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Abstract

In this study, we prove among other results that the Dedekind completion of the Riesz
tensor product of two order ideals in an Archimedean Riesz space E is again an order
ideal in E and the Dedekind completion of the Riesz tensor product of two principal
bands in an Archimedean Riesz space E is again a principal band in E.

1 Introduction

Tensor product of vector lattices and different structures has been a significant field of
interest and has been studied and improved in time by authors like H.H.Schaefer, J.J.
Grobler, C.C.A. Labuschagne and G. Buskes since D. H. Fremlin first introduced the
Riesz tensor product. We mainly refer to [4], [7] and [13] on the topic. In [8], Fremlin
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proved the existence and uniqueness of the tensor product in the following theorem. (For
other constructions see [11] or [16]).

Theorem 1.1. Let E and F be Archimedean Riesz spaces. Then there is an Archimedean
Riesz space G and a Riesz bimorphism ϕ : E × F → G such that

(i) whenever H is an Archimedean Riesz space and ψ : E × F → H is a Riesz bimor-
phism, there is a unique Riesz homomorphism T : G→ H such that Tϕ = ψ;

(ii) ϕ induces an embedding ϕ̂ : E ⊗ F → G;

(iii) (ru-D) ϕ̂[E⊗F ] is dense in G in the sense that for every w ∈ G, there exist x0 ∈ E

and y0 ∈ F such that for every ǫ > 0, there is an element v ∈ ϕ̂[E ⊗ F ] such that
|w − v| ≤ ǫϕ̂(x0 ⊗ y0);

(iv) if w > 0 in G, then there exist x ∈ E+ and y ∈ F+ such that 0 < ϕ̂(x⊗ y) ≤ w.

The Archimedean Riesz space G in Theorem 1.1 is called the Fremlin tensor product of
E and F and is denoted by E⊗̄F . Any Archimedean Riesz space paired with a Riesz
bimorphism satisfying the universal property (i) is Riesz isomorphic to G.

The Fremlin tensor product has the following additional properties:

(ru-D)+ (Positive relative uniform density property) For w ∈ E⊗F+, there exists an element
(x, y) ∈ E+×F+ such that for every ǫ > 0, there exists an element v ∈ (Ex)+⊗(Fy)+
with |w − v| ≤ ǫϕ̂(x⊗ y)

(PUM) (Positive universal mapping property) Let H be a relatively uniformly complete
Archimedean Riesz space and ψ : E×F → H be a positive bilinear mapping. Then
there exists a unique positive linear mapping τ : E⊗F → H such that τ ◦ ϕ = ψ.

(B) If h ∈ E⊗F , there exists an element (x, y) ∈ E+ × F+ such that |h| ≤ x⊗ y.

Recently, in [5], the authors try to give a generalization of the weak mixing in the
framework of Riesz spaces. They need the Riesz tensor product of two Dedekind complete
Riesz spaces to be Dedekind complete and the Riesz tensor product of two principal
bands in a Riesz space to be a principal band in the same Riesz space. Grobler in
[10], showed that the first statement is incorrect by giving a counterexample. Hence,
he introduced the Dedekind complete tensor product as the Dedekind completion of the
Riesz tensor product, that is, E⊗δF = (E⊗F )δ. He stated and proved the following
theorem [10, Theorem 5.2] which will be useful in the sequel.
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Theorem 1.2. Let E,F be two Archimedean Riesz spaces. The tensor product E⊗δF

is a Dedekind complete vector lattice with the following properties:

(D3) E ⊗ F is a vector subspace of E⊗F and E⊗F is a Riesz subspace of E⊗δF .

(D5) If G is a Dedekind complete vector lattice and ψ : E×F → G is an order continuous
Riesz bimorphism, then there exists an order continuous Riesz homomorphism τ :
E⊗δF → G such that τ ◦ σ = ψ.

(D4) The Dedekind complete Riesz subspace generated in E⊗δF by E ⊗ F is equal to
E⊗δF .

(OD) For every 0 < h ∈ E⊗δF there exists an element (x, y) ∈ E+ × F+ such that
0 < x⊗ y ≤ h.

(B) If h ∈ E⊗δF , there exists an element (x, y) ∈ E+ × F+ such that |h| ≤ x⊗ y.

(PUM) Let G be a Dedekind complete Archimedean Riesz space and let ψ : E × F → G

be an order continuous positive bilinear mapping. Then there exists a unique order
continuous positive linear mapping τ : E⊗δF → G such that τ ◦ σ = ψ.

Most recently, G. Buskes and P. Thorn in the preprint [6] present a counterexample for
the tensor product of two ideals of Archimedean Riesz spaces E and F being an ideal in
E⊗̄F . Then, it takes away the hope to obtain that the Riesz tensor product of principal
bands is again a principal band.

In the light of these recent works, we try to present an overall look at the subject, and
we show that in the case of ideals and principal bands, it is more convenient to deal with
the Dedekind complete tensor product rather than the Fremlin one. We will prove that
the Dedekind complete tensor product of two ideals in a Riesz space is again an ideal
and the Dedekind complete tensor product of two principal bands is again a principal
band in the same Riesz space.

2 Preliminaries

Some fundamental notions and tools are given in this section. The reader can find further
information with details in [3] or in [14] or in [15].

A real vector space E equipped with an order relation ≥ compatible with the algebraic
structure of E which has the following properties is called an ordered vector space.
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i. If u ≥ v for u, v ∈ E then u+ w ≥ v + w for all w ∈ E.

ii. If u ≥ v for u, v ∈ E then λu ≥ λv for each λ ≥ 0.

An ordered vector space E is called a Riesz space if the supremum (or infimum) of
every nonempty finite subset of E exists in E. A Riesz space E is called Archimedean
if x, y ∈ E+ and nx ≤ y for each n ∈ N imply x = 0. A Riesz space is called Dedekind
complete whenever every nonempty subset which is bounded above has a supremum (or
every nonempty subset which is bounded below has an infimum). A vector subspace A
of an ordered vector space E is said to be majorizing in E whenever for each x ∈ E

there exists some y ∈ A such that x ≤ y. A Dedekind complete Riesz space L is
called the Dedekind completion of the Riesz space E whenever E is Riesz isomorphic to
a majorizing order dense Riesz subspace of L. Every Archimedean Riesz space has a
unique (up to a lattice isomorphism) Dedekind completion [3, Theorem 2.24].

Recall that a Riesz subspace of a Riesz space E is a subspace of E that is closed under
the lattice operations in E. A subset A of a Riesz space is called solid whenever |x| ≤ |y|
and y ∈ A implies x ∈ A. A solid vector subspace of a Riesz space is called an ideal. It
is easy to see that every ideal is a Riesz subspace. The ideal generated by a vector x is
defined as

Ex = {y ∈ E : there exist λ > 0 such that |y| ≤ λ|x|}

and is called a principal ideal.

A Riesz subspace A of a Riesz space E is called order dense in E whenever for every
0 < x ∈ E there exists some y ∈ A with 0 < y ≤ x.

A net {xα} in a Riesz space is said to be order convergent to a vector x (denoted by
xα

o
−→ x), whenever there exist α0 and another net {yβ} which satisfies yβ ↓ 0 and

|xα − x| ≤ yβ for all α ≥ α0. A subset A of an Archimedean Riesz space E is called
order closed whenever any convergent net {xα} in A order converges to a vector x in
A. An order closed ideal is called a band. The band generated by a vector x in a Riesz
space E is called a principal band and given by

Bx = {y ∈ E : |y| ∧ n|x| ↑ |y|}.

The disjoint complement Ad of a nonempty subset A of a Riesz space E is defined by

Ad = {u ∈ E : u ∧ v = 0 for all v ∈ A}.
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Note that A ⊆ Add where Add = (Ad)d. In an Archimedean Riesz space, Add is the band
generated by A and if A is a band then A = Add.

A band B in a Riesz space E that satisfies E = B ⊕Bd is called a projection band. An
operator P : V → V on a vector space V is called a projection if P 2 = P . A projection
P defined on a Riesz space which is at the same time a positive operator is called a
positive projection. Let B be a projection band in a Riesz space E. Then every x ∈ E

has a unique decomposition x = x1 + x2 where x1 ∈ B and x2 ∈ Bd. In this case the
projection PB : E → E defined with

PB(x) = x1

is called a band projection.

A vector e > 0 in a Riesz space E is called a weak order unit whenever the band generated
by e is equal to E, i.e., Be = E. Every positive vector of a Riesz space is a weak order
unit in the band it generates.

Let e be a positive vector of a Riesz space E. A positive vector x in E is called the
component of e whenever x ∧ (e− x) = 0.

A Riesz subspace A of a Riesz space E is called regular if the embedding of A into E
preserves the arbitrary suprema and infima.

Next, we give some fundamental results that are of significance for our work. See [2], [3]
and [18] for the proofs.

Theorem 2.1. [2, Theorem 1.23] Every order dense Riesz subspace of a Riesz space is
a regular Riesz subspace.

Theorem 2.2. [2, Theorem 1.24] Every ideal I of a Riesz space E is order dense in
Idd. In particular, an ideal I is order dense in E if and only if Id = {0}.

Theorem 2.3. [2, Theorem 1.46] Let E be a Riesz space. Then the following assertions
hold.

1. A band B of E is a projection band if and only if for each u ∈ E+ the supremum
sup{v ∈ B : 0 ≤ u ≤ v} exists in E. Moreover, if B is a projection band then for
each u ∈ E+

PB(u) = {v ∈ B : 0 ≤ u ≤ v}.
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2. A principal band Bu of E is a projection band if and only if for each v ∈ E+ the
supremum sup{v ∧ n|u| : n ∈ N} exists in E. Moreover, if Bu is a projection band
then for each v ∈ E+

Pu(v) = {v ∧ n|u| : n ∈ N}.

Theorem 2.4. [18, Theorem 12.2] Let E be a Dedekind complete Riesz space. Then
every band B in E is a projection band.

Throughout this paper all Riesz spaces will be assumed to be Archimedean.

3 Order Continuity of the Riesz Tensor Product

In this section we prove that the embedding of E ×F in E⊗̄F is order continuous. Our
alternative proof will precise the proof in [10, 3.4]. Yoshida proved in his early work
[17] the following representation theorem which will be useful for our work. (For further
details about the representation theorem see [12], [15] and [17]).

Theorem 3.1. Let Eu be a Dedekind complete Riesz space with a strong unit u. Then
there are a compact topological space X and a Riesz isomorphism ϕ : Eu → C(X) such
that

ϕ(u) = 1

Lemma 3.2. Let E and F be Archimedean Riesz spaces, x and x′ be strictly positive
elements in E and y, y′ be strictly positive elements in F . If x⊗ y ≤ x′ ⊗ y′, then there
exist two strictly positive real numbers α and β such that x ≤ αx′ and y ≤ βy′.

Proof. Let Ex∨x′ and Fy∨y′ be the principal ideals generated by x∨x′ and y∨y′, respec-
tively. As in the construction of the Fremlin tensor product made by Schaefer in [16],
the tensor product Ex∨x′ ⊗ Fy∨y′ becomes a vector subspace of C(Kx∨x′) ⊗ C(Ky∨y′)
which in turn can be viewed as a subspace of C(Kx∨x′×Ky∨y′), the space of all functions
of the form h(s, t) =

∑
i fi(s)gi(t) where fi ∈ C(Kx∨x′), gi ∈ C(Ky∨y′) and Kx∨x′ and

Ky∨y′ are compact topological spaces. x and x′ can be viewed as x̂ and x̂′ in C(Kx∨x′)
and y and y′ can be viewed as ŷ and ŷ′ in C(Ky∨y′). Since x ⊗ y ≤ x′ ⊗ y′, it follows
that

x̂(s)ŷ(t) ≤ x̂′(s)ŷ′(t)
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for every s and t in Kx∨x′ and Ky∨y′ respectively. Since y is strictly positive, there exists
some t0 in Ky∨y′ such that ŷ(t0) > 0. It follows that

x̂(s) ≤
ŷ′(t0)

ŷ(t0)
x̂′(s)

for every s in Kx∨x′ . Fix

α =
ŷ′(t0)

ŷ(t0)
.

Then x ≤ αx′. We proceed in the same way to show that y ≤ βy′ and this completes
the proof.

Now, we gathered all the ingredients we need in order to prove the main result of this
section.

Theorem 3.3. Let E and F be two Archimedean Riesz spaces and let σ be a bilinear
map defined by:

σ : E × F −→ E⊗̄F
(x, y) 7−→ x⊗ y.

Then σ is order continuous.

Proof. The result will be proved in several steps.

• Let (xα) be a net in E such that xα ↓ 0 and let y be a strictly positive element in
F . Then xα ⊗ y ↓ 0.
In order to prove this assertion, note that xα⊗y is a decreasing net and minimized

by 0. So, there exists some positive element u in E⊗̄F
δ
such that xα ⊗ y ↓ u.

Assume that u > 0. The order denseness of E⊗̄F in E⊗̄F
δ
together with (iv) in

Theorem 1.1, yield the existence of 0 < x′ in E and 0 < y′ in F such that

0 ≤ x′ ⊗ y′ ≤ u ≤ xα ⊗ y for every α.

From Lemma 3.2, it follows that there exists some β > 0 such that

x′ ≤ βxα for every α,

and then
1

β
x′ ≤ xα for every α.

The latter fact yields x′ ≤ 0 which is a contradiction and then u = 0. It follows

that xα ⊗ y ↓ 0 in E⊗̄F
δ
and in E⊗̄F .
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• Let (xα) be a net in E such that xα ↓ 0 and (yβ) be a net in F such that yβ ↓ 0.
Then the double net xα ⊗ yβ ↓ 0.
As (yβ) is decreasing to zero, (yβ) has a bounded tail. Then there exists some y′

in F+ such that yβ ≤ y′. It follows that

0 ≤ xα ⊗ yβ ≤ xα ⊗ y′.

This completes the proof.

4 The Riesz tensor product of Riesz subspaces

In this section, principal ideals and principal bands of Riesz spaces will be our focus of
interest.

Proposition 4.1. Let E and F be Riesz spaces. Let e be a positive element in E, and
f be a positive element in F . Let Ee and Ef be the principal ideals generated by e

and f , respectively. Then Ee⊗̄Ff is an order dense Riesz subspace of (E⊗̄F )e⊗f , where
(E⊗̄F )e⊗f is the principal ideal in (E⊗̄F ) generated by e⊗ f .

Proof. By [10, Proposition 3.1] and the boundedness Property (B), it follows that Ee⊗̄Ff

is a Riesz subspace of (E⊗̄F )e⊗f . Let 0 < u ∈ (E⊗̄F )e⊗f . Then there exists a positive
real number α such that 0 < u ≤ αe ⊗ f . By the Property (OD), there exist positive
elements x ∈ E and y ∈ F such that 0 < x⊗ y ≤ u. It follows that 0 < x⊗ y ≤ αe⊗̄f .
By the Lemma 3.2, we have 0 ≤ x ∈ Ee and 0 ≤ y ∈ Ff and hence x⊗ y ∈ Ee⊗̄Ff .

Now we have all the material in order to prove the next theorem.

Theorem 4.2. Let E and F be Riesz spaces. Let e be a positive element in E, and f
be a positive element in F . Let Be and Bf be the principal bands generated by e and
f , respectively. Then Be⊗̄Bf is an order dense Riesz subspace in the principal band in
E⊗̄F generated by e⊗ f .

Proof. First, we need to show that Be⊗̄Bf ⊂ {e ⊗ f}dd. To this end, pick a positive
element u in E⊗̄F such that u ∧ e ⊗ f = 0, and a positive element v in Be⊗̄Bf . By
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Property (B), there exist positive elements x ∈ Be and y ∈ Bf such that

0 ≤ v ≤ x⊗ y.

Since Be and Bf are principal bands, it follows that

x =
∨

n

x ∧ ne

y =
∨

m

y ∧mf

From the order continuity of the Riesz tensor product (see [10, Corollary 3.4]), it follows
that

0 ≤ u ∧ v ≤ u ∧ x⊗ y

0 ≤ u ∧ v ≤ u ∧
∨

n

∨

m

(x ∧ ne)⊗ (y ∧mf)

0 ≤ u ∧ v ≤
∨

n

∨

m

(u ∧ (x ∧ ne)⊗ (y ∧mf))

0 ≤ u ∧ v ≤
∨

n

∨

m

(u ∧ ne⊗mf)

0 ≤ u ∧ v ≤
∨

n

∨

m

(n+m)(u ∧ e⊗ f) = 0.

Therefore Be⊗̄Bf ⊂ {e⊗ f}dd. Now, we have that

Ee⊗̄Ff ⊂ Be⊗̄Bf ⊂ {e⊗ f}dd

and
Ee⊗̄Ff ⊂ (E⊗̄F )e⊗f ⊂ {e⊗ f}dd.

By [2, Theorem 1.24], (E⊗̄F )e⊗f is order dense in {e⊗f}dd. It follows from Proposition
4.1, that Be⊗̄Bf is order dense in {e⊗ f}dd.

Corollary 4.3. Let E and F be Riesz spaces, e and f be positive elements in E and F ,
respectively. Let Be and Bf be the principal bands generated by e and f , respectively.
Then Be⊗̄Bf is order dense in the principal band generated by e⊗ f in E⊗̄δF .

Proof. We will denote by (e⊗ f)dd the principal band generated by e⊗ f in E⊗̄F and
by (e⊗δf)

dd the principal band generated by e ⊗ f in E⊗̄δF . Now take some strictly
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positive element u ∈ (e⊗δf)
dd. As E⊗̄F is order dense in E⊗̄δF , there exists some w

such that 0 < w ≤ u. Pick v ∈ E⊗̄F such that v ∧ e ⊗ f = 0 in E⊗̄F . Since E⊗̄F is
regular in E⊗̄δF (see 2.1), v∧ e⊗ f = 0 in E⊗̄δF as well. So we have that v∧u = 0 and
then 0 ≤ w ∧ v ≤ u∧ v = 0. This implies that w belongs to (e⊗f)dd. Therefore (e⊗f)dd

is order dense in (e⊗δf)
dd. Together with Be⊗̄Bf being order dense in (e⊗f)dd, this

shows that Be⊗̄Bf is order dense in (e⊗δf)
dd.

The next proposition is a generalization of [10, Porposition 7.1].

Proposition 4.4. Let e and f be weak order units of the Riesz spaces E and F , respec-
tively. Then e⊗ f is a weak unit in E⊗̄F .

Proof. Let 0 ≤ u in E⊗̄F such that u ∧ e⊗ f = 0, we have to show that u = 0.

• First assume that u = x⊗ y in E+⊗F+ then from x⊗ y ∧ e⊗ f = 0 it follows that

(x ∧ ne)⊗ (y ∧ f) = 0 ∀n ∈ N.

The fact that {x ∧ ne} ↑ x, together with the order continuity of the Riesz tensor
product (see [10]), yield to

x⊗ (y ∧ f) = 0.

We proceed in the same way to obtain that u = x⊗ y = 0.

• Now, if 0 < u ∈ E⊗̄F and u∧ e⊗ f = 0, by Property (OD) there exist x ∈ E+ and
y ∈ F+ such that

0 < x⊗ y ≤ u.

But then x⊗ y ∧ e⊗ f = 0 and this contradicts with x⊗ y = 0 , therefore u has to
be null.

With the last point of the proof we obtain that e⊗ f is a weak order unit in E⊗̄F .

5 The Dedekind complete Riesz tensor product

of Riesz subspaces

In this section, we give the results on Dedekind complete tensor product of ideals and
projection bands.
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Lemma 5.1. Let E and F be Riesz spaces. Let e be a positive element in E, and f be a
positive element in F . Let Ee be the principal ideal generated by e and Ef be the principal

ideal generated by f , then the principal ideal (E⊗̄δF )e⊗f is equal to (E⊗̄F )e⊗f
δ
, where

(E⊗̄F )e⊗f
δ
is the Dedekind completion of (E⊗̄F )e⊗f .

Proof. First observe that (E⊗̄δF )e⊗f is a Dedekind complete ideal containing (E⊗̄F )e⊗f

(see for example [18, Theorem 12.4]). It follows that (E⊗̄F )e⊗f
δ
is included in (E⊗̄δF )e⊗f .

Now take a positive element u in (E⊗̄δF )e⊗f . Then there exists some positive real α
such that u ≤ α(e ⊗ f). The fact that u is in (E⊗̄δF ) is equivalent to (see for example
[1].)

u = sup{v ∈ E⊗̄F such that 0 ≤ v ≤ u}

= sup{v ∈ E⊗̄F such that 0 ≤ v ≤ u ≤ α(e ⊗ f)}

= sup{v ∈ (E⊗̄F )e⊗f such that 0 ≤ v ≤ u}.

We obtain that u is in (E⊗̄F )e⊗f
δ
which makes an end to our proof.

We give next our result for Dedekind complete tensor product of principal ideals and
then later for ideals.

Theorem 5.2. Let E and F be Riesz spaces. Let e be a positive element in E, and
f be a positive element in F . Let Ee be the principal ideal generated by e and Ef be
the principal ideal generated by f , then Ee⊗̄δFf is equal to the principal order ideal
(E⊗̄δF )e⊗f .

Proof. From Lemma 4.1, it follows that Ee⊗̄Ff is an order dense Riesz subspace of
(E⊗̄F )e⊗f . Since (E⊗̄F )e⊗f is full in (E⊗̄δF )e⊗f (see [1] for example), it follows that
Ee⊗̄δFf is an order dense Riesz subspace of (E⊗̄δF )e⊗f . Now Pick u a positive element
in (E⊗̄δF )e⊗f , there exists some positive real number α such that 0 ≤ u ≤ αe⊗f . This,
together with Lemma 4.1, yield to

u = sup
(E⊗̄δF )

{v ∈ Ee⊗̄δFf such that 0 ≤ v ≤ u ≤ αe⊗ f}

The set D = {v ∈ Ee⊗̄δFf such that 0 ≤ v ≤ u ≤ αe ⊗ f} is bounded above in the
Dedekind complete Riesz space Ee⊗̄δFf , then there is u⋆ in Ee⊗̄δFf such that

u⋆ = sup
Ee⊗̄δFf

{v ∈ Ee⊗̄δFf such that 0 ≤ v ≤ u ≤ αe⊗ f}

11



[9, Lemma 2.5] and [2, Theorem 1.23] together with the order denseness of Ee⊗̄δFf in
(E⊗̄δF )e⊗f , yield to

u = u⋆.

That is Ee⊗̄δFf = (E⊗̄δF )e⊗f , which makes an end to the proof.

Corollary 5.3. Let E and F be two Archimedean Riesz spaces. Let e be a positive
element in E, and f be a positive element in F . Let Ee be the principal ideal generated
by e and Ff be the principal ideal generated by f . If E⊗̄F is Dedekind complete then
Ee⊗̄δFf is an ideal in E⊗̄F .

The next corollary can be easily obtained when we consider E⊗̄δR.

Corollary 5.4. Let E be a Riesz space and 0 ≤ e ∈ E. Then the Dedekind completion
of the principal ideal generated by e is the principal ideal generated by e in the Dedekind

completion. That is, Ee
δ
= (E

δ
)e

Proof. Let E be a Riesz space and 0 ≤ e ∈ E. Theorem 5.2 yields to,

Ee
δ

= Ee⊗̄δR

= (E⊗̄δR)e⊗1

= (E
δ
)e

which makes an end to our proof.

Theorem 5.5. Let E and F be two Archimedean Riesz spaces and A and B be two
ideals of E and F respectively. Then A⊗̄δB is an ideal in E⊗̄δF .

Proof. Pick a positive element u in A⊗̄δB and a positive element v in E⊗̄δF , such that

0 ≤ v ≤ u.

From the Property (B), there are (x, y) in A+ ×B+ such that

0 ≤ v ≤ u ≤ x⊗ v.

The principal ideals generated by x in A and y in B are principal ideals in E and F

respectively, it follows from Theorem 5.2 that u is in the principal ideal Ex⊗̄δFy. This
yields to

v ∈ Ex⊗̄δFy ⊂ A⊗̄δB.

12



As an immediate consequence, one can derive the next corollary.

Corollary 5.6. Let E and F two Archimedean Riesz spaces and A and B be two ideals
of E and F respectively. If E⊗̄F is Dedekind complete then A⊗̄δB is an ideal in E⊗̄F .

Lemma 5.7. Let E and F be Riesz spaces, e and f be positive elements in E and
F , respectively. Let Be be the principal band generated by e, Bf be the principal band

generated by f and v be an element of (Be⊗̄Bf )
δ
. Then

v = sup{u ∈ Be ⊗Bf : 0 ≤ u ≤ v}.

Proof. The set {u ∈ Be ⊗ Bf : 0 ≤ u ≤ v} is bounded above by v and the supremum
exists. Let

w = sup{u ∈ Be ⊗Bf : 0 ≤ u ≤ v}

and let w 6= v. Then 0 ≤ w < v and it implies that w ∈ (Be⊗̄Bf )
δ
. It follows that

0 ≤ v − w. By the property (OD) in [10], there exist (x, y) ∈ Be
+ ×Bf

+ such that

0 < x⊗ y < v − w

0 < w < w + x⊗ y < v

u+ x⊗ y ≤ w

u ≤ w − x⊗ y

for all u ∈ Be ⊗Bf . It follows that w ≤ w − (x⊗ y) which is impossible and we have a
contradiction. So w = v and this completes the proof.

Now we have the material which we need to prove the next theorem.

Theorem 5.8. Let E and F be Riesz spaces. Let e be a positive element in E, and f
be a positive element in F . Let Be be the principal band generated by e and Bf be the
principal band generated by f . Then Be⊗̄δBf is equal to the principal band in E⊗̄δF

generated by (e⊗ f).

Proof. Be⊗̄δBf is an order dense ideal in (e⊗̄f)dd (see 4.2). It remains to prove that
(e⊗̄f)dd is included in Be⊗̄δBf . To this aim, let

σ : E × F −→ Be⊗̄δBf

(x, y) 7−→ Pe(x)⊗ Pf (y)
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be an order continuous Riesz bimorphism. By [10, Theorem 5.1], there exists an order
continuous Riesz homomorphism T such that

T : E⊗̄δF −→ Be⊗̄δBf

and T (x⊗ y) = σ(x, y) = Pe(x)⊗ Pf (y) for all x in E, y in F .

Now pick a positive element u ∈ (e⊗̄f)dd. Since Be⊗̄Bf is order dense in (e⊗̄f)dd, we can

find a positive net uα ∈ Be⊗̄Bf such that uα
o
−→ u. It follows from the order continuity

of T that T (uα)
o
−→ T (u). As uα ∈ Be⊗̄Bf , we can write

uα =

n1∑

i=1

n2∨

j=1

n3∧

k=1

xαijk ⊗ yαijk

for all i, j, k, α, where xαijk ∈ Be and yαijk ∈ Bf . Since T is a Riesz homomorphism, it
follows that

T (uα) =

n1∑

i=1

n2∨

j=1

n3∧

k=1

T (xαijk ⊗ yαijk)

=

n1∑

i=1

n2∨

j=1

n3∧

k=1

Pe(x
α
ijk)⊗ Pf (y

α
ijk)

=

n1∑

i=1

n2∨

j=1

n3∧

k=1

xαijk ⊗ yαijk

= uα

Then we have T (uα)
o
−→ T (u) = u which implies u ∈ Be⊗̄δBf . This completes the

proof.

The next corollary follows easily from Theorem 5.8, when we consider E⊗̄δR.

Corollary 5.9. Let E be a Riesz space and 0 ≤ e ∈ E. Then the Dedekind completion
of the principal band generated by e is the principal band generated by e in the Dedekind

completion. That is, Be
δ
= (B

δ
)e.

Proof. Let E be a Riesz space and 0 ≤ e ∈ E. Theorem 5.8 yields to,

Be
δ

= Be⊗̄δR

= (e⊗ 1)dd

= (B
δ
)e
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and this completes the proof.

Now we have the results on the Dedekind complete tensor product of projection bands.

Corollary 5.10. Let E and F be two Riesz spaces with weak units e and f respectively.
Then if A1 and A2 are projection bands in E and F respectively then A1⊗̄δA2 is a
projection band in E⊗̄δF .

Proof. If A1 is a projection band in E, then A1 = BPA1
(e), the principal band in E

generated by PA1
(e). A2 is then the principal band in F generated by PA2

(f). It follows
that

A1⊗̄δA2 = BPA1
(e)⊗̄δBPA2

(f).

This together with Theorem 5.8 completes our proof.

As every band in a Dedekind complete Riesz space is a projection band (see [18, Theorem
12.2]), the next corollary follows immediately.

Corollary 5.11. Let E and F be two Dedekind complete Riesz spaces with weak units
e and f respectively. If A1 and A2 are bands in E and F , respectively, then A1⊗̄δA2 is
a projection band in E⊗̄δF .
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