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Abstract

We continue our study and classification of structures on the Fano plane F and its dual F∗

involved in the construction of octonions and the Lie algebra g2(F) over a field F. These
are a “composition factor” ǫ : F × F → {−1, 1},hhhh inducing an octonion multiplication,
and a function δ∗ : Aut(F) × F∗ → {−1, 1} such that g ∈ Aut(F) can be lifted to an
automorphism of the octonions iff δ∗(g, ·) is the Radon transform of a function on F. We
lift the action of Aut(F) on F to the action of a non-trivial eight-fold covering Aut(F̂ǫ) on
a two-fold covering F̂ǫ of F contained in the octonions. This extends tautologically to an
action on the octonions by automorphism. Finally, we associate to incident point-line pairs
a generating set of g2(F) and express brackets in terms of the incidence geometry of F and
ǫ.
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We continue our study and classification of structures on the Fano plane F and its dual F∗

involved in the construction of octonions and the Lie algebra g2(F) over a field F. These are a
”composition factor” : F × F → {−1, 1}, inducing an octonion multiplication, and a function
δ∗ : Aut(F) × F∗ → {−1, 1} such that g ∈ Aut(F) can be lifted to an automorphism of the
octonions iff δ∗(g, ·) is the Radon transform of a function on F. We lift the action of Aut(F) on

F to the action of a non-trivial eight-fold covering Aut(F) on a twofold covering F̂ of F contained
in the octonions. This extends tautologically to an action on the octonions by automorphism.
Finally, we associate to incident point-line pairs a generating set of g2(F) and express brackets
in terms of the incidence geometry of F and .
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In 1900 F. Engel [1] realised the exceptional complex Lie group G2(C) as the linear isotropy
group of a generic three-form in seven dimensions, and in 1907 his student W. Reichel [2] realised
the real compact exceptional Lie group Gc

2(R) as the linear isotropy group of a real three-form
in seven dimensions. É. Cartan [3] showed that the automorphism group of the octonions is the
exceptional Lie group Gc

2(R) and, to the best of the authors’ knowledge, H. Freudenthal [4] was
the first to point out a close relationship between the Fano plane F and the octonions. For a more
detailed historical perspective see [5]. In this article we give a systematic study of additional
structures on F, over and above the projective structure, which are relevant to the construction
of the octonions over any field F of characteristic not two (see also [6]). In particular we give
explicit generators of g2(F), the Lie algebra of Gc

2(F), together with their brackets in terms of
“augmented” incidence relations of F. We also give simple formulæ for the g2(F)−invariant three
and four forms on the space of imaginary octonions in terms of these relations.

Our starting point is Aut(F), the group of automorphisms of F. This is a simple group of
order 168 isomorphic to GL(3,Z2) or PSL(2,Z7) [7]. Elements of order seven, which we consider
as “orientations” of F, fall into two conjugacy classes which we consider as defining two “pre-
orientations” of F. Two pre-orientations are distinguished by the description of lines in F in
terms of any compatible orientation.

To an orientation of F one can associate a composition factor on F. A composition factor
is the structure allowing a generalisation of Freudenthal’s construction of a composition algebra
product on an eight-dimensional vector space OF canonically associated to F. Our first result
completes the classification of composition factors given in [6]. We show that for the action of
Aut(F) on composition factors there are two orbits, each containing eight elements. Given a
composition factor ǫ on F it is then natural to ask whether the action of Aut(F) on F extends to
an action by automorphisms on OF equipped with the product corresponding to ǫ. This is not
the case but it turns out that this action lifts to an action of an eight-fold non-split extension of
Aut(F) [8]. In order to understand this phenomenon we first associate to g ∈Aut(F) a function
δ∗(g, ·) on F∗, the space of lines in F. We then show that solving the lifting problem for g is
equivalent to finding a function on F whose Radon transform is δ∗(g, ·) and in this way solve it.

In the last part of the paper we associate to each incident pair (P,D) ∈ F × F∗ an element
XP,D of g2(F). This gives twenty-one elements which span the fourteen-dimensional vector space
g2(F). We express the brackets of the XP,D in terms of the incidence relations of F and the
composition factor ǫ. Finally, this allows us to identify various geometric subalgebras of g2(F)
associated to points and lines of F. In particular, to each point we associate a Cartan subalgebra
and an su(3)(or sl(3)) subalgebra containing it. Dually, we associate to each line an so(3) and
an so(3)× so(3) subalgebra containing it as an ideal.

We now give a more detailed description of the contents of this paper. In Section 1 we recall
the definition and basic properties of the Fano plane F and its dual F∗. We introduce the notion
of an orientation of F and show that such an orientation induces an orientation of each line and
of each point. In Section 2, having recalled relevant definitions and results from [6], we first
show that the action of Aut(F) on composition factors has two orbits. We then consider the
Radon transform from functions on F to functions on F∗, and identify its kernel and image.
The exponential version of the Radon transform turns out to be very useful in the context of
this article. Fixing a composition factor ǫ the next question we address is whether the obvious
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linear action of g ∈ Aut(F) on the associated composition algebra (OF, ǫ) is by automorphism. A
necessary and sufficient condition for this is that for any line D of F, g induces an isomorphism
of the subalgebras associated to D and g ·D. The function δ∗ : Aut(F)× F∗ → {−1, 1} which
detects this property is introduced and for fixed g classified (Theorem 2.31): there are eight
possibilities, each of which is realised by twenty-one elements of Aut(F). In particular the linear
action of g ∈ Aut(F) on (OF, ǫ) is by automorphism iff δ∗(g, P ) = 1, ∀P ∈ F. To conclude

Section 2 we introduce a “double covering” F̂ǫ of the pair (F, ǫ) (see also p. 205 in [9]). The
group of automorphisms of (OF, ǫ) is canonically isomorphic to the group of automorphisms of

F̂ǫ by restriction, and we show that π : Aut(F̂ǫ) → Aut(F) is a non-split extension by Z3
2 (see

also [8, 9]). The main point here is to show that finding a lift of g ∈ Aut(F) that acts by

automorphism on F̂ǫ is equivalent to finding a function on F whose Radon transform is δ∗(g, ·).
In Section 3 we fix a composition factor and our starting point is the observation that,

notwithstanding non-associativity, left multiplication by purely imaginary octonions gives a rep-
resentation of the Clifford algebra of Im(OF) acting on OF (see for example [10]). This means one
can realise the Lie algebra g2 as the annihilator in so(Im(OF)) of 1 ∈ OF [11]. To each incident
pair (P,D) ∈ F × F∗ we associate an element XP,D of g2(F) realised in this way. In order to

describe the action of Aut(F̂ǫ) on the XP,D we introduce a function δ : Aut(F̂ǫ)× F → {−1, 1}.
As ĝ varies in Aut(F̂ǫ) this gives rise to sixty-four functions on F, each of which is realised by

twenty-one elements of Aut(F̂ǫ). It is a surprising fact that the exponential of the Radon trans-

form of δ(ĝ, ·) is exactly δ∗(π(g), ·) for ĝ ∈ Aut(F̂ǫ). To get explicit formulæ for brackets of the

XP,D we find simple normal forms for the orbits of the action of Aut(F̂ǫ) on pairs of incident pairs
(

(P,D), (P ′, D′)
)

∈
(

F × F∗
)2
. These formulæ are Fano geometric in the sense that they only

involve the incidence geometry of F and the composition factor (Theorem 3.18). The point here
is that it easy to guess these brackets up to a sign but rather more subtle to determine the signs
precisely. Furthermore, using the formulæ we associate to each point of F a Cartan subalgebra
and an su(3) (or sl(3)) subalgebra containing it. Dually, to each line in F we associate an so(3)
subalgebra and an so(3)× so(3) subalgebra containing it as an ideal. In this way any rank two
subalgebra of g2(F) can be realised (up to conjugation) as a subalgebra associated either to a
line or to a point.

Throughout this paper: F denotes a field of characteristic not two, Zn denotes the ring
Z/nZ and S2 denotes the group {−1, 1}. The elements of Z2 will be denoted 0, 1 (not
[0], [1]) when there is no ambiguity.

1 Properties of the Fano plane

In this section we recall without proof the basic properties of the Fano plane we need in the rest
of the paper.

1.1 The Fano plane and its dual

A projective plane is a set of points together with a collection of subsets called lines such that
two distinct lines intersect in a unique point and two distinct points are contained in a unique
line. Given a projective plane P the dual plane P∗ is defined as the set whose points are the lines
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of P, and whose lines are the subsets of P∗ consisting of concurrent lines. It is easily checked
that P∗ is also a projective plane.

If V is a three-dimensional vector space over a field F, P (V ), the set of lines passing through
the origin in V together with the collection of subsets consisting of lines contained in a fixed
plane passing through the origin of V , defines a projective plane.

The simplest example of a projective plane consists of seven points and seven lines arranged
as below, each line contains exactly three points and each point is contained in exactly three
lines (see Figure 1).

•

••

•

•

•

•
• •

•
•

•

• •

•

O

Figure 1: The Fano plane F and the Fano cube VF.

Any projective plane containing seven points and seven lines can be obtained by projectivising
a canonically associated vector space:

Definition 1.1 Let F be a projective plane consisting of seven points and seven lines. Let
VF = F ∪ {0} be the set obtained by formally adding a point 0 to F. Define the symmetric map
+ : VF × VF → VF by

P +Q =







R if P 6= Q and P,Q,R are aligned ;
0 if P = Q ;
P if Q = 0 .

With respect to the obvious scalar multiplication by Z2 this defines the structure of a three-
dimensional Z2−vector space on VF with zero element 0. The natural bijection P (VF) ∼= F is an
isomorphism of projective planes and if P,Q,R are three non-zero points in VF, then P,Q,R are
coplanar iff P +Q+R = 0.

The set of lines of F will be denoted F∗. This is a projective plane whose ‘lines’ are triples
of concurrent lines so in particular three lines D1, D2, D3 are concurrent iff D1 +D2 +D3 = 0.

Any two three-dimensional vector spaces over Z2 are isomorphic so any two projective planes
consisting of seven points and seven lines are isomorphic in the sense that there is a bijection
between them which sends lines to lines. From now on we will refer to any projective plane
consisting of seven lines and seven points as a Fano plane and any three-dimensional vector
space over Z2 as a Fano cube.
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1.2 Automorphisms of the Fano plane

Definition 1.2 Let F be a Fano plane. We set

Aut(F) =
{

f : F → F s.t. f is a bijection and f sends lines to lines
}

.

This group is also called the group of collineations of F.

Any bijection f : F → F extends to a unique bijection f̂ : VF \ {0} → VF \ {0}, and clearly
this defines a natural group isomorphism

Aut(F) ∼= GL
(

VF

)

.

It is well-known [7] that this general linear group is simple of order 168, and generated by two
elements a and b satisfying the relations

a2 = b3 = (ab)3 = (aba−1b−1)4 = 1 . (1.1)

We now summarise the main properties of Aut(F).

Proposition 1.3 toto

1. Let f ∈ Aut(F) such that f 6= 1. Then f is of order 2, 3, 4 or 7.

2. Let f ∈ Aut(F) be of order two. Then there exist a line L ∈ F∗ and a point P ∈ F such
that f(R) = R, ∀R ∈ L and R + f(R) + P = 0. ∀R 6∈ L, Conversely, given L ∈ F∗ and
P ∈ L there exists a unique f ∈ Aut(F) of order two such that f(R) = R, ∀R ∈ L and
R + f(R) + P = 0, ∀R 6∈ L. Two elements of order two are conjugate.

3. Let f ∈ Aut(F) be of order three. Then there exists a unique triangle stable by f . Con-
versely every triangle is obtained in this way from exactly two order three elements of
Aut(F). Two elements of order three are conjugate.

4. Let f ∈ Aut(F) be of order four. Then there exists P ∈ F and L ∈ F∗ containing P such
that f(P ) = P , f(L) = L and f is of order two on L, and for all R 6∈ L, R+f(R)+P 6= 0.
Conversely, given P ∈ F and L ∈ F∗ containing P , there exists exactly two elements of
order four such that f(P ) = P and f(L) = L. Two elements of order four are conjugate.

5. Let f ∈ GL
(

VF

)

be of order seven. Then the minimal polynomial of f is either x3+ x2 +1
or x3 + x+ 1. Two elements of order seven are conjugate iff they have the same minimal
polnomial.

Corollary 1.4 In GL
(

VF

)

there are respectively 21, 56, 42 and 48 elements respectively of order
respectively two, three, four and seven.

Recall that if n ∈ N the Legendre symbol
(

n
7

)

can be defined by:
(

n
7

)

= n3 mod 7 .

Corollary 1.5 Let f ∈ GL
(

VF

)

be of order seven and let n,m be positive integers. Then fn is

conjugate to fm iff
(

n
7

)

=
(

m
7

)

.
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Example 1.6 Recall that according to (1.1) Aut(F) can be generated by a, b satisfying a2 =
b3 = (ab)7 = (aba−1b−1)4 = 1. Denoting the points of F temporarily by the numbers 1, · · · , 7, an
explicit example (see Figure 2) is given by

a =

(

1 2 3 4 5 6 7
1 2 7 4 6 5 3

)

, b =

(

1 2 3 4 5 6 7
2 7 4 6 5 3 1

)

.

It the follows that

ab =

(

1 2 3 4 5 6 7
2 3 4 5 6 7 1

)

= τ , aba−1b−1 =

(

1 2 3 4 5 6 7
4 2 6 1 7 5 3

)

.

1.3 Orientation, orientation type and lines

Definition 1.7 t

1. Let F be a Fano plane. An orientation of F is an element τ ∈ Aut(F) of order seven.

2. Let (F, τ) and (F′, τ ′) be oriented Fano planes. We say (F, τ) and (F′, τ ′) are isomorphic
iff there exists an isomorphism of Fano planes f : F → F′ s.t. f ◦ τ ◦ f−1 = τ ′.

It is well-known that the lines of a Fano plane can be described in one of two ways with respect
to an orientation.

Proposition 1.8 Let (F, τ) be an oriented Fano plane. Then we have one of the following:

(i) for all P in F, the triple DP =
{

P, τ(P ), τ 3(P )
}

is a line and each line can be written

uniquely in this way;

(ii) for all P in F, the triple DP =
{

P, τ 2(P ), τ 3(P )
}

is a line and each line can be written

uniquely in this way.

Definition 1.9 An oriented Fano plan (F, τ) is of type (0, 1, 3) if the lines are as in (i) above
and of type (0, 2, 3) if the lines are as in (ii) above.

Since there are only two conjugacy classes of elements of order seven in Aut(F) it follows that:

Corollary 1.10 Two oriented Fano planes are isomorphic iff they are of the same type.

If (F, τ) is an oriented Fano plane, the induced map τ ∗ : F∗ → F∗ is an orientation of the dual
Fano plane F∗.

Proposition 1.11 Let (F, τ) be an oriented Fano plane and let P ∈ F. Then the three lines
containing P are DP , Dτ−1(P ) and Dτ−3(P ) in case (i) above, and DP , Dτ−2(P ) and Dτ−3(P ) in
case (ii) above. In particular, (F, τ) and (F∗, τ ∗−1) are isomorphic whereas (F, τ) and (F∗, τ ∗)
are not isomorphic.
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••
P1

•
P2P3

•

•
P4

•
P5

•P6

•
P7

Figure 2: Orientations of lines in the Fano plane induced by τ (red arrows).

An orientation τ of a Fano plane F induces an orientation (i.e., an order three bijection) on
every line D in F as follows (see Figure 2). If τ is of type (0, 1, 3) (resp. (0, 2, 3)) there is a

unique P ∈ F such that D =
{

P, τ(P ), τ 3(P )
}

(resp. D =
{

P, τ 2(P ), τ 3(P )
}

). The orientation

induced by τ on D is then the cyclic permutation

(P, τ(P ), τ 3(P )) (resp. (P, τ 2(P ), τ 3(P ))) . (1.2)

For example if P ∈ F and τ is of type (0, 1, 3), the orientation (τ ∗)−1 of F∗ induces the
orientation on the line LP = {DP , Dτ−1(P ), Dτ−3(P )} in F∗ given by the cyclic permutation of
lines in F

(DP , Dτ−1(P ), Dτ−3(P )) . (1.3)

Proposition 1.12 Let (F, τ) and (F′, τ ′) be oriented Fano planes, and let f : F → F′ be an
isomorphism of Fano planes. If (F, τ) and (F′, τ ′) are isomorphic (resp. not isomorphic) then
for all D ∈ F∗, the restriction of f to D is orientation preserving (resp. reversing) with respect
to the induced orientations.

2 Action of Aut(F) on composition factors and the aug-

mented Fano plane

In this section we first recall the definition and classification of composition factors which are the
structures on F needed to define an eight-dimensional composition algebra [6]. We then show
that the action of Aut(F) on composition factors has two orbits, each containing eight elements.
These actions of Aut(F) ∼= GL(VF) are thus clearly not isomorphic to the standard action of
GL(VF) on VF. We introduce a Radon transform taking functions on F to functions on F∗. We
show that its image (essentially) consists of functions measuring the extent to which elements
of Aut(F) preserves line orientations induced by composition factors. Finally, we investigate
the problem of lifting automorphisms of F to automorphisms of the associated composition
algebra [8].
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2.1 Norms and multiplication factors

Definition 2.1 1. A norm on F is a function N : F → {−1, 1} such that

N(P +Q) = N(P )N(Q) , P 6= Q .

2. Let F2
0 = {(P,Q) ∈ F2 s.t P 6= Q}. A multiplication factor is a map ǫ : F2

0 → {−1, 1}
such that ǫPQ + ǫQP = 0. For P ∈ F the future (resp. past)

−→
Pǫ (resp.

←−
Pǫ) of P is defined

by:
−→
Pǫ = {Q ∈ F s.t. ǫPQ = 1} (resp. ←−Pǫ = {Q ∈ F s.t. ǫPQ = −1}).

3. Let OF be the set of F−valued functions on the Fano cube VF.

Remark 2.2 It is easy to see that if N is a norm then the set
{

P ∈ F s.t. N(P ) = 1
}

is either
F or a line.

For P ∈ VF define eP ∈ OF by

eP (Q) =

{

1 if Q = P
0 if Q 6= P .

Then {eP s.t. P ∈ VF} is an F−basis of OF and

OF = Fe0 ⊕Vect
〈

eP s.t. P ∈ F

〉

.

A norm and a multiplication factor on F allow us to endow OF with a norm and a multiplication:

Definition 2.3 Let F be a Fano plane equipped with a norm N and a multiplication factor ǫ.

1. The multiplication ·ǫ : OF ×OF → OF is the unique bilinear map such that

(a) For all P 6= Q ∈ F: eP ·ǫ eQ = ǫPQeP+Q;

(b) For all P ∈ F: eP ·ǫ eP = −N(P )e0;

(c) For all P ∈ VF: e0 ·ǫ eP = eP ·ǫ e0 = eP (and we henceforth denote e0 by 1).

2. The norm NOF
: OF → F is the quadratic form: NOF

(λ0e0 +
∑

P∈F

λPeP ) = (λ0)2 +
∑

P∈F

(λP )2N(P ).

We denote by 1 the quadratic form on OF associated to the trivial norm on F. By definition the
triple (OF, NOF

, ǫ) is a composition algebra iff NOF
(Z ·ǫW ) = NOF

(Z)NOF
(W ), ∀Z,W ∈ OF and

in this case we say that ǫ is a composition factor.

The following proposition gives a necessary and sufficient condition for (OF, NOF
, ǫ) to be a

composition algebra (see [6]).

Proposition 2.4 With the notation above (OF, NOF
, ǫ) is a composition algebra iff:

(i) N(P +R)ǫPQǫQR = 1 for any line {P,Q,R},
(ii) N(P +Q) ǫPQǫQRǫRSǫSP N(P + S) = −1 for any quadrilateral {P,Q,R, S}.
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Corollary 2.5 If (OF, 1, ǫ) is a composition algebra each line {P,Q,R = P +Q} of F is canon-
ically oriented by: ǫPQ = ǫQR = ǫRP = 1.

Example 2.6 An oriented Fano plane (F, τ) has a canonical composition factor ǫτ for the norm
1 defined using the Legendre symbol as follows. Fix P0 ∈ F and for R, S ∈ F set

ǫτRS =
(j − i

7

)

= (j − i)3 (mod 7), (2.4)

where R = τ i(P0) and S = τ j(P0). This is well-defined, independent of the choice of P0 and
ǫτ = ǫτ

k

(resp. ǫτ = −ǫτk) if k = 1, 2, 4 (resp. k = 3, 5, 6). Geometrically (see Figure 2) this is
equivalent to:

ǫτPiPj
=

{

1 if there is an arrow from Pi to Pj

−1 if there is an arrow from Pj to Pi
.

One sees that every line is ǫτ−orientable and that there are seven ǫτ−orientable triangles
{Pi, Pi+2, Pi+3} (i = 1, · · · , 7). Notice that the complement of any line contains exactly one
orientable triangle. In fact these geometric properties are true for any composition factor for the
norm 1 as shown in [6]. Notice also that the orientation induced on each line by τ (see Section
1.3) is the same as the orientation on each line by ǫτ (see Corollary 2.5).

The multiplication table corresponding to ǫτ is then given in Table 1.

Table 1: Octonion multiplication and the oriented Fano plane.

••
P1

•
P2P3

•

•
P4

•
P5

•P6

•
P7

y· 1 eP1
eP2

eP3
eP4

eP5
eP6

eP7

1 1 eP1
eP2

eP3
eP4

eP5
eP6

eP7

eP1
eP1

−1 eP4
eP7

−eP2
eP6

−eP5
−eP3

eP2
eP2

−eP4
−1 eP5

eP1
−eP3

eP7
−eP6

eP3
eP3

−eP7
−eP5

−1 eP6
eP2

−eP4
eP1

eP4
eP4

eP2
−eP1

−eP6
−1 eP7

eP3
−eP5

eP5
eP5

−eP6
eP3

−eP2
−eP7

−1 eP1
eP4

eP6
eP6

eP5
−eP7

eP4
−eP3

−eP1
−1 eP2

eP7
eP7

eP3
eP6

−eP1
eP5

−eP4
−eP2

−1

Later on we will need the following proposition whose proof is immediate.

Proposition 2.7 toto

1. For any P ∈ F, eP generates a two-dimensional composition subalgebra of OF.

2. If (P,Q,R) ∈ F3 are distinct aligned points then Vect
〈

1, eP , eQ, eR
〉

is an associa-
tive subalgebra isomorphic to a quaternion subalgebra (which we also denote HD where
D = {P,Q,R}.)
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3. If (P,Q,R) ∈ F3 are three non-aligned points then eP , eQ, eR generate OF.

In [6] it was shown that if (OF, 1, ǫ) is a composition algebra then either
←−
P is a line for all

P ∈ F or
−→
P is a line for all P ∈ F. Denoting OF

+
1 (resp. OF

−
1 ) the set of all composition algebras

(OF, 1, ǫ) such that
−→
P (resp.

←−
P ) is a line for all P ∈ F, it was shown that OF

+
1 (resp. OF

−
1 ) is

an affine space for S2
0(V

∗
F ), the space of bilinear forms B on VF satisfying B(P, P ) = 0, ∀P ∈ F.

In fact, by the following lemma OF
+
1 and OF

−
1 are affine VF−spaces.

Lemma 2.8 The vector spaces S2
0(V

∗
F ) and VF are GL(VF) equivariantly isomorphic.

Proof. Let ∧ : VF × VF → (VF)
∗ be the unique bilinear form such that

P ∧Q =











0 if P = Q ,

the unique non-zero linear form
which vanishes at P and Q if P 6= Q .

One checks that the map VF → S2
0(V

∗
F ) given by

P 7→
[

(Q,R) 7→
(

Q ∧R
)

(P )
]

is a GL(VF) equivariant isomorphism. QED

2.2 The action of Aut(F) on composition factors for the norm 1

In the rest of the paper we will assume that the norm N = 1.

Definition 2.9 (see [6]) An oriented map is a map α : F → V ∗
F such that

(a) For all P ∈ F, αP (P ) = 1 .

(b) If P 6= Q ∈ F then: αP (Q) + αQ(P ) = 1 .

We denote F0 the set of all oriented maps.

It was shown in [6] that ‘exponentiation’ defines a bijection from F0 to OF
+
1 (resp. OF

−
1 ).

Recall the exponential map e : Z2 → S2 and its inverse ℓ : S2 → Z2 are defined by

e0 = 1 , e1 = −1 and ℓ(1) = 0 , ℓ(−1) = 1 .

Definition 2.10 Let F be a Fano plane, let α be an oriented map, and let ǫ be a composition
factor and g ∈Aut(F).

1. The oriented map g · α is defined by

(g · α)P (Q) = αg−1·P (g
−1 ·Q) ∀P,Q ∈ F .

11



2. The composition factor g · ǫ is defined by

(g · ǫ)PQ = ǫg−1·Pg−1·Q , ∀P 6= Q ∈ F .

This gives left actions of Aut(F) on F0, O
±
F

that commute with the exponentiation of
Theorem 4.9 [6].

Theorem 2.11 The actions of Aut(F) on F0, OF
+
1 and OF

−
1 are transitive.

Proof. To prove the theorem it is is enough to prove that the action of Aut(F) on F0 is transitive.
We begin by by proving a series of lemmas.

Lemma 2.12 Let P0 ∈ F and let DP0
= {L ∈ F∗, s.t. P0 6∈ L}. Then the map EP0

: F0 → DP0

defined by

EP0
(α) = αP0

is two-to-one surjective.

Proof. Let α, β ∈ F0 be such that EP0
(α) = EP0

(β). By definition this means that

αP0
(P ) = βP0

(P ) ∀P ∈ F . (2.5)

Since F0 is an affine VF−space (see Lemma 2.8) there exists a unique Q ∈ VF such that α = β+P0,
i.e,

αP0
(P ) = βP0

(P ) + P0 ∧ P (Q) ∀P ∈ F . (2.6)

By Eqs.[2.5-2.6] we have P0∧P (Q) = 0 for all P ∈ F, and by Lemma 2.8 this implies that either
Q = 0 or Q = P0. However Card(F0) = 8 and Card(DP0

) = 4 so this proves the lemma. QED

Lemma 2.13 Let P0 ∈ F and let α, β ∈ F0 be such that α(P0) = β(P0). Then there exists
g ∈ Aut(F) such that β = g · α.

Proof. Since α(P0) = β(P0) by Lemma 2.12 either β = α or β = α + P0. In the first case
β = Id · α so we can suppose that β = α + P0. Let L = {P0, Q,R} be any line through P0 such
αP0

(Q) = 0. Define g ∈ Aut(F) by

g · P =

{

P if P ∈ L
P +Q if P 6∈ L .

Then one checks that g ∈ Aut(F) and that β = α + P0 = g · α. QED

We now prove the theorem. Let α, β ∈ F0 and let P0 ∈ F. If α(P0) = β(P0) there exists
g ∈ Aut(F) such β = g · α by Lemma 2.13. If α(P0) 6= β(P0), since α(P0) and β(P0) are two
lines not containing P0 there exists g ∈ Aut(F) such that g · P0 = P0 and g maps the line α(P0)
to the line β(P0). Then β and g · α are two elements of F0 having the same value at P0. Again
by Lemma 2.13 there exists h ∈ Aut(F) such that β = h · α and this completes the proof of the
theorem. QED
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Remark 2.14 Let (F, τ) be an oriented Fano plane and fed The spaces VF and F0 are affine
VF−spaces and the action of Aut(F) on both is affine. However the action on the former is not
transitive whereas the action on the latter is transitive. This implies that there are two non-
conjugate embeddings of Aut(F) ∼= GL(VF) in the affine group of VF. This phenomenon does not
occur over R or C, only over certain finite fields in certain dimensions.

Remark 2.15 Let (F, τ) be an oriented Fano plane and let ǫτ be the canonical composition factor
(see Example 2.6). By Theorem 2.11 the isotropy group Iǫτ = {g ∈ Aut(F) s.t. g · ǫτ = ǫτ} has
168/8 = 21 elements of which six are of of seven, fourteen are of order three and the identity.
The subgroup Z7(ǫ

τ ) generated by τ is the cyclic group of order seven and one can show that Iǫτ
is the normaliser of Z7(ǫ

τ ) in Aut(F). There is an exact sequence

1→ Z7(ǫ
τ )→ Iǫτ → Z3 → 1 ,

and elements of order three fall into two classes: (1) z ∈ Iǫτ such that z ·g ·z−1 = g2, ∀g ∈ Z7(ǫ
τ )

and (2) z ∈ Iǫτ such that z · g · z−1 = g4, ∀g ∈ Z7(ǫ
τ ). For example one can take

z =

(

1 2 3 4 5 6 7
4 1 5 2 6 3 7

)

, z2 =

(

1 2 3 4 5 6 7
2 4 6 1 3 5 7

)

, τ =

(

1 2 3 4 5 6 7
2 3 4 5 6 7 1

)

which satisfy

z · τ · z−1 = τ 4 .

2.3 Radon transform

In this subsection we introduce the Radon transform associated to the incidence diagram of
points and lines in the Fano plane.

Definition 2.16 Let F be a Fano plane. The incidence space I is defined by

I =
{

(P,D) ∈ F × F∗ s.t P ∈ D
}

.

We denote S(F) (resp. S(F∗)) the set of functions from F to Z2 (resp. F∗ to Z2) and set
S0(F) =

{

f ∈ S(F) s.t.
∑

P∈F f(P ) = 0
}

.

We have the incidence diagram

I

��✁✁
✁✁
✁✁
✁

��
❅❅

❅❅
❅❅

❅

F F∗

where the two maps are given by projections onto the first and second components respectively.

Definition 2.17 If f ∈ S(F) we define its Radon transform f⋆ ∈ S(F∗) by

f⋆(D) =
∑

P∈D

f(P ) .

We set T (F) =
{

f ∈ S(F) s.t. f⋆ ≡ 0
}

.
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Remark 2.18 The Radon transform is a linear but not multiplicative map.

The next proposition characterises the image and the kernel of the Radon transform.

Proposition 2.19 toto

1. As a Z2−vector space the kernel T (F) of the Radon transform is of dimension three.

2. For each D ∈ F∗ define TD : F → Z2 by

TD(P ) =

{

0 if P ∈ D

1 if P 6∈ D
.

Then T (F) =
{

TD s.t D ∈ F∗
}

∪
{

0
}

.

3. Let f ∈ S(F⋆). Then there exists g ∈ S(F) s.t. g⋆ = f iff for any two triples (D1, D2, D3)
and (D′

1, D
′
2, D

′
3) of distinct concurrent lines, we have

∑3
i=1 f(Di) =

∑3
i=1 f(D

′
i).

4. The image I of the Radon transform ⋆ : S(F)→ S(F∗) is given by

I =
{

TP , TP + 1 s.t. P ∈ F

}

∪
{

0, 1
}

.

Here TP is the function defined above corresponding to the line P of the Fano plane F∗.

5. Let f ∈ S(F). There exists P ∈ F such that f⋆ = TP or f⋆ ≡ 0 iff f ∈ S0(F). In
particular

S0(F)
⋆ =

{

f ∈ S(F∗) s.t.

3
∑

i=1

f(Di) = 0 for distinct concurrent lines D1, D2, D3

}

.

Proof. 1. Let f be in T (F). Since its ´´average´´ on any line is zero it is easy to see that f is
completely determined by its values at three non-collinear points (draw a picture).

2. Straightforward.
3. By the rank theorem the image of the Radon transform is of dimension 4 and cardinal 16.

Let f be in S(F). If (D1, D2, D3) are three distinct concurrent lines, we have

3
∑

i=1

f⋆(Di) = 3f(D1 ∩D2 ∩D3) +
∑

P∈F\(D1∩D2∩D3)

f(P ) =
∑

P∈F

f(P ) (2.7)

and therefore this sum is independent of the triple (D1, D2, D3). However this sum is either
equal to zero or to one and there are only 8 + 8 such functions in S(F∗) by the argument of 1.

4. Straightforward.
5. This follows from (2.7). QED

From now on we will use a multiplicative version of the Radon transform which we now
explain. By abuse of language we refer to both the additive and multiplicative versions as the
Radon transform. In the statement of the following proposition we use the mutually inverse
group isomorphisms e and ℓ given in (2.5).
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Corollary 2.20 Define R and R⋆ by:

• R = e(S0(F)) =
{

h : F → S2 s.t.
∏

P∈F h(P ) = 1
}

;

• R⋆ =
{

h : F∗ → S2, s.t.
∏3

i=1 h(Di) = 1 for distinct concurrent lines D1, D2, D3

}

.

Then e ◦ ⋆ ◦ ℓ : R→ R⋆ is a group homomorphism and defines an exact sequence

1→ e(T (F))→ R→ R⋆ → 1 .

In particular R is of cardinal 64 and R⋆ of cardinal 8.

Proof. After applying e, this follows from Proposition 2.19 (1) and (5). QED

Remark 2.21 The groups e(T (F)) and R⋆ are isomorphic to (Z2)
3.

The eight functions of R⋆ can be represented by the diagrams in Figure 3.

• • •
•

• •
•

Figure 3: The eight functions of R⋆ where, for e(TP ), P ∈ F, the point P is emphasised (blue
lines: e(TP ) = 1, red lines: e(TP ) = −1).

Remark 2.22 From Figure 3 we see that there is a natural one-to-one correspondence between
R⋆ and VF, and with respect to the natural Z2−vector space structures this is a vector space
isomorphism. We have already seem that F0 (see Definition 2.9) is affine space for VF and so is
also an affine space for R⋆. This action is as follows: for α ∈ F0, f ∈ R⋆ and P 6= Q, change
αP (Q) only if f takes the value −1 on the line through P and Q.

Example 2.23 If P ∈ F denotes the point at top of the triangle, the fifth diagram in Figure 3
corresponds to the function e(TP ). The eight functions in R whose Radon transform is e(TP )
can be represented by the diagrams in Figure 4. The point P can be recovered from the diagrams
representing these functions as follows (see Figure 4):

1. In the second diagram P is the unique point where the function is equal to 1 (blue).

2. In the next four diagrams P is the sum of the three blue points.

3. In the last three diagrams P is the sum of the two red points.
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Figure 4: A function f ∈ R⋆ and its eight inverse images under the Radon transform. (Blue
= 1, red = −1.)

2.4 The line orientation invariant δ∗ of a composition factor

Let F be a Fano plane and ǫ a composition factor. In this section we introduce an invariant
which measures whether or not an element of Aut(F) preserves the line orientations induced by
ǫ (see (1.2)).

Let g be an element of Aut(F) and let D be a line in F. If P,Q are two distinct points of D
we temporarily set:

δ∗(g, P,Q) = ǫPQǫg·Pg·Q ,

This number is either 1 or −1, and we now show that it is independent of the choice of P,Q ∈ D.

Lemma 2.24 With the notation above if P ′, Q′ are two distinct points of D, then δ∗(g, P,Q) =
δ∗(g, P ′, Q′),

Proof. Let D = {P,Q,R}. Without loss of generality we can suppose that P ′ = Q and Q′ = R.
From Proposition 2.4 we have

ǫPQǫQR = ǫg·Pg·Qǫg·Qg·R = 1 .

Since ǫ only takes the values ±1 we have

ǫPQǫg·Pg·Q = ǫQRǫg·Qg·R ,
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which proves the lemma QED

This lemma shows that the following definition makes sense.

Definition 2.25 Let F be a Fano plane and ǫ a composition factor on F. Define δ∗ : Aut(F)×
F∗ → S2 by

δ∗(g,D) = ǫPQǫg·Pg·Q ,

for any distinct points (P,Q) of D.

Remark 2.26 It is immediate from the definition above that:

δ∗(g2g1, D) = δ∗(g2, g1 ·D)δ∗(g1, D) .

The algebraic interpretation of δ∗ is as follows: if g ∈Aut(F) and D ∈ F∗ then δ∗(g,D) = 1
iff g defines an inclusion of composition algebras HD →֒ OF. The geometrical interpretation is:
δ∗(g,D) = 1 iff g induces an orientation preserving map from D to g · D (recall ǫ induces an
orientation of D and g ·D see Eq.[1.3]).

The function (g,D) 7→ δ∗(g,D) is not arbitrary. In fact we will show that there are only
eight possibilities as a consequence of the following two propositions.

Proposition 2.27 Let F be a Fano plane, ǫ a composition factor on F and g ∈ Aut(F). Then
det g :=

∏

D∈F∗ δ∗(g,D) = 1.

Proof. Let F∗ = {D1, · · · , D7}. Let g, h ∈ Aut(F) and for each line Di choose distinct Pi, Qi ∈
Di. Then

det g =
7
∏

i=1

ǫPiQi

ǫg·Pig·Qi

,

det h =
7
∏

i=1

ǫPiQi

ǫh·Pih·Qi

.

Choosing the point (g · Pi, g ·Qi) on the line g ·Di, the expression for det h can be written

det h =
7
∏

i=1

ǫg·Pig·Qi

ǫhg·Pihg·Qi

.

Thus

det g det h = det(hg) ,

and det defines a group homomorphism from Aut(F) to S2. Since Aut(F) is a finite simple
group [7], this implies that det g = 1 for any g ∈Aut(F). QED
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Proposition 2.28 Let F be a Fano plane, ǫ be a composition factor on F, g ∈ Aut(F) and
{P,Q,R, S} be a quadrilateral in F. Then

δ∗
(

g, P ∧Q
)

δ∗
(

g,Q ∧R
)

= δ∗
(

g, P ∧ S
)

δ∗
(

g, S ∧R
)

.

Proof. By the quadrilateral rule (Proposition 2.4):

ǫPQǫQRǫRSǫSP = ǫg·Pg·Qǫg·Qg·Rǫg·Rg·Sǫg·Sg·P = −1

which, using the definition of δ∗, implies

δ∗
(

g, P ∧Q
)

δ∗
(

g,Q ∧R
)

= δ∗
(

g, P ∧ S
)

δ∗
(

g, S ∧R
)

.

QED
This proposition can be expressed in an equivalent more geometric form. For this let us remark
the following property of lines in the Fano plane: if L is any line in the Fano plane there is
a unique partition {L1, L2}, {L3, L4}, {L5, L6} of the six remaining lines L1, · · · , L6 such that
L = {L1 ∩ L2, L3 ∩ L4, L5 ∩ L6}.

Proposition 2.29 Let g ∈ Aut(F). Let L be a line of the Fano plane and let L1, · · · , L6 be as
above. Then,

1. δ∗(g, L1)δ
∗(g, L2) = δ∗(g, L3)δ

∗(g, L4) = δ∗(g, L5)δ
∗(g, L6).

2. Let P and P ′ be two points of the Fano plane and let D1, D2, D3 (resp. D′
1, D

′
2, D

′
3) be the

three lines passing through P (resp. P ′). Then

δ∗(g,D1)δ
∗(g,D2)δ

∗(g,D3) = δ∗(g,D′
1)δ

∗(g,D′
2)δ

∗(g,D′
3) .

Proof. 1: When the line L is removed from the Fano plane F, the six remaining lines are exactly
the six sides of the quadrilateral F \ L, and the partition above (L1, L2), (L3, L4), (L5, L6) is
obtained by grouping opposite sides of the quadrilateral. We can certainly label the vertices of
the quadrilateral F \ L in such a way that:

L1 = P ∧Q , L2 = R ∧ S , L3 = Q ∧R , L4 = S ∧ P , L5 = R ∧ P , L6 = Q ∧ S

By the proposition above we have

δ∗(g, P ∧Q)δ∗(g,Q ∧R) = δ∗(g, P ∧ S)δ∗(g, S ∧R) ,

which implies

δ∗(g, L1)δ
∗(g, L3) = δ∗(g, L4)δ

∗(g, L2) .

Multiplying this equation by δ∗(g, L3)δ
∗(g, L2) gives

δ∗(g, L1)δ
∗(g, L2) = δ∗(g, L4)δ

∗(g, L3) .

This proves one of the desired equalities, the others follow in a similar fashion.
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2: It is always possible to find two points R and S such that {P, P ′, R, S} is a quadrilateral, i.e.,
the complement of a line. The three lines passing through P are P ∧ P ′, P ∧ R,P ∧ S and the
lines passing through P ′ are P ∧ P ′, P ′ ∧ R,P ′ ∧ S. To prove 2 we have to show that

δ∗(g, P ∧ P ′)δ∗(g, P ∧R)δ∗(g, P ∧ S) = δ∗(g, P ∧ P ′)δ∗(g, P ′ ∧ S)δ∗(g, P ′ ∧ R) ,

which is equivalent to

δ∗(g, P ∧R)δ∗(g, P ∧ S) = δ∗(g, P ′ ∧ S)δ∗(g, P ′ ∧ R) ,

and this follows from 1. QED

Corollary 2.30 Let P ∈ F, let D1, D2, D3 be the three lines passing through P and let
g ∈Aut(F). Then δ∗(g,D1)δ

∗(g,D2)δ
∗(g,D3) = 1.

Proof. Suppose for contradiction that δ∗(g,D1)δ
∗(g,D2)δ

∗(g,D3) = −1. It follows from Propo-
sition 2.29 2 that the corresponding product ηP ′ for any point P ′ in F is also equal to −1 and
hence that

∏

P ′∈F ηP ′ = −1. Since this product is also equal to det(g)3 this contradicts Proposi-
tion 2.27 and the corollary is proved. QED

Theorem 2.31 Let (F, τ) be an oriented Fano plane, let ǫτ be the canonical composition factor
and let g ∈ Aut(F). Then δ∗(g, ) : F∗ → S2 is given by one of the eight diagrams in Figure 3.

Proof. By Corollary 2.30 the function δ∗(g, )̇ : F∗ → S2 is in R⋆. By Proposition 2.20 there are
exactly eight possibilities, which are the functions e(TP ) for P ∈ F, and the constant function
equal to one. QED

Example 2.32 For the generators a, b in (1.1) the functions δ∗(a, ·), δ∗(b, ·) for the canonical
composition factor ǫτ are given in Figure 5.

•

•
δ∗(a,D) δ∗(b,D)

Figure 5: Values of δ∗ for the generators a, b (blue lines: δ∗ = 1, red lines: δ∗ = −1).

Recall that the group Aut(F) has 168 elements and that for fixed g in Aut(F) there are 8
possibilities for the function δ∗(g, ·) : F∗ → S2 given by the diagrams in Figure 3. We now
show that for each diagram there are exactly 21 elements of Aut(F) corresponding to the same
diagram.

19



Proposition 2.33 Let (F, τ) be an oriented Fano plane and let ǫτ be the canonical composition
factor. Let Iǫτ =

{

g ∈ Aut(F) : g · ǫτ = ǫτ
}

(see Remark 2.15).

1. If g ∈ Iǫτ then δ∗(g,D) = 1, ∀D ∈ F∗.

2. If g ∈ Iǫτ and h ∈ Aut(F) then δ∗(gh,D) = δ∗(h,D), and δ∗(hg,D) = δ∗(h, g ·D), ∀D ∈ F∗.

Proof. 1: This follows since

{

g · ǫτ = ǫτ ,
δ∗(g, P ∧Q) = ǫτPQǫ

τ
g·Pg·Q .

2: This follows from the easily checked “multiplier” formula

δ∗(gh,D) = δ∗(g, h ·D)δ∗(h,D) , (2.8)

and 1 above. QED

Corollary 2.34 For each of the 8 diagrams in Figure 3 there are exactly 21 elements g ∈ Aut(F)
whose function δ∗(g, ·) corresponds to that diagram.

Proof. By Proposition 2.33 (2) the map δ∗ factors to a map from the left-coset space Iǫτ\Aut(F)
to the set of diagrams. Note that the coset space has 8 elements since |Iǫτ | = 21 (see Remark
2.15). To show that this map is a bijection it is sufficient to show that it is surjective.

By Proposition 2.33, we have δ∗(τ,D) = 1, ∀D ∈ F∗ and hence δ∗(τ, ·) corresponds to the
first diagram in Figure 3. The other seven diagrams are characterised by the fact that their
is a unique point P such that δ∗(g,D) = 1 iff P ∈ D. From this point of view the function
δ∗(a, ·) corresponds to the point P4 (See Figures 5). However, by 2.33 (2), the function δ∗(aτk, ·)
corresponds to the diagram with distinguished point τ−k(P4), and, since τ is of order seven, we
obtain all seven diagrams in this way. QED

Remark 2.35 By the multiplier formula above and Eq.[1.1] the function δ∗(·, ·) is completely
determined by δ∗(a, ·) and δ∗(b, ·).

We can now prove the converse of Proposition 1.12:

Proposition 2.36 Let (F, τ) be an oriented Fano plane and let ǫτ be the canonical composition
factor. If τ ′ is an automorphism of order seven which induces the same orientation as τ on every
line D ∈ F∗, then τ ′ = τ, τ 2 or τ 4.

Proof. If τ ′ induces the same orientation as τ on every line then δ∗(τ ′, D) = δ∗(τ,D) = 1 for
all D ∈ F∗. Since there are 21 elements of Aut(F) with this δ∗ (see Corollary 2.34) and since
|Iǫτ | = 21, it follows from Proposition 2.33 (1) that τ ′ ∈ Iǫτ . The only elements of order seven
in Iǫτ are the six powers of τ (see Remark 2.15) and only τ ′ = τ, τ 2 or τ 4 induce the same
orientation on every line (Proposition 1.12). QED
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2.5 Automorphisms of the augmented Fano plane

In this section we investigate to what extent automorphisms of the Fano plane can be lifted to
automorphisms of the octonions.

Proposition 2.37 Let F be a Fano plane and let ǫ be a composition factor. Let g ∈ Aut(F)
and denote also by g ∈ End(OF) the unique element such that

g · eP = eg·P ∀P ∈ F .

Let D ∈ F∗ and let HD denote the subalgebra of OF generated by the points of D (see Proposition
2.7 (2)). Then the following are equivalent:

1. g|HD
is an algebra homomorphism;

2. δ∗(g,D) = 1.

Proof. The proposition is a consequence of the following equivalences:

g|HD
is an algebra homomorphism (2.9)

⇔ g(eP · eQ) = g(eP ) · g(eQ) , ∀P,Q ∈ D

⇔ ǫPQeg·(P+Q) = ǫg·Pg·Qeg·P+g·Q (cf. Definition 2.3)

⇔ ǫPQ = ǫg·Pg·Q

⇔ δ∗(g,D) = 1 (cf. Definition 2.25)

QED
This means that the canonical lift of g ∈Aut(F) acts by automorphism on OF iff δ∗(g,D) =
1, ∀D ∈ F∗. By Corollary 2.34 there certainly exists g ∈Aut(F) and D ∈ F∗ such that δ∗(g,D) 6=
1. However, we now exhibit a finite group which acts on the octonions by automorphism and
which is an eightfold non-trivial covering of Aut(F). To this end we introduce the augmented
Fano plane.

Definition 2.38 Let F = {P1, · · · , P7} be a Fano plane, ǫ be a composition factor and · be the
associated composition product on OF.

1. The augmented Fano plane F̂ǫ is the subset of Im(OF) defined by

F̂ǫ =
{

± eP1
, · · · ,±eP7

}

.

2. The group Aut(F̂ǫ) of automorphisms of the augmented Fano plane is defined by

Aut(F̂ǫ) =
{

ĝ : F̂ǫ → F̂ǫ s.t. (i) ĝ(−eP ) = −ĝ(eP ) ∀P ∈ F ;

(ii) ĝ(eP · eQ) = ĝ(eP ) · ĝ(eQ) ∀P 6= Q ∈ F

}

.

Remark 2.39 Any ĝ : F̂ǫ → F̂ǫ satisfying (i) above extends first to an invertible linear map
g̃ : Im(OF)→ Im(OF), and then to an invertible linear map gOF

: OF → OF by setting gOF
(1) = 1.

It is clear that g ∈ Aut(F̂ǫ) iff gOF
is an automorphism of OF.
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There is a natural homomorphism π from Aut(F̂ǫ) to Aut(F) such that

F̂ǫ
ĝ

//

/Z2

��

F̂ǫ

/Z2

��

F
π(ĝ)

// F

(2.10)

is commutative and we have the following proposition:

Proposition 2.40 Let g ∈ Aut(F) and let δ̃ : F → S2. We define ĝ : F̂ǫ → F̂ǫ by

ĝ · eP = δ̃(P )eg·P .

Then ĝ ∈ Aut(F̂ǫ) iff for any line D = {P,Q,R} we have

δ∗(g,D) = δ̃(P )δ̃(Q)δ̃(R) , (2.11)

and in this case π(ĝ) = g.

Proof. Let P,Q ∈ F be two distinct points and let R = P + Q. Without loss of generality we
can suppose that ǫPQ = 1 and since eP · eQ = eR we have

eg·P · eg·Q = ǫrg·P g·Q eg·R = δ∗(g,D)eg·R

where D is the line {P,Q,R}. It follows that
(

ĝ · eP
)

·
(

ĝ · eQ
)

= δ̃(P )δ̃(Q) eg·P · eg·Q = δ̃(P )δ̃(Q)δ∗(g,D)eg·R .

On the other hand,

ĝ ·
(

eP · eQ
)

= ĝ · eR = δ̃(R)eg·R ,

which proves the result. QED

Corollary 2.41 Let F be a Fano plane and ǫ be a composition factor.

1. For each g ∈ Aut(F) there exist exactly eight elements ĝ ∈ Aut(F̂ǫ) such that π(ĝ) = g.

2. For D ∈ F∗ we define tD : F̂ǫ → F̂ǫ by (see also [8])

tD(±eP ) = ±e ◦ TD(P ) eP =

{

±eP if P ∈ D
∓eP if P 6∈ D .

(Here e : Z2 → S2 in e ◦ TD denotes the exponential map.) Then tD ∈ Aut(F̂ǫ) and
Ker(π) =

{

Id
}

∪
{

tD s.t. D ∈ F∗
}

.
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Proof. (1) Given g ∈Aut(F), finding ĝ ∈Aut(F̂ǫ) such π(ĝ) = g is equivalent to finding a
function δ̃ : F → S2 such that Eq.[2.11] is satisfied. But in the language of Corollary 2.20 this
means precisely that the multiplicative Radon transform of δ̃ is δ∗(g, ·). However, δ∗(g, ·) ∈ R⋆

(see Corollary 2.30) and again by Corollary 2.20 any element of R⋆ is the Radon transform of
eight distinct elements of R (see Eq.[2.7]).

(2) We have δ∗(Id, D) = 1 for all D ∈ F∗ and we know that by Corollary 2.20 E ◦⋆◦L(f) = 1
iff f ∈ e(T (F)). This proves the result. QED

Remark 2.42 Recall from Example 1.6 that the elements

a =

(

1 2 3 4 5 6 7
1 2 7 4 6 5 3

)

, b =

(

1 2 3 4 5 6 7
2 7 4 6 5 3 1

)

generate Aut(F). One checks (with the obvious abuse of notation) that

â =

(

1 2 3 4 5 6 7
1 2 7 4 −6 5 −3

)

, b̂ =

(

1 2 3 4 5 6 7
−2 7 4 6 5 3 −1

)

(2.12)

are elements of Aut(F̂ǫ) satisfying π(â) = a and π(b̂) = b.

Remark 2.43 A natural question is whether or not the exact sequence

1→ Ker(π)→ Aut(F̂ǫ)→ Aut(F)→ 1

is split. In fact it is known that it is not split [12] and the easiest way to see this as follows.
Consider the order four element c ∈ Aut(F) given by

c =

(

1 2 3 4 5 6 7
4 2 6 1 7 5 3

)

.

One checks that

ĉ =

(

1 2 3 4 5 6 7
−4 2 6 1 7 5 −3

)

,

is an order 8 element of Aut(F̂ǫ) satisfying π(ĉ) = c. The other elements of π−1(c) are tD ◦ ĉ
where D is any line of F (see Proposition 2.41) and, as one also checks, they too are of order 8.
This shows that the exact sequence above is not split.

Note that if g ∈ Aut(F) is of order 2 (resp. 3) then π−1(g) consists of four elements of order
2 and four elements of order 4 (resp. four elements of order 3 and four elements of order 6). If
g ∈ Aut(F) is of order 7 then π−1(g) consists of elements of order 7.

3 The Lie algebra g2(F)

Throughout this section so(n,F) denotes the Lie algebra of n× n skew-symmetric matrices over
F. Recall that so(4,F) is isomorphic to so(3,F) × so(3,F). If F admits a non-trivial quadratic
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extension F̂ then we denote by su(n,F) the F−Lie algebra of traceless, anti-hermitian n × n
matrices over F̂.

In this section we fix an oriented Fano plane (F, τ) of type (0, 1, 3) and the associated canon-
ical composition factor will be denoted ǫ. It is well-known that when F = R the group of
automorphisms of OF is a simple, compact exceptional Lie group usually denoted G2 (see for
instance [11]). R. Wilson in [8] gave an “elementary” construction of g2 (the Lie algebra of G2)
together with an action by automorphism of a finite group of order 1344. This is exactly the
Aut(F̂ǫ) of Section 2.5. In this section we shall express the commutation relations of g2 in terms
of the incidence relations of the oriented Fano plane. As a consequence we will show that to each
point P of the Fano plane one can associate a Cartan subalgebra hP of g2(F). This association
has the following remarkable properties which reflect the geometry of the Fano plane F:

(a) there is a decomposition: g2(F) =
⊕

P∈F

hP and if P 6= Q then [hP , hQ] = hP+Q;

(b) for each line D in F we have sD =
⊕

P∈D

hP is a Lie subalgebra of g2(F) isomorphic to

so(3,F)× so(3,F) and such that hP is a Cartan subalgebra for P ∈ D;

(c) for each point P in F we have

sP =
{

g ∈ g2(F) s.t. g · P = 0
}

,

is a Lie subalgebra isomorphic to su(3,F) or sl(3,F) containing hP as a Cartan subalgebra;

(d) if P1, P2, P3 ∈ F are not aligned then hP1
⊕ hP2

⊕ hP3
generates g2(F);

(e) to the three lines containing a point P , one can associate three elements of of hP whose
sum is zero and which generate the root diagram of g2(F).

If g is a simple Lie algebra, a decomposition g = ⊕ihi as an orthogonal sum of Cartan subalge-
bras satisfying [hi, hj] ⊆ hk(ij) is called a multiplicative orthogonal decomposition [8, 9].

To prove these results our main tool is the observation that OF is a space of spinors of Im(OF)
with respect to octonion multiplication. This enables us to realise g2 inside a Clifford algebra,
and use Clifford algebra techniques to perform calculations.

3.1 Octonions, spinors of so(7,F) and the Lie algebra g2(F)

Let OF be the octonions defined by Table 1, let Im(OF) be the purely imaginary octonions and
let B be the symmetric bilinear form associated to the norm 1. In this subsection we realise
the spinor representation of so(Im(OF),−B) in terms of octonion multiplication (see e.g. [11] p.
121).

Define ρ : Im(OF)→ End(OF) by

ρ(x)(o) = x · o , ∀x ∈ Im(OF) , ∀o ∈ OF .
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Octonion multiplication is not associative but it is alternate (i.e., the associator is antisymmetric)
and this implies

(ρ(x))2 = −B(x, x)Id

and hence ρ extends to a surjective associative algebra homomorphism ρ̂ with kernel J of dimen-
sion 26:

1→ J→ C(Im(OF),−B)
ρ̂→ End(OF)→ 1 .

With respect to the well known decomposition

C(Im(OF),−B) =

7
⊕

k=0

Ck .

we have J ∩ Ck = {0}. Furthermore, C1 is canonically identified with Im(OF) and C2, spanned
by elements of the form xy − yx (x, y ∈ C1), is closed for the commutator and isomorphic to
so(7,F) as a Lie algebra. The bracket of C2 with C1 defines an action of the Lie algebra C2 on
C1 which is isomorphic to the vector representation of so(7,F).

Definition 3.1 Set

g2(F) =
{

c ∈ C2 s.t. ρ̂(c)(1) = 0
}

.

This is a Lie subalgebra of so(7,F).

Remark 3.2 The Clifford algebra C(Im(OF),−B) has a two-dimensional centre Vect(1, ǫ) where
ǫ2 = 1. This implies that 1/2(1+ ǫ)

(

g2(F)
)

is a Lie subalgebra of C(Im(OF),−B) isomorphic to
g2(F). This embedding is used in [13].

Remark 3.3 It can be shown (see e.g. [11] p. 122) that this Lie algebra is isomorphic to the
Lie algebra of the group of automorphisms of OF.

Recall that F = {Pi , i ∈ Z7} where for all i, j in Z7 we have Pi+j = τ j(Pi) (see Figure 2).
The ePi

form an orthonormal basis of Im(OF) and recall that the action of C2 on C1 in this basis
is given by

[

ePiPj
, ePk

]

= δikePj
− δjkePi

,
[

ePiPj
, ePkPℓ

]

= δikePjPℓ
− δjkePiPℓ

+ δiℓePkPj
− δjℓePkPi

. (3.13)

where ePiPj
= 1

2
ePi

ePj
, i 6= j. To simplify notation in what follows we set

ePi,Pj
= ρ̂(ePiPj

) =
1

4
ρ̂[ePi

, ePj
] =

1

4

(

ρ̂(ePi
)ρ̂(ePj

)− ρ̂(ePj
)ρ̂(ePi

)
)

, 1 ≤ i 6= j ≤ 7 .

To each point Pi of the Fano plane we now associate a Cartan subalgebra hPi
of g2(F). The idea

is that each of the three lines containing Pi enables us to write ePi
as a product. For instance

we have (see Table 1)

eP1
= eP5

· eP6
= eP3

· eP7
= eP2

· eP4
.
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Hence

(

eP3,P7
− eP5,P6

)

(1) =
(

eP5,P6
− eP2,P4

)

(1) =
(

eP2,P4
− eP3,P7

)

(1) = 0 ,

and eP3,P7
− eP5,P6

, eP5,P6
− eP2,P4

, eP2,P4
− eP3,P7

are in g2(F) by Definition 3.1.
The calculations above motivates the following definition in which we define a function X :

I→ g2(F) where I = {(P,D) ∈ F × F∗ s.t. P ∈ D} is the incidence space:

Definition/Proposition 3.4 Given a point Pi in F recall that the three lines containing Pi

(see Proposition 1.11) are:

Di = {Pi, Pi+1, Pi+3} , Di−1 = {Pi−1, Pi, Pi+2} , Di−3 = {Pi−3, Pi−2, Pi} .

Define XPi,Di
, XPi,Di−1

, XPi,Di−3
∈ ρ̂(C2) by

XPi,Di
= ePi+2,Pi−1

− ePi−3,Pi−2
,

XPi,Di−1
= ePi−3,Pi−2

− ePi+1,Pi+3
, (3.14)

XPi,Di−3
= ePi+1,Pi+3

− ePi+2,Pi−1
.

Then

1. The action of XP,D on eQ is given by

[

XP,D, eQ
]

=

{

0 if Q ∈ D
ǫP,Q ǫ∗(PQ),D eP+Q if Q 6∈ D ,

where ǫ∗ is the canonical composition factor of (F∗, τ ∗ −1) (see Proposition 1.11).

2. XPi,Di
+XPi,Di−i

+XPi,Di−3
= 0;

3. XPi,Di
, XPi,Di−1

and XPi,Di−3
are elements of g2(F);

3 ′. g2(F) =Vect
〈

XPi,Di
, XPi,Di−1

, XPi,Di−3
: i ∈ Z7

〉

;

4 . The subspace hPi
= Vect

〈

XPi,Di
, XPi,Di−1

, XPi,Dp−i

〉

is a Cartan subalgebra of g2(F).

Proof. Straightforward. QED

Remark 3.5 Using only the incidence geometry of F and the composition factor ǫ, on the
F−vector space Im(OF) we can define the three-form

ω =
∑

D∈F∗

ǫPQ ǫQR ǫRP eP ∧ eQ ∧ eR

where {e1, · · · , e7} is the basis dual to {e1 · · · , e7} and D = {P,Q,R}. Note that each term in
the above sum is independent of the order of the points chosen in the corresponding line. This is
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the unique three-form invariant under G2, normalised such that B(Ω,Ω) = 7 and oriented such
that

ivω ∧ iwω ∧ ω = −6B(v, w) e1 ∧ · · · ∧ e7 .

These are the same conventions as [14] but opposite to [15]. Dually, again using only the inci-
dence geometry of F and the composition factor ǫ, we can define the four-form

Ω =
∑

K∈Q

ǫPQ ǫRS eP ∧ eQ ∧ eR ∧ eS

where Q is the set of (seven) quadrilaterals of F and K = {P,Q,R, S}. Again each term in the
above sum is independent of the order of the points chosen in the corresponding quadrilateral.
This is the unique G2−invariant four-form satisfying

Ω ∧ ω = −7e1 ∧ · · · ∧ e7 .

These are the same conventions as [15] but opposite to [14].

Remark 3.6 Not only the XP,D but also their action on Im(OF) have now been given in terms
of the incidence geometry of F and the composition factors ǫ and ǫ∗.

The three generators of the Cartan subalgebra associated to a point of F (see Defini-
tion/Proposition 3.4) give rise to a root system of type G2 in the following sense

Proposition 3.7 Let XPi,Di
, XPi,Di−1

, XPi,Di−3
and hPi

be as in 3.4 and set:

YPi,Di
= XPi,Di−1

−XPi,Di−3
= ePi−3,Pi−2

+ ePi+2,Pi−1
− 2ePi+1,Pi+3

YPi,Di−1
= XPi,Di−3

−XPi,Di
= ePi−3,Pi−2

+ ePi+1,Pi+3
− 2ePi+2,Pi−1

YPi,Di−3
= XPi,Di

−XPi,Di−1
= ePi+1,Pi+3

+ ePi+2,Pi−1
− 2ePi−3,Pi−2

.
(3.15)

Then

W =
{

±XPi,Di
,±XPi,Di−1

,±XPi,Di−3
,±YPi,Di

,±YPi,Di−1
,±YPi,Di−3

}

⊂ hPi

is a root system of type G2. For instance if α = XPi,Di
and β = YPi,Di−1

then

W =
{

± α,±β,±(α + β),±(β + 2α),±(β + 3α),±(2β + 3α)} .

Proof. This follows from the fact that {eij , 1 ≤ i < j ≤ 7} is an orthonormal basis of C2. QED

3.2 Action of Aut(F̂ǫ) on the XP,D

In this section we analyse the action of the group Aut(F̂ǫ) (see Definition 2.38) on the elements
XP,D of g2(F) introduced above. Recall first that the XP.D are elements of End(OF) (c.f. Section

3.1) and the elements of the group Aut(F̂ǫ) act naturally on this vector space (c.f. Remark 2.39).

This means that it makes sense to conjugate elements of ρ̂(C2) by Aut(F̂ǫ).
We start by making the following observation:
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Lemma 3.8 Let P ∈ F, D ∈ F∗ and let ĝ ∈ Aut(F̂ǫ) be such π(ĝ) = g ∈ Aut(F). Then
up to a sign:

ĝ XP,D ĝ−1 = Xg·P,g·D .

Proof. Let Q be in F. Then up to a sign, the LHS acting on eQ is given by (see Eq.2.10)

ĝ XP,D ĝ−1(eQ) =

{

0 if g−1 ·Q ∈ D
ĝ · eg−1·Q+P = eQ+g·P if g−1 ·Q 6∈ D .

On the other hand up to a sign, the RHS acting on eQ is given by

Xg·P,g·D(eQ) =

{

0 if Q ∈ g ·D
eQ+g·P if Q 6∈ g ·D .

Comparing these two expressions proves the lemma. QED

This lemma means the following definition is legitimate:

Definition 3.9 Let (P,D) ∈ I be an incident pair and let ĝ ∈ Aut(F̂ǫ) be such π(ĝ) = g ∈
Aut(F). Define δ : Aut(F̂ǫ)× I→ Z2 by

ĝ XP,D ĝ−1 = δ(ĝ, P,D)Xg·P,g·D .

We now show that in fact δ does not depend on the line D.

Proposition 3.10 Let P ∈ F let D,D′ ∈ F∗ be such that P ∈ D ∩D′. Let ĝ ∈ Aut(F̂ǫ) be such
π(ĝ) = g ∈ Aut(F). Then δ(ĝ, P,D) = δ(ĝ, P,D′) .

Proof. Suppose D 6= D′. By proposition 3.4 if D′′ = D +D′ we have

XP,D +XP,D′ +XP,D′′ = 0

Xg·P,g·D +Xg·P,g·D′ +Xg·P,g·D′′ = 0 .

Conjugating the first equation above by ĝ we obtain

δ(ĝ, P,D)Xg·P,g·D + δ(ĝ, P,D′)Xg·P,g·D′ + δ(ĝ, P,D′′)Xg·P,g·D′′ = 0

and comparing this with the second equation above it follows that δ(ĝ, P,D) = δ(ĝ, P,D′) =
δ(ĝ, P,D′′). QED
From now on we write δ(ĝ, P ) for δ(ĝ, P,D).

Example 3.11 For D ∈ F∗ and tD ∈ Aut(F̂ǫ) (see Corollary 2.41) one checks easily that

δ(tD, P ) =

{

1 if P ∈ D
−1 if P 6∈ D

= eTD(P )

where TD is defined in Proposition 2.19. We denote by T the set of all TD together with the
constant function equal to one. Note that T is a group for pointwise multiplication.
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We now establish a connection between the line orientation δ∗ (see Section 2.4) and the
function δ.

Proposition 3.12 Let (P,D) ∈ F × F∗ and ĝ ∈ Aut(F̂ǫ) be such that π(ĝ) = g. Then

δ∗(g,D) =
∏

P∈D

δ(ĝ, P ) . (3.16)

Hence δ∗(g, ·) is the (multiplicative) Radon transform of δ(ĝ, ·).

Proof. The proposition is a consequence of the following two lemmas and the fact that Aut(F̂ǫ)
is generated by â, b̂ given in (2.12) and the tDi

introduced in Proposition 2.41.

Lemma 3.13 If the formula (3.16) is true for ĝ and ĥ, then it is true for ĝĥ.

Proof. By the multiplier property of δ∗ (see Remark 2.26) we have

δ∗(gh,D) = δ∗(g, h ·D)δ∗(h,D)

which is equal to

∏

P∈D

δ(ĝ, h · P )
∏

P∈D

δ(ĥ, P )

since formula (3.16) is true for ĝ and ĥ. By the analogous multiplier property of δ this is in turn
equal to

∏

P∈D

δ(ĝĥ, P ) .

QED

Lemma 3.14 The formula (3.16) is true for

â =

(

1 2 3 4 5 6 7
1 2 7 4 −6 5 −3

)

, b̂ =

(

1 2 3 4 5 6 7
−2 7 4 6 5 3 −1

)

and all translations tDi
.

Proof. To calculate δ(â, ·) and δ(b̂, ·) one has to use Definition 3.9 and unfortunately this is
tedious if straightforward. The computation of δ∗(a, ·) and δ∗(b, ·) is much easier but we omit
the details of both calculations. The results are given in Figure 6 from which the lemma follows.

QED

Formula (3.16) in the general case follows from the lemmas above. QED
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δ(â, P ) δ(b̂, P ) δ(tD1
, P )

•

•
δ∗(a,D) δ∗(b,D) δ∗(1, D)

Figure 6: Values of δ (resp. δ∗) for â, b̂, tD (resp. a, b, 1); blue points: δ = 1, red points: δ = −1
(resp. blue lines: δ∗ = 1, red lines: δ∗ = −1).

Corollary 3.15 For all ĝ in Aut(F̂ǫ) we have δ(g, ·) ∈ R, i.e.,

∏

P∈F

δ(ĝ, P ) = 1 .

Proof. This follows from the proposition above and equation (2.7). QED

Remark 3.16 Given ĝ ∈ Aut(F̂ǫ) such that π(ĝ) = g we have seen that the Radon transform of

δ(ĝ, ·) is δ∗(g, ·). According to Theorem 2.40, this means that that if we define ĝt
′

: F̂ǫ → F̂ǫ by

ĝt
′ · eP = δ(ĝ, P )eg·P ,

then ĝt
′ ∈ Aut(F̂ǫ) and π(ĝt

′

) = g. Thus by Corollary 2.41 either ĝ′ = ĝ or there exists D ∈ F∗

such that

ĝt
′

= tD ◦ ĝ .

Both cases occur. For example if ĝ = tD then by Example 3.11, we have ĝt
′

= tD. On the other
hand if

â =

(

1 2 3 4 5 6 7
1 2 7 4 −6 5 −3

)

then δ(â, ·) is given by the first diagram in Figure 6 and therefore

ât
′

=

(

1 2 3 4 5 6 7
1 −2 −7 −4 −6 5 3

)

= tD5
◦ â .
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3.3 Commutation relations for g2

The incidence properties of the oriented Fano plane define multiplication of the octonions (see
Table 1). In an analogous fashion they also define the Lie bracket of g2(F). In this section we
will express all brackets of the XP,D’s in g2(F) in terms of the incidence relations of the oriented
Fano plane. To begin we need the following lemma:

Lemma 3.17 Let I be the incidence space

I =
{

(P,D) ∈ F × F∗ s.t. P ∈ D
}

.

Then the orbits of Aut(F) acting on I× I are given by

I× I = D ∪ O1 ∪ O2 ∪ O′
3 ∪ O3 ∪ O4 ,

where

D =

{

(

(P,D), (P ′, D′)
)

∈ I× I : P = P ′, D = D′

}

O1 =

{

(

(P,D), (P ′, D′)
)

∈ I× I : P = P ′, D 6= D′

}

O2 =

{

(

(P,D), (P ′, D′)
)

∈ I× I : P 6= P ′, D = D′

}

O3 =

{

(

(P,D), (P ′, D′)
)

∈ I× I : P 6= P ′, D 6= D′, P ∈ D′

}

O′
3 =

{

(

(P,D), (P ′, D′)
)

∈ I× I : P 6= P ′, D 6= D′, P ′ ∈ D

}

O4 =

{

(

(P,D), (P ′, D′)
)

∈ I× I : P 6= P ′, D 6= D′, P ′ 6∈ D,P ′ 6∈ D

}

.

These sets contain respectively 21, 42, 42, 84, 84 and 168 elements.

Proof.
• D: we shall show that the stabiliser of a point in D is of order 8. Let S ⊂Aut(F) be the

stabiliser of
(

P,D
)

∈ F. There is an sequence of group homomorphisms

1→ Ker(Φ)→ S → S2 → 1

where S2 is identified with the subgroup of permutations of D which fix P and Φ(s) ∈ S2 is the
induced action of s ∈ S on D. By Proposition 1.3 (2), Ker(Φ) is of order four and by Proposition
1.3 (4), Φ is surjective (the complement of Ker(Φ) in S consists of two elements of order two and
two elements of order four). Hence S is of order eight and Aut(F)/S has 21 = 168/8 elements.
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A straightforward count shows that D has 21 elements and it follows that D is a single orbit of
Aut(F).

• O2: we shall show that the stabiliser S of a point in O2 of order four. Let
(

(P,D), (P ′, D)
)

∈

O2 and suppose g ∈Aut(F) fixes
(

(P,D), (P ′, D)
)

, i.e.,

g · P = P , g · P ′ = P ′ , g ·D = D .

Since g fixes P and P ′ its fixes P ′′ the third point of the line D, and hence by Proposition 1.3
since it fixes three points, g is either of order one or two. In fact by Proposition 1.3 (2), either g
is the identity or g can be taken to permute two pairs of points of the complement of D. There
are only three elements of this type and together with the identity it is clear that they form a
subgroup of order four. Hence Aut(F)/S has 42 = 168/4 elements. A straightforward count
shows that O2 has 42 elements and it follows that O2 is a single orbit of Aut(F). Similarly O1 is
a single orbit of Aut(F) containing 42 elements.

• O3: we shall show that the stabiliser S of a point in O3 is S2. Let
(

(P,D), (P ′, D′)
)

∈ O3

and suppose g ∈Aut(F) fixes
(

(P,D), (P ′, D′)
)

, i.e.,

g · P = P , g ·D = D , g · P ′ = P ′ , g ·D′ = D′ .

Since g fixes P and P ′ its fixes P ′′ the third point of the lineD′ = P∧P ′ and hence by Proposition
1.3, since it fixes three points, g is either of order one or two. Then, either g fixes each point of D
in which case (cf Proposition 1.3) g is the identity, or g permutes the two points of D \ {P} and
also the two points F \

(

D ∪D′
)

. Hence Aut(F)/S has 84 = 168/2 elements. A straightforward
count shows that O3 has 84 elements and it follows that O3 is a single orbit of Aut(F). Similarly
O′

3 is a single orbit of Aut(F) containing 84 elements.
• O4: we shall show that the stabiliser S of an element of O4 is trivial. First let

(

(P,D), (P ′, D′)
)

∈ O4 and suppose g ∈Aut(F) fixes
(

(P,D), (P ′, D′)
)

, i.e.,

g · P = P , g ·D = D , g · P ′ = P ′ , g ·D′ = D′ .

Since g fixes P and P ′ its fixes P ′′ the third point of the line P ∧ P ′. Similarly, since g fixes D
and D′, it fixes the point D ∩ D′ which is distinct from P and P ′ (P 6∈ D′ and P ′ 6∈ D). The
point D∩D′ is also distinct from P ′′ since D 6= D′. We have now shown that g fixes four distinct
points of F and it follows from Proposition 1.3 that g is the identity. Hence Aut(F)/S has 168
elements. A straightforward count shows that O4 has 168 elements and it follows that O4 is a
single orbit of Aut(F). QED

Theorem 3.18 Let F be an Fano plane and let ǫ be a composition factor. Let P, P ′ be disctinct
point in F and let D,D′ be distinct lines in the Fano plane.

1. If
(

(P,D), (P,D′)
)

∈ O1 then

[XP,D, XP,D′] = 0 .
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2. If
(

(P,D), (P ′, D)
)

∈ O2 then

[XP,D, XP ′,D] = 2ǫPP ′XP+P ′,P∧P ′ .

3. If
(

(P,D), (P ′, D′)
)

∈ O3 ∪ O′
3 (i.e., P ∈ D′, P ′ 6∈ D or P 6∈ D′, P ′ ∈ D) then

[XP,D, XP ′,D′] = −ǫPP ′XP+P ′,P∧P ′ .

4. If
(

(P,D), (P ′, D′)
)

∈ O4 (i.e., P 6∈ D′, P ′ 6∈ D) then

[XP,D, XP ′,D′] = −ǫPP ′XP+P ′,D+D′ ,

where D +D′ is the third line containing the point D ∧D′.

Proof. Parts (1) of the theorem have already been proved see Definition/Proposition 3.4 (3))
and part (2) is a straightforward calculation using (3.13). To prove the rest of the theorem we

first give the transformation law of brackets of two XP,D under the action of Aut(F̂ǫ). We then
explicitly calculate the bracket corresponding to particular elements of each of the orbits Oi and
then, using the transformation law we deduce the formulæ for brackets in the general case.

Lemma 3.19 Let (P,D), (P ′, D′) ∈ I× I be such that P 6= P ′. Suppose that

[XP,D, XP ′,D′] = αXP+P ′,D′′ (3.17)

where α ∈ F, and D′′ ∈ F∗. Then for all g ∈ Aut(F)

[Xg·P,g·D, Xg·P ′,g·D′] = αδ∗(g, P ∧ P ′)Xg·(P+P ′),g·D′′ ,

where P ∧ P ′ is the line passing through P and P ′.

Proof. Let ĝ ∈ Aut(F̂ǫ) be such that π(ĝ) = g (see Proposition 2.41 (2)). Recall that (cf Section
3.2) we have

ĝXQ,Lĝ
−1 = δ(ĝ, Q)Xg·Q,g·L ∀ (Q,L) ∈ I .

Hence conjugating (3.17) by ĝ we get

δ(ĝ, P )δ(ĝ, P ′)[Xg·P,g·D, Xg·P ′,g·D′] = αδ(ĝ, P + P ′)Xg·(P+P ′),g·D′′ ,

which can be rewritten

[Xg·P,g·D, Xg·P ′,g·D′] = αδ(ĝ, P )δ(ĝ, P ′)δ(ĝ, P + P ′)Xg·(P+P ′),g·D′′ .

However using Proposition 3.12 this reduces to

[Xg·P,g·D, Xg·P ′,g·D′] = αδ∗(g, (P, P ′))Xg·(P+P ′),g·D′′ .
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QED

To choose a particular element of O3 we use the notation of Figure 2. Consider
(

(P =

P1, D = D1), (P
′ = P3, D

′ = D7)
)

∈ O3 in which case (P + P ′′ = P7, D
′′ = D7). Using (3.13)

and (3.14) we obtain by explicit calculation

[XP1,D1
, XP3,D7

] = −XP7,D7
,

and by the lemma above this proves (3) since any element of O3 is conjugate to
(

(P1, D1), (P3, D7)
)

. By symmetry this also proves (4).

To prove (5) consider
(

(P = P4, D = D1), (P
′ = P5, D

′ = D2)
)

∈ O4 in which case (P +P ′ =

P7, D +D′ = D7). Using (3.13) and (3.14) we obtain by explicit calculation

[XP4,D1
, XP5,D2

] = −XP7,D6
,

and by the lemma above this proves (5) since any element of O4 is conjugate to
(

(P4, D1), (P5, D2)
)

. QED

Corollary 3.20 Let (F, τ) be an oriented Fano plane and let ǫ be the canonical composition
factor.

1. There is a decomposition as a direct sum of Cartan subalgebras:

g2(F) =
⊕

P∈F

hP .

2. If P,Q,R are non-aligned then hP ⊕ hQ ⊕ hR generates g2(F).

3. If P,Q,R are three distinct points on the line D such that ǫPQ = ǫQR = ǫRP = 1 then:

[

XP,D, XQ,D

]

= 2XR,D ,
[

YP,D, YQ,D

]

= −2YR,D ,
[

XS1,D, YS2,D

]

= 0 , ∀S1, S2 ∈ D .

In particular:

• [hP , hQ] = hR.

• gD = hP ⊕ hQ ⊕ hR is a Lie subalgebra of g2(F) isomorphic to so(4,F).

• If we define

IX,D = Vect
〈

XP,D, XQ,D, XR,D

〉

,

IY,D = Vect
〈

YP,D, YQ,D, YR,D

〉

,

then IX,D and IY,D are the two ideals of gD each isomorphic to so(3,F).
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• The decomposition

Im(OF) = Vect
〈

eP , P ∈ D
〉

⊕ Vect
〈

eP , P 6∈ D
〉

,

is stable under the action of so(4,F) and Vect
〈

eP , P 6∈ D
〉

is isomorphic to the

defining representation. The representation Vect
〈

eP , P ∈ D
〉

is trivial for the action

of IX,D and isomorphic to the adjoint representation of IY,D.

Proof. All parts of the Corollary are direct consequences of the Theorem above. QED

Remark 3.21 As a consequence of this proposition one can associate to each line of the oriented
Fano plane an so(4,F) Lie subalgebra of g2(F) just as by Proposition 2.7 one can associate to
each line of the oriented Fano plane a quaternion subalgebra of OF.

We now show that one can associate a rank two simple Lie algebra to each point of the
oriented Fano plane.

Corollary 3.22 For any point P ∈ F, the Lie algebra

sP = Vect
{

XQ,D ∈ g2(F) s.t. XQ,D · eP = 0
}

is isomorphic to sl(3,F) if
√
−1 ∈ F and to su(3,F) if

√
−1 6∈ F (see the beginning of Section 2

for the definition of su(3,F)).

Proof. By Definition/Proposition 3.4 (1) if P ∈ D then [XQ,D, eP ] = 0. Using the notation of
Figure 2, without loss of generality we can suppose P = P1. Thus [XQ,D, eP1

] = 0 if

XQ,D =







XP1,D1
, XP2,D1

, XP4,D1
,

XP7,D7
, XP1,D7

, XP3,D7
,

XP5,D5
, XP6,D5

, XP1,D5
,

with XP1,D1
+ XP1,D7

+ XP1,D5
= 0 (see Definition/Proposition 3.4 (3)). Thus we have eight

linearly independent generators which clearly span a Lie subalgebra of g2(F). Again from Def-
inition/Proposition 3.4 (4), XP1,D1

, XP1,D7
span the Cartan subalgebra hP1

. We now introduce

(in g2(F) if
√
−1 ∈ F or in g2

(

F[
√
−1]

)

if
√
−1 6∈ F) the elements:

hP1,D1
= −
√
−1XP1,D1

,

hP1,D7
= −
√
−1XP1,D7

,

which generate a Cartan subalgebra, together with the elements

e±P1,D1
= XP2,D1

∓
√
−1XP4,D1

,

e±P1,D7
= XP3,D7

∓
√
−1XP7,D7

.
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Then from Theorem 3.18 we have
[

h1, e
±
P1,D1

]

= ±2e±P1,D1
,

[

h1, e
±
P1,D7

]

= ∓e±P1,D7
,

[

h2, e
±
P1,D1

]

= ∓e±P1,D1
,

[

h2, e
±
P1,D7

]

= ±2e±P1,D7
,

and

[

e+P1,D
, e−P1,D′

]

=

{

−4hP1,D if D = D′ ,
0 if D 6= D′ .

Thus the Cartan matrix is given by

A =

(

2 −1
−1 2

)

.

The last two generators of sP are given by

[e±P1,D1
, e±P1,D7

] = −2e±P1,D5
= −2(XP5,D5

±
√
−1XP7,D5

) ,

and satisfy (again by Theorem 3.18)

[

h1, e
±
P1,D5

]

= ±e±1,D5
,

[

h2, e
±
P1,D5

]

= ±e±P1,D5
,

and
[

e+P1,D5
, e−P1,D5

]

= −4(hP1,D1
+ hP1,D7

) .

This ends the proof. QED

Remark 3.23 The Lie algebra sP has a natural representation on the vector space:

V = Vect
{

eQ s.t. Q ∈ F , Q 6= P
}

.

This six-dimensional vector space is stable under sP and carries a natural sP−invariant “almost-
complex structure” J ∈ End(V ) defined by

J(eQ) = ǫQP eP+Q .

It also carries the sP−invariant non-degenerate quadratic form

g(eQ, eR) = δQR

for which, one checks, J is an isometry. The Lie algebra sP is then characterised as the Lie
subalgebra of End(V ) which preserves g and J . This representation is irreducible iff

√
−1 6∈ F.

Proposition 2.7 associates composition subalgebras of the octonions to certain configurations
of points in the Fano plane. Analogously, one can associate Lie subalgebras of g2(F) to elements
of I× I in the following way:
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O1: For each element
(

(P,D), (P,D′)
)

of O1 the Lie subalgebra of g2(F) generated by

XP,D, XP,D′ is a Cartan subalgebra denoted hP in Proposition 3.4.

O2: For each element
(

(P,D), (P ′, D)
)

of O2 the Lie subalgebra of g2(F) generated by

XP,D, XP ′,D is isomorphic to so(3,F) by Proposition (3.20) (2).

O3: For each element
(

(P,D), (P ′, D′)
)

of O3 the Lie subalgebra of g2(F), generated by

XP,D, XP ′,D′ is isomorphic to so(3,F) × so(2,F)). For instance, in the case of XP1,D1

and XP7,D7
we have:

[

XP1,D1
, XP7,D7

]

= XP3,D7
[

XP1,D1
, XP3,D7

]

= −XP7,D7
[

XP1,D1
, XP1,D7

]

= 0 .

It follows that XP1,D1
+ 1

2
XP1,D7

= −1
2
YP1,D7

is in the centre of this Lie algebra which for
brevity we shall denote s. The XP7,D7

, XP3,D7
, XP1,D7

generate an ideal of s isomorphic to
so(3,F). The Lie subalgebra s can also be obtained by adding an element of one of the
ideals of the so(4,F) associated to D7 to the other ideal (see Proposition 3.20 (2)). Under
the action of s we have the decompositions:

Im(OF) = Vect
〈

eP , P ∈ D7

〉

⊕Vect
〈

eP , P 6∈ D7

〉

=
〈

eP7
, eP1

, eP3

〉

⊕
〈

eP2
, eP4

, eP5
, eP6

〉

=







(

10 ⊕ 2
)

⊕ 4 if − 1 is not a square in F
(

10 ⊕ 1⊕ 1′
)

⊕
(

2⊕ 2′
)

if − 1 is a square in F

where 10 is the trivial one-dimensional representation, 1, 1′ are irreducible one-dimensional
representations, 2, 2′ are irreducible two-dimensional representations and 4 is an irreducible
four-dimensional representation.

O′
3: Same as O3.

O4: Finally for each element
(

(P,D), (P ′, D′)
)

of O4 the Lie algebra generated by XP,D, XP ′,D′

is g2(F).
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