
ar
X

iv
:2

20
7.

14
02

1v
1 

 [
m

at
h.

M
G

] 
 2

8 
Ju

l 2
02

2

GROUPS OF CONVEX BODIES

RICHARD HEPWORTH

Abstract. In this paper we introduce and study a topological abelian group
of convex bodies, analogous to the scissors congruence group and McMullen’s
polytope algebra, with the universal property that continuous valuations on
convex bodies correspond to continuous homomorphisms on the group of convex
bodies. To study this group, we first obtain a version of McMullen polynomiality
for valuations that take values not in fields or vector spaces, but in abelian
groups. Using this, we are able to equip the group of convex bodies with a
grading that consists of real vector spaces in all positive degrees, mirroring one
of the main structural properties of the polytope algebra. It is hoped that this
work can serve as the starting point for aK-theoretic interpretation of valuations
on convex bodies.

1. Introduction

Valuations. Let V be a finite-dimensional real vector space. A convex body in V
is a nonempty compact convex subset X ⊆ V . The set K(V ) of all convex bodies
in V is topologised using the Hausdorff metric. A function ϕ : K(V ) → A, with
values in an abelian group A, is a valuation if it satisfies the relation

ϕ(B ∪ C) = ϕ(B) + ϕ(C)− ϕ(B ∩ C)

whenever B,C ∈ K(V ) with B ∪C ∈ K(V ). Continuous valuations on K(V ) with
values in R or C have been studied under many different symmetry conditions. For
example, Hadwiger’s theorem classifies all continuous isometry-invariant valuations
on convex bodies in Euclidean space [6, 2, 7], Klain and Schneider classified all
simple continuous translation-invariant valuations [7, 12], and Alesker classified
continuous valuations on K(Cn) that are invariant under U(n) and translations [1].
Many of the results on continuous valuations with values in R or C extend naturally
to continuous valuations with values in topological vector spaces (see for example
section 6.4 of [13]). It is natural to ask what happens when values are taken in
an arbitrary Hausdorff topological abelian group. The answer is that, assuming
translation-invariance, essentially nothing new happens:

Theorem A. Let V be a real finite-dimensional vector space. Let ϕ : K(V ) → A be

a continuous translation-invariant valuation with values in a Hausdorff topological
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abelian group A. Let c ∈ A denote the value of ϕ on any one-point convex body.

Then the valuation ϕ− c : K(V ) → A admits a factorisation

K(V )
f

−−→ V
g

−−→ A

where V is a Hausdorff topological vector space, f is a continuous translation-

invariant valuation, and g is a continuous homomorphism of topological abelian

groups.

The need to subtract a constant cannot be overcome, since the constant map
K(V ) → Z with value 1 is a continuous translation invariant valuation.

Groups of convex bodies. Theorem A is a byproduct of work inspired by the
relationship between scissors congruence and algebraic K-theory. Scissors congru-
ence is the study of polytopes modulo dissection and rearrangement. The scissors
congruence group is the free abelian group on polytopes modulo symmetry, in
which a polytope is identified with the sum of the parts in any of its dissections.
Zakharevich [15, 16, 17, 18] established a K-theoretic interpretation of the scissors
congruence group, and produced a sequence of groups — the K-theory groups of a
certain Waldhausen category — whose 0th term is precisely the scissors congruence
group, and whose higher terms encode information about symmetries of polytopes.
Is there a K-theoretic interpretation of valuations on convex bodies? And, as an
initial step, can an analogue of the scissors congruence group be established and
understood for convex bodies? Theorem A follows from our progress on the initial
step, as we now explain.

Let V be a finite dimensional real vector space, and let G be a group of affine
transformations of V . In this paper we introduce the group of convex bodies

CB(V,G), which is the free Hausdorff topological abelian group on the space K(V ),
modulo the closed subgroup generated by the elements of the form

[gX ]− [X ] and [B ∪ C]− [B]− [C] + [B ∩ C]

for g ∈ G, X ∈ K(V ), and B,C ∈ K(V ) with B ∪ C ∈ K(V ). It is the target of
a continuous G-invariant valuation Φ: K(V ) → CB(V,G) that is universal in the
following sense: Any continuous G-invariant valuation ϕ : K(V ) → A with values
in a Hausdorff topological abelian group A factors uniquely as ϕ = ϕ̄ ◦Φ for some
continuous homomorphism ϕ̄ : CB(V,G) → A. So CB(V,G) is our analogue of the
scissors congruence group. We obtain the following fundamental structural result,
from which Theorem A follows quickly:

Theorem B. Let V be a finite-dimensional real vector space of dimension d, and
let G be a group of affine linear transformations of V that includes all translations.

Then there is a direct sum decomposition of Hausdorff topological abelian groups

CB(V,G) ∼= CB0(V,G)⊕ · · · ⊕ CBd(V,G)
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and a corresponding decomposition

Φ = Φ0 ⊕ · · · ⊕ Φd

of Φ into continuous G-invariant valuations Φi : K(V ) → CBi(V,G). The group

CB0(V,G) is a copy of Z generated by Φ0(X) for any X ∈ K(V ). And for each

1 6 i 6 d, CBi(V,G) admits the structure of an R-vector space, with respect to

which Φi(λX) = λiΦi(X) for λ ∈ [0,∞) and X ∈ K(V ).

Theorem B shows that the topological abelian group CB(V,G) is almost identical
to the topological vector space R⊗ZCB(V,G) — a single copy of Z in the former is
replaced by a copy of R in the latter. We anticipate that R⊗Z CB(V,G) is simply
the (appropriately topologised) dual of the Banach space ValG(V ) of G-invariant
valuations on V , so that the study of CB(V,G) boils down to the study of valuations
in R or C, which are well-understood in many cases. We hope that the results
of this paper will open the door to a K-theoretic interpretation of valuations on
convex bodies, analogous to the K-theoretic interpretation of scissors congruence,
so that CB(V,G) becomes the 0th term in a sequence whose higher terms encode
information about symmetries of convex bodies.

McMullen polynomiality. Let us explain the main technical result underpin-
ning Theorem B. McMullen polynomiality [8] shows that if ϕ : K(V ) → V is a
translation-invariant continuous valuation with values in a real Hausdorff topolog-
ical vector space V, then ϕ admits a decomposition ϕ = ϕ0 + · · ·+ ϕd where each
ϕi : K(V ) → V is homogeneous of degree i, i.e. ϕi(λX) = λiϕi(X) for λ ∈ [0,∞)
and X ∈ K(V ). (See Theorem 6.3.5 of [12].) To prove Theorem B we establish
a form of McMullen polynomiality for valuations with values in Hausdorff topo-
logical abelian groups. The simplest version of our polynomiality result is the
following.

Theorem C. Let V be a finite dimensional real vector space, let A be a Haus-

dorff topological abelian group, and let ϕ : K(V ) → A be a continuous translation-

invariant valuation. Then there are continuous semigroup homomorphisms

f1, . . . , fd : [0,∞) → A

and a constant f0 ∈ A, all uniquely determined, such that

ϕ(λX) = f0 + f1(λ
1) + · · ·+ fd(λ

d)

for all λ.

Applying this theorem to the universal valuation Φ: K(V ) → CB(V,G) and
setting λ = 1 gives us the splitting of Φ(X) into its components Φ0(X)+· · ·+Φd(X)
as in Theorem B, and Theorem B in its full strength follows from a parameterised
version of Theorem C.

The difficulty in establishing Theorem C is that the usual definition of homo-
geneity cannot be used since the target is not an R-vector space. We tackle this
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by using a notion of polynomiality, defined in terms of iterated differences, that
applies to functions from abelian semigroups to abelian groups; this method of
recognising polynomiality goes back at least to Fréchet [4, 5].

Comparison with the polytope algebra. In [9], McMullen introduced the
polytope algebra Π(V ) of a vector space V . This is the free abelian group on the
convex polytopes in V modulo translation and inclusion-exclusion relations, made
into an algebra under Minkowski addition. It is closely related to the translation-
invariant convex body group CB(V, V ), and indeed there is a canonical homomor-
phism of abelian groups Π(V ) → CB(V, V ) with dense image.

This paper can therefore be regarded as a first step in producing a “convex body
algebra” analogous to Π(V ), so that Theorem B is then a partial analogue of one
of the main structural results on Π(V ) [9, Theorem 1]. The next step would be to
consider the algebra structure that Minkowski sum induces on CB(V, V ). Tensor
products can be technically challenging in the topological setting, and we expect
that the convex body algebra will need to be placed in a carefully chosen monoidal
category of topological abelian groups or vector spaces, such as stereotype spaces
or condensed sets, before an adequate theory can be established.

Comparing our methods with McMullen’s, it seems that our approach of study-
ing groups of convex bodies by directly establishing an abelian group-valued ver-
sion of McMullen polynomiality has no parallel in [9], and of course there are the
technicalities arising from the fact that the CB(V,G) must be topologised while
Π(V ) is not.

Outline of the paper. Section 2 introduces topological abelian groups and the
relevant facts and constructions we will need there. Section 3 establishes the neces-
sary background material on polynomiality of maps with values in abelian groups,
and then section 4 applies this to obtain a form of McMullen polynomiality in
this context, in particular proving Theorem C. Section 5 introduces groups of con-
vex bodies, and finally section 6 uses polynomiality to investigate their structure,
proving Theorems A and B.

2. Topological abelian groups

In this brief section we will recall some necessary background on topological
abelian groups. For further reading we recommend Chapter 1 of Morris’s book [10]
for generalities, and the introduction and section 1 of Thomas’s paper [14] for
material on free topological abelian groups.

Recall that a topological abelian group A is an abelian group equipped with a
topology such that addition and negation in A define continuous maps A×A → A
and A → A respectively. A topological abelian group A is Hausdorff if and only if
{0} ⊆ A is closed [10, p.5]. We will need to work with Hausdorff topological abelian
groups in order to use the uniqueness of limits. We will abbreviate ‘topological
abelian group’ as TAG and ‘Hausdorff topological abelian group’ as HTAG.
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For every TAG A there is an HTAG A/{0A}, that we call its reflection; the

reflection is equipped with a canonical mapA → A/{0A}, and any other continuous

homomorphism A → B into an HTAG factors uniquely as A → A/{0A} → B.
In practice this means that we can perform various constructions (in particular,
quotients and free HTAGs) by first constructing the relevant TAG and then taking
its reflection. (The word reflection here is taken from the fact that the category
of HTAGs is a reflexive subcategory of the category of TAGs.)

Observe that if we have TAGs A ⊇ B ⊇ C, then in the quotient group A/C we

have B/C = B̄/C. So in particular, given A ⊇ B, we have {0A/B} = B/B = B̄/B,
so that A/B is Hausdorff if and only if B is closed.

We must now discuss free topological abelian groups. This is a well-studied
subject with many intricacies, but we only need the very basics. The introduction
and section 1 of [14] provide us with the existence theorem that we will need.

Definition 2.1 (Free Hausdorff topological abelian group). Let X be a topological
space. The free Hausdorff topological abelian group on X , denoted ZX , is an HTAG
equipped with a continuous map X → ZX , with the following property: For any
HTAG A, the map

(ZX
ϕ
−→ A) 7−→ (X → ZX

ϕ
−→ A)

is a bijection between the set of continuous homomorphisms ZX → A and the set
of continuous maps X → A. Given x ∈ X , we write [x] ∈ ZX for the image of x
under X → ZX .

Theorem 2.2. For any topological space X, the free Hausdorff topological abelian

group X → ZX exists.

For a proof, see Theorem 1.4 of [14] and the paragraph that follows it. This
constructs the free TAG A(X), and then the free HTAG ZX is the reflection

A(X)/{0A(X)} of A(X). A brief alternative way to describe A(X) is that it is
obtained from the free abelian group FA on X by considering all group topologies
for which the map X → FA is continuous, and then taking the finest topology
containing all of these.

In what follows we will have occasion to use ‘parameterised’ homomorphisms of
HTAGs. To achieve this we will make use of mapping spaces. Recall that if X
and Y are topological spaces, then the space C(X, Y ) of continuous maps X → Y
can be equipped with the compact-open topology [11, p.285]. This is the topology
generated by the sets S(C,U) = {f : X → Y | f(C) ⊆ U} for C ⊆ X compact
and U ⊆ Y open. Here are some basic properties of the compact-open topology:

(1) If Y is Hausdorff then so is C(X, Y ). (See exercise 6 of [11, Ch.7].)
(2) If X, Y1, Y2 are topological spaces, then the map C(X, Y1) × C(X, Y2) →

C(X, Y1 × Y2), (f, g) 7→ f × g, is continuous. (This is a simple application
of the definition.)
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(3) If X ′, X, Y, Y ′ are topological spaces and α : X ′ → X and β : Y → Y ′ are
continuous, then the map C(X, Y ) → C(X ′, Y ′), f 7→ β ◦ f ◦ α is also
continuous. (Again, this is a simple application of the definition.)

(4) Let A be a Hausdorff topological abelian group, and let X be a topological
space. Then C(X,A), equipped with the operation of pointwise addition,
is a Hausdorff topological abelian group. (This is proved by combining
points 1, 2 and 3 with the fact that the structure maps of A are continuous.)

(5) If X, Y, Z are topological spaces with X locally compact Hausdorff, then
there is a bijection between continuous maps X × Y → Z and continuous
maps Y → C(X,Z). The bijection sends f : X × Y → Z to the map
g : Y → C(X,Z) defined by g(y)(x) = f(x, y). The assignment f 7→ g is
called currying, and its inverse is called uncurrying. (See Theorem 46.11
of [11].)

(6) If X is a locally compact Hausdorff space and A,B are HTAGs, then con-
tinuous maps X ×B → A that are homomorphisms in the second variable
are in bijection with continuous homomorphisms B → C(X,A), via the
map f 7→ g, g(b)(x) = f(x, b). This is again called currying, and its inverse
is uncurrying. (This is an immediate consequence of 5 above.)

Let us give a typical illustration of how we will use the framework of function
spaces and currying.

Example 2.3. Let X, Y be topological spaces, with X locally compact Hausdorff,
and let A be an HTAG. Then continuous maps g : X × ZY → A for which all
g(x,−) are homomorphisms are in bijection with continuous maps f : X×Y → A.
To see this, observe that by currying, continuous maps g : X ×ZY → A for which
each g(x,−) is a homomorphism are in bijection with continuous homomorphisms
ZY → C(X,A). And similarly, again by currying, continuous maps f : X×Y → A
are in bijection with continuous maps Y → C(X,A). But now continuous homo-
morphisms ZY → C(X,A) are in bijection with continuous maps Y → C(X,A) by
the universal property of the free HTAG, and this establishes the claim.

3. Polynomial functions of abelian (semi)groups

In this section we will establish the general theory of polynomiality that we
need in the rest of the paper. This theory will allow us to recognise and describe
‘polynomial’ functions that have values in an abelian group, despite the absence of
any notion of multiplication or exponentiation. The key idea here is to recognise
polynomiality in terms of the vanishing of iterated differences. Understanding

polynomials by means of differences between their values has a long history, at
least as far back as Newton’s method of divided differences, while characterising

polynomials by means of differences seems to go back to Fréchet [4, 5]. The most
relevant reference for us is Djoković’s paper [3], and we will recall and extend the
work of that paper throughout the section.
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3.1. Polynomial functions on [0,∞). We begin by stating the results that will
be used in the remainder of the paper.

Definition 3.1 (Polynomial expansions). Let M be an abelian group. A polyno-

mial expansion of a function f : [0,∞) → M is an expression of the form

f(a) = f0 + f1(a
1) + · · ·+ fd(a

d), a ∈ A

for some constant f0 ∈ A and some homomorphisms f1, . . . , fd : [0,∞) → M . We
call the fi the components of the polynomial expansion.

When they exist, such polynomial expansions are unique:

Proposition 3.2 (Uniqueness of polynomial expansions). Let M be an abelian

group. Suppose that f : [0,∞) → M has two polynomial expansions

f(a) = f0 + f1(a
1) + · · ·+ fd(a

d) and f(a) = g0 + g1(a
1) + · · ·+ gd′(a

d′).

Then d = d′ and fi = gi for i = 0, . . . , d.

Let M be an abelian group. For u ∈ [0,∞) the difference operator ∆u takes a
function f : [0,∞) → M into the function ∆uf : [0,∞) → M defined by

(∆uf)(a) = f(a+ u)− f(a)

for a ∈ [0,∞). Our next result is a criterion for the existence of polynomial
expansions, given in terms of these difference operators. It includes topologies
and parameters, which is essential for the applications, although it adds some
awkwardness to the phrasing.

Theorem 3.3 (Existence of polynomial expansions). Let X be a topological space,

let M be a topological abelian group, and let f : [0,∞)×X → M be a continuous

function such that the following condition holds for all x ∈ X:

∆u1
· · ·∆un+1

f(−, x) = 0 for all u1, . . . , un+1 ∈ [0,∞)

Then

f(a, x) = f0(x) + f1(a
1, x) + · · ·+ fn(a

n, x)

for all (a, x) ∈ A × X, where f0 : X → M and f1, . . . , fn : [0,∞) × X → M
are continuous functions, and each of f1, . . . , fn is a homomorphism in its first

variable.

The remainder of this section is dedicated to the proofs of the above results.

3.2. Algebraic polynomiality. We begin with a more general algebraic version
of the existence and uniqueness of polynomial expansions. Until further notice, let
A be an abelian semigroup and M an abelian group.

For u ∈ A the difference operator ∆u takes a function f : A → M into the
function ∆uf : A → M defined by

(∆uf)(a) = f(a+ u)− f(a)
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for a ∈ A. The difference operator satisfies the identities

∆u∆v = ∆v∆u (1)

∆u+v −∆u −∆v = ∆u∆v (2)

for any u, v ∈ A [3, Lemma 2]. If f : An → M is symmetric, and a homomorphism
in each of its variables, then for any u1, . . . , up ∈ A we have:

∆u1
· · ·∆up

f =

{

0 if p > n

n!f(u1, . . . , un) if p = n
(3)

In the second case, the notation indicates that ∆u1
· · ·∆up

f is the constant function
with value n!f(u1, . . . , un). See [3, pp.193-194].

In the present setting we need a generalised notion of polynomial expansion
that we phrase as follows. Given f : An → M , the diagonalisation of f , denoted
f ∗ : A → M , is defined by

f ∗(a) = f(a, . . . , a)

for a ∈ A. (When f : An → M is a homomorphism in each variable, we can think
of f ∗ as a kind of ‘monomial of degree n’.)

Definition 3.4. A polynomial expansion of a function f : A → M is an expression
of the form

f(a) = f ∗

0 (a) + f ∗

1 (a) + · · ·+ f ∗

d (a), a ∈ A

where each fi : A
i → M is symmetric and a homomorphism in each variable. (Note

that the domain of f0 is A0, so that f0 and f ∗

0 are simply constants.)

The next two results are the algebraic versions of Proposition 3.2 and Theo-
rem 3.3. In order to take account of the factor n! appearing in (3), they rely on an
invertibility condition holding for one of A and M . The case where M satisfies the
invertibility condition is essentially Theorem 3 of [3]. The case where A satisfies
the invertibility condition — this is the case we need for the rest of the paper —
follows [3] closely with some amendments to the details.

Proposition 3.5. Suppose that one of A and M satisfies the invertibility condition
that for each d > 1 the self-map x 7→ d!x is invertible. Suppose that f : A → M
has two polynomial expansions

f(a) =

d
∑

i=0

f ∗

i (a) and f(a) =

d′
∑

j=0

g∗j (a).

Then d = d′ and fi = gi for i = 0, . . . , d.

Proof. It is sufficient to consider the case where the gi all vanish, so that we must
show that the fi also all vanish. Observe from (3) that d!fd(u1, . . . , ud) = 0 for
all u1, . . . , ud ∈ A. When the invertibility condition holds for M we then obtain
fd(u1, . . . , ud) = 0 immediately. When the condition holds for A we can replace u1
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with u1

d!
, where u1

d!
denotes the image of u1 under the inverse of a 7→ d!a. This gives

us fd(u1, . . . , ud) = d!fd(
u1

d!
, . . . , ud) = 0 by additivity of fd in its first variable.

Thus fd = 0, and repeating the process shows that the fi all vanish. �

Theorem 3.6. Suppose that one of A and M satisfies the invertibility condition
that for each d > 1 the self-map x 7→ d!x is invertible. Then any function f : A →
M that satisfies the condition

∆u1
· · ·∆un+1

f = 0 for all u1, . . . , un+1 ∈ A (4)

for some n > 1 has a polynomial expansion

f =
n

∑

k=0

f ∗

k

where each fk : A
k → M is symmetric, and is a homomorphism in each of its

variables.

Proof. The result is proved by induction on n, the case n = 0 being immedi-
ate. Suppose now that n > 0, and that existence is shown for all smaller val-
ues of n, and suppose given f satisfying condition (4). Define h : An → M by
h(u1, . . . , un) = ∆u1

· · ·∆un
f . Condition (4) means that the right hand side is

indeed a constant. Equations (1) and (2) can be used to show that h is sym-
metric, and a homomorphism in each variable, as in the proof of [3, Theorem 3].
Define fn : A

n → M by fn(u1, . . . , un) =
1
n!
h(u1, . . . , un) in the case that M sat-

isfies the invertibility assumption, and by fn(u1, . . . , un) = (n!)n−1h(u1

n!
, . . . , un

n!
)

in the case that A satisfies the invertibility assumption. In each case we see
that fn is symmetric, and a homomorphism in each variable, and using (3) we
see that ∆u1

· · ·∆un
f ∗

n = ∆u1
· · ·∆un

f . So now the function f − f ∗

n satisfies (4)
with n replaced by n − 1, and so by the inductive hypothesis can be written
f − f ∗

n =
∑n−1

k=0 f
∗

k . This completes the proof. �

3.3. Specialising to [0,∞). We are now ready to specialise to the case A =
[0,∞). In order to get from diagonalisations f ∗

i (a) = fi(a, . . . , a), which appear
in the algebraic results of the last section, to functions of the form fi(a

i), which
appear in our main results, we use the following proposition.

Proposition 3.7. LetM be a Hausdorff topological abelian group. Let f : [0,∞)n →
M be a function that in each variable is a continuous homomorphism. Then for

any i 6= j and any a, λ1, . . . , λn ∈ [0,∞), we have

f(λ1, . . . , aλi, . . . , λn) = f(λ1, . . . , aλj, . . . , λn).

Consequently f(λ1, . . . , λn) = g(λ1 · · ·λn) where g : [0,∞) → M is the homomor-

phism defined by g(λ) = f(λ, 1, . . . , 1).

Proof. For simplicity take n = 2. If a is a natural number then f(aλ1, λ2) =
f(λ1, aλ2) since both are equal to af(λ1, λ2). And by applying this property to
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λ1/a, λ2/a we obtain f(λ1, λ2/a) = f(λ1/a, λ2). So altogether we obtain the re-
quired identity when a is rational. Now let a ∈ [0,∞) be arbitrary, and let (an) be
a sequence of non-negative rationals converging to a. Then since f is continuous
in each variable, we have

f(aλ1, λ2) = f( lim
n→∞

anλ1, λ2)

= lim
n→∞

f(anλ1, λ2)

= lim
n→∞

f(λ1, anλ2)

= f(λ1, lim
n→∞

anλ2)

= f(λ1, aλ2).

Here we have used the fact that M is Hausdorff to ensure that limits are uniquely
defined. �

Proof of Theorem 3.2. Observe that a polynomial expansion f(a) = f0 + f1(a
1) +

· · ·+fd(a
d) in the sense of Definition 3.1 is an expansion f(a) = g∗0(a)+ · · ·+g∗d(a)

in the sense of Definition 3.4, where we define gi : [0,∞)i → M by gi(a1, . . . , ai) =
fi(a1 · · ·ai). Thus Theorem 3.2 follows directly from Theorem 3.5. �

Proof of Theorem 3.3. Applying Theorem 3.6 to the function f(−, x) for each x ∈
X , we obtain a polynomial expansion in the sense of Definition 3.4

f(a, x) =
n

∑

k=0

fk(a, . . . , a, x)

for (a, x) ∈ [0,∞) × X , where each fk : A
k × X → M is symmetric in its first k

variables, and a homomorphism in each of its first k variables.
To see that the fi are continuous, we examine the proof of Theorem 3.6 and see

that fn is described in terms of the function h(u1, . . . , un, x) = ∆u1
· · ·∆un

f(−, x),
which is continuous by inspection, being a Z-linear combination of f(−, x) eval-
uated on Z-linear combinations of the ui. The passage from h to fn is given by
inverting the self-map a 7→ n!a, which is a homeomorphism of [0,∞), and this is
sufficient to show that fn is continuous. Replacing f by f − f ∗

n and repeating this
argument, it follows that the fi are all continuous.

Finally, define g1, . . . , gn : [0,∞) × X → M by gi(a, x) = fi(a, 1, . . . , 1, x) for
(a, x) ∈ [0,∞)×X , and g0 = f0 : X → M . Then the gi are all continuous, and by
Proposition 3.7 we have gi(a

i, x) = fi(a, . . . , a, x) for all (a, x) ∈ [0,∞)×X , and
consequently

f(a, x) = g0(x) + g1(a
1, x) + · · ·+ gn(a

n, x)

is the required polynomial expansion in the sense of Definition 3.1. �
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4. McMullen polynomiality with values in a topological abelian
group

In this section we will prove a version of McMullen polynomiality that applies to
continuous translation-invariant valuations with values in an arbitrary Hausdorff
topological abelian group. The main result is the following, which shows that
the functions λ 7→ ϕ(λX) satisfy the criterion for polynomiality that appears in
Theorem 3.3, thereby allowing the theory of section 3 to be applied.

Theorem 4.1. Let V be a finite dimensional real vector space, let ϕ : K(V ) → A be

a continuous translation-invariant valuation with values in a Hausdorff topological

abelian group A, and let X be a convex body of dimension d in V . Then the function

[0,∞) → A, λ 7→ ϕ(λX) vanishes under ∆b1 · · ·∆bd+1
for any b1, . . . , bd+1 ∈ [0,∞).

Theorem C of the introduction now follows by immediately by applying Theo-
rem 3.3 to the function λ 7→ ϕ(λX). In later sections we will use Theorems 3.2
and 3.3 in more detail to obtain Theorem B of the introduction.

The main ingredient in the proof of Theorem 4.1 is Lemma 4.2 below, which
is a version of the canonical simplex decomposition given by McMullen in [9,
Lemma 10], and elaborates on the decomposition used by Chen in [2, Lemma 3.4].

Let V be a vector space, let v1, . . . , vd be linearly independent vectors in V , and
define

σd = S(v1, . . . , vd) = {x1v1 + · · ·+ xdvd | 1 > x1 > · · · > xd > 0} .

This is the d-simplex with vertices 0, v1, v1 + v2, . . . , v1 + · · ·+ vd. Any d-simplex
with 0 as a vertex has this form for an appropriate choice of v1, . . . , vd.

Lemma 4.2 (A simplex decomposition). Let V be a vector space, let v1, . . . , vd ∈ V
be linearly independent, and let

σi = S(v1, . . . , vi), τd−i = S(vi+1, . . . , vd)

for i = 0, . . . , d. Let a, b > 0, and define

Ai = aσi + bτd−i + b(v1 + · · ·+ vi) for i > 0,

Bi = aσi−1 + bτd−i + b(v1 + · · ·+ vi) for i > 1.

Then

(a+ b)σd = A0 ∪ · · · ∪Ad (5)

and

(A0 ∪ · · · ∪ Ai−1) ∩ Ai = Bi for i > 1 (6)

Consequently, if ϕ is a translation-invariant valuation on K(V ), then we have

ϕ((a+ b)σd) =

d
∑

i=0

ϕ(aσi + bτd−i)−

d
∑

i=1

ϕ(aσi−1 + bτd−i). (7)
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Proof. One can check that

Ai = {x1v1 + · · ·+ xdvd ∈ (a+ b)σ | xi > b > xi+1},

Bi = {x1v1 + · · ·+ xdvd ∈ (a+ b)σ | xi = b}

where, in the cases i = 0, d, the inequalities involving x0, xd+1 are omitted. Con-
sequently

A0 ∪ · · · ∪Ai−1 = {x1v1 + · · ·+ xdvd ∈ (a + b)σd | b > xi},

with the inequality omitted in the case i − 1 = d. Equations (5) and (6) now
follow. Finally we use (5) and (6) and the fact that ϕ is a valuation to show that

ϕ((a+b)σd) =
∑d

i=0 ϕ(Ai)−
∑d

i=1 ϕ(Bi). The definition of the Ai and Bi, together
with translation-invariance of ϕ, now give (7). �

Proof of Theorem 4.1. Let us write f for the function f : [0,∞) → A, λ 7→ ϕ(λX).
We prove the theorem by induction on the dimension d. In the case d = 0 the func-
tion f is constant, so that it vanishes under ∆b1 as required. So let us assume that
d > 0 and that the result holds for all smaller values of d. Since ∆b1 · · ·∆bd+1

f(λ0)
depends continuously on X , we may assume that X is a polytope. And since ϕ is a
translation-invariant valuation, we may in fact assume that X is a simplex with a
vertex at the origin. Write X as σd = S(v1, . . . , vd) for appropriate v1, . . . , vd ∈ V .
Then by Lemma 4.2 we have:

∆bd+1
f(a) = f(a+ bd+1)− f(a)

=

d
∑

i=0

ϕ(aσi + bd+1τ
d−i)−

d
∑

i=1

ϕ(aσi−1 + bd+1τ
d−i)− ϕ(aσd)

=

d−1
∑

i=0

ϕ(aσi + bd+1τ
d−i)−

d
∑

i=1

ϕ(aσi−1 + bd+1τ
d−i)

Observe that every term in this expression has form ϕ(aσi + Y ) for some i in the
range 0 6 i 6 d − 1, where σi and Y lie in subspaces of V which have trivial
intersection. Let us fix such a term ϕ(aσi + Y ), let us write W for the affine sub-
space spanned by σi, and note that the assignment Z 7→ ϕ(Z +Y ) is a continuous
translation-invariant valuation on K(W ). It then follows by the inductive hypoth-
esis that Z 7→ ϕ(Z + Y ) vanishes under ∆b1 · · ·∆bd for any b1, . . . , bd ∈ [0,∞).
Consequently ∆b1 · · ·∆bd(∆bd+1

f) vanishes, as required. �

5. Groups of convex bodies

In this section we introduce the group CB(V,G) of convex bodies in V , and the
universal valuation with target CB(V,G), and we give examples of how to work
with these using the universal property.
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Definition 5.1. Let V be a finite-dimensional real vector space, and let G be
a group of affine-linear transformations of V . The group of convex bodies in V ,
denoted CB(V,G), is the quotient of the free Hausdorff topological group ZK(V )
on K(V ) by the closed subgroup generated by all elements of the form

[A ∪ B]− [A]− [B] + [A ∩B]

for A,B ∈ K(V ) such that A ∪ B ∈ K(V ), and all elements of the form

[A]− [gA]

for A ∈ K(V ) and g ∈ G. The universal continuous G-invariant valuation on

K(V ), denoted
Φ: K(V ) −→ CB(V,G),

is the composite K(V ) → ZK(V ) → CB(V,G), and we continue to denote it by
Φ(X) = [X ] for X ∈ K(V ).

Proposition 5.2 (The universal property of Φ). Let V be a finite-dimensional

real vector space, and let G be a group of affine-linear transformations of V . Then

Φ: K(V ) → CB(V,G) is a continuous G-invariant valuation, and it has the fol-

lowing universal property: If A is a Hausdorff topological abelian group, then there

is a bijection between the set of continuous homomorphisms CB(V,G) → A and

the set of continuous G-invariant valuations K(V ) → A. This bijection sends a

homomorphism CB(V,G) → A to its composite with Φ.

Proof. Let C ⊂ ZK(V ) denote the subgroup generated by the elements listed in
the definition of CB(V,G), so that CB(V,G) = ZK(V )/C̄. Continuous homo-
morphisms ϕ : CB(V,G) → A are the same thing as continuous homomorphisms
ZK(V ) → A that send the generators of C to 0, and by the universal property of
ZK(V ) (Definition 2.1) these are the same as continuous maps K(V ) → A that
satisfy the valuation and G-invariance properties. �

The injectivity part of the bijection in Proposition 5.2 can be phrased simply as
follows. (Most of our applications of the universal property will be of this part.)

Corollary 5.3. Let f, g : CB(V,G) → A be two continuous homomorphisms into

the same Hausdorff topological abelian group A. If f([X ]) = g([X ]) for all X ∈
K(V ), then f = g.

Let us use the universal property to construct a family of maps which will be
important throughout the rest of the paper. We cover this in detail to try to
emphasise how the machinery works.

Example 5.4 (Dilation maps). Let V be a finite-dimensional real vector space.
To begin with let us take λ ∈ [0,∞). Then dilation by λ determines a map

K(V ) → K(V ), X 7→ λX . This map is continuous, G-invariant, and preserves
unions and intersections. Composing with Φ, we therefore obtain a continu-
ous G-invariant valuation K(V ) → CB(V,G) defined by X 7→ [λX ]. Finally,
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by the universal property of Φ, this corresponds to a continuous homomorphism
CB(V,G) → CB(V,G) for which [X ] 7→ [λX ].

As λ varies, the maps just constructed assemble into a dilation map

D : [0,∞)× CB(V,G) → CB(V,G)

for which (λ, [X ]) 7→ [λX ]. We want this map to be continuous; this is not
immediate from the previous paragraph, but we can prove it using currying. The
map [0,∞) × K(V ) → K(V ), (λ,X) 7→ λX is continuous and, by composing
with Φ, we obtain a continuous map [0,∞)×K(V ) → CB(V,G), (λ,X) 7→ [λX ].
By currying we obtain a continuous map K(V ) → C([0,∞),CB(V,G)), X 7→
(λ 7→ [λX ]) that is a G-invariant valuation, as in the last paragraph. By the
universal property of Φ, this determines a continuous homomorphism CB(V,G) →
C([0,∞),CB(V,G)) for which [X ] 7→ (λ 7→ [λX ]). Finally, by uncurrying we
obtain the required continuous map D : [0,∞)× CB(V,G) → CB(V,G).

Let us establish two more properties of D. First,

D(1, x) = x for x ∈ CB(V,G).

Indeed, D(1,−) sends [X ] to [1X ] = [X ] for any X ∈ K(V ), and the identity map
has the same property, and the two must coincide. Second,

D(λ,D(µ, x)) = D(λµ, x) for λ, µ ∈ [0,∞), x ∈ CB(V,G).

Indeed, the dilation map [0,∞) × K(V ) → K(V ) satisfies λ(µX) = (λµ)X , and
so the two maps D(λ,D(µ,−)), D(λµ,−) send [X ] to [λ(µX)] = [(λµ)X ] for any
X ∈ K(V ), and they therefore coincide.

6. The structure of the convex body groups

In this section we use polynomiality to investigate the structure of the groups
CB(V,G), and we give the proof of Theorems A and B.

Let V be a finite dimensional real vector space and let G be a group of affine-
linear transformations of V . Recall the dilation map

D : [0,∞)× CB(V,G) → CB(V,G)

from Example 5.4, which is characterised by the fact that D(λ, [X ]) = [λX ].

Proposition 6.1. Let V be a real vector space of dimension d, and let G be a

group of affine-linear transformations of V that includes all translations. Then

the dilation map

D : [0,∞)× CB(V,G) → CB(V,G)

of Example 5.4 satisfies

∆u1
· · ·∆ud+1

D(−, x) = 0 (8)

for any x ∈ CB(V,G) and any u1, . . . , ud+1 ∈ [0,∞).



GROUPS OF CONVEX BODIES 15

Proof. Applying Theorem 4.1 to the universal valuation Φ shows that, for any
X ∈ K(V ), the map λ 7→ Φ(λX) = [λX ] vanishes under ∆u1

· · ·∆um+1
for any

u1, . . . , um+1 ∈ [0,∞), where m is the dimension of X . It then follows that λ 7→
[λX ] vanishes under ∆u1

· · ·∆ud+1
for any u1, . . . , ud+1 ∈ [0,∞). Since [λX ] =

D(λ, [X ]), it follows that (8) holds in the case x = [X ].
Now fix λ ∈ [0,∞) and consider the map CB(V,G) → CB(V,G), that sends

x ∈ CB(V,G) to ∆u1
· · ·∆ud+1

D(−, x)(λ). This is a continuous homomorphism,
and by the last paragraph it vanishes whenever x = [X ] for X ∈ K(V ), so by
Corollary 5.3 it vanishes identically, as required. �

The last proposition allows us to apply the existence of polynomial expansions
(Theorem 3.3) to D to obtain the following definition.

Definition 6.2 (The dilation components). Let V be a real vector space of di-
mension d, and let G be a group of affine-linear transformations of V that includes
all translations. We define the dilation components

ρ0 : CB(V,G) −→ CB(V,G) and ρ1, . . . , ρd : [0,∞)× CB(V,G) −→ CB(V,G)

to be the components of the polynomial expansion of the dilation map D. Thus
the ρi are uniquely determined by the fact that

D(λ, x) = ρ0(x) + ρ1(λ
1, x) + · · ·+ ρd(λ

d, x) (9)

for all λ ∈ [0,∞) and x ∈ CB(V,G), and by the fact that ρi(−, x) is a homomor-
phism for each i = 1, . . . , d and x ∈ CB(V,G).

In what follows we will abuse notation by writing ρi(λ
i, x) for i = 0, . . . , d,

including the case i = 0, thus ignoring the fact that the domain of ρ0 is CB(V,G)
rather than [0,∞) × CB(V,G). We hope that this will not cause the reader too
much consternation; it will certainly streamline our proofs in many places.

Proposition 6.3. In the situation of Proposition 6.1, the map ρ0 is a homomor-

phism, and the maps ρ1, . . . , ρd are homomorphisms in their second variable.

Proof. The dilation map D : [0,∞)×CB(V,G) → CB(V,G) is a homomorphism in
its second variable. Fixing x, y ∈ CB(V,G), we haveD(λ, x+y) = D(λ, x)+D(λ, y)
for all λ ∈ [0,∞). Applying (9) to each term of this equation and rearranging gives
us

d
∑

i=0

ρi(λ
i, x+ y) =

d
∑

i=1

(

ρi(λ
i, x) + ρi(λ

i, y)
)

so that we have two polynomial expansions of the same function. (Observe that
ρi(−, x) and ρi(−, y) are homomorphisms, so that the same is true of ρi(−, x) +
ρi(−, y).) Applying uniqueness (Proposition 3.2) gives us the result. �
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Proposition 6.4. In the situation of Proposition 6.1, the dilation components

satisfy the relations

ρi(λ, ρi(µ, x)) = ρi(λµ, x) and ρi(λ, ρj(µ, x)) = 0 for i 6= j

for all λ, µ ∈ [0,∞) and all x ∈ CB(V,G).

Proof. The dilation map satisfies D(λ,D(µ, x)) = D(λµ, x) for all λ, µ ∈ [0,∞)
and all x ∈ CB(V,G) so that by applying (9) three times we obtain the identity:

d
∑

i,j=0

ρi(λ
i, ρj(µ

j, x)) =

d
∑

k=0

ρk(λ
kµk, x)

Fixing µ and x this identity relates two polynomial expansions in the variable λ,
so that by uniqueness of polynomial expansions (Proposition 3.2) we have

d
∑

j=0

ρi(λ
i, ρj(µ

j, x)) = ρi(λ
iµi, x)

for each i. Fixing λ and x, this identity relates two polynomial expansions in the
variable µ, and so by applying uniqueness once more we obtain the result. �

Definition 6.5 (The McMullen idempotents). In the situation of Proposition 6.1,
we define the McMullen idempotents to be the homomorphisms

e0, . . . , ed : CB(V,G) −→ CB(V,G)

defined by e0 = ρ0 and ei(x) = ρi(1, x) for i = 1, . . . , d and x ∈ CB(V,G). By
equation (9) we have

e0 + · · ·+ ed = 1

since D(1,−) is the identity map. And by Proposition 6.4 we have

e2i = ei, eiej = 0

for i, j = 0, . . . , d and i 6= j. Thus the McMullen idempotents ei form a complete
set of orthogonal idempotents. They therefore express CB(V,G) as a direct sum
of closed subgroups

CB(V,G) = CB0(V,G)⊕ · · · ⊕ CBd(V,G)

where CBi(V,G) = ei(CB(V,G)) = ker(1 − ei) for each i. We refer to this as
the McMullen decomposition of CB(V,G). With respect to this decomposition we
write the universal valuation Φ: K(V ) → CB(V,G) as

Φ = Φ0 ⊕ · · · ⊕ Φd.

Note that if X is a convex body in V , then [X ] ∈ CB(V,G) will not necessarily
lie in a single group CBi(V,G). Rather, it will typically have nonzero components
in CBi(V,G) for each i up to and including the dimension of X .

We now come to the main theorem of the section.
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Theorem 6.6. (1) CB0(V,G) is a copy of Z generated by the class of any

one-point convex body.

(2) For i > 0, each CBi(V,G) admits the structure of a Hausdorff topological

vector space over R, extending its structure as a topological abelian group.

With respect to this vector space structure, the valuation Φi : K(V ) →
CBi(V,G) is homogeneous of degree i.

Lemma 6.7. Let p = {0} denote the one-point convex body consisting of the origin

alone. Then [p] ∈ CB0(V,G) and

Φ0(X) = e0([X ]) = [p]

for any X ∈ K(V ).

Proof. Φ0(X) = e0([X ]) by the definition of Φ0. And to prove that e0([X ]) = [p]
we set λ = 0 in (9) �

Lemma 6.8. The maps ei and ρi are compatible in the following sense:

ei(ρj(λ, x)) = ρi(λ, ej(x)) =

{

ρi(λ, x) if i = j

0 if i 6= j

In particular, ρi takes values in CBi(V,G).

Proof. This follows from Proposition 6.4 by specialising one or other of the scaling
factors that appear there to 1. �

Proof of Theorem 6.6. Let us again write p = {0} for the convex body in V con-
sisting of just the origin. To prove the first part we define maps

β : Z → CB0(V,G), γ : CB0(V,G) → Z

as follows. Define β by the specification β(1) = [p]. For γ, consider the constant
valuation ϕ0 : K(V ) → Z with value 1. This corresponds to a homomorphism
ϕ̄0 : CB(V,G) → Z, and we define γ to be the restriction of ϕ̄0 to CB0(V,G). We
will show that β and γ are inverse isomorphisms.

Let π0 : CB(V,G) → CB0(V,G) denote the projection map, so that π0 is just
obtained from e0 : CB(V,G) → CB(V,G) by restricting the codomain. In particu-
lar π0[X ] = e0[X ] = [p] for any X ∈ K(V ). Now βγπ0 = βϕ̄0e0 by the definition
of γ. Evaluating on [X ] gives us

βγπ0([X ]) = βϕ̄0e0([X ]) = βϕ̄0[p] = β(1) = [p] = π0[X ].

Thus the maps βγπ0 and π0 coincide on elements [X ] for X ∈ K(V ), and are
therefore equal by the universal property. Since the image of π0 is CB0(V,G),
it follows that βγ is the identity map as required. For the other composition,
γβ(1) = γ([p]) = ϕ̄0([p]) = 1 so that γβ is also the identity map.

For the second part, we consider the continuous map ∗ defined as follows:

∗ : [0,∞)× CBi(V,G) −→ CBi(V,G), (λ, x) 7−→ λ ∗ x = ρi(λ, x)
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(This takes values in CBi(V,G) by Lemma 6.8.) It satisfies the following properties
for all λ, µ ∈ [0,∞) and all x, y ∈ CBi(V,G):

(1) (λ+µ) ∗ x = λ ∗ x+ µ ∗ x, since ρi is a homomorphism in its first variable.
(2) λ ∗ (x+ y) = λ ∗ x+ λ ∗ y by Proposition 6.3.
(3) λ ∗ (µ ∗ x) = λµ ∗ x by Proposition 6.4.
(4) 1 ∗ x = x since 1 ∗ x = ρi(1, x) = ei(x) = x. Here ei(x) = x because

x ∈ CBi(V,G).

We may extend ∗ to a map

⋆ : R× CBi(V,G) → CBi(V,G)

defined as follows:

λ ⋆ x =

{

λ ∗ x if λ > 0

−((−λ) ∗ x) if λ 6 0

Put another way, if λ ∈ [0,∞), then (±λ)⋆x = ±(λ∗x). From the points above it
follows that 0∗x = 0 for any x, and consequently ⋆ is well-defined, and moreover ⋆
is continuous by the gluing lemma. The four points above continue to hold for ⋆ in
place of ∗ by a tedious but straightforward exercise. But this now shows precisely
that ⋆ determines the structure of a real topological vector space on CBi(V,G).
Since we already know that each CBi(V,G) is Hausdorff, this completes the proof
that the CBi(V,G) are Hausdorff topological vector spaces.

To prove homogeneity note that Φi(λX) is the component of Φ(λX) that lies
in CBi(V,G), and that Φi(X) = eiΦ(X). Now Φ(λX) = D(λ, [X ]) = ρ0([X ]) +
ρ1(λ

1, [X ]) + · · ·+ ρd(λ
d, [X ]) so that

Φi(λX) = ρi(λ
i, [X ]) = ρi(λ

i, ei[X ]) = ρi(λ
i,Φi(X)) = λi ⋆ Φi(X)

as required. Here the equality ρi(λ
i, [X ]) = ρi(λ

i, ei[X ]) follows from Lemma 6.8.
�

Proof of Theorem B. The result follows by combining the decomposition obtained
in Definition 6.5, with Lemma 6.7 and Theorem 6.6. �

Proof of Theorem A. Let p = {0} be the one-point space at the origin, and let
X ∈ K(V ). Under dilation we have 0 ·X = p. By homogeneity we therefore have
Φi(p) = Φi(0 · X) = 0iΦi(X) = 0 for i > 0. An arbitrary G-invariant continuous

valuation ϕ : K(V ) → A has ϕ = ϕ̄ ◦ Φ =
∑d

i=0 ϕ̄ ◦ Φi so that c = ϕ(p) = ϕ̄Φ0(p).

Consequently ϕ − c = ϕ̄ ◦
(

∑d
i=1Φi

)

factors through the Hausdorff topological

vector space
⊕d

i=1 CBi(V,G) as required. �
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