matter [14, 15], the canonical (Hamiltonian) description of the
theory is constructed. All the constraints arising from this approach are found: primary (23),
(24), (26) and secondary (42)-(45), (47), (48), as well as the representation of the Hamiltonian
H in terms of constraints (46). Most of the arising second class constraints can be solved,
as well as simple first class constraints with the introduction of additional conditions. As a
result, we get the canonical formulation of the theory with the Hamiltonian density (55), which
reduces to the linear combination of constraints (44),(53), and with second class constraints
(45), (47).

The obtained canonical description of the complete embedding theory can be used both in
attempts to quantize the theory and in the analysis of its classical equations of motion to study
the embedding matter properties. A comparison of the obtained properties with the properties
of dark matter known from observations is necessary to understand whether the effects explained
by the presence of dark matter can be explained within the framework of replacing General
Relativity with the embedding theory as the theory of gravitational interaction. To advance in
each of these two directions, it is necessary to take into account correctly the presence of the
remaining second class constraints (45),(47) in the theory. From the point of view of obtaining
embedding matter properties, it would be most useful to solve these constraints by excluding
canonical variables in such a way that the variables βik, π

ik associated with the metric, as well
as variables describing embedding matter remain. However, finding a way to solve constraints
in such a way remains an open problem and requires additional study, since the constraint (45)
is a non-linear differential equation for the variable ya. As an alternative, one can try to avoid
the direct solution of second class constraints by using the Dirac bracket formalism.

Another option for taking into account these second class constraints is to solve them by
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eliminating the variables βik, πik. Although this is less interesting from the point of view
of analyzing the embedding matter properties, it allows the independent verification of the
consistency of the embedding theory description in the form of GR with embedding matter.
As we have shown, in this way, the canonical system constructed in this paper passes into the
canonical formulation of the complete embedding theory with an implicitly defined constraint,
which was obtained in [20].

An interesting question is the connection between the obtained canonical system and the
canonical description of the embedding theory equivalent to GR with the additional imposition
of Einstein constraints HADM

0 ≈ 0, H ADM

k ≈ 0 [1, 12, 18]. As can be seen from (43), (44),
imposition of these constraints leads to both the longitudinal part of the momentum eakpa ≈ 0
and the transverse part p⊥ ≈ 0 be equal to zero. The latter, given (28) and (27), and the fact

that ẏa
3

Π⊥abẏ
b < 0 leads to the condition φ ≈ 0, which contradicts our earlier assumption φ 6= 0,

see the comment after the formula (25). Thus, the Einstein limit of the considered canonical
formalism turns out to be singular and requires a separate study.
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Appendix: explicit form of the Υij constraint

The explicit form of the Υkm constraint is as follows:

Υkm = Υ
(1)
km − φijΥ

(2)
km,ij, (74)

where

Υ
(1)
km =

(
Lkm,ij + 4ζ

3

bakm

3

Πc
a⊥ + nan

c

p⊥

3

bcij

)
βirβ̃jqebrpbNq − 2ζ

3

bakm
p⊥

∂q(Nnapbe
bq)+

+
(
2nce

q
b∂k∂my

b + 2ζ
pa

3

bkmc

p⊥
eaq

)
∂q(Nnc) + 2na∂k∂m(Nna) + 2ζ

na

3

bakm
p⊥

pbe
bq∂qN+

+2ζ
na

3

bakm
p⊥

∂q(Npbe
bq)+

4κ√
β
Nπlqπij

(
βmjLki,lq+βkiLmj,lq−

3

8
βkmLij,lq+

1

2
βlqLkm,ij−

1

2
βqjLkm,li

)
−

−N
√
β

2κ
Lkm,rs

3

Grs + 4
3

Dk

3

DmN, (75)

and

Υ
(2)
km,ij = Lkm,ij − 4ζ

3

bakm

3

Πc
a⊥ + nan

c

p⊥

3

bcij. (76)
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