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SMALL BALL PROBABILITIES FOR THE FRACTIONAL STOCHASTIC
HEAT EQUATION DRIVEN BY A COLORED NOISE

JIAMING CHEN

Abstract. We consider the fractional stochastic heat equation on the d-dimensional torus
Td := [−1, 1]d, d ≥ 1, with periodic boundary conditions:

∂tu(t, x) = −(−∆)α/2u(t, x) + σ(t, x, u)Ḟ (t, x) x ∈ T
d, t ∈ R

+,

where α ∈ (1, 2] and Ḟ (t, x) is a white in time and colored in space noise. We assume that σ
is Lipschitz in u and uniformly bounded. We provide small ball probabilities for the solution
u when u(0, x) ≡ 0.

1. Introduction

In this paper we consider small ball probabilities for solutions to the fractional stochastic
heat equation of the type:

(1.1) ∂tu(t,x) = −(−∆)α/2u(t,x) + σ(t,x, u)Ḟ (t,x) x ∈ T
d, t ∈ R

+,

with given initial profile u(0, ·) = u0 : T
d → R where T

d := [−1, 1]d is a d-dimensional torus.
The operator −(−∆)α/2, where 1 < α ≤ 2, is the fractional power Laplacian on Td. The
centered Gaussian noise Ḟ is white in time and colored in space, i.e.,

E

(
Ḟ (t,x), Ḟ (s,y)

)
= δ0(t− s)Λ(x− y),

where δ0 is the Dirac delta generalized function and Λ : Td → R+ is a nonnegative generalized
function whose Fourier series is given by

(1.2) Λ(x) =
∑

n∈Zd

λ(n) exp(πin · x)

where n · x represents the dot product of two d-dimensional vectors. We will need the
following two assumptions on the function σ : R+ × Td × R → R.

Hypothesis 1.1. There exists a constant D > 0 such that for all t ≥ 0, x ∈ Td, u, v ∈ R,

(1.3) |σ(t,x, u)− σ(t,x, v)| ≤ D|u− v|.

Hypothesis 1.2. There exist constants C1, C2 > 0 such that for all t ≥ 0, x ∈ Td, u ∈ R,

(1.4) C1 ≤ σ(t,x, u) ≤ C2.
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In fact, (1.1) is not well-posed since the solution u is not differentiable and Ḟ exists as a
generalized function. However, under the assumptions (1.3) and (1.4), we define the mild
solution u(t,x) to (1.1) in the sense of Walsh [Wal86] satisfying

(1.5) u(t,x) =

∫

Td

p̄(t,x− y)u0(y)dy +

∫

[0,t]×Td

p̄(t− s,x− y)σ(s,y, u(s,y))F (dsdy),

where p̄ : R+ × T
d → R+ is the fundamental solution of the fractional heat equation on T

d

∂tp̄(t,x) = −(−∆)α/2p̄(t,x)

p̄(0,x) = δ0(x).
(1.6)

Following [Dal99], it is well known (see also [DKM+09]) that if λ(n), the Fourier coefficients
of Λ(x), satisfy

(1.7)
∑

n∈Zd

λ(n)

1 + |n|α < ∞,

where | · | is the Euclidean norm, then there exists a unique random field solution u(t,x) to
equation (1.5). Examples of spatial correlation satisfying (1.7) are:

1. The Riesz kernel Λ(x) = |x|−β, 0 < β < d. In this case, there exist positive constants
c1, c2 such that for all n ∈ Zd,

(1.8) c1|n|−(d−β) ≤ λ(n) ≤ c2|n|−(d−β),

and it is easy to check that condition (1.7) holds whenever β < α.

2. The space-time white noise case Λ(x) = δ0(x). In this case, λ(n) is a constant and
(1.7) is only satisfied when α > d, that is, d = 1 and 1 < α ≤ 2.

Small ball probability problems have a long history, and one can see [LS01] for more surveys.
In short, we are interested in the probability that a stochastic process Xt starting at 0 stays
in a small ball for a long time period, i.e.,

P

(
sup

0≤t≤T
|Xt| < ε

)

where ε > 0 is small. A recent paper [AJM21] has studied this problem when Xt is the
solution of the stochastic heat equation with d = 1, α = 2 and Λ = δ0. The objective of this
paper is to generalize their results with the Riesz kernel.

2. Main Result

Theorem 2.1. Under the assumptions (1.3) and (1.4), if u(t,x) is the solution to (1.1) with
u0(x) ≡ 0, then there are positive constants C0,C1,C2,C3,D0 depending only on C1, C2, α,
β and d, such that for all D < D0, ε0 > ε > 0, T > 1, we have

(a) when d = 1 and α ≥ 2β,

C0 exp

(
− C1T

ε
2(2α−β)

β

)
< P



 sup
0≤t≤T
x∈Td

|u(t,x)| ≤ ε



 < C2 exp

(
− C3T

ε
2(α+β)
α−β

)
,
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(b) or in other cases,

0 ≤ P


 sup

0≤t≤T
x∈Td

|u(t,x)| ≤ ε


 < C2 exp

(
− C3T

ε
2α

α−β ((1+
β

αd)∧(
2α−β

α ))

)
.

Here we make a couple of remarks. These could be of independent interests.

Remark 2.1. (a) The lack of lower bound for small ball probability in part (b) is due to
an exponential growth number of grids in space.

(b) When d ≥ 2 and Λ(x) = δ0(x), the solution exists as a distribution. Is there a way
to estimate the small probability for some norm of this solution?

(c) The small ball probability estimation has a close relation with the Chung’s type Law
of the Iterated Logarithm (see [LS01] for more details). Can we follow the idea from
[LX21] to get a similar result for non-Gaussian random fields/strings?

Here is the organization of this paper. In Section 3 we state the key proposition and how
this proposition relates to the main result. In Section 4 we give some useful estimations. In
Section 5 we prove the key proposition.

Throughout the entire paper, C and C ′ denote positive constants whose values may vary
from line to line. The dependence of constants on parameters will be denoted by mentioning
the parameters in parenthesis.

3. Key Proposition

We decompose [−1, 1] into intervals of length ε2 on each dimension and divide [0, T ] into
intervals of length c0ε

4 where c0 satisfies

(3.1) 0 < c0 < min

{
1,

(
C6

36C2
2 lnC5

) α
α−β

}

where C5, C6 are constants specified in Lemma 4.5. Moreover, for ∀ε > 0 and C is specified
in Lemma 5.2, we require

(3.2) 0 < c0 < Cε
2αd−4β

β .

Remark 3.1. Unlike the white noise case in [AJM21], c0 needs to be selected depending on
ε in this paper. Indeed, c0 does not appear in the bounds for small ball probability.

Define ti = ic0ε
4, xj = jε2 and

n1 := min{n ∈ Z : nε2 > 1},
where i ∈ N and j ∈ Z. Consider a sequence of sets Ri,j ⊂ R× Rd as

(3.3) Ri,j = {(ti, xj1 , xj2, ...xjd)| − n1 + 1 ≤ jk ≤ j, k = 1, 2, ..., d} .
By symmetry, (xj1, xj2 , ...xjd) lies in [−1, 1]d when

(3.4) − n1 + 1 ≤ jk ≤ n1 − 1 for k = 1, 2, ..., d
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For n ≥ 0, we define a sequence of events that we can use for the upper bound in Theorem
2.1,

(3.5) Fn =

{
|u(t,x)| ≤ t

α−β

2α
1 for all (t,x) ∈ Rn,n1−1

}
.

In addition, let E−1 = Ω and for n ≥ 0, we define a sequence of events that we can use for
the lower bound in Theorem 2.1,
(3.6)

En =

{
|u(tn+1,x)| ≤

1

3
ε

2(α−β)
α and |u(t,x)| ≤ ε

2(α−β)
α for all t ∈ [tn, tn+1],x ∈ [−1, 1]d

}
.

The following proposition along with the Markov property will lead to Theorem 2.1.

Proposition 3.1. Consider the solution to (1.1) with u0(x) ≡ 0. Then, there exist ε1 > 0
and C4,C5,C6,C7,D0 > 0 depending only on C1, C2, α, β, and d such that for any 0 < ε <
ε1 and D < D0,

(a)

P

(
Fn

∣∣∣∣
n−1⋂

k=0

Fk

)
≤ C4 exp

(
− C5

ε2 +D2t
α−β
α

1

)
,

(b) and when d = 1 and α ≥ 2β,

P

(
En

∣∣∣∣
n−1⋂

k=−1

Ek

)
≥ C6 exp

(
− C7

ε
4(α−β)2

αβ

)
.

Next we show how Theorem 2.1 follows from Proposition 3.1.

Proof of Theorem 2.1: The event Fn deals with u(t,x) at the time tn, so putting these
events together indicates

F :=

⌊

T
t1

⌋

⋂

n=0

Fn ⊃
{
|u(t,x)| ≤ t

α−β

2α
1 , t ∈ [0, T ],x ∈ [−1, 1]d

}
,

and

P (F ) = P




⌊

T
t1

⌋

⋂

n=0

Fn


 = P (F0)

⌊

T
t1

⌋

∏

n=1

P

(
Fn

∣∣∣∣
n−1⋂

k=0

Fk

)
.

With u0(x) ≡ 0, Proposition 3.1 immediately yields

P (F ) ≤
[
C4 exp

(
− C5

ε2 +D2t
α−β

α

1

)]⌊ T
t1

⌋

≤ C′
4 exp

(
− C′

5T

ε2t1 +D2t
2α−β

α

1

)

≤ C2 exp



− C3T

t
(1+ β

αd)∧(
2α−β

α )
1



 .
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The last inequality follows from the inequality of c0 in (3.2) and D < D0. Therefore we have

P

({
|u(t,x)| ≤ t

α−β

2α
1 , t ∈ [0, T ],x ∈ [−1, 1]d

})
< C2 exp


− C3T

t
(1+ β

αd)∧(
2α−β

α )
1


 ,

then replacing t
α−β

2α
1 with ε and adjusting ε1 to ε0 give the upper bound in Theorem 2.1.

For the lower bound, the event En deals with u(t,x) in the time interval [tn, tn+1], so putting
these events together indicates

E :=

⌊

T
t1

⌋

−1⋂

n=−1

En ⊂
{
|u(t,x)| ≤ ε

2(α−β)
α , t ∈ [0, T ],x ∈ [−1, 1]d

}
,

and

P (E) = P




⌊

T
t1

⌋

−1⋂

n=−1

En


 = P (E−1)

⌊

T
t1

⌋

−1∏

n=0

P

(
En

∣∣∣∣
n−1⋂

k=−1

Ek

)
.

With u0(x) ≡ 0, Proposition 3.1 immediately yields

P (E) ≥
[
C6 exp

(
− C7

ε
4(α−β)2

αβ

)] T
t1

≥ C0 exp

(
− C1T

t1ε
4(α−β)2

αβ

)
.

Therefore, from the inequality of c0 in (5.27), we have

P
({

|u(t,x)| ≤ ε
2(α−β)

α , t ∈ [0, T ],x ∈ [−1, 1]d
})

> C0 exp

(
− C1T

ε
4(α−β)(2α−β)

αβ

)
,

then replacing ε
2(α−β)

α with ε and adjusting ε1 to ε0 give the lower bound in Theorem 2.1.

4. Preliminary

In this section, we provide some preliminary results that are used to prove the key proposition
3.1.

4.1. Heat Kernel Estimates. For x ∈ Rd, p(t,x) is the smooth function determined by
its Fourier transform in x

p̂(t, ν) :=

∫

Rd

p(t,x) exp(2πiν · x)dx = exp(−t(2π|ν|)α), ν ∈ R
d.

For x ∈ Td, from the standard Fourier decomposition we have

(4.1) p̄(t,x) = 2−d
∑

n∈Zd

exp (−πα|n|αt) exp(πin · x).

The following lemma gives an estimation on heat kernel p̄(t,x), which is similar to Lemma
2.1 and Lemma 2.2 in [Li17].
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Lemma 4.1. For all t ≥ s > 0 and x,y ∈ Td, there exist constants C,C ′ > 0 depending
only on α, d such that

(4.2)

∫

Td

|p̄(t,y − x)− p̄(t,y)|dy ≤ C

( |x|
t1/α

∧ 1

)
,

(4.3)

∫

Td

|p̄(t,x)− p̄(s,x)|dx ≤ C ′
(
log

(
t

s

)
∧ 1

)
.

Proof. We begin with inequality (4.2),
∫

Td

|p̄(t,y − x)− p̄(t,y)|dy =

∫

Td

∣∣∣∣∣
∑

n∈Zd

[p(t,y − x+ 2n)− p(t,y + 2n)]

∣∣∣∣∣ dy

≤
∫

Td

∑

n∈Zd

|p(t,y − x+ 2n)− p(t,y + 2n)| dy

=

∫

Rd

|p(t,y − x)− p(t,y)|dy

≤
∫

Rd

|x| · sup
c0∈[0,1]

|∇zp(t,y− c0x)| dy.

(4.4)

By Lemma 5 in [BJ07] and (2.3) of [JS16], we have

(4.5) |∇zp(t, z)| ≤ C(d, α)|z|
(

t

|z|d+2+α
∧ t−(d+2)/α

)
≤ C(d, α)

t|z|
(t1/α + |z|)d+2+α

.

We put (4.5) into (4.4) to get
∫

Td

|p̄(t,y − x)− p̄(t,y)|dy ≤ C(d, α)|x|
∫

Rd

t|y|
(t1/α + |y|)d+2+α

dy

≤ C(d, α)|x|
∫ ∞

0

tx

(t1/α + x)d+2+α
xd−1dx

=
C(d, α)|x|

t1/α

∫ ∞

0

wd

(1 + w)d+2+α
dw

≤ C(d, α)|x|
t1/α

.

Clearly,
∫
Td |p̄(t,y− x)− p̄(t,y)|dy ≤ 2, so that (4.2) follows. For inequality (4.3), we have

∫

Td

|p̄(t,x)− p̄(s,x)|dx =

∫

Td

∣∣∣∣∣
∑

n∈Zd

[p(t,x+ 2n)− p(s,x+ 2n)]

∣∣∣∣∣ dx

≤
∫

Td

∑

n∈Zd

|p(t,x+ 2n)− p(s,x+ 2n)| dx

=

∫

Rd

|p(t,x)− p(s,x)|dx

≤
∫

Rd

∫ t

s

|∂rp(r,x)|drdx.

(4.6)
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Proposition 2.1 in [VdPQR17] shows

(4.7) |(−∆)α/2p(r,x)| ≤ C(d, α)

(r2/α + |x|2) d+α
2

.

Applying (1.6), (4.7) and Fubini’s theorem to (4.6) yields that

∫

Td

|p̄(t,x)− p̄(s,x)|dx ≤ C(d, α)

∫

Rd

∫ t

s

1

(r2/α + |x|2) d+α
2

drdx

= C(d, α)

∫ t

s

∫ ∞

0

xd−1

(r2/α + x2)
d+α
2

dxdr

= C(d, α)

∫ t

s

dr

r

∫ ∞

0

wd−1

(1 + w2)
d+α
2

dw

≤ C(d, α) (log(t)− log(s)) .

Similarly,
∫
Td |p̄(t,x)− p̄(s,x)|dx ≤ 2, so that (4.3) follows. �

4.2. Noise Term Estimates. We denote the second integral of (1.5), i.e. noise term, by

(4.8) N(t,x) :=

∫

[0,t]×Td

p̄(t− s,x− y)σ(s,y, u(s,y))F (dsdy),

We will now estimate the regularity of N(t,x) in the following two lemmas.

Lemma 4.2. There exists a constant C > 0 depending only on α, β, d and C2 in (1.4) such
that for any ξ ∈

(
0, 1

α
∧ α−β

α

)
, t ∈ [0, 1] and x,y ∈ Td, we have

E
[
(N(t,x)−N(t,y))2

]
≤ CC2

2 |x− y|αξ.

Proof. To simplify our computation, fix t, s,x,y and we denote

K(z) := p̄(t− s,x− z)− p̄(t− s,y− z).

Using Fubini’s theorem, (1.4) and the triangle inequality, we have

E
[
(N(t,x)−N(t,y))2

]

=

∫ t

0

∫

Td

∫

Td

K(z)K(w)Λ(w− z)E[σ(s, z, u(s, z))σ(s,w, u(s,w))]dwdzds

≤ sup
r,u

E
[
σ(r,u, u(r,u))2

] ∫ t

0

∫

Td

∫

Td

|K(z)||K(w)|Λ(w− z)dwdzds

≤ C2
2

∫ t

0

∫

Td

∫

Td

|K(z)|[p̄(t− s,x−w) + p̄(t− s,y−w)]Λ(w− z)dwdzds.

(4.9)
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Then we use the standard Fourier decomposition (4.1) to estimate the spatial convolution,

∫

Td

p̄(t− s,x−w)Λ(w− z)dw = C(d)
∑

n∈Zd

λ(n) exp(−πα|n|α(t− s)) exp(πin · (x− z))

≤ C(d)
∑

n∈Zd

λ(n) exp(−πα|n|α(t− s))

≤ C(d)
∑

n∈Zd

|n|−d+β exp(−πα|n|α(t− s))

≤ C(d)

∫ ∞

0

x−d+β exp(−παxα(t− s))xd−1dx

= C(d)(t− s)−β/α

∫ ∞

0

x
β−α

α exp(−x)dx

= C(α, β, d)(t− s)−β/α.

(4.10)

We can get a similar result for
∫
Td p̄(t− s,y −w)Λ(w− z)dw. Applying (4.10), Lemma 4.1

to (4.9) and since 1 ∧ x < xαξ for all x > 0, ξ ∈ (0, 1/α), we get

E
[
(N(t,x)−N(t,y))2

]
≤ C(α, β, d)C2

2

∫ t

0

∫

Td

|K(z)|(t− s)−β/αdzds

≤ C(α, β, d)C2
2

∫ t

0

(t− s)−β/α

( |x− y|
(t− s)1/α

∧ 1

)
ds

≤ C(α, β, d)C2
2 |x− y|αξ

∫ t

0

(t− s)−ξ−β/αds

≤ C(α, β, d)C2
2 |x− y|αξ.

Note that the integral
∫ t

0
(t− s)−ξ−β/αds converges provided ξ ∈

(
0, 1

α
∧ α−β

α

)
. �

Lemma 4.3. There exists a constant C > 0 depending only on α, β, d and C2 in (1.4) such
that for any ζ ∈

(
0, α−β

α

)
, 1 ≥ t ≥ s > 0 and x,y ∈ Td, we have

E
[
(N(t,x)−N(s,x))2

]
≤ CC2

2 |t− s|ζ .
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Proof. Using Fubini’s theorem, (1.4) and the triangle inequality, we have

E[(N(t,x)−N(s,x))2]

= E

[(∫ s

0

∫

Td

[p̄(t− r,x− z)− p̄(s− r,x− z)]σ(r, z, u(r, z))F (dzdr)

+

∫ t

s

∫

Td

p̄(t− r,x− z)σ(r, z, u(r, z))F (dzdr)

)2
]

≤ sup
r,u

E
[
σ(r,u, u(r,u))2

](∫ s

0

∫

Td

∫

Td

|p̄(t− r,x− z)− p̄(s− r,x− z)|·

[p̄(t− r,x−w) + p̄(s− r,x−w)]Λ(w− z)dwdzdr

+

∫ t

s

∫

Td

∫

Td

p̄(t− r,x− z)p̄(t− r,x−w)Λ(w− z)dwdzdr

)

=: C2
2 (I1 + I2) .

(4.11)

Applying (4.10) and Lemma 4.1 to I1 and since 1 ∧ log(1 + x) < xζ for all x > 0, ζ ∈ (0, 1),
we get

I1 ≤ C(α, β, d)

∫ s

0

(
log

(
t− r

s− r

)
∧ 1

)
· [(t− r)−β/α + (s− r)−β/α]dr

≤ C(α, β, d)

∫ s

0

(
log

(
t− s+ x

x

)
∧ 1

)
x−β/αdx

≤ C(α, β, d)(t− s)ζ
∫ s

0

x−β/α−ζdx

≤ C(α, β, d)(t− s)ζ .

(4.12)

Note that the integral
∫ s

0
x−β/α−ζds converges provided ζ ∈

(
0, α−β

α

)
. In order to estimate

I2, we use the standard Fourier decomposition (4.1) to bound the spatial convolution,
∫

Td

∫

Td

p̄(t− r,x− z)p̄(t− r,x−w)Λ(w− z)dw = C(d)
∑

n∈Zd

λ(n) exp(−2πα|n|α(t− r))

≤ C(d)
∑

n∈Zd

|n|−d+β exp(−2πα|n|α(t− r))

≤ C(d)

∫ ∞

0

x−d+β exp(−2παxα(t− r))xd−1dx

= C(d)(t− r)−β/α

∫ ∞

0

x
β−α

α exp(−x)dx

= C(α, β, d)(t− r)−β/α.

Then for I2 in (4.11), we have

(4.13) I2 ≤ C(α, β, d)

∫ t

s

(t− r)−β/αdr = C(α, β, d)(t− s)
α−β

α .

By (4.11), (4.12) and (4.13), we conclude

E
[
(N(t,x)−N(s,x))2

]
≤ CC2

2(t− s)ζ .
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�

Lemma 4.4. There exist constants C1, C2, C3, C4 > 0 depending only on α, β, d and C2 in
(1.4) such that for all 0 ≤ s < t ≤ 1, x,y ∈ Td, ξ ∈

(
0, 1

α
∧ α−β

α

)
, ζ ∈

(
0, α−β

α

)
, and κ > 0,

(4.14) P (|N(t,x)−N(t,y)| > κ) ≤ C1 exp

(
− C2κ

2

C2
2 |x− y|αξ

)
,

(4.15) P (|N(t,x)−N(s,x)| > κ) ≤ C3 exp

(
− C4κ

2

C2
2 |t− s|ζ

)
.

Proof. For a fixed t, define

Nt(s,x) :=

∫

[0,s]×Td

p̄(t− r,x− y)σ(r,y, u(r,y))F (drdy).

Note that Nt(t,x) = N(t,x) and Nt(s,x) is a continuous FF
s adapted martingale in s ≤ t

since the integrand does not depend on s. For fixed t,x and y, let

Ms := Nt(s,x)−Nt(s,y) =

∫

[0,s]×Td

[p̄(t− r,x− z)− p̄(t− r,y− z)]σ(r, z, u(r, z))F (drdz),

and it is easy to check that Mt = N(t,x) − N(t,y). As Ms is a continuous FF
s adapted

martingale with M0 = 0, it is a time changed Brownian motion. In particular, we have

Mt = B〈M〉t ,

and Lemma 4.2 gives a uniform bound on the time change as

〈M〉t ≤ CC2
2 |x− y|αξ.

Therefore, by the reflection principle for the Brownian motion B〈M〉t ,

P (N(t,x)−N(t,y) > κ) = P (Mt > κ) = P (B〈M〉t > κ)

≤ P

(
sup

s≤CC2
2 |x−y|αξ

Bs > κ

)
= 2P

(
BCC2

2 |x−y|αξ > κ
)

≤ C1 exp

(
− C2κ

2

C2
2 |x− y|αξ

)
.

Switching x and y gives

P (−N(t,x) +N(t,y) > κ) = P (Mt < −κ) ≤ 2P
(
BCC2

2 |x−y|αξ < −κ
)

≤ C1 exp

(
− C2κ

2

C2
2 |x− y|αξ

)
.

Consequently, for ∀ξ ∈
(
0, 1

α
∧ α−β

α

)
,

P (|N(t,x)−N(t,y)| > κ) ≤ C1 exp

(
− C2κ

2

C2
2 |x− y|αξ

)
,

which completes the proof of (4.14). For a fixed x, we define

Uq1 =

∫

[0,q1]×Td

[p̄(t− r,x− y)− p̄(s− r,x− y)]σ(r,y, u(r,y))F (drdy)
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where 0 ≤ q1 ≤ s. Note Uq1 is a continuous FF
q1
adapted martingale with U0 = 0. Also define

Vq2 =

∫

[s,s+q2]×Td

p̄(t− r,x− y)σ(r,y, u(r,y))F (drdy)

where 0 ≤ q2 ≤ t− s. Note Vq2 is a continuous FF
q2

adapted martingale with V0 = 0. Thus,
both Uq1 and Vq2 are time changed Brownian motions, i.e.,

Ut = B〈U〉t and Vt−s = B′
〈V 〉t−s

where B, B′ are two different Brownian motions. Note that N(t,x) − N(s,x) = Ut + Vt−s,
then

P (N(t,x)−N(s,x) > κ) ≤ P (Ut > κ/2) + P (Vt−s > κ/2).

Lemma 4.3 provides a uniform bound on the time changes as

〈U〉t ≤ CC2
2(t− s)ζ and 〈V 〉t−s ≤ CC2

2(t− s)ζ .

By the reflection principle for the Brownian motions B〈U〉t and B′
〈V 〉t−s

,

P (N(t,x)−N(s,x) > κ) ≤ P
(
B〈U〉t > κ/2

)
+ P

(
B′

〈V 〉t−s
> κ/2

)

≤ 2P

(
sup

r≤CC2
2 |t−s|ζ

Br >
κ

2

)
= 4P

(
BCC2

2 |t−s|ζ >
κ

2

)

≤ C3 exp

(
− C4κ

2

C2
2 |t− s|ζ

)
.

In addition,

P (−N(t,x) +N(s,x) > κ) ≤ P (Ut < −κ/2) + P (Vt−s < −κ/2)

≤ 4P
(
BCC2

2 |t−s|ζ < −κ

2

)

≤ C3 exp

(
− C4κ

2

C2
2 |t− s|ζ

)
.

Consequently, for ∀ζ ∈
(
0, α−β

α

)
,

P (|N(t,x)−N(s,x)| > κ) ≤ C3 exp

(
− C4κ

2

C2
2 |t− s|ζ

)
,

which completes the proof of (4.15). �

Definition 4.1. Given a grid

Gn =

{(
j

22n
,
k1
2n

, ...,
kd
2n

)
: 0 ≤ j ≤ 22n, 0 ≤ k1, ..., kd ≤ 2n, j, k1, ..., kd ∈ Z

}
,

we write (
t
(n)
j , x

(n)
k1

, ..., x
(n)
kd

)
=

(
j

22n
,
k1
2n

, ...,
kd
2n

)
.

Two points
(
t
(n)
j , x

(n)
k1

, ..., x
(n)
kd

)
,
(
t
(n)
j′ , x

(n)
k′1

, ..., x
(n)
k′
d

)
are called nearest neighbors if either

1. j = j′, |ki − k′
i| = 1 for only one i and kl = k′

l for the other indices l, or

2. |j − j′| = 1 and ki = k′
i ∀i.
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The following lemma generalizes the Lemma 3.4 in [AJM21], which plays a key role in
estimating the small ball probability.

Lemma 4.5. There exist constants C5, C6 > 0 depending on α, β, d and C2 in (1.4) such
that for all γ, κ, ε > 0 and γε4 ≤ 1, we have

P


 sup

0≤t≤γε4

x∈[0,ε2]d

|N(t,x)| > κε
2(α−β)

α


 ≤ C5

1 ∧
√

γd
exp

(
− C6κ

2

C2
2γ

α−β

α

)
.

Proof. Fix γ ≥ 1, and consider the grid

Gn =

{(
j

22n
,
k1
2n

, ...,
kd
2n

)
: 0 ≤ j ≤ γε422n, 0 ≤ k1, ..., kd ≤ ε22n, j, k1, ..., kd ∈ Z

}
.

Let

(4.16) n0 =
⌈
log2

(
γ−1/2ε−2

)⌉
,

and for n < n0, Gn contains only the origin. For n ≥ n0, the grid Gn has at most

(γε422n + 1) · (ε22n + 1)
d ≤ 2d+1+(2+d)nε2d+4γ ≤ 22d+32(2+d)(n−n0) many points. We will

choose two parameters 0 < δ1(α, β) < δ0(α, β) <
α−β
α

satisfying the following constraint

(4.17) 2ζ ∧ αξ =
2(α− β)

α
+ 2δ1 − 2δ0,

where ξ ∈
(
0, 1

α
∧ α−β

α

)
, ζ ∈

(
0, α−β

α

)
. Fix the constant

M =
1− 2−δ1

(3 + d)2(δ0−δ1)n0
,

and consider the event

A(n, κ) =
{
|N(p)−N(q)| ≤ κMε

2(α−β)
α 2−δ1n2δ0n0 for all p, q ∈ Gn nearest neighbors

}
.

If p, q ∈ Gn are the case 1 nearest neighbors in the Definition 4.1, (4.14) implies

P
(
|N(p)−N(q)| > κMε

2(α−β)
α 2−δ1n2δ0n0

)
≤ C1 exp

(
−C2κ

2M2ε
4(α−β)

α

2−nαξC2
2

2−2δ1n22δ0n0

)
.

If p, q ∈ Gn are the case 2 nearest neighbors in the Definition 4.1, (4.15) implies

P
(
|N(p)−N(q)| > κMε

2(α−β)
α 2−δ1n2δ0n0

)
≤ C3 exp

(
−C4κ

2M2ε
4(α−β)

α

2−2nζC2
2

2−2δ1n22δ0n0

)
.



SMALL BALL PROBABILITIES FOR SPDE WITH COLORED NOISE 13

Therefore, a union bound gives

P (Ac(n, κ)) ≤
∑

p,q∈Gn

nearest neighbors

P
(
|N(p)−N(q)| > κMε

2(α−β)
α 2−δ1n2δ0n0

)

≤ C2(2+d)(n−n0) exp

(
−C ′κ2M2ε

4(α−β)
α

C2
2

2n(2ζ∧αξ)2−2δ1n22δ0n0

)

= C2(2+d)(n−n0) exp

(
−C ′κ2M2

C2
2

(
ε

4(α−β)
α 2

2n0(α−β)

α

)
2n(2ζ∧αξ)2−2δ1n22δ0n0

)

≤ C2(2+d)(n−n0) exp

(
−C ′κ2M2

C2
2γ

(α−β)
α

2(2ζ∧αξ−2δ1)(n−n0)

)
,

where C,C ′ are positive constants depending only on α, β, T, d. The last inequality follows

from that ε
4(α−β)

α 2
2n0(α−β)

α ≥ γ− (α−β)
α by the definition of n0 in (4.16), and our choice of δ0, δ1

in (4.17). Let A(κ) =
⋂

n≥n0

A(n, κ) and we can bound P (Ac(κ)) by summing all P (Ac(n, κ)),

P (Ac(κ)) ≤
∑

n≥n0

P (Ac(n, κ)) ≤
∑

n≥n0

C2(2+d)(n−n0) exp

(
−C ′κ2M2

C2
2γ

(α−β)
α

2(2ζ∧αξ−2δ1)(n−n0)

)

≤ C5 exp

(
−C6κ

2M2

C2
2γ

(α−β)
α

)
.

Now we consider a point (t, x), which is in a grid Gn for some n ≥ n0. From arguments
similar to page 128 of [DKM+09], we can find a sequence of points from the origin to (t,x)
as (0, 0) = p0, p1, ..., pk = (t,x) such that each pair is the nearest neighbor in some grid
Gm, n0 ≤ m ≤ n, and at most (3+ d) such pairs are nearest neighbors in any given grid. On
the event A(κ), we have

|N(t,x)| ≤
k−1∑

j=0

|N(pj)−N(pj+1)| ≤ (3 + d)
∑

n≥n0

κMε
2(α−β)

α 2−δ1n2δ0n0 ≤ κε
2(α−β)

α .

Points in Gn are dense in [0, γε4]× [0, ε2], and we may extend N(t,x) to a continuous version.
Therefore, for γ ≥ 1,

P


 sup

0≤t≤γε4

x∈[0,ε2]d

|N(t,x)| > κε
2(α−β)

α


 ≤ C5 exp

(
− C6κ

2

C2
2γ

α−β

α

)
.

For 0 < γ < 1, a union bound and stationarity in x imply that

√
γdP


 sup

0≤t≤γε4

x∈[0,ε2]d

|N(t,x)| > κε
2(α−β)

α


 ≤ P


 sup

0≤t≤γε4

x∈[0,√γε2]d

|N(t,x)| > κε
2(α−β)

α



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= P


 sup

0≤t≤(
√
γε2)2

x∈[0,√γε2]d

|N(t,x)| > κ

γ
α−β
2α

(
γ1/4ε

) 2(α−β)
α


 ≤ C5 exp

(
− C6κ

2

C2
2γ

α−β
α

)
.

As a result,

P


 sup

0≤t≤γε4

x∈[0,ε2]d

|N(t,x)| > κε
2(α−β)

α


 ≤ C5

1 ∧
√

γd
exp

(
− C6κ

2

C2
2γ

α−β

α

)
.

�

Remark 4.1. If we suppose σ in (4.8) satisfies |σ(s,y, u(s,y))| ≤ C (γε4)
α−β

2α , then the
probability in Lemma 4.5 is bounded above by

C5

1 ∧
√
γd

exp

(
− C6κ

2

C2(γε2)
2(α−β)

α

)
,

which can be proved similarly to the above lemma.

5. Proof of Proposition 3.1

The following lemma gives a lower bound for variance of the noise term N(t1,x) and an
upper bound on the decay of covariance between two random variables N(t1,x), N(t1,y) as
|x− y| increases.

Lemma 5.1. Consider noise terms N(t1,x), N(t1,y) with a deterministic σ(t,x, u) =
σ(t,x), then there exist constants C7, C8 > 0 depending only on C1, C2, d, α, and β such that

C7t
α−β

α

1 ≤ Var[N(t1,x)],

Cov[N(t1,x), N(t1,y)] ≤ C8t1 |x− y|−β .

Proof. We use the Fubini’s theorem, (1.8) the expression (1.2) and (4.1) to show that

Var[N(t1,x)] =

∫ t1

0

∫

Td

∫

Td

p̄(t1 − s,x− y)p̄(t1 − s,x− z)σ(s,y)σ(s, z)Λ(y− z)dydzds

≥ C(d)C2
1

(
∑

n∈Zd

λ(n)

∫ t1

0

e−2πα|n|α(t1−s)ds

)

= C(d)C2
1


λ(0)t1 +

∑

n∈Zd,n6=0

λ(n)
1− e−2πα|n|αt1

2πα|n|α




≥ C(d, C1)
∫ ∞

1

1− e−2παxαt1

2παxd+α−β
xd−1dx.
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The last inequality follows from that
∫ t1
0

e−2πα|n|α(t1−s)ds decreases as |n| increases. Changing
variable to w = 2παxαt1 yields
∫ ∞

1

1− e−2παxαt1

2παxα−β+1
dx = C(α, β, d)t

α−β

α

1

∫ ∞

2παt1

1− e−w

w2−β/α
dw ≥ C(α, β, d)t

α−β

α

1

∫ ∞

2πα

1− e−w

w2−β/α
dw.

The last integral converges with 0 < β < α ∧ d, which completes the proof of the first part.
In addition, we use the definition of Λ(x) in (1.2) and the fact 1 − e−x ≤ x to derive the
upper bound of covariance between N(t1,x) and N(t1,y) when x 6= y,

Cov[N(t1,x), N(t1,y)] = E[N(t1,x)N(t1,y)]

≤ C(d)C2
2

(
∑

n∈Zd

λ(n) exp(πin · (x− y))

∫ t1

0

e−2πα|n|α(t1−s)ds

)

≤ C8t1
∑

n∈Zd

λ(n) exp(πin · (x− y)) = C8t1 |x− y|−β .

�

Proof of Proposition 3.1(a) The Markov property of u(t, ·) (see page 247 in [DPZ14])
implies

P (Fj|σ{u(ti, ·)}0≤i<j) = P (Fj|u(tj−1, ·)) .

If we can prove that P (Fj |u(tj−1, ·)) has a uniform bound C4 exp

(
− C5

ε2+D2t
α−β
α

1

)
, then it

is still a bound for the conditional probability P
(
Fj |
⋂j−1

k=0 Fk

)
, which is conditioned on a

realization of u(tk, ·), 0 ≤ k < j. Thus, it is enough to show that

P (F1) ≤ C4 exp

(
− C5

ε2 +D2t
α−β
α

1

)
,

where C4, C5 do not depend on u0. Consider the truncated function

fε(x) =





x |x| ≤ t

α−β
2α

1

x
|x| · t

α−β

2α
1 |x| > t

α−β

2α
1

,

and, particularly, we have |fε(x)| ≤ t
α−β
2α

1 . Consider the following two equations

∂tv(t,x) = −(−∆)α/2v(t,x) + σ(t,x, fε(v(t,x)))Ḟ (t,x),

and

∂tvg(t,x) = −(−∆)α/2vg(t,x) + σ(t,x, fε(u0(x)))Ḟ (t,x)

with the same initial u0(x). We can decompose v(t,x) by

v(t,x) = vg(t,x) +D(t,x)

with

D(t,x) =

∫

[0,t]×Td

p̄(t− s,x− y)[σ(s,y, fε(v(s,y)))− σ(s,y, fε(u0(y)))]F (dsdy).
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The Lipschitz property on the third variable of σ(t,x, u) in (1.3) gives

|σ(s,y, fε(v(s,y)))− σ(s,y, fε(u0(y)))| ≤ D|fε(v(s,y))− fε(u0(y))|

≤ 2Dt
α−β

2α
1 .

(5.1)

Recall that Ri,j in (3.3) and define a new sequence of events,

Hj =

{
|v(t,x)| ≤ t

α−β

2α
1 , ∀(t,x) ∈ R1,j \R1,j−1

}
.

Clearly, the property of fε(x) and (3.5) imply

F1 =
n1−1⋂

j=−n1+1

Hj.

Also, define another two sequences of events

Aj =

{
|vg(t,x)| ≤ 2t

α−β

2α
1 , ∀(t,x) ∈ R1,j \R1,j−1

}
,

Bj =

{
|D(t,x)| > t

α−β
2α

1 , ∃(t,x) ∈ R1,j \R1,j−1

}
.

It is straightforward to check that

Hc
j ⊃ Ac

j ∩ Bc
j ,

which implies

P (F1) = P

(
n1−1⋂

j=−n1+1

Hj

)
≤ P

(
n1−1⋂

j=−n1+1

[Aj ∪ Bj ]

)

≤ P

((
n1−1⋂

j=−n1+1

Aj

)
⋃
(

n1−1⋃

j=−n1+1

Bj

))

≤ P

(
n1−1⋂

j=−n1+1

Aj

)
+ P

(
n1−1⋃

j=−n1+1

Bj

)

≤ P

(
n1−1⋂

j=−n1+1

Aj

)
+

n1−1∑

j=−n1+1

P (Bj).

(5.2)

The second inequality can be showed by using induction. Moreover, for j = −n1 + 1,

(5.3) Bj ⊆





sup

0≤s≤c0ε4

y∈[(−n1+1)ε2,(−n1+2)ε2]d

|D(s,y)| > t
α−β

2α
1





,
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and for j > −n1 + 1,

Bj ⊆
{

sup
(t,x)∈R1,j\R1,j−1

|D(t,x)| > t
α−β

2α
1

}

⊆
⋃

(t,x)∈R1,j−1\R1,j−2





sup
0≤s≤c0ε4

y∈x+[0,ε2]d

|D(s,y)| > t
α−β

2α
1





.

(5.4)

From (5.1) and Remark 4.1, we get

(5.5) P


 sup

0≤s≤c0ε4

y∈x+[0,ε2]d

|D(s,y)| > t
α−β

2α
1


 ≤ C5

1 ∧
√
c0d

exp

(
− C6

4D2t
α−β

α

1

)
,

where the proof does not rely on x since u0(x) ≡ 0. Therefore, (5.3) implies

(5.6) P (B−n1+1) ≤ P


 sup

0≤s≤c0ε4

y∈[0,ε2]d

|D(s,y)| > t
α−β

2α
1


 ,

and (5.4) implies, for j > −n1 + 1,

(5.7) P (Bj) ≤
[
(j + n1 − 1)d − (j + n1 − 2)d

]
P


 sup

0≤s≤c0ε4

y∈[0,ε2]d

|D(s,y)| > t
α−β

2α
1


 .

Hence, using (5.5), (5.6) and (5.7), we conclude that

(5.8)

n1−1∑

j=−n1+1

P (Bj) ≤
(
(2n1 − 2)d + 1

)
≤ C(d)

ε2d
· C5

1 ∧
√
c0d

exp

(
− C6

4D2t
α−β

α

1

)
.

To compute the upper bound for P
(⋂n1−1

j=−n1+1Aj

)
, we define a sequence of events involving

vg,

Ij =

{
|vg(t,x)| ≤ 2t

α−β
2α

1 , ∀(t,x) ∈ R1,j

}
and I−n1 = Ω.

Then we can write P
(⋂n1−1

j=−n1+1Aj

)
in terms of conditional probability as

(5.9) P

(
n1−1⋂

j=−n1+1

Aj

)
= P (In1−1) = P (I−n1)

n1−1∏

j=−n1+1

P (Ij)

P (Ij−1)
=

n1−1∏

j=−n1+1

P (Ij|Ij−1).

Let Gj be the σ−algebra generated by

Nε(t,x) =

∫ t

0

∫

Td

p(t− s,x− y)σ(s,y, fε(u0(y)))F (dyds), (t,x) ∈ R1,j .

If we can show that there is a uniform bound for P (Ij |Gj−1), then it is still a bound for
the conditional probability P (Ij |Ij−1). Notice that σ(s,y, fε(u0(y))) is deterministic and
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uniformly bounded, then by Lemma 5.1, we have

(5.10) Var[Nε(t1,x)] ≥ C7t
α−β

α

1 ,

and for (t,x) ∈ R1,j \R1,j−1, one can decompose

(5.11) vg(t,x) =

∫

Td

p(t,x− y)u0(y)dy +X + Y,

where X = E[Nε(t,x)|Gj−1] is a Gaussian random variable, which can be written as

(5.12) X =
∑

(t,x)∈R1,j−1

η(j)(t,x)Nε(t,x),

for some coefficients
(
η(j)(t,x)

)
(t,x)∈R1,j−1

. Then the conditional variance equals

Var(Y |Gj−1) = E[(Nε(t,x)−X|Gj−1)
2]− (E[Nε(t,x)−X|Gj−1])

2

= E[(Nε(t,x)− E[Nε(t,x)|Gj−1]|Gj−1)
2] = Var[Nε(t,x)|Gj−1].

Since Y = Nε(t,x)−X is independent of Gj−1, we write Var(Y ) as

Var(Y ) = Var(Y |Gj−1) = Var[Nε(t,x)|Gj−1].

In fact, for a Gaussian random variable Z ∼ N(µ, σ2) and any a > 0, the probability
P (|Z| ≤ a) is maximized when µ = 0, thus

P (Ij |Gj−1) ≤ P

(
|vg(t,x)| ≤ 2t

α−β

2α
1 , (t,x) ∈ R1,j \R1,j−1

∣∣∣∣Gj−1

)

≤ P


|Z ′| ≤ 2t

α−β

2α
1√

Var[Nε(t,x)|Gj−1]




where Z ′ ∼ N(0, 1). Let’s use the notation SD to denote the standard deviation of a random
variable. By the Minkowski inequality,

SD(X) ≤
∑

(t,x)∈R1,j−1

∣∣η(j)(t,x)
∣∣ · SD[Nε(t,x)],

and

SD[Nε(t,x)] ≤ SD(X) + SD(Y ).

If we can control coefficients by restricting

∑

(t,x)∈R1,j−1

∣∣η(j)(t,x)
∣∣ ≤ 1

2
,

then the standard deviation of X is less than one half the standard deviation of Nε(t,x),

SD[Nε(t,x)] ≤ SD(X) + SD(Y ) ≤ 1

2
SD[Nε(t,x)] + SD(Y ).
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From (5.10), Var(Y ) is bounded below by C7t
α−β
α

1 , so that we can derive the uniform upper
bound of P (Ij|Gj−1),

P (Ij|Gj−1) ≤ P


|Z ′| ≤ 2t

α−β
2α

1√
Var[Nε(t,x)|Gj−1]




≤ P


|Z ′| ≤ 2t

α−β
2α

1√
C7t

α−β

α

1




= P (|Z ′| ≤ C ′) < 1,

where C ′ depends only on C1, d, α, and β. A bound (3.4) on j and (5.9) together yield

(5.13) P

(
n1−1⋂

j=−n1+1

Aj

)
≤ C2ε−2

= C exp

(
−C ′

ε2

)
,

where C,C ′ depends only on C1, d, α, and β. The following lemma shows how to select c0
to make

∑
(t,x)∈R1,j−1

|η(j)(t,x)| ≤ 1
2
, which completes the proof.

Lemma 5.2. For a given ε > 0, we may choose c0 > 0 in (3.2) such that

∑

(t,x)∈R1,j−1

|η(j)(t,x)| ≤ 1

2
.

Proof. Let X and Y be random variables defined in (5.11) and (5.12). Since Y and Gj−1 are
independent, for ∀(t,x) ∈ R1,j−1,

Cov[Y,Nε(t,x)] = 0

and for (t,y) ∈ R1,j \R1,j−1, we have
(5.14)

Cov[Nε(t,x), Nε(t,y)] = Cov[Nε(t,x), X ] =
∑

(t,x′)∈R1,j−1

η(j)(t,x′)Cov[Nε(t,x), Nε(t,x
′)].

We write the equation (5.14) in a matrix form as

(5.15) X = Ση,

where the vector η =
(
η(j)(t,x)

)T
(t,x)∈R1,j−1

, the vectorX = {Cov[Nε(t,x), Nε(t,y)]}T(t,x)∈R1,j−1
,

and Σ is the covariance matrix of (Nε(t,x))(t,x)∈R1,j−1
. Let ||·||1,1 be the matrix norm induced

by the || · ||l1 norm, that is for a matrix A,

||A||1,1 := sup
x 6=0

||Ax||l1
||x||l1

.

It can be shown that ||A||1,1 = max
j

n∑
i=1

|aij | (see page 259 of [RB00]). Therefore, we have

||η||l1 = ||Σ−1X||l1 ≤ ||Σ−1||1,1||X||l1.
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We rewrite Σ = DTD, where D is a diagonal matrix with diagonal entries
√
Var[Nε(t,x)],

and T is the correlation matrix with entries

exx′ =
Cov[Nε(t,x), Nε(t,x

′)]√
Var[Nε(t,x)] ·

√
Var[Nε(t,x′)]

.

Thanks to Lemma 5.1, for x 6= x′, |exx′ | can be bounded above by

|exx′| ≤ C8t1 |x− x′|−β

C7t
1−β/α
1

.

Define A = I−T. Because A has zero diagonal entries, we can bound ||A||1,1 by

||A||1,1 = max
x

∑

x 6=x′

|txx′ | ≤
∑

(t,x)∈R1,n1−1

|e0x| =
C8t

β/α
1

C7

∑

(t,x)∈R1,n1−1

|x|−β

≤ C(d)C8t
β/α
1

C7ε2β

∫ √
dε−2

0

rd−β−1dr =
C(d, β)C8

C7

· (c0ε
4)β/α

ε2d
.

For any ε > 0, we denote C =
(

C7

3C(d,β)C8

)α/β
and choose c0 < Cε

2αd−4β
β in (3.2), which makes

||A||1,1 < 1
3
. Therefore, summing the geometric series gives that

||T−1||1,1 = ||(I−A)−1||1,1 ≤
1

1− ||A||1,1
≤ 3

2
,

and ||Σ−1||1,1 ≤ ||D−1||1,1 · ||T−1||1,1 · ||D−1||1,1 ≤ 3
2
C−1

7 t
−α−β

α

1 . Substituting the bounds into
(5.15) and choosing c0 as in (3.2), we obtain

||η||l1 ≤
3

2
C−1

7 t
−α−β

α

1 ||X||l1 <
3

2
· 1
3
=

1

2
.

�

Combining (5.2), (5.8) and (5.13) yields

P (F1) ≤
C(d)C5

(1 ∧
√
c0d)ε2d

exp

(
− C6

4D2t
α−β
α

1

)
+ C exp

(
−C ′

ε2

)

≤ C ′
5 exp

(
−d

2
ln t1 −

C6

4D2t
α−β
α

1

)
+ C exp

(
−C ′

ε2

)

We choose a D0 depending only on α, β and d such that for any D < D0,

P (F1) ≤ C ′
5 exp

(
− C ′

6

D2t
α−β

α

1

)
+ C exp

(
−C ′

ε2

)

≤ C4 exp

(
− C5

ε2 +D2t
α−β

α

1

)
.

which completes the proof of Proposition 3.1 (a).

Proof of Proposition 3.1 (b) We first state the Gaussian correlation inequality, which is
crucial to proof Proposition 3.1 (b).
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Lemma 5.3. For any convex symmetric sets K,L in Rd and any centered Gaussian measure
µ on Rd, we have

µ(K ∩ L) ≥ µ(K)µ(L).

Proof. See in paper [Roy14], [LM17]. �

By the Markov property of u(t, ·), the behavior of u(t, ·) in the interval [tn, tn+1] depends
only on u(tn, ·) and Ḟ (t,x) on [tn, t]× [−1, 1]d. Therefore, it is enough to show that

P (E0) ≥ C6 exp

(
− C7

ε
2d(αd−β)

β

)
,

where C6, C7 do not depend on u0 and |u0(x)| ≤ 1
3
ε

2(α−β)
α . Now we are ready to compute

the lower bound for the small ball probability with a smooth and deterministic σ(s, y, u) =
σ(s, y), which is a Gaussian case. For n ≥ 0, define a sequence of events
(5.16)

Dn =

{
|u(tn+1,x)| ≤

1

6
ε

2(α−β)
α , and |u(t,x)| ≤ 2

3
ε

2(α−β)
α , ∀t ∈ [tn, tn+1],x ∈ [−1, 1]d

}
.

Denote

p̄t(u0)(x) = p̄(t, ·) ∗ u0(x) =

∫

Td

p̄(t,x− y)u0(y)dy,

and we have

(5.17) p̄t(u0)(x) ≤ sup
x

|u0(x)| ≤
1

3
ε

2(α−β)
α .

We consider the measure Q given by

dQ

dP
= exp

(
Zt1 −

1

2
〈Z〉t1

)

where

Zt1 = −
∫

[0,t1]×Td

f(s,y)F (dsdy).

If Zt1 satisfies Novikov’s condition in [All98], then

F̃ (t,x) := F (t,x)− 〈F (·,x), Z〉t
is a centered spatially homogeneous Wiener process under the measure Q (see [All98] for
more details). Therefore, for x ∈ [−1, 1]d, Fubini’s Theorem with the covariance structure
of Ḟ (t,x) gives

˙̃
F (t,x) = Ḟ (t,x) +

∫

Td

f(t,y)Λ(x− y)dy,

which is a colored noise under measure Q. Since p̄t(u0)(x)
t1σ(t,x)

is smooth and bounded function,

and Λ(x) is the Riesz kernel on Td, [RS16] shows that there is a continuous formula for the

fractional Laplacian of p̄t(u0)(x)
t1σ(t,x)

on Td, so that one may assume that there is a function f(t,y)

such that, ∫

Td

f(t,y)Λ(x− y)dy =
p̄t(u0)(x)

t1σ(t,x)
.
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Moreover, Λ(x) ≥ d−β/2 and (5.17) imply

E
[
(Zt1)

2
]
= E

[∫

[0,t1]×Td

∫

[0,t1]×Td

f(s,y)f(t, z)F (dsdy)F (dtdz)

]

=

∫ t1

0

∫

Td

∫

Td

f(s,y)f(s, z)Λ(y− z)dydzds =

∫ t1

0

∫

Td

f(s,y)
p̄s(u0)(y)

t1σ(s,y)
dyds

≤
∫ t1

0

∫

Td

f(s,y)

(
1

3
ε

2(α−β)
α

)
· 1

t1C1
dyds ≤ C(d, β)ε

2(α−β)
α

C1t1

∫ t1

0

∫

Td

f(s,y)Λ(1− y)dyds

=
C(d, β)ε

2(α−β)
α

C1t1

∫ t1

0

p̄s(u0)(1)

t1σ(s, 1)
ds ≤ C(d, β, C1)

ε
4(α−β)

α

t1
< ∞,

(5.18)

which satisfies Novikov’s condition with a deterministic f . Thus, we can rewrite equation
(1.1) with deterministic σ as

u(t,x) = p̄t(u0)(x) +

∫

[0,t]×Td

p̄(t− s,x− y)σ(s,y)

[
F̃ (dsdy)− p̄s(u0)(y)

t1σ(s,y)
dsdy

]

= p̄t(u0)(x)−
tp̄t(u0)(x)

t1
+

∫

[0,t]×Td

p̄(t− s,x− y)σ(s,y)F̃ (dsdy)

=

(
1− t

t1

)
p̄t(u0)(x) +

∫

[0,t]×Td

p̄(t− s,x− y)σ(s,y)F̃ (dsdy).

The first term is 0 at t1, and |u0(x)| ≤ 1
3
ε

2(α−β)
α , we have

(5.19)

∣∣∣∣
(
1− t

t1

)
p̄t(u0)(x)

∣∣∣∣ ≤
1

3
ε

2(α−β)
α ,x ∈ [−1, 1]d, t < t1.

Define

Ñ(t,x) =

∫

[0,t]×Td

p̄(t− s,x− y)σ(s,y)F̃ (dyds),

and suppose c0 < 1, then applying Lemma 4.5 to F̃ gives

Q


 sup

0≤t≤c0ε4

x∈[0,c0ε2]d

|Ñ(t,x)| > 1

6
ε

2(α−β)
α


 ≤ C5 exp

(
− C6

36C2
2c

α−β

α

0

)
,

where γ = c−1
0 > 1 and κ =

(
6c

α−β

α

0

)−1

. To make sure that the right hand side is strictly

less than 1, we require

c0 < min

{
1,

(
C6

36C2
2 lnC5

) α
α−β

}
,
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which is mentioned in (3.1). By the Gaussian correlation inequality in Lemma 5.3, we obtain

Q


 sup

0≤t≤t1
x∈[−1,1]d

|Ñ(t,x)| ≤ 1

6
ε

2(α−β)
α


 ≥ Q


 sup

0≤t≤t1
x∈[0,c0ε2]d

|Ñ(t,x)| ≤ 1

6
ε

2(α−β)
α




(

2
c0ε

2

)d

≥
[
1− C5 exp

(
− C6

36C2
2c

α−β

α

0

)]( 2
c0ε

2

)d

.

From (5.16) and (5.19), we get

Q(D0) ≥ Q


 sup

0≤t≤t1
x∈[−1,1]d

|Ñ(t,x)| ≤ 1

6
ε

2(α−β)
α


 ,

and if we replace f(s, y) with 2f(s, y) for Zt1 ,

(5.20) 1 = E

[
dQ

dP

]
= E

[
exp

(
Zt1 −

1

2
〈Z〉t1

)]
= E[exp (2Zt1 − 2〈Z〉t1)].

Because f(s, y) is deterministic, we may estimate the Radon-Nikodym derivative,

E

[(
dQ

dP

)2
]
= E[exp (2Zt1 − 〈Z〉t1)] = E[exp (2Zt1 − 2〈Z〉t1) · exp(〈Z〉t1)]

≤ exp

(
C(d, β, C1)

ε
4(α−β)

α

t1

)
.

The last inequality follows from (5.18) and (5.20). The Cauchy-Schwarz inequality implies

Q(D0) ≤

√√√√E

[(
dQ

dP

)2
]
·
√
P (D0),

and as a consequence, we get

(5.21) P (D0) ≥ exp

(
−Cε

4(α−β)
α

t1

)
exp

(
C ′

cd0ε
2d

ln

[
1− C5 exp

(
− C6

36C2
2c

α−β

α

0

)])
,

where C,C ′ depend only on d, β, C1. For the lower bound with a non-deterministic σ(t,x, u),
we write

u(t,x) = ug(t,x) +D(t,x)

where ug(t,x) satisfies the equation

∂tug(t,x) = −(−∆)α/2ug(t,x) + σ(t,x, u0(x))Ḟ (t,x)

and

D(t,x) =

∫

[0,t]×Td

p̄(t− s,x− y)[σ(s,y, u(s,y))− σ(s,y, u0(y))]F (dsdy)



24 JIAMING CHEN

with an initial profile u0. Since ug is Gaussian, for an event defined as

D̃0 =

{
|ug(t1,x)| ≤

1

6
ε

2(α−β)
α , and |ug(t,x)| ≤

2

3
ε

2(α−β)
4 ∀t ∈ [0, t1],x ∈ [−1, 1]d

}
,

we can apply (5.21) to it and get

(5.22) P (D̃0) ≥ exp

(
−Cε

4(α−β)
α

t1

)
exp

(
C ′

cd0ε
2d

ln

[
1− C5 exp

(
− C6

36C2
2c

α−β

α

0

)])
.

Define the stopping time

τ = inf
{
t : |u(t,x)− u0(x)| > 2ε

2(α−β)
α for some x ∈ [−1, 1]d

}
,

and clearly we have τ > t1 on the event E0 in (3.6) since |u0(x)| ≤ 1
3
ε

2(α−β)
α , and |u(t, x)| ≤

ε
2(α−β)

α for ∀t ∈ [0, t1] on the event E0. We make another definition

D̃(t, x) =

∫

[0,t]×Td

p̄(t− s,x− y)[σ(s,y, u(s ∧ τ,y))− σ(s,y, u0(y))]F (dsdy),

and D(t,x) = D̃(t,x) for t ≤ t1 on the event {τ > t1}. Moreover, from (3.6), we have

P (E0) ≥ P


D̃0

⋂




sup

0≤t≤t1
x∈[−1,1]d

|D(t,x)| ≤ 1

6
ε

2(α−β)
α









= P





D̃0

⋂




sup
0≤t≤t1

x∈[−1,1]d

|D(t,x)| ≤ 1

6
ε

2(α−β)
α





⋂
{τ > t1}




⋃

D̃0

⋂




sup
0≤t≤t1

x∈[−1,1]d

|D(t,x)| ≤ 1

6
ε

2(α−β)
α





⋂
{τ ≤ t1}





 .

(5.23)

On the event {τ > t1}, we have

sup
0≤t≤t1

x∈[−1,1]d

|D(t,x)| = sup
0≤t≤t1

x∈[−1,1]d

|D̃(t,x)|,

and on the event D̃0 ∩ {τ ≤ t1}, we have, for some x,

|ug(τ,x)| ≤
2

3
ε

2(α−β)
α , |u(τ,x)− u0(x)| > 2ε

2(α−β)
α and |u0(x)| ≤

1

3
ε

2(α−β)
α .

The above leads to

sup
x

|D(τ,x)| = sup
x

|u(τ,x)− ug(τ,x)| ≥ sup
x

(|u(τ,x)| − |ug(τ,x)|)

≥ sup
x

|u(τ,x)| − 2

3
ε

2(α−β)
α ≥ 2ε

2(α−β)
α − 1

3
ε

2(α−β)
α − 2

3
ε

2(α−β)
α

≥ ε
2(α−β)

α >
1

6
ε

2(α−β)
α ,
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which implies

D̃0 ∩





sup
0≤t≤t1

x∈[−1,1]d

|D(t,x)| ≤ 1

6
ε

2(α−β)
α





∩ {τ ≤ t1} = φ.

Combining the above with (5.23) yields

P (E0) ≥ P


D̃0

⋂




sup
0≤t≤t1

x∈[−1,1]d

|D̃(t,x)| ≤ 1

6
ε

2(α−β)
α





⋂
{τ > t1}




≥ P (D̃0)− P


 sup

0≤t≤t1
x∈[−1,1]d

|D̃(t,x)| > 1

6
ε

2(α−β)
α


 ,

(5.24)

and |u(t,x) − u0(x)| ≤ 2ε
2(α−β)

α for all t ∈ [0, t1] and x ∈ [−1, 1]d. We apply the Lipschitz
property on the third variable of σ(t,x, u) in (1.3) to Remark 4.1 and use a union bound
from (5.8) to get

(5.25) P


 sup

0≤t≤t1
x∈[−1,1]d

|D̃(t,x)| > 1

6
ε

2(α−β)
α


 ≤ C5

(c0ε4)d/2
exp

(
− C6

144D2(c0ε4)
α−β

α

)
.

Consequently, from (5.22), (5.24) and (5.25), we conclude that,

P (E0) ≥ exp

(
−Cε

4(α−β)
α

t1

)
exp

(
C ′

cd0ε
2d

ln

[
1− C5 exp

(
− C6

36C2
2c

α−β

α

0

)])

− C5

(c0ε4)d/2
exp

(
− C6

144D2(c0ε4)
α−β

α

)

= exp

(
−Cε

4(α−β)
α

t1
+

C ′

cd0ε
2d

ln

[
1− C5 exp

(
− C6

36C2
2c

α−β

α

0

)])

− C5 exp

(
−d

2
ln t1 −

C6

144D2t
α−β

α

1

)
.

(5.26)

When d = 1 and α ≥ 2β, we may choose c0 in (3.2) satisfying

(5.27) C′ε
4α−8β

β < c0 < Cε
2α−4β

β ,
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where 0 < C′ < C and ε is small enough. Then choose a D0 depending only on α, β and d
such that for any D < D0 , we have

P (E0) ≥ exp

(
−Cε

−4(α−β)2

αβ

)
− C ′

5 exp

(
− C ′

6

D2t
α−β
α

1

)

≥ C exp

(
−C ′ε

−4(α−β)2

αβ

)
− C ′

5 exp

(
− C ′

6

D2ε
4(α−β)2

αβ

)

≥ C6 exp

(
− C7

ε
4(α−β)2

αβ

)
.

When d = 1 and α < 2β, we may choose c0 in (3.1). However, the second term could exceed
the first term in (5.26) for small enough ε and we may not achieve a lower bound for small
probability for any 0 < ε < ε0. Similarly, for d ≥ 2, the first term decays exponentially
from (5.22) and the second term grows exponentially from (5.25), hence we cannot achieve
a lower bound for small probability for any 0 < ε < ε0, which completes the proof.
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