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Abstract. For every proper geodesic space X we introduce its quasi-geometric
boundary ∂QGX with the following properties:
1. Every geodesic ray g in X converges to a point of the boundary ∂QGX and
for every point p in ∂QGX there is a geodesic ray in X converging to p,
2. The boundary ∂QGX is compact metric,
3. The boundary ∂QGX is an invariant under quasi-isometric equivalences,
4. A quasi-isometric embedding induces a continuous map of quasi-geodesic
boundaries,
5. If X is Gromov hyperbolic, then ∂QGX is the Gromov boundary of X.
6. If X is a Croke-Kleiner space, then ∂QGX is a point.

1. Introduction

After Croke-Kleiner [6] discovered that the visual boundary of CAT(0)-spaces
is not an invariant of quasi-isometries, several authors embarked on extending the
idea of Gromov boundary to other proper geodesic spaces. The first step was due
to Charney-Sultan [4] who extracted the essential feature of geodesics in hyperbolic
spaces, namely being contracting, and defined the so-called contracting boundary

of proper CAT(0)-spaces. Their construction was extended by Cashen-Mackay [7]
to arbitrary proper geodesic spaces. The generalization which is best known and
most used is the Morse boundary, which is due to Matthew Cordes [14]. Finally,
Tiozzo-Qing-Rafi [17] and [18] introduced the so-called sublinear Morse boundary.
Here are its main properties:

Theorem 1.1. [18] Let X be a proper, geodesic metric space, and let κ be a sublinear
function. Then we construct a topological space ∂κX with the following properties:
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2 JERZY DYDAK AND HUSSAIN RASHED

(1) (Metrizability) The spaces ∂κX and X ∪ ∂κX are metrizable, and X ∪ ∂κX is
a bordification of X;
(2) (QI-invariance) Every (k,K)-quasi-isometry Φ : X → Y between proper geo-
desic metric spaces induces a homeomorphism Φ∗ : ∂κ → ∂κY ;
(3) (Compatibility) For sublinear functions κ and κ′, where κ ≤ c · κ′ for some
c > 0, we have ∂κX ⊂ ∂κ′X where the topology of ∂κX is the subspace topology.
Further, letting ∂X :=

⋃

∂κX, we obtain a quasi-isometrically invariant topological
space that contains all ∂κX as topological subspaces. We call ∂X the sublinearly
Morse boundary of X.

The essential feature of the above constructions is that they are of covariant
nature (see [10]). Namely, the authors probe a space X by mapping objects into
it, which initially makes sense as geodesics are covariant objects. In this paper we
apply the contravariant approach and probe X by mapping it to spaces. That leads
to better features of the quasi-geodesic boundary defined that way. For instance,
the contracting boundary of the plane is empty while its quasi-geodesic boundary
consists of one point. Also, one can add the quasi-geodesic boundary to X and get
a metrizable compactification of X .

We do not know the precise relation between our quasi-geodesic boundary and
the sublinearly Morse boundary of X . They are clearly different if the sublinearly
Morse boundary of X is not compact or is not metrizable. It seems sublinearly
Morse boundary is useful to study Poisson boundary (see [17] and [18]).

We are able to define a sublinear version of our boundary as well. We do not know
if boundaries we are constructing have any connection to the Martin boundary.

We are grateful to Ruth Charney and Yulan Qing for helpful comments that
improved the exposition of proofs in the paper. We are grateful to organizers of the
online workshop ”A Week At Infinity”(March 28-April 1, 2022) which introduced us
to topics related to Morse boundaries. We are grateful to Kim Ruane for suggesting
future lines of research.

2. Integral quasi-geodesics

Traditionally, researchers dealt with quasi-geodesics defined on intervals in reals.
We find it easier to use quasi-geodesics defined on intervals in positive integers.
Notice it is easy two switch back and forth between traditional quasi-geodesics
and integral quasi-geodesics in geodesic spaces. However, the advantage of integral
quasi-geodesics is that, in the case of finitely generated groups, one does not need
to extend them to their Cayley graphs.

Definition 2.1. An integral (q,Q)-quasi-geodesic on a metric space (X, d) is a func-
tion g : (a, b) ∩ Z+ → X such that for any x, y ∈ (a, b) ∩ Z+

|x− y|
q

−Q ≤ d(g(x), g(y)) ≤ q · |x− y|+Q.

If every two points of X can be joined by an integral (q,Q)-quasi-geodesic, we
say that X is integrally (q,Q)-quasi-geodesic. X is integrally quasi-geodesic if it is
integrally (q,Q)-quasi-geodesic for some q ≥ 1 and Q ≥ 0.

Observation 2.2. Notice any finite union of rays from the origin of the plane is
integrally quasi-geodesic but is geodesic only if the number of rays is 1. Thus, the
concept of X being integrally quasi-geodesic covers more spaces than being geodesic.
Also, it is a quasi-isometric invariant.



BOUNDARIES FOR GEODESIC SPACES 3

Definition 2.3. The fan F (x0, q, Q) of integral (q,Q)-quasi-geodesics is the family
of all integral (q,Q)-quasi-geodesics g in X originating at x0, i.e. g(1) = x0.

Suppose m ≥ 1 and g ∈ F (x0, q, Q) is an integral quasi-geodesic ray. The
m-thread T (x0, q, Q, g,m) of the fan F (x0, q, Q) based at g ∈ F (x0, q, Q) is the
subfamily of the fan containing all elements h of F (x0, q, Q) such that h(i) = g(i)
for each i ≤ m.

Suppose m ≥ 1 and g ∈ F (x0, q, Q) is an integral quasi-geodesic ray. The m-

cone CX(x0, q, Q, g,m) is the set of all points x ∈ X such that there is an integral
(q,Q)-quasi-geodesic h starting at x0, agreeing with g for i ≤ m and satisfying
h(i) = x for some i ≥ m.

Example 2.4. Consider the (1, 0)-quasi-geodesic g on the plane given by g(i) = (i, 0)
for i ≥ 1. CX(x0, g, 2, 2,m) contains all points (x, y) on the plane such that y ≥ m.

Lemma 2.5. Suppose k ≥ 1 and X is a metric space such that for some M > 0 every
bounded subset of X can be covered by finitely many sets of diameter less than M .
Suppose d(x0, xn) → ∞ and d(xn, yn) < M for each n ≥ 1. If gn is a sequence of
integral (k, k)-quasi-geodesics joining x0 to xn, then there is an integral (k, k+2M)-
quasi-geodesic ray g and a sequence of integral (k, k+2M)-quasi-geodesics hn such
that for some subsequence k(n) of Z+ the last two values of hn are xk(n) and yk(n)
and each m-thread T (x0, k, k + 2M, g,m) contains all but finitely many hn’s.

Proof. By induction choose a decreasing sequence Sn of infinite subsets of Z+ with
the property that all points gj(n), j ∈ Sn, belong to the same set Bn of diameter
less than M . Indeed, put B1 := {x0}, and S1 := {j ∈ Z+ : gj(1) = x0}. Assume
that n ∈ Z+ such that Sn := {j ∈ Z+ : gj(n) ∈ Bn} is infinite, for some bounded
subset Bn of diameter less than M . Notice that gj(n + 1) ∈ B(Bn, 2 · k), for
every j ∈ Sn. Since B(Bn, 2 · k) can be covered by finitely many bounded sets of
diameter less than M , we can pick a bounded set Bn+1 of diameter less than M
and Sn+1 := {j ∈ Z+ : gj(n+ 1) ∈ Bn+1} is infinite and contained in Sn.

Pick zn ∈ Bn for each n ≥ 1 and notice g(n) = zn defines an integral (k, k+2M)-
quasi-geodesic ray. Indeed, if j < m < n, then d(g(i), gp(i)) < M for all i ∈ [j,m]
if p ∈ Sn, so d(gp(j), gp(m) − 2M < d(g(j), g(m)) < d(gp(j), gp(m) + 2M . Recall
gp is an integral (k, k)-quasi-geodesic, so (1/k)(m− j)− k− 2M < d(g(j), g(m)) <
k(m− j) + k + 2M and g is an integral (k, k + 2M)-quasi-geodesic ray.

Pick an increasing sequence k(n) ∈ Sn, k(n) > n, for each n ≥ 1, such that gk(n)
is defined on integers in [1,m(n)] with m(n+1) > m(n) and gk(n)(m(n)) = xk(n) for
each n ≥ 1. Define hn by hn(i) = zi for i ≤ n, hn(i) = gk(n)(i) for m(n) ≥ i > n,
then extend it by declaring hn(m(n) + 1) = yk(n). �

Observation 2.6. If X is geodesic and proper, then we may pick g to be induced by
a geodesic ray in X.

Proposition 2.7. If two proper metric spaces (X, dX) and (Y, dY ) are integrally
quasi-geodesic, then their cartesian product X × Y is integrally quasi-geodesic in
either the l1-metric or in the l2-metric.

Proof. By the l1-metric on X × Y we mean d1 defined as d1((x1, y1), (x2, y2)) :=
dX(x1, x2)+dY (y1, y2). By the l2-metric onX×Y we mean d2 defined as d2((x1, y1), (x2, y2)) :=
√

d2X(x1, x2) + d2Y (y1, y2). Since (X × Y, d1) is quasi-isometric to (X × Y, d2), it
suffices to prove (X × Y, d1) is integrally quasi-geodesic.
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Suppose (X, dX) and (Y, dY ) are integrally (k, k)-quasi-geodesic for some k ≥ 1.
Given (x1, y1), (x2, y2) ∈ X × Y , choose a (k, k)-quasi-geodesic f : [0, a] → X
from x1 to x2 and a (k, k)-quasi-geodesic g : [0, b] → Y from y1 to y2. Define
h : [0, a+ b] → X × Y as follows:
h(t) := (f(t), y1) for t ≤ a and h(t) := (x2, g(t− a)) for a ≤ t ≤ a+ b. Given t ≤ a
and s ≥ a, we need to estimate |h(s)− h(t)|.

|h(s)−h(t)| ≤ |h(s)−h(a)|+ |h(a)−h(t)| = dY (g(s−a), g(0))+dX(f(t), f(a)) ≤
k + k · (s− a) + k + k · (a− t) = 2k + k · (s− t).

If |h(s)−h(t)| < (s− t)/(2 ·k)−2k for some t ≤ a and s ≥ a, then (a− t)/k−k ≤
dX(f(t), x2) < (s− t)/(2 ·k)−2k and (s−a)/k−k ≤ (dY (y1, g(s−a)) < (s− t)/(2 ·
k)− 2k. Adding both sides of inequalities, we get (s− t)/k − 2k < (s− t)/k − 4k,
a contradiction.

Thus, (X × Y, d1) is integrally (2k, 2k)-quasi-geodesic. �

3. Geometrically slowly oscillating functions

Recall (see [16]) that a function f : X → C is slowly-oscillating if, whenever
xn → ∞ and there is M > 0 such that d(xn, yn) < M for all n ≥ 1, then |f(xn)−
f(yn)| → 0.

Definition 3.1. SupposeX is a metric space. A bounded continuous slowly-oscillating
function f : X → C is geometrically slowly-oscillating if for every ǫ > 0 and every
integral (k, k)-quasi-geodesic ray g in X originating at x0 ∈ X there is m ≥ 1
such that the diameter of {f(h(i)) | i ≥ m,h ∈ T (x0, k, k, g,m)} is smaller than ǫ.
Equivalently, the diameter of f(CX(x0, k, k, g,m)) is smaller than ǫ.

Observation 3.2. If X is a metric space, then every vanishing at infinity function
f : X → C is geometrically slowly-oscillating function; where a function f : X → C

is said to vanish at infinity if for ǫ, there exists a bounded subset K ⊂ X such
that |f(x)| < ǫ for all x ∈ X \ K. If, moreover, for some M > 0, every bounded
subset of X can be covered by finitely many sets of diameter less than M and X is
integrally quasi-geodesic, then every geometrically slowly-oscillating function f on
X is slowly-oscillating by 2.5.

Example 3.3. Suppose X is a metric space and U is a coarsely clopen subset of X.
Any bounded continuous function f : X → C such that there is a bounded subset B
so that both f |(U \B) and f |(U c\B) are constant is geometrically slowly oscillating.

Proof. U being coarsely clopen means that for each r > 0 there is a bounded subset
Br of X such that d(x, y) > r if x ∈ U \Br and y ∈ U c \Br.

Suppose ǫ > 0 and g is an integral (k, k)-quasi-geodesic ray g in X originating at
x0 ∈ X . Choose t > 0 such that B(x0, t) contains B and B2k. Let m > (k+t)·k+1.
Given h ∈ T (x0, k, k, g,m), h(m) ∈ U \Bt we claim h(i) ∈ U \B(x0, t) for all i > m.
Consider the smallest i > m so that h(i) ∈ B(x0, t). Now, (1/k) · (i − 1) − k <
d(h(i), h(1)) < t resulting in i < k · (k + t) + 1 = m, a contradiction. Notice, for
k ∈ (m, i), h(k) ∈ U as otherwise we would witness a jump from U to U c outside of
B2k, a contradiction. That shows {f(h(i)) | i ≥ m,h ∈ T (x0, k, k, g,m)} is a single
point. �

By Urysohn’s Lemma, the family CQG(X) of all continuous bounded geometri-
cally slowly oscillating functions on X separates points from closed sets.
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Corollary 3.4. Given a geometrically slowly-oscillating function f : X → C and
given a quasi-geodesic ray g on X, f ◦ g is a Cauchy sequence and therefore it
converges to a point in R that we will denote by f(g).

Definition 3.5. Given k ≥ 1, a sequence gn of integral (k, k)-quasi-geodesics bound-
edly approaches g if the following conditions are satisfied:
1. The lengths of gn diverge to infinity,
2. There is C > 0 such that for eachm ≥ 1 there is N ≥ 1 so that d(gn(i), g(i)) < C
for all n ≥ N and all i ≤ m.

By the length of a quasi-geodesic we mean the size of its domain.

Observation 3.6. Notice g is an integral (k, k+2C)-quasi-geodesic ray in 3.5. Indeed,
if a < b, we can choose n > b such that d(gn(i), g(i)) < C for all i ≤ b. Therefore,
d(g(a), g(b)) < d(gn(a), gn(b)) + 2C ≤ k · (b − a) + k + 2C and d(g(a), g(b)) >
d(gn(a), gn(b))− 2C ≥ 1

k · (b− a) + k − 2C.

Proposition 3.7. If f : X → C is geometrically slowly-oscillating, then f(gn) → f(g)
for every sequence gn of integral (k, k)-quasi-geodesic rays boundedly approaching
g. If some of gn’s are not quasi-geodesic rays, then f(gn) means f(yn), where yn
is the endpoint of gn.

Proof. ChooseC > 0 such that for eachm ≥ 1 there isN ≥ 1 so that d(gn(i), g(i)) <
C for all n ≥ N and all i ≤ m. Suppose ǫ > 0. Choosem ≥ 1 such that the diameter
of {f(h(i)) | i ≥ M,h ∈ T (x0, k+2C, k+2C, g,m)} than ǫ. Once d(gn(i), g(i)) < C
for all i ≤ m define hn(i) as g(i) for i ≤ m and gn(i) for i > m. Notice each
hn is an integral (k + 2C, k + 2C)-quasi-geodesics (see 3.6) and f(hn) = f(gn)
for each n ≥ 1. Notice all f(hn) = f(gn), n > m, are within ǫ from f(g) as
hn ∈ T (x0, k + 2C, k + 2C, g,m) for n > m. �

Proposition 3.8. If f : X → C is the uniform limit of geometrically slowly-oscillating
functions fn, then f is geometrically slowly-oscillating.

Proof. Notice f is bounded as each fn is bounded. Given ǫ > 0 choose n such
that |fn − f | < ǫ/2. Given an integral (k, k)-quasi-geodesic ray g in X originating
at x0 ∈ X there is m ≥ 1 such that the diameter of {fn(h(i)) | i ≥ m,h ∈
fn(T (x0, k, k, g,m))} is less than ǫ/2. Therefore, the diameter of {f(h(i)) | i ≥
m,h ∈ f(T (x0, k, k, g,m))} is less than ǫ. �

4. Quasi-geodesic boundaries

In this section we introduce the quasi-geodesic compactification of metric spaces
in a way similar to the Higson compactification. That approach should be of use
to researchers in geometric group theory. Let BQG(X) denote the algebra of all
geometrically slowly-oscillating functions f : X → C, C0(X) be the ideal of all
geometrically slowly-oscillating functions that vanish at infinity i.e. f ∈ B0(X) if
and only if for every ǫ > 0 there exist a bounded subset K of X such that |f(x)| < ǫ
for all x ∈ X \K.

Definition 4.1. The quasi-geodesic compactification XQG of a metric space X is
the maximal ideal space of the C∗-algebra CQG(X). If X is proper, then its quasi-
geodesic corona (or its quasi-geodesic boundary) ∂QGX := XQG \X is a compact
subset of XQG. Moreover, ∂QGX is the maximal ideal space of the C∗-algebra
CQG(X)/C0(X).
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Equivalently, the quasi-geodesic compactification XQG of a metric space X can
be seen as the one that has the property that all geometrically slowly-oscillating
functions on X extend over it and every restriction of a continuous function f :
XQG → R to X is geometrically slowly-oscillating. If X is not proper, we can still
talk about its quasi-geodesic boundary as the set of points in XQG accessible via
quasi-geodesic rays.

Lemma 4.2. If Y is a closed subset of a metric space X such that X = B(Y, r)
for some r > 0, then the closure of Y in the quasi-geometric compactification of
X is the quasi-geometric compactification of Y and it contains the quasi-geometric
boundary of X.

Proof. Given a geometrically slowly-oscillating function f : Y → [0, 1], we can
extend it to a Higson function g : X → [0, 1] by [12]. That means g is slowly-
oscillating and continuous. We need to show g is geometrically slowly-oscillating.

Given k ≥ 1 let us define a shift operator Sk sending all integral (k, k)-quasi-
geodesics a in X based at x0 ∈ Y to integral (k + 2r, k+ 2r)-quasi-geodesics Sk(a)
in Y based at x0. First, we choose a retraction p : X → Y (i.e. a function fixing
points of Y ) such that d(x, p(x)) < r for all x ∈ X . Then, given a, for each i ≥ 1
define Sk(a)(i) to be equal to p(a(i)).

Now, suppose ǫ > 0 and a is an integral (k, k)-quasi-geodesic ray in X originating
at x0 ∈ Y . Since g is slowly-oscillating, there is t > 0 such that |g(x)− g(y)| < ǫ/8
if x, y ∈ X \ B(x0, t) and d(x, y) < r. There is s > 0 such that the m-cone
CX(x0, k+ 2r, k+ 2r, Sk(a),m) is contained in X \B(x0, t+ r) for all m ≥ s. Pick
m > s with the property that the diameter of f(CY (x0, k + 2r, k + 2r, Sk(a),m))
is smaller than ǫ/8. Given x ∈ CX(x0, k, k, a,m) there is an integral (k, k)-quasi-
geodesic b agreeing with a on indices up to m such that x = b(j) for some j > m.
Put y := Sk(b)(j) and z := Sk(b)(m). Now, |g(y) − g(z)| < ǫ/8 as both y and
z belong to CY (x0, k + 2r, k + 2r, Sk(a),m) and g(y) = f(y), g(z) = f(z). Also,
d(x, y) < r, hence |g(x)− g(y)| < ǫ/8. Finally, |g(x)− g(z)| < ǫ/2, so the diameter
of g(CX(x0, k + 2r, k + 2r, a,m)) is smaller than ǫ.

If the closure of Y in XQG misses a point w in ∂QGX , then there is a continuous
function c : XQG → [0, 1] sending cl(Y ) to 0 and sending w to 1. Hence, there is a
sequence xn of points in X diverging to infinity so that c(xn) > .5 for each n ≥ 1.
As d(p(xn), xn) < r and c|X is slowly-oscillating c(xn) = |c(xn)− c(p(xn))| → 0, a
contradiction. �

Corollary 4.3. Suppose k ≥ 1 and X is a metric space such that for some M > 0
every bounded subset of X can be covered by finitely many sets of diameter less
than M . If X is integrally (k, k)-quasi-geodesic, then for every x0 and every integral
quasi-geodesic ray g there is an integral (k+2M,k+2M)-quasi-geodesic ray h based
at x0 that converges to the same point on the quasi-geodesic boundary of X as g
does.

Proof. Use 2.5. �

Proposition 4.4. Suppose k ≥ 1 and X is a discrete and proper metric space. If
X is integrally (k, k)-quasi-geodesic, then its quasi-geodesic boundary is compact
metrizable and every point of it is the limit of some integral (k, k)-quasi-geodesic
ray starting at a base point.
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Proof. The quasi-geodesic compactification ofX was defined in a contravariant way,
i.e. by mapping X to C. The properties of the quasi-geodesic boundary of X will
be detected in a covariant way, i.e. by mapping a compact metric space onto it.

Fix x0 ∈ X and consider Bn, the subset of all points in X reachable from x0 by
an integral (k, k)-quasi-geodesic defined on [1, n] ∩ Z+. Consider the set Sn of all
integral (k, k)-quasi-geodesic defined on [1, n] ∩ Z+ and starting at x0. That set is
finite, so we put the discrete topology on it.

There are maps rn+1
n : Sn+1 → Sn defined by rn+1

n (g) := g|[1, n]∩Z+. Its inverse
limit maps surjectively onto all integral (k, k)-quasi-geodesic rays in X starting at
x0, hence it maps continuously onto the quasi-geodesic boundary of X . Indeed,
suppose p ∈ U , p ∈ ∂QGX and U is open in XQG. There is a continuous function
f : XQG → [0, 1] such that f(p) = 1 and f(XQG \ U) ⊂ 0. Suppose g is an
integral (k, k)-quasi-geodesic converging to p. Since f |X is geometrically slowly-
oscillating, there is m ≥ 1 such that such that the diameter of {f(h(i)) | i ≥
m,h ∈ T (x0, k, k, g,m)} is smaller than 1/2. Notice T (x0, k, k, g,m) represents
a neighborhood V of g in the inverse limit M and its image in ∂QGX must be
contained in U as f(h) ≥ 1/2 for any h ∈ V .

Suppose that image is not all of the geometric quasi-geodesic boundary of X , so
there is a non-zero (on ∂QGX) geometrically slowly-oscillating f : X → [0, 1] such
that f(g) = 0 for each integral (k, k)-quasi-geodesic ray g in X starting at x0 and
f(p) = 1 for some p ∈ ∂QGX .

Choose xn ∈ X diverging to infinity such that f(xn) > 1/2 for each n ≥ 1.
Using 2.5 detect a subsequence of {xn} converging to the same point as an integral
(k, k)-quasi-geodesic ray, a contradiction. �

Observation 4.5. If one changes the definition of the set Sn above as that of all
integral (k, k)-quasi-geodesic defined on [1,m] ∩ Z+, m ≤ n, and starting at x0,
then there are retractions rn+1

n : Sn+1 → Sn defined by rn+1
n (g) := g if the domain

of g is [1,m] ∩ Z+, m ≤ n, and by rn+1
n (g) := g|[1, n] ∩ Z+ if the domain of g is

[1, n+ 1] ∩ Z+, m ≤ n. Its inverse limit maps continuously onto XQG.

Corollary 4.6. Suppose k ≥ 1 and X is a metric space such that for some M > 0
every bounded subset of X can be covered by finitely many sets of diameter less
than M . If X is integrally (k, k)-quasi-geodesic, then the quasi-geodesic boundary
of X is compact metrizable and every point on it is the limit of some integral
(k + 2M,k + 2M)-quasi-geodesic ray h based at x0. Moreover, if X is proper, then
the quasi-geodesic compactification of X is compact metrizable.

Proof. Pick a maximal subset Y of X containing x0 such that d(x, y) ≥ M if
x 6= y ∈ Y . Every integral (k, k)-quasi-geodesic g in X is approximable by h with
values in Y such that d(h(i), g(i)) < M for all i in the domain of g. Notice h is an
integral (k + 2M,k + 2M)-quasi-geodesic in Y . The closure of Y in the geometric
quasi-geodesic compactification of X is equal to the quasi-geodesic compactification
of Y , hence is compact metrizable and ∂QGX = ∂QGY .

To see that the quasi-geodesic compactification of X is compact metrizable, we
choose a countable basis {Un}n≥1 of open subsets of ∂QGX . If cl(Um) ⊂ int(Un) =
∅, choose open Vm,n extending Um such that ∂QGX ∩ cl(Vm,n) ⊂ Un and it misses
B(x0,m + n). Enlarge a countable basis of X consisting of bounded subsets by
adding all finite intersections of sets of the form Vm,n. That family is a countable
basis of open sets for XQG, hence XQG is metrizable. Indeed, if p ∈ ∂QGX is
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contained in an open set W of XQG, then the intersection of all cl(Vm,n), p ∈ Vm,n

is first contained in ∂QGX and then it is contained in the intersection of all Un

that contain p. Hence, that intersection equals p, so a finite intersection must be a
subset of W due to compactness of XQG. �

Corollary 4.7. Given a proper geodesic space X every geodesic ray g in X converges
to a point of the boundary ∂QGX. If x0 ∈ X and p ∈ ∂QGX, then there is a geodesic
ray in X starting at x0 and converging to p in XQG.

Proof. If p ∈ ∂QGX , choose a sequence xn, n ≥ 1, in X converging to p in XQG.
Use 2.6. �

Lemma 4.8. Two integral quasi-geodesics g and h converge to the same point in the
quasi-geometric boundary if there is k such that both are (k, k)-quasi-geodesics and
every cone C(x0, k, k, g,m) contains infinitely many points of h.

Proof. Suppose f : X → R is a geometrically slowly-oscillating function such that
f(g) 6= f(h). Choose ǫ > 2 · |f(g) − f(h). Choose m ≥ 1 such that the diameter
of f(CX(x0, k, k, g,m)) is smaller than ǫ the closure of that set contains both f(g)
and f(h), a contradiction. �

Corollary 4.9. Two integral quasi-geodesics g and h to converge to the same point
in the boundary if their Hausdorff distance is finite.

Proof. Choose k ≥ 1 such that both g and h are integral (k, k)-quasi-geodesics.
Suppose the Hausdorff distance from g to h is less than M . Notice that CX(x0, k+
2M,k + 2M, g,m) contains infinitely many points of h and apply 4.8. �

Corollary 4.10. The quasi-geodesic boundary of the plane is just one point. The
same is true for Z+ × Z+.

Proof. Either use 2.4 or notice there is an integral quasi-geodesic on the plane
intersecting all the rays emanating from the origin infinitely many times and apply
4.8. �

Example 4.11. The quasi-geometric boundary of the universal cover of R2 ∨ S1 is
two sequences converging to two different points. Indeed, that space is a sequence
of flats intersecting reals at integers, so every integral quasi-geodesic either settles
in one of the flats or spends bounded time in each of them eventually either moving
right or left on the real line.

Proposition 4.12. If X and Y are quasi-isometric, then their quasi-geodesic bound-
aries are homeomorphic.

Proof. By Lemma 4.2, we may assume X and Y are 1-discrete and there is a
surjective coarse equivalence f : X → Y . Moreover, by picking one point from each
fiber of f , we may reduce the general case to that of f being a bijection.

Now, g : Y → R is geometrically slowly-oscillating if and only if g ◦ f is geomet-
rically slowly-oscillating. Also, a : (a, b) ∩ Z+ → X is a quasi-geodesic if and only
if f ◦ a is one. �

Corollary 4.13. Every continuous quasi-isometric embedding f : X → Y extends to
a continuous map on geometric quasi-geodesic compactification that restricts to a
map of quasi-geometric boundaries.
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Proof. Given a geometrically slowly-oscillating function a : Y → R, a ◦ f is also
geometrically slowly-oscillating. Hence, f extends to f̃ : XQG → YQG. Now, use a
similar argument as in 4.12. �

Given a metric space (X, d), the Gromov product of x and y with respect to
a ∈ X is defined by

〈x, y〉a =
1

2

(

d(x, a) + d(y, a)− d(x, y)
)

.

Recall that metric space (X, d) is (Gromov) δ−hyperbolic if it satisfies the δ/4-
inequality:

〈x, y〉a ≥ min{〈x, z〉a , 〈z, y〉a} − δ/4, ∀x, y, z, a ∈ X.

(X, d) is Gromov hyperbolic if it is δ−hyperbolic for some δ > 0.

Proposition 4.14. If X is proper and Gromov hyperbolic, then the Gromov boundary
of X equals the quasi-geodesic boundary of X.

Proof. Recall (see [4]) that a (quasi-)geodesic γ is called M–Morse if for any con-
stants K ≥ 1, L ≥ 0, there is a constant M = M(K,L), such that for every
(K,L)-quasi-geodesic σ with endpoints on γ, we have that σ is contained in the
M -neighborhood of γ.

The fundamental property of Gromov hyperbolic spaces is expressed in Theorem
1.3.2 of [2]:
(Stability of geodesics). Let X be a δ-hyperbolic geodesic space, a ≥ 1, b ≥ 0.
There exists H = H(a, b, δ) > 0 such that for every n ∈ N the image of every
(a, b)-quasi-isometric map f : 1, ..., n → X , im(f), lies in the H-neighborhood of
any geodesic c : [0, l] → X with c(0) = f(1), c(l) = f(n), and vice versa, c lies in
the H-neighborhood of im(f).

What we need to prove is that every continuous geometrically slowly-oscilating
function f : X → [a, b] extends over the Gromov compactification of X and con-
versely: given a continuous function f on the Gromov compactification of X , its
restriction to X is geometrically slowly-oscillating.

Suppose f : X → [a, b] is continuous and geometrically slowly oscillating. Given
a sequence {xi} in X converging to a point on the Gromov boundary, we need to
show f(xi) converges to a point in [a, b]. {xi} in X converging to a point on the
Gromov boundary means lim

i→∞,j→∞
〈xi, yj〉p = ∞. Moreover, we may assume there

is a sequence of geodesics gi from p to xi pointwise converging to a geodesic ray g
at p. Apply Lemma 3.7.

Conversely: given a continuous function f on the Gromov compactification of X ,
its restriction to X is geometrically slowly-oscillating. Indeed, if g is a in integral
(k, k)-quasi-geodesic ray in X at x0 and xm ∈ CX(x0, k, k, g,m) for m ≥ 1, then
applying Stability of geodesics we can see lim

i→∞,j→∞
〈xi, yj〉p = ∞. Thus, f(xm)

converges to a point and f is geometrically slowly-oscillating. �

Proposition 4.15. If X is a proper CAT(0)-space, then there is a continuous surjec-
tion from the compactification of X obtained by adding the visual boundary to the
quasi-geodesic compactification of X.

Proof. Fix x0 ∈ X . Given a point at the visual boundary of X represented by a
geodesic ray originating at x0, g(t), t ≥ 0, converges to a point [g] of the quasi-
geodesic boundary of X by 4.7 and sending g to [g] is a surjection of the boundaries.
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Suppose a sequence yn of points in X converges to a point in the visual boundary
represented by a geodesic ray g originating at x0. What it means is that gn(t)
converges to g(t) for each t ≥ 0, where gn is the geodesic from x0 to yn for each
n ≥ 1. Reduce g to a (1, 1)-quasi-geodesic by considering only the values g(k),
k ∈ Z+. Similarly, reduce each gn to a (1, 1)-quasi-geodesic. Notice gn boundedly
approaches g.

Given any geometrically slowly-oscillating function f : X → C, 3.7 says f(yn) →
f(g). Therefore, yn → [g]. �

Remark 4.16. Notice that Croke-Kleiner [6] examples contain lots of flats (subspaces
isometric to the plane) that produce circles in the visual boundary. Therefore, those
circles are mapped to points in the quasi-geodesic boundary.

5. Spaces with trivial quasi-geodesic boundary

Proposition 5.1. If X and Y are proper unbounded integral quasi-geodesic spaces,
then their cartesian product has trivial quasi-geodesic boundary, i.e. it consists of
just one point.

Proof. As in 2.7, we consider X × Y with the l1-metric.
Pick x0 ∈ X and y0 ∈ Y . Given any integral (k, k)-quasi-geodesics f in X and

g in Y originating respectively at x0 and y0, the function h : Z+ × Z+ → X × Y
defined by h(t, s) = (f(t), g(s)) is a quasi-isometric embedding of a ”quadrant” into
X×Y . As the quasi-geodesic boundary of the integral quadrant is trivial by 4.10, all
basic integral quasi-geodesics in X×Y converge to the same point p of ∂QG(X×Y )
by 4.13, where by basic integral quasi-geodesic in X × Y we mean one of the form
t → (f(t), y0) or t → (x0, g(t)).

Suppose a sequence of points (xn, yn) converges to q 6= p in ∂QG(X×Y ). Consider
integral (k, k)-quasi-geodesics fn from (x0, y0) to (xn, yn) as in the proof of 2.7. We
may assume as in the proof of 2.5 that fn are boundedly approaching an integral
quasi-geodesic ray f in X × Y . If the sequence {xn} is not diverging to infinity,
then f is of finite Hausdorff distance from a basic integral quasi-geodesic ray, hence
it converges to q, a contradiction. However, if {xn} diverges to infinity, then f is
of finite Hausdorff distance from a basic integral quasi-geodesic ray, a contradiction
as well. �

The purpose of the next result is to show that the well-known examples of Croke-
Kleiner [6] have the trivial quasi-geodesic boundary. We use a description from [7]
so that our proof also applies to generalized Croke-Kleiner spaces constructed by
Mooney.

Proposition 5.2. Croke-Kleiner spaces have trivial quasi-geodesic boundaries.

Proof. By Croke-Kleiner spaces we mean CAT (0)-spaces constructed in [6] that are
quasi-isometric to the group {a, b, c, d|[a, b], [b, c], [c, d]}. One of them, call it X , can
be represented as the universal cover of a union of three tori T1, T2, T3 and has the
following structure (see [7] where generalized Croke-Kleiner spaces are described
in a similar way):
a. X is the union of collection of closed convex subspaces, called blocks that are
isometric to the product of a tree and a line. Hence, the visual boundary ∂B of
every block B is the suspension of a Cantor set and the quasi-geodesic boundary of
B is trivial by 5.1. The suspension points are called poles. The intersection of two
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blocks is a Euclidean plane called a wall.
b. The nerve N of the collection of blocks is a tree.
c. Let B0 and B1 be blocks, and D be the distance between the corresponding
vertices in N. Then:
(1) If D = 1, then ∂B0 ∩ ∂B1 = ∂W where W is the wall B0 ∩B1.
(2) If D = 2, then ∂B0 ∩ ∂B1 is the set of poles of B1/2, where B1/2 intersects B0

and B1.
(3) If D > 2, then ∂B0 ∩ ∂B1 = ∅.
d. The union Y of block boundaries in ∂X is dense in ∂X .

Consider the natural map p : ∂X → ∂QGX . Each ∂B is sent to a point. By (1)
above all those points are equal, hence Y is sent to a point. As Y is dense in ∂X ,
the image of ∂X is a point. �

6. Sublinear quasi-geodesic boundaries

In coarse theory (see [13], [16], [9] or [1]) the most prominent boundary of a
metric space is the Higson corona. However, there is another coarse boundary,
namely the sublinear Higson corona (see [8] or [5]) which is usually smaller than
Higson corona. In this section we introduce boundaries of geodesic spaces related
to the sublinear Higson corona. Potentially, they may be related to the sublinear
Morse boundaries of Tiozzo-Qing-Rafi [17] and [18].

Definition 6.1. As in [18] (see Section 2.1) a sublinear function is a function κ :
[0,∞) → [1,∞) such that

lim
t→∞

κ(t)

t
= 0.

Notice that we should not quibble about the domain of κ. It suffices it contains
[a,∞) for some a ∈ R.

Sublinear functions are essentially equivalent to asymptotically sublinear func-

tions in the terminology of [8] or [5], i.e. functions s : R+ → R+ such that for each
non-constant linear function f : R+ → R+ there is r > 0 so that s(x) ≤ f(x) for
all x > r.

The sublinear Higson corona of a metric space is defined in [8] via a coarse
structure ( see also [5]). We are going to introduce it in analogy to slow-oscillating
functions:

Definition 6.2. Given a metric space X and given x0 ∈ X define ||x|| as d(x, x0).
A function f : X → C is sublinearly slowly-oscillating if, whenever κ is a sublinear
function and ǫ > 0, there is a bounded subset B of X such that x, y ∈ X \ B and
d(x, y) ≤ κ(||x||), then |f(x)− f(y)| ≤ ǫ.

The sublinear Higson corona of X is defined analogously to the Higson corona
but, instead of slowly-oscillating function, one uses sublinearly slowly-oscillating
functions.

Since we want to create a concept analogous to κ-boundaries of [18], we will
create a larger classes of functions than in 6.2:

Definition 6.3. Given a metric space X , x0 ∈ X , and a sublinear function κ, declare
a function f : X → C to be κ-slowly-oscillating if, whenever C, ǫ > 0, there is a
bounded subset B of X such that x, y ∈ X \ B and d(x, y) ≤ Cκ(||x||), then
|f(x)− f(y)| ≤ ǫ.
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Definition 6.4. Given a proper metric space X and a sublinear function κ define the
κ-quasi-geodesic compactification XκQG of X to be the compactification induced
by all bounded continuous functions f : X → C that are geometrically slowly-
oscillating and κ-slowly-oscillating.

Notice there is a continuous extension XQG → XκQG of the identity map idX :
X → X , so XκQG is compact metrizable if X is integrally quasi-geodesic.

Definition 6.5. Given a proper metric space X define the sublinear quasi-geodesic

compactification XsQG of X to be the compactification induced by all bounded
continuous functions f : X → C that are geometrically slowly-oscillating and sub-
linearly slowly-oscillating.

Again, notice there is a continuous extension XQG → XsQG of the identity map
idX : X → X , so XsQG is compact metrizable if X is integrally quasi-geodesic.

Tiozzo-Qing-Rafi [18] (see Definition 3.3) define two quasi-geodesic rays g and h
based at x0 to sublinearly track each other if

lim
t→∞

dX(g(t), h(t))

t
= 0.

In other words, κ(t) := dX(g(t), h(t)) is a sublinear function.
That leads to an equivalence relation g ∼ h on the space of quasi-geodesics in

X based at x0 and those equivalence classes represent points in the boundaries
constructed in [18]. We can only say that each equivalence class maps to a single
point in the sublinear quasi-geometric boundary of X .

In the case of κ-quasi-geodesic boundary we can define κ-tracking in two ways
and they are equivalent:

Lemma 6.6. Suppose X is a metric space and g, h are two integral quasi-geodesics
in X. Given a sublinear concave and increasing function κ, the following two con-
ditions are equivalent:
1. There is a constant C ≥ 1 such that dX(g(t), h(t)) ≤ C ·κ(||g(t)||) for sufficiently
large t.
2. There is a constant M > 0 such that dX(g(t), h(t)) ≤ M · κ(t) for sufficiently
large t.

Proof. Notice (see Lemma 2.4 in [18]), κ satisfies κ(λ · t) ≤ λ · κ(t) for all λ ≥ 1.
1) =⇒ 2). Since both ||g(t)|| and ||h(t)|| are bounded by some linear function

m · t+ b ≤ (m+ b) · t for t ≥ 1, where m, b > 1/C, κ(C · ||g(t)||) ≤ (m+ b) ·C · κ(t)
for t ≥ 1.

2) =⇒ 1). Since ||g(t)|| is at least (2/m) · t − b ≥ (1/m) · t for t ≥ m · b, where
m, b > 1, m · κ(||g(t)||) ≥ κ(m · ||g(t)||) ≥ κ(t) for t ≥ b ·m. �

Lemma 6.7. Suppose X is a metric space and g, h are two integral quasi-geodesics
in X. Given a sublinear function κ, the following two conditions are equivalent:
1. There is a constant C ≥ 1 such that dX(g(t), h(t)) ≤ C · κ(C · ||g(t)||) for
sufficiently large t.
2. There is a constant C ≥ 1 and a constant K ≥ 1 such that dX(g(t), h(t)) ≤
C · κ(K · ||g(t)||) for sufficiently large t.
3. There is a constant M > 0 such that dX(g(t), h(t)) ≤ M · κ(t) for sufficiently
large t.
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Proof. See Remark 2.3 in [18]), where it is shown that there exists a constant Q ≥ 1
and an increasing and concave sublinear function κ̄ such that κ(t) ≤ κ̄(t) ≤ Q ·κ(t).

1) =⇒ 2) is obvious.
2) =⇒ 3). By 6.6, there is a constant M > 0 such that dX(g(t), h(t)) ≤ M · κ̄(t) ≤
M ·Q · κ(t) for sufficiently large t.

3) =⇒ 1). By 6.6, there is a constant C ≥ 1 such that dX(g(t), h(t)) ≤ C ·
κ̄(||g(t)||) ≤ Q · C · κ(||g(t)||) for sufficiently large t. �

Now, we can define two quasi-geodesic rays g and h based at x0 to κ-track each

other if there is a constant C > 1 such that dX(g(t), h(t)) ≤ C · κ(||g(t)||) for
sufficiently large t. The resulting equivalence classes (use 6.7) map to points of the
κ-quasi-geodesic boundary of X .

In the case of Gromov hyperbolic spaces all sublinear quasi-geodesic boundaries
are equal to the Gromov boundary:

Proposition 6.8. If X is proper and Gromov hyperbolic, then the Gromov boundary
of X equals the sublinear quasi-geodesic boundary of X.

Proof. Let κ be a sublinear function and suppose two geodesic rays g and h based at
x0 κ-track each other. We need to show that g and h are within bounded distance.
Given M > 0 we plan to show that d(g(t), h(t)) ≤ δ for all t ≤ M . For that it
suffices to find q > 0 such that 〈g(q), h(q)〉x0

> M . Pick a constant C ≥ 1 such that
dX(g(t), h(t)) ≤ C · κ(C · ||g(t)||) for sufficiently large t (see 6.7). Now, we can find
q such that ||g(q)|| = ||h(q)|| ≥ 4M and C · κ(C · ||g(q)||) ≤ ||g(q)||. Consequently,
2 · 〈g(q), h(q)〉x0

= ||g(q) + ||h(q)|| − d(g(q), h(q)) > 4M > 2 ·M .
Similarly, one can show that if xn → ∞ and d(xn, yn) ≤ C · κ(||xn||) for each

n ≥ 1, then 〈xn, yn〉x0
→ ∞, so any continuous complex-valued function f on the

Gromov compactification of X restricts to a κ-slowly-oscillating function on X . �

7. Quasi-geodesic ends of spaces

In [11] the authors constructed a theory of ends of spaces via linear algebra. It
makes sense to compare ends of X using its quasi-geodesic boundary to the coarse
ends of X .

Proposition 7.1. a. If X is proper metric, then the space of coarse ends of X embeds
into the space of components of the quasi-geodesic boundary of X.
b. If X is proper metric and quasi-geodesic, then the space of components of the
quasi-geodesic boundary of X is identical with the space of coarse ends of X.

Proof. a. The space of coarse ends of X is identical with the space of compo-
nents of its Higson corona (see [11]). Those components can be identified using
slowly oscillating functions f : X → [0, 1] such that when extended over the Higson
compactification of X there are only two values on a neighborhood of the Higson
corona. That means f has properties as in 3.3, so it is geometrically slowly oscil-
lating and it extends over the quasi-geodesic boundary so that it induces a map of
its components.

b. By 3.2 any geometrically slowly oscillating function f : X → [0, 1] is slowly
osillating, so it extends over the quasi-geodesic compactification of X . That means
there is a continuous extension of idX from the Higson compactification h(X) of
X onto the quasi-geodesic compactification of X . In particular, the space of coarse
ends of X maps onto the space of ends of the quasi-geodesic boundary of X . �
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Corollary 7.2. If X is a proper CAT(0)-space with totally disconnected visual bound-
ary, then the quasi-geodesic boundary of X is identical with the visual boundary of
X.

Proof. In that case the visual boundary of X can be identified with coarse ends of
X (see [11]). Since there is a natural surjection from the visual boundary of X onto
∂QGX (see 4.15), by 7.1 that map is a homeomorphism. �

Example 7.3. The sublinear quasi-geodesic boundary of X may have less ends than
the quasi-geodesic boundary of X:
Let a(x) :=

√
x. Consider the set of all points on the plane of the form (n, 0) or

(0, n), where n ≥ 0 is an integer.
Define the distance from (x, 0) to (0, x) to be a(x) and extend it to the distance

between (x, 0) to (0, y), x < y, to be a(y) + y − x. If x > y, we define it to be
a(x) + x− y.

Both quasi-geodesic rays are different in the quasi-geodesic boundary but are the
same in the sublinear quasi-geodesic boundary.

However, if we add bridges from (n2, 0) to (0, n2) of length n and exyend the
metric naturally, then both quasi-geodesic rays are identical in the quasi-geodesic
boundary.

We do not know of a proper geodesic space X such that its space sublinear
quasi-geodesic ends, i.e. the space of components of the sublinear quasi-geodesic
boundary of X , is smaller than the space of coarse ends of X .
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