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THE DENSITY OF PLANAR SETS AVOIDING UNIT DISTANCES

GERGELY AMBRUS, ADRIÁN CSISZÁRIK, MÁTÉ MATOLCSI, DÁNIEL VARGA,
AND PÁL ZSÁMBOKI

Abstract. By improving upon previous estimates on a problem posed by L. Moser, we
prove a conjecture of Erdős that the density of any measurable planar set avoiding unit
distances is less than 1/4. Our argument implies the upper bound of 0.2470.

1. Sets avoiding unit distances

How ‘dense’ can a set in R
d be, if it contains no pairs of points being unit-distance

apart? This natural question, raised by Leo Moser in the early 1960s (see [Cr67, Er85]),
belongs to a topic known as the combinatorics of unit distances in geometry. It is a close
relative of the famous Hadwiger–Nelson problem posed by Nelson in 1950, who asked for
the minimum number of colors that may be assigned to the points of Rd so that points at
distance 1 apart are colored differently. This question has enjoyed a surge of interest in the
last years, triggered by the breakthrough result of de Grey [deG18] showing that the plane
is not 4-colorable, and has been further investigated by the PolyMath16 project [PM22].
Given a proper coloring, it is readily seen that each color class must avoid unit distances –
hence we arrive at the main object of the present paper.

To make the formulation precise, some definitions are due. A graph with vertices in R
d is

called a unit distance graph if two vertices are adjacent if and only if they are at Euclidean
distance 1 apart. The unit distance graph of Rd is obtained by taking all points of Rd as
vertices, and its chromatic number is denoted by χ(Rd). That χ(R2) 6 7 is shown by a
periodic coloring of cells of a hexagonal lattice, constructed by Hadwiger [Ha45]. For over
half a century, the best lower bound had remained χ(R2) > 4. This is implied by a 7-vertex
unit distance graph, the Moser spindle M7 (Figure 1), constructed by Leo and William
Moser [MoM61], whose chromatic number is 4 (we note that the estimate was already
known to Nelson, cf. [So09]). Recently, de Grey [deG18] proved the breakthrough result
χ(R2) > 5. An alternate proof was given by Exoo and Ismailescu [ExI20], while various
simplifications and generalizations have been subject to the PolyMath16 project [PM22].

Imposing the restriction on the color classes to be measurable leads to the notion of
measurable chromatic number of R

d, denoted by χm(Rd). Falconer [Fa81] proved that
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2 G. AMBRUS, A. CSISZÁRIK, M. MATOLCSI, D. VARGA, AND P. ZSÁMBOKI

Figure 1. The Moser spindle M7 [MoM61]

χm(Rd) > d + 3 for each d > 2 – in particular, χm(R2) > 5. Our result provides an
alternative proof to this statement. Moreover, it also yields that one cannot cover more
than 0.988 fraction of the plane with 4 colors.

A set A ⊂ R
d which is independent in the unit distance graph is said to avoid unit

distances, or to be 1-avoiding or unit-distance free. Assume that A ⊂ R
d is measurable.

The upper density of A, denoted by δ(A), is defined by

δ(A) = lim sup
R→∞

λd(A ∩Bd(x,R))

λd(Bd(x,R))
,

where x ∈ R
d is fixed, λd is the d-dimensional Lebesgue measure, and Bd(x,R) denotes the

d-dimensional ball of radius R centered at x. The definition is valid since the upper density
is known to be independent of the choice of x ∈ R

d. In case the limit of the above quantity
also exists, we call it the density of A, denoted by δ(A):

δ(A) = lim
R→∞

λd(A ∩Bd(x,R))

λd(Bd(x,R))
.

This is again independent of x.
Let m1(R

d) denote the supremum of the upper densities of unit-distance free, measurable
sets in R

d:

(1) m1(R
d) = sup{δ(A) : A ⊂ R

d is 1-avoiding and measurable}.
The connection to measurable chromatic numbers is provided by the simple fact χm(Rd) >
1/m1(R

d).
Determining m1(R

2) was asked and popularized by Leo Moser [Mo66, Problem 25]. The
easiest non-trivial lower bound is obtained by placing open circular discs of radius 1/2 at
the regular hexagonal lattice generated by two vectors of length 2 enclosing angle π/3. This

is a 1-avoiding set of density π/(8
√
3) ≈ 0.2267. A slight improvement was achieved by

Croft [Cr67]. His construction (see Figure 2) is a lattice arrangement of a tortoise, that
is, the intersection of an open disc of radius 1/2 with an open regular hexagon of height
x < 1. Placing copies of this tortoise centred at each point of the regular hexagonal lattice
with basis vectors of length 1+x results in a unit-distance free set. Its density proves to be
maximal at x = 0.96553 . . . yielding m1(R

2) > 0.22936. To this date, no better construction
has been given.
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Figure 2. Croft’s tortoise construction [Cr67]

Larman and Rogers [LaR72] formulated a variant of the question restricted to sets con-
tained in the d-dimensional unit ball Bd: they conjectured that the Lebesgue measure of
a 1-avoiding closed set A ⊂ Bd is less than 1/2d times the Lebesgue measure of the ball.
According to their comment added in proof, ‘In fact this conjecture was made some years
ago by Leo Moser.’ If true, this would have implied that m1(R

d) 6 1/2d by averaging.
However, the conjecture turned out to be false for all d ≥ 2, as demonstrated by concrete
examples in [deOV19].

Regarding the maximal density in the whole plane, P. Erdős wrote in [Er85]: ‘It seems
very likely that m1(R

2) is less than 1/4.’ The main goal of this paper is to prove this
conjecture.

Let A be a planar, measurable unit-distance free set with density close to m1(R
2) (with

a slight abuse of terminology we will assume that the density of A is equal to m1(R
2)). The

easiest non-trivial upper bound on m1(R
2) is 1/2, which is easily implied by the fact that

given an arbitrary unit vector u, the sets A and A+ u must be disjoint. Taking u and v to
be the side vectors of a unit regular triangle emanating from a given vertex, we immediately
deduce that A, A+u and A+ v are also pairwise disjoint, hence δ(A) 6 1/3. These are the
simplest instances of upper bounds based on independence numbers. Given a unit distance
graph G, let α(G) denote its independence number. In notation, we sometimes identify G
with its vertex set V (G), and simply write v ∈ G instead of v ∈ V (G). Consider the set of
translates of A by all location vectors of the vertices of G. Observe that any point x ∈ R

2

may be covered by at most α(G) of these translates, since otherwise there would be two
connected vertices u, v ∈ G such that x ∈ (A+ u) ∩ (A+ v) — but this latter is equivalent
to the fact that both x − u and x − v are points of A, which is impossible since A avoids

unit distances. Hence, m1(R
2) 6 α(G)

|G| . Taking G to be the Moser spindle yields the upper

bound of 2/7 ≈ 0.2857.
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There are two essentially different approaches for giving upper bounds on m1(R
2). One

direction, which generalizes the idea above, is to search for unit distance graphs with large
fractional chromatic number, which is defined as follows (see e.g. [CrR17]). Given a graph
G, we assign to each independent set in G a non-negative weight, such that each vertex
appears in independent sets with weights summing to at least 1. The fractional chromatic
number χf (G) is the minimum total sum of weights on the independent sets satisfying this
condition (for an infinite graph G, take the supremum of χf (H), where H ⊂ G is a finite
subgraph). The formal definition will be given in Section 3. For instance, the fractional
chromatic number of the Moser spindle is 7/2. The fractional chromatic number of the unit
distance graph on R

2, χf (R
2), was first studied by Fisher and Ullmann [FiU92], followed

by a sequence of steadily increasing lower bounds. Clearly, χf (G) 6 χf (R
2) holds for any

unit distance graph G in the plane.
The crucial link between m1(R

2) and χf (R
2) is provided by the estimate m1(R

2) 6

1/χf (R
2) 6 1/χf (G) for any unit distance graph G in the plane (see e.g. [SchU11, Section

3.6] or Corollary 1 below). In particular, substituting the Moser spindle M7 for G yields
the bound 2/7 we have seen above. In 2018, Bellitto, Pêcher, and Sédillot [BePS21] utilized
this method to find a unit distance graph G on 607 vertices with χf (G) > 3.8991 which
yields m1(R

2) 6 0.2565. In 2022, J. Parts [Pa22] announced the existence of a graph H on
1057 vertices with χf (H) > 3.9898. If verified (and published), this would have yielded the
strongest estimate on m1(R

2) prior to the present work.
The other direction stems from a combination of harmonic analysis and linear optimiza-

tion. The main idea here is to exploit the fact that the auto-correlation function of A
defined by f(x) = δ(A ∩ (A − x)) is (completely) positive definite. Clearly, δ(A) = f(0).
This value is set as the target function of a linear program whose variables are the Fourier
coefficients of f(x), with constraints stemming from elementary combinatorial relations on
small unit distance graphs or point sets. The work of Székely [Sz84], which yields an upper
bound of 12/43 ≈ 0.2791, acts as a forerunner to this approach: he utilized estimates on
f(x) generated by three different point sets. In Section 6 we are going to illustrate how his
estimates fit into our framework. The next step in this direction was taken by de Oliveira
Filho and Vallentin [deOV10], who — applying constraints corresponding to three regular
triangles — improved the estimate to 0.2684. Involving more subtle constraints, Keleti,
Matolcsi, de Oliveira Filho and Ruzsa [KeMOR16] showed that m1(R

2) 6 0.2588. Finally,
by refining the arguments further and including linear constraints generated by the study
of triple correlations, Ambrus and Matolcsi [AmM22] proved that m1(R

2) 6 0.2544, which,
prior to the present paper, has been the strongest published estimate. The advantage of
this method is that the arising upper bound is guaranteed to converge to m1(R

2) as more
and more complete positivity constraints on f are specified (see [DeOV22] for details).

Our method is a common generalization of the two approaches. We prove the following
bound, which finally breaks the barrier of 1/4.

Theorem 1. Any Lebesgue measurable, 1-avoiding planar set has upper density at most
0.2470.

We conclude the section by listing a number of related results. The general charac-
terization of the maximum-density of distance-avoiding sets as the optimal solutions of
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a convex optimization problem was established by DeCorte, de Oliveira Filho and Val-
lentin [DeOV22]. It was proven in [KeMOR16] that the density of a planar unit-distance
avoiding set with block structure is less than 1/4. We do not list higher dimensional esti-
mates here (see e.g. [BaPT15, deOV10]). Further historical details related to unit distance
problems may be found in the books of Brass, Moser and Pach [BrMP05] and Soifer [So09]
as well as the survey article of Székely [Sz02].

2. Inclusion-exclusion constraints

Starting with the work of Székely [Sz84], a main source of estimates on m1(R
2) has been

the autocorrelation function of sets avoiding unit distances. This is defined as follows. Let
A ⊂ R

2 be measurable. The autocorrelation function f : R2 → R of A is given (assuming
that the densities in question exist) by

(2) f(x) = δ(A ∩ (A− x)).

Clearly, δ(A) = f(0), and A being unit-distance free implies the condition that

(3) f(x) = 0 for all unit vectors x ∈ R
2.

In order to use Fourier analytic tools we assume that A is periodic with respect to a lattice
L ⊂ R

2, i.e. A = A + L. Under this assumption, the density of A exists provided it
is measurable. Moreover, m1(R

2) may be approximated arbitrarily well by densities of 1-
avoiding, measurable, periodic sets [deOV10, KeMOR16]. Therefore, we may indeed impose
the periodicity assumption on A with no effect on the density estimates on m1(R

2).
The estimates of [Sz84, deOV10, KeMOR16, AmM22] essentially relied on elementary

density estimates stemming from planar point sets and unit distance graphs of steadily
increasing complexity. Roughly speaking, these are derived from a reduced version of the
inclusion-exclusion principle (sometimes in disguise). We utilize the complete inclusion-
exclusion formula, which induces no loss in the density estimates. This idea was first
suggested in [KeMOR16, Remark 3.3], but has not been explored since. As we will see in
Corollary 1, this leads to a reformulation of the bound coming from the fractional chromatic
number.

For a positive integer n, write [n] = {1, . . . , n} and
{
n
2

}
= {{i, j} : i, j ∈ [n], i 6= j}.

Let σ(n) = {±1}n, the set of n-tuples of signs of the form ε = (ε1, . . . , εn). For a given
ε ∈ σ(n), introduce

I(ε) = {i ∈ [n] : εi = 1}.
Moreover, for any I ⊂ [n], let

σ(n; I) = {ε ∈ σ(n) : I ⊂ I(ε)} = {ε ∈ σ(n) : ε|I = 1}.
When the cardinality of I is at most 2, we simply write σ(n; i) := σ(n; {i}) and σ(n; i, j) :=
σ(n; {i, j}).

For a set Y ⊂ R
2 and ν ∈ {±1} introduce the notation

(4) Y ν =

{
Y , if ν = 1

Y c, if ν = −1

where Y c = R
2 \ Y .
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Now, let X = {x1, . . . , xn} ⊂ R
2. For each ε ∈ σ(n), set

IX(ε) = {xi : εi = 1}

and

(5) aX(ε) = δ
( n⋂

i=1

(A− xi)
εi
)
.

The numbers {aX(ε) : ε ∈ σ(n)} are the densities of ‘atoms’ (i.e. components) of the
Venn diagram of the set system {A− xi : i ∈ [n]}; that is, for any non-empty I ⊂ [n],

(6) δ
(⋂

i∈I

(A− xi)
)
=

∑

ε∈σ(n;I)

aX(ε).

Note that since A avoids unit distances,

aX(ε) = 0 if IX(ε) is not an independent set in the unit distance graph.

These atoms will be referred to as non-independent, while the others are independent atoms.

Lemma 1 (Inclusion-exclusion constraints). Let f be the autocorrelation function of a
measurable, periodic, 1-avoiding set A ⊂ R

2, as defined in (2). Furthermore, let X =
{x1, . . . , xn} ⊂ R

2. Then the set of reals {aX(ε) : ε ∈ σ(n)} defined by (5) satisfy the
following properties:

(ieP) aX(ε) > 0 for each ε ∈ σ(n)

(ieI) aX(ε) = 0 for each ε ∈ σ(n) such that IX(ε) contains two points at unit distance

(ieT)
∑

ε∈σ(n) aX(ε) = 1

(ie1)
∑

ε∈σ(n;i) aX(ε) = f(0) = δ(A) for every i ∈ [n]

(ie2)
∑

ε∈σ(n;i,j) aX(ε) = f(xi − xj) for every {i, j} ∈
{
n
2

}
.

Proof. Properties (ieP), (ieI) and (ieT) hold trivially. For (ie1) and (ie2), note that by (6),
the sums on the left-hand side are δ(A − xi) and δ((A − xi) ∩ (A − xj)), respectively; by
the invariance of the density of a set by translations we readily obtain that these further
equal to δ(A) and δ((A − (xi − xj)) ∩A). �

We can give an upper bound on δ(A) by maximizing f(0) on the feasible set defined by
(ieP), (ieI), (ieT), (ie1). Equivalently, after dividing all variables by δ(A), that is, defining
ãX(ε) := aX(ε)/δ(A), we can get a lower bound on 1/δ(A) for any unit distance avoiding
set A by solving the following linear program in the variables ãX(ε):
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(7)

minimize
∑

ε∈σ(n)

ãX(ε) subject to:

ãX(ε) > 0 for each ε ∈ σ(n);

ãX(ε) = 0 for each ε ∈ σ(n) for which IX(ε) is not independent;
∑

ε∈σ(n;i)

ãX(ε) = 1 for every i ∈ [n].

As we will see in the next section, this is equivalent to the bound based on fractional
chromatic numbers. By also utilizing (ie2), we will go beyond fractional chromatic numbers,
and build a connection between the two different approaches used to estimate m1(R

2)
described in Section 1.

3. Fractional chromatic numbers

Recall the definition of the fractional chromatic number of a finite graph G defined on a
vertex set X (for a detailed history see [CrR17]). Denote by I(G) the set of all independent
sets of G, and let I(G,x) be the set of all those independent sets which include the vertex
x ∈ X. We will assign non-negative weights γ(S) to each S ∈ I(G), and for technical
reasons we let γ(S) = 0 for any S ⊂ X,S /∈ I(G).

Definition 1. Let G be a finite graph on a vertex set X. The fractional chromatic number
of G, denoted by χf (G), is defined as

(8) χf (G) = min
∑

S⊂X

γ(S)

subject to γ(S) > 0 for every S ∈ I(G), γ(S) = 0 for every S /∈ I(G) and

(9)
∑

S∈I(G,x)

γ(S) > 1

for every vertex x ∈ X.

Note that restricting the variables γ(S) to be integers leads to the notion of the (classical)
chromatic number of G. Also, for an infinite graph G′ it is customary to define χf (G

′) =
sup{χf (G) : G ⊂ G′, G is finite}.

We next show that equality may be required to hold in (9).

Lemma 2. For a finite graph G, the value of χf (G) is also given as the solution of the
modified linear program of Definition 1 obtained by replacing (9) with

(10)
∑

S∈I(G,x)

γ(S) = 1

for each x ∈ G.
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Proof. Take a weight system {γ(S) : S ∈ I(G)} which constitutes a solution of (8),
moreover, it minimizes

(11)
∑

x∈X


−1 +

∑

S∈I(G,x)

γ(S)


 .

By (9), the above sum is guaranteed to be non-negative; we are going to show that it equals
0, which suffices for the proof of Lemma 2.

Assume on the contrary that for a vertex x ∈ G,
∑

S∈I(G,x) γ(S) = 1+ν holds with ν > 0.

Note that the minimality condition (8) and condition (9) ensure that γ({x}) 6 1. Hence,
there exists an independent set S0 ∈ I(G) with x ∈ S0, S0 6= {x} and γ(S0) > 0. Introduce
µ = min{ν, γ(S0)}. Define a modified weight system γ̃ by setting γ̃(S0) = γ(S0) − µ,
γ̃(S0 \ {x}) = γ(S0 \ {x}) + µ, and leaving the other weights unchanged. Note that

∑

S∈I(G)

γ̃(S) =
∑

S∈I(G)

γ(S),

and ∑

S∈I(G,y)

γ̃(S) =
∑

S∈I(G,y)

γ(S)

holds for every y ∈ G, y 6= x, while
∑

S∈I(G,x)

γ̃(S) = −µ+
∑

S∈I(G,x)

γ(S) > −ν +
∑

S∈I(G,x)

γ(S) = 1.

Thus,
∑

S∈I(G,x) γ̃(S) <
∑

S∈I(G,x) γ(S) contradicts the minimality of (11). �

As a direct consequence we obtain the following (cf. [SchU11, Section 3.6]):

Corollary 1. For any measurable, periodic 1-avoiding set A ⊂ R
2, and any finite unit-

distance graph G in the plane, we have 1/δ(A) > χf (G). Therefore m1(R
2) 6 1/χf (G)

and, taking supremum over G, m1(R
2) 6 1/χf (R

2).

Proof. Let G be a finite unit distance graph in the plane with vertex set X. When calculat-
ing the fractional chromatic number of G , we can assume equality in (9), by Lemma 2. This
leads to the same linear program as in (7), with the correspondence between the variables
of (9) and (7) being given as ãX(ε) = γ(IX(ε)).

As the linear program (7) gives a lower bound on 1/δ(A), we get 1/δ(A) > χf (G). �

4. Averaging

We will apply a standard averaging technique, which proves to be a key step. Recall
that A is a measurable, periodic, 1-avoiding planar set, that we keep fixed from now on
(also meaning that A is not varied by the isometries studied below). As before, let X =
{x1, . . . , xn} ⊂ R

2 be a finite set in the plane. Note that the relations of Lemma 1 remain
valid for every image of the subset X under an isometry ϕ of R2 with the values of aϕ(X)(ε)
being provided by (5). In particular, we may take the average of these relations over the
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orthogonal group O(2) of the plane. Let µ denote the Haar probability measure on O(2),
and introduce the notations

(12) åX(ε) =

∫

O(2)
δ
( n⋂

i=1

(A− ϕ(xi))
εi
)
dµ(ϕ)

for ε ∈ σ(|X|) and
f̊(x) =

∫

O(2)
δ
(
A ∩ (A− ϕ(x))

)
dµ(ϕ)

for x ∈ R
2. Note that

(13) f̊(x) =
1

2π

∫

S1

f(ξ|x|) dω(ξ),

where ω is the perimeter measure on the unit circle S1. However, this does not generally
hold for åX(ε) since reflections also have to be taken into account.

This averaging process has two-fold benefit. First, f̊ is radial (i.e. it depends only on
|x|). Second, the averaging of relation (6) leads to an additional set of natural constraints
on åX(ε). Indeed, let us introduce the notation Y ∼= Y ′, whenever Y, Y ′ ⊂ X are congruent
subsets of X. For an index set I ⊂ [n] let X|I = {xi : i ∈ I}, and introduce

C(X) =
{
{I, J} : I, J ⊂ [n], I 6= J, X|I ∼= X|J

}
.

Whenever X|I ∼= X|J , there exist some orthogonal transformation ϕ and a translation τ
such that X|J = ϕ(τ(X|I )). By equation (5) we have aX(ε) = aτ(X)(ε), and the averaging
of equation (6) over ϕ leads to the constraint

(ieC)
∑

ε∈σ(n;I)

åX(ε) =
∑

ε∈σ(n;J)

åX(ε) for every {I, J} ∈ C(X).

Remark. This averaging process, somewhat counter-intuitively, does not result in any
loss in the estimates. We do not give a rigorous proof of this fact (as we do not need it
in the sequel), but only a heuristic argument, as follows. Partition the plane into large
squares of size Q×Q, S(i, j) = [Qi,Q(i + 1)] × [Qj,Q(j + 1)], where Q is a huge number.
For each (i, j) select an orthogonal transformation ϕ at random (uniformly with respect to
the Haar measure), and copy ϕ(A) ∩ S(0, 0) into the square S(i, j). Finally, delete a strip
of sidelength 1 at the boundaries of the squares to make sure that no unit distances are
created at the boundaries. The resulting set will have density close to that of A (because
the deletions are negligible), and the density correlations defined in (6) will be effectively
invariant with respect to orthogonal transformations, up to a small error, as long as the
size of the set I is small compared to Q.

It is now natural to extend the set of constraints used to define the fractional chromatic
number with a new congruence constraint based on (ieC), which leads to a new notion.

Definition 2. Let G be a finite graph with vertex set X in the plane. The geometric
fractional chromatic number of G, denoted by χgf (G), is defined as

χgf (G) = min
∑

S⊂X

γ(S)
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subject to γ(S) > 0 for every S ∈ I(G), γ(S) = 0 for every S /∈ I(G),
∑

S∈I(G,x)

γ(S) = 1

for every vertex x ∈ G, and ∑

S⊂T

γ(T ) =
∑

S′⊂T ′

γ(T ′)

whenever {S, S′} ∈ C(X), i.e. S, S′ are congruent subsets of G.

Clearly, χgf (G) > χf (G) holds. We also note that the definition may naturally be

extended to graphs realized in R
d with d > 2, and that for infinite graphs G′ we can define

χgf (G
′) = sup{χgf (G) : G ⊂ G′, G is fnite}.

The analogue of Corollary 1 reads as follows.

Corollary 2. For any measurable, periodic 1-avoiding set A ⊂ R
2, and any finite unit-

distance graph G in the plane we have 1/δ(A) ≥ χgf (G). Therefore m1(R
2) 6 1/χgf (G),

and taking supremum over G we get m1(R
2) 6 1/χgf (R

2).

Proof. By the relations (ieP), (ieI), (ie1) and (ieC), the quantities åX(ε)/δ(A) = γ(I(ε)),
as defined by (12), constitute a solution to the linear program in Definition 2. Furthermore,∑

S⊂X γ(S) = 1/δ(A) by (ieT). Therefore, 1/δ(A) ≥ χgf (G). �

Remark. These notions lead to an interesting connection between measurable and non-
measurable quantities of the unit distance graph of R2. The details of the discussion below
are not essential for the purposes of this paper, and will therefore be elaborated only in a
follow-up publication.

Let α1(R
2) = inf{α(G)/|G| : G is a finite UDG}. One can think of m1(R

2) as the
measurable independence ratio, while α1(R

2) as the non-measurable independence ratio
of R2. Clearly, m1(R

2) ≤ α1(R
2). Also, it is possible to show that α1(R

2) = 1/χf (R
2).

Furthermore, for any finite unit distance graph G we trivially have χf (G) ≤ χgf (G), and
hence χf (R

2) ≤ χgf (R
2). It turns out that by increasing the size of the graphs and applying

a careful averaging argument one can prove the interesting conclusion χf (R
2) = χgf (R

2).
Combining these two observations we have m1(R

2) ≤ α1(R
2) = 1/χf (R

2) = 1/χgf (R
2).

As of now, our numerical search did not result in any graph G ⊂ R
2 with χgf (G) > 4,

with the record holder being χgf (G) = 3.9954. Based on this numerical evidence, we
venture to conjecture that χf (R

2) = χgf (R
2) = 4. This would imply that α1(R

2) = 1/4
and m1(R

2) ≤ 0.247 hold simultaneously, providing an interesting example of a natural
infinite graph for which the measurable and the non-measurable variants of a parameter
have different values.

5. Fourier analytical tools

We are going to specify the autocorrelation function f via its Fourier coefficients. A
fairly detailed discussion of the procedure is contained in [deOV10] and [KeMOR16], and
we only include a summary here to make the present paper self-contained. For further
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details about these standard tools in harmonic analysis, we direct the reader to the book
of Katznelson [Ka68]).

We remind the reader that the 1-avoiding set A is assumed to be periodic with a period
lattice L. This enables us to perform a Fourier expansion of f(x) = δ(A ∩ (A− x)) in the
Hilbert space L2(R2/L).

The Fourier coefficients f̂(u) are defined, as usual, by

f̂(u) = 〈f, χu〉
where χu(x) = eiu·x, u ∈ 2πL∗, where L∗ is the dual lattice of L: L∗ = {u ∈ R

2 : u · v ∈
Z for all v ∈ L}, and for any measurable functions h, g : R2 → C,

〈h, g〉 = lim
T→∞

1

(2T )2

∫

[−T,T ]2
h(x)g(x) dx ,

if the limit exists. Note that f may be written as

f(x) = 〈1A,1A−x〉,
and hence, by 1̂A−x(u) = 1̂A(u)e

iu·x, Parseval’s identity yields

f(x) =
∑

u∈2πL∗

|1̂A(u)|2eiu·x .

Thus, the Fourier coefficient f̂(u) corresponding to the term eiu·x is given by

(14) f̂(u) = |1̂A(u)|2 > 0

for every u ∈ 2πL∗. After averaging as in (13), we may express f̊(x) as

(15) f̊(x) =
∑

u∈2πL∗

f̂(u)Ω2(|u||x|),

where Ω2(|x|) is the Bessel function of the first kind with parameter 0, defined as

Ω2(|x|) =
1

2π

∫

S1

eix·ξdω(ξ),

for any x ∈ R
2. Note that f̊(x) is radial. It is not periodic (unlike f), and it is not the

autocorrelation function of any nonempty set.
Introducing the notation

κ(t) =
∑

u∈2πL∗,|u|=t

f̂(u)

for t > 0, (15) simplifies to

(16) f̊(x) =
∑

t>0

κ(t)Ω2(t|x|),

where the summation is taken for those (countably many) values of t which come up as a
length of a vector in 2πL∗. In particular, for x = 0 we have that

(17) δ(A) = f(0) = f̊(0) =
∑

t>0

κ(t).
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With this, we have completed the technical preparations required to transform the problem
to the linear optimization setting.

6. Linear programming format

We are going to estimate δ(A) = f(0) = f̊(0) by virtue of reformulating the problem as
a linear optimization program. The constraints of the program correspond to the natural
conditions on the Fourier coefficients of f as well as the inclusion-exclusion constraints
generated by a finite set of points X ⊂ R

2 with cardinality n. Note that by (17), the
objective function can be expressed as δ(A) =

∑
t>0 κ(t).

The (infinitely many) variables of the linear program are {κ(t) : t > 0} and {̊aX(ε) : ε ∈
σ(n)}. Note that these latter are auxiliary variables which are not present in the objective
function.

The linear program, which we are going to refer to as (LP) from now on, reads as follows
– the constraints are implied by (14), (ieP), (3), (ieT), (ie1), (ie2), and (ieC) and must hold
for any set of coefficients derived from a measurable, periodic, planar 1-avoiding set.

Maximize
∑

t>0 κ(t)

subject to

(CP) κ(t) > 0 for every t > 0

(IEP) åX(ε) > 0 for each ε ∈ σ(n)

(C0)
∑

t>0 κ(t)Ω2(t) = 0

(IET)
∑

ε∈σ(n) åX(ε) = 1

(IE1)
∑

t>0 κ(t)−
∑

ε∈σ(n;i) åX(ε) = 0 for every i ∈ [n]

(IE2)
∑

t>0 κ(t)Ω2(t|xi − xj |)−
∑

ε∈σ(n;i,j) åX(ε) = 0 for every {i, j} ∈
{
n
2

}

(IEC)
∑

ε∈σ(n;I) åX(ε)−∑
ε∈σ(n;J) åX(ε) = 0 for every {I, J} ∈ C(X).

By (17), the solution of this linear program gives an upper bound on δ(A).

Remark. Note that by means of listing congruence constraints in (LP) for pairs of 1-element
and 2-element vertex sets too, it suffices to include (IE1) only for one vertex (we choose
i = 1), and (IE2) for one pair of vertices for each distance among points of X. Also note
that (IEP), (C0) and (IE2) imply that åX(ε) = 0 is forced to hold for each non-independent
atom, in accordance with (ieI) of Lemma 1. Thus, we only have to include independent
atoms in the list of variables of (LP).

In principle, it would be possible to apply Lemma 1 to several point sets X1, . . . ,Xm in
order to gain a wider set of linear constraints. Notice, however, that all these constraints
are implied by the ones obtained by applying Lemma 1 and (ieC) to

⋃m
i=1Xi. Since this

yields a stronger estimate, we only apply one set X.

We also remark that the constraints of (LP) induce the ones in [Sz84, Theorem 2.6],
[KeMOR16, Lemma 3.2] and [AmM22, Lemma 2.1, Lemma 2.2, Lemma 3.1, Lemma 3.2]
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Figure 3. Left: the three graphs used by Székely [Sz84]. Right: a 7-point
set X containing all these.

provided that X contains a congruent copy of all the point sets applied within these —
therefore, our new estimate improves on these earlier ones. We illustrate this with the bound
of Székely [Sz84]. His estimate of 12/43 ≈ 0.2791 stems from considering the three graphs

on the left side of Figure 3 (and, importantly, using the observation that f̊(t) 6 f̊(0)/2 for
each t > 1/2 which can be obtained by averaging on circles of radius t). Note that the
7-point set X on the right side contains a congruent copy of all three of these. Solving the
linear program (LP) associated to this point setX yields the upper bound of 0.2771 < 12/43
on δ(A), which improves on the original bound.

More generally, in [DeOV22] it is shown how inclusion-exclusion inequalities and sub-
graph constraints come from facets of the Boolean quadratic polytope. It is reasonable to
expect that some of the constraints in (LP) above also correspond to facets of this polytope.
However, to extract such information one would need to eliminate the ‘atomic’ variables

åX(ε), and deduce constraints involving the values of the autocorrelation function f̊(t) only.
We do not see a direct way of doing this.

By standard linear programming duality, the solution of the dual program provides an
upper bound on the solution of (LP). Note that the dual of a linear program of the form

maximize c⊤x subject to Ax = b, x > 0

is given by

(18) minimize b⊤y subject to A⊤ y > c.

Applying this in the present context yields the next statement.

Proposition 1. Let X be a set of n points in the plane. Suppose that the real numbers w0,
wT , {w1(i) : i ∈ [n]}, {w2(i, j) : {i, j} ∈

{
n
2

}
}, {wc(I, J) : {I, J} ∈ C(X)} are such that the

function defined by

(19) W (t) = w0Ω2(t) +
∑

i∈[n]

w1(i) +
∑

{i,j}∈{n

2
}
w2(i, j)Ω2(t|xi − xj |)
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satisfies W (t) > 1 for every t > 0, and the quantity defined by

V (ε) = wT −
∑

i∈[n]: εi=1

w1(i)−
∑

{i,j}∈{n

2
}: εi=εj=1

w2(i, j)

+
∑

{I,J}∈C(X):ε∈σ(n;I)

wc(I, J) −
∑

{I,J}∈C(X):ε∈σ(n;J)

wc(I, J)
(20)

satisfies V (ε) > 0 for every ε ∈ σ(n). Then

(21) m1(R
2) 6 wT .

Proof. This is simply the dual linear program (18). Without referring to the general theory
of linear programming, one can derive the estimate easily as follows. Assume that the
coefficients specified above satisfy the criteria. Let A be a measurable, periodic, planar
1-avoiding set with autocorrelation function f . Then, by the properties listed in (LP),

δ(A) = f(0) = f̊(0) =
∑

t>0

κ(t) 6
∑

t>0

κ(t)W (t)

= w0

∑

t>0

κ(t)Ω2(t) +
∑

i∈[n]

w1(i)
∑

t>0

κ(t) +
∑

{i,j}∈{n

2
}
w2(i, j)

∑

t>0

κ(t)Ω2(t|xi − xj |)

= 0 +
∑

i∈[n]

w1(i)
∑

ε∈σ(n;i)

åX(ε) +
∑

{i,j}∈{n

2
}
w2(i, j)

∑

ε∈σ(n;i,j)

åX(ε)

=
∑

ε∈σ(n)

åX(ε)
( ∑

i∈[n]: εi=1

w1(i) +
∑

{i,j}∈{n

2
}: εi=εj=1

w2(i, j)
)

6
∑

ε∈σ(n)

åX(ε)
(
wT +

∑

{I,J}∈C(X):ε∈σ(n;I)

wc(I, J) −
∑

{I,J}∈C(X):ε∈σ(n;J)

wc(I, J)
)

= wT +
∑

{I,J}∈C(X)

( ∑

ε∈σ(n;I)

åX(ε)−
∑

ε∈σ(n;J)

åX(ε)
)

= wT . �

Note that by means of the Remark following the definition of (LP), it suffices to check that
V (ε) > 0 holds for each ε ∈ σ(n) which represents an independent atom. This accelerates
the numerical computations greatly.

7. Breaking the 1/4 barrier

Our goal is to search for a point setX such that the solution of (LP) is as small as possible.
However, this linear program has infinitely many variables of the form κ(t) : t > 0, which
necessitates to use a discrete approximation. Therefore, we only search for the coefficients
κ(ti), where ti = iε0 with i ∈ N such that ti ∈ [0, tmax], with some ε0 > 0 and tmax > 0.
For all other values of t > 0, we set κ(t) = 0. Based on the calculations in Section 8, we
set ε0 = 0.05 and tmax = 600.

Similarly to the preceding works, we utilize a heuristic computer search in order to find a
suitable point set. Initially, we combined the (IE) constraints with the ones used in [AmM22]



THE DENSITY OF PLANAR SETS AVOIDING UNIT DISTANCES 15

in order to improve the estimates. Yet, the incrementally stronger set of (IE) constraints
quickly outpowered the older ones. Note that even though this would also follow formally
from our previous remarks, the cardinality bound on X stemming from computational
complexity makes this observation non-trivial. Nevertheless, based on empirical evidence,
we apply a tabula rasa approach and search for constraints arising from a single point set X.

We limit our search to point sets of cardinality 6 24, as this proved to be sufficient to
reach our goal of proving Erdős’s conjecture. Note that when defining (LP), not every
åX(ε) needs to be added as a new variable. Indeed, if for ε ∈ σ(n), εi = εj = 1 holds with
some i 6= j and |xi − xj | = 1, then åX(ε) is forced to equal to 0 by (ie2). Therefore, these
variables may be omitted from (LP). Hence, sets with many unit distances lead to (LP)s
with fewer variables, which helps in practical implementation.

To exploit congruence constraints of the form (IEC), it is desirable that X contains many
congruent pairs of subsets. Combining this with the preference for unit distances, we adopt
the following strategy. Starting from an initial point set X0 (to be specified later as the
Moser spindle), we add points to it one-by-one so that each new point is at distance 1 from
at least two points which have already been constructed. Thus, we are searching for a node
with a low score in the following tree:

(1) Each node of the tree corresponds to a finite planar set X. The score of each node
is the solution of (LP) resulting from the corresponding point set.

(2) The root is the initial set X0.
(3) Given a node Xi, its children are the nodes obtainable from Xi by adding one point:

Xi+1 = Xi ∪ {xi+1} such that:
(a) To have only finitely many choices at each step, we only consider those points

xi+1 that have distance 1 to at least two points of Xi.
(b) In light of the error estimates in Section 8, we further restrict the set of accepted

points xi+1 to those having distance at least 0.1 to all points of Xi.

In order to exploit non-trivial parallel relations between pairs of vertices, we choose the
Moser spindle M7 to serve as X0.

For the search algorithm we use beam search, which may be formalized as follows.

(1) At each step, we have in hand a collection Xi of nodes Xi at a given level.
(2) We initialize with X0 = {X0}.
(3) We proceed as follows:

(a) We let X̃i+1 denote the collection of all children of all nodes in the present
collection Xi.

(b) We calculate the scores for all sets in X̃i+1.

(c) We sort X̃i+1 based on the scores.
(d) We let Xi+1 be the collection of the best (i.e. lowest scoring) 100 children in

X̃i+1. (The parameter 100 is referred to as the beam width.)

The output of the above beam search algorithm is a point cloud specified by algebraic
expressions. As explained in Section 9, we speed up running time by deferring the symbolic
computation until we settle on a given point set.

We present a point set X23 with 23 vertices that was provided by the computer search
described above. Its exact, symbolic coordinates are listed in Table 1 of the Appendix.
We denote the corresponding unit distance graph by G23 (see Figure 4). We note that
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Figure 4. The unit distance graph G23 defined on the vertex set X23.

the majority of the vertices have degree at least 3 in G23, and all vertices have degree at
least 2. Pairs of points of X23 determine only 27 distinct distances (this partly accounts
for the large number of congruent pairs of vertex sets). As observed earlier, it suffices to
include among the variables of (LP) those atoms which correspond to independent sets in
the unit distance graph, as the others must have density 0. With this simplification, the
linear program defined by X23 has 13552 atom variables and 12000 Fourier variables. It
consists of 23 (IE1) constraints, 206 (IE2) constraints connecting the Fourier variables to
the atom variables, and 5868 (IEC) congruence constraints.

Figure 5 depicts the radialized autocorrelation function f̊ yielded by X23, together with
the previous best upper bound given by [AmM22], and the radialized autocorrelation func-

tion of the Croft construction. Note that our upper bound yields an f̊ significantly closer
to the Croft construction.

The numerical solution of (LP) obtained from X23 is 0.24697. In order to prove an
upper bound on m1(R

2) which nearly equals this value, we need to apply Proposition 1 and
estimate the errors stemming from numerical computations and discrete approximation.
This is the goal of the next section.

8. Verification

In this section, we address error estimates resulting from the discrete approximation of
the linear program (LP) we use. Fix (LP) to be the linear program corresponding to X23.
To start with, we set w0, wT , {w1(i) : i ∈ [n]}, {w2(i, j) : {i, j} ∈

{
n
2

}
}, {wc(I, J) : {I, J} ∈

C(X)} to be the coefficients of the solution vector of the dual of (LP). There are 2350
non-zero coefficients, of which 2321 are of type wc(I, J). Due to space limits, we do not list
these in the article; however, they are made available at [Web]. The remaining coefficients
are listed in Table 2.



THE DENSITY OF PLANAR SETS AVOIDING UNIT DISTANCES 17

0 1 2 3 4 5

0.00

0.05

0.10

0.15

0.20

0.25 f of [AmM22], f(0)<0.2544 (previous best)
f yielded by X23, f(0)<0.2470 (this work)
Autocorrelation of the Croft construction, f(0)≈0.22936

Figure 5. Plotting autocorrelation functions on the interval [0, 5].

We are going to modify these slightly so that the conditions on W (t) and V (ε) of Propo-
sition 1 are satisfied for them, and apply estimate (21) for this modified set of coefficients.

First, we address V (ε) > 0, where ε ∈ σ(n) and V (ε) is given by (20). This is a finite
set of inequalities, and high precision calculation ensures that

V (ε) > −ν

holds true for each ε ∈ σ(n) with ν = 10−5. Thus, by changing wT to w̃T = wT + ν we
guarantee that V (ε) > 0 holds for all instances.

Second, we estimateW (t) defined by (19) by an argument which is analogous to [KeMOR16,
Section 3.2]. As first observed by Schoenberg [Sch38], Ω2(t) = J0(t), the Bessel function of
the first kind with parameter 0. Accordingly, let

(22) ϕ(t) = w0 J0(t) +
∑

i∈[n]

w1(i) +
∑

{i,j}∈{n

2
}
w2(i, j)J0(t|xi − xj|)

with xi being defined by Table 1 and the non-zero coefficients w specified by Table 2. For
small (and not so small) values of t, the function ϕ(t) is plotted on Figure 6. Note that, in
particular, w1(i) = 0 except for i = 1, for which we have w1(1) = 1.059383649998022.

In order to show that ϕ(t) > 1 for all t > 0, we first note that

lim
t→∞

J0(t) = 0.

This follows from the asymptotic formula for Jα for α > 0 (cf. Watson [Wa22, §7.21, eq.
(1)]). Accordingly,

lim
t→∞

ϕ(t) = w1(1) = 1.059383649998022,
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Figure 6. The function ϕ(t) plotted on [0, 50] (left) and [0, 10000] (right).

hence ϕ(t) > 1 if t is sufficiently large. We have to provide an explicit threshold here.
Note that J ′

0(t) = J1(t). Thus, the locations of local extrema of J0(t) agree with the
positive zeroes j1 < j2 < j3 < . . . of J1(t). The local extrema of J0 decrease in absolute
value (cf. [Wa22, §15.31]), that is

|J0(j1)| > |J0(j2)| > |J0(j3)| > . . .

Thus, by (22), on the domain t ∈ [T,∞) the following estimate holds:

(23) ϕ(t) > w1(4)−
(
|w0|+

∑

{i,j}∈{n

2
}
|w2(i, j)|

)
|J0(s)|,

where s is any zero of J1 not exceeding T · dmin where

dmin = min
{i,j}∈{n

2
}, w2(i,j)6=0

|xi − xj|.

We restricted our search to point sets with dmin > 0.1. In the present case,

(24) |w0|+
∑

{i,j}∈{n

2
}
|w2(i, j)| ≈ 1.93062 < 2.

Set T = 10000. Then T · dmin > 1000. Hence, by taking the largest zero of J1 not
exceeding 1000, which is s0 = 999.81148 . . ., (23) and (24) imply that for t > T ,

ϕ(t) > w1(1) − 2|J0(s0)| = 1.00892 . . . > 1.

Therefore, we have to find the minimum of ϕ(t) on the interval [0, T ]. This can be lower
bounded by using interval arithmetic (note that |J ′

0(t)| = |J1(t)| < 1), which shows that

ϕ(t) > 1− µ

with µ = 0.00006 for t ∈ [0, T ] (the global minimum of ϕ(t) is attained at t = 3.77488 . . .
with ϕ(t) = 0.99995003 . . .).

In the final step, we divide all the coefficients w by the factor (1− µ). This ensures that
W (t) > 1 holds for all t > 0, while the conditions V (ε) > 0 remain valid. We may apply
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Proposition 1 to these transformed set of coefficients. Estimate (21) results in the upper
bound

m1(R
2) 6

w̃T

1− µ
=

wT + ν

1− µ
= 0.24699 . . . < 0.2470.

9. Implementation

The linear programs we have to solve are quite large: the (LP) corresponding to the
exhibited 23 vertex set X23 has 25552 variables and 6099 constraints besides the positivity
constraints. We used the Mosek [Mosek] and Gurobi [Gurobi] LP solvers, with typical solve
times not exceeding 30 seconds on a regular laptop computer.

The beam search run for a week on 128 CPUs, creating and solving 186472 linear pro-
grams, and resulted in a 24 element vertex set that satisfied our requirements. We observed
that one of the points does not improve the estimate, therefore we removed it. We call the
resulting set X23.

We have used the NumPy computation package [Ha20] for numerical computation, and
the SymPy computation package [Ma17] for symbolical computation. We have parallelized
the beam search algorithm via message passing. The final estimate was verified by a piece
of independently developed Mathematica code that we publish at [Web].

Floating point numbers are much faster to work with than symbolic formulae. Hence,
during the CPU-intense beam search, we only work with the former. After settling on a
point set, we need to re-create it symbolically.

The algorithm that reverse-engineers a symbolic point set from a numerical point set
proceeds as follows: It processes the points one by one, in the same order they were included
in the set. Let us assume that it currently processes point a, which is provided as a complex
floating point number. The symbolic expression of a is found by one of the following three
options:

(1) If (up to numerical precision) a is part of a parallelogram together with three already
processed points b, c, d, then a may be written up symbolically from the symbolic
versions of b, c, d.

(2) The same is true if a point a is part of a regular triangle with unit sides together
with already processed points b and c.

(3) Otherwise, by the construction scheme, there exist formerly included points b and c
both unit distance away from a. Using these, a can be expressed as one of the two
solutions of a quadratic equation in terms of the symbolic versions of b and c. The
appropriate solution is chosen according to the numerics.

In principle, utilizing solely option (3) suffices to solve the reverse engineering task. How-
ever, in practice it leads to an exponential blow-up in formula size, making even moderately
sized point sets (n > 13) unmanageable symbolically. Fortunately, options (2) and (3) are
very rarely needed, since we construct point sets containing plenty of parallelograms. In
fact, for the particular point set X23 described below, one may express the vertices symbol-
ically using only steps of type (1), except for a single instance of type (2). This yields that
X23 is a subset of the ring R2 spanned by the vertices of the Moser spindle (see [PM22]).
This is a surprising observation considering that our search was not restricted to this ring.

Having the algebraic expressions at hand,



20 G. AMBRUS, A. CSISZÁRIK, M. MATOLCSI, D. VARGA, AND P. ZSÁMBOKI

(1) we verify that the supposed unit distances are symbolically equal to one.
(2) we verify that all congruence constraints (ieC) are valid.
(3) we estimate the errors resulting from discrete approximation of the continuous (LP),

in particular, ensure that the function W (t) of (19) is at least 1 for all non-negative
arguments.

Our code may be found at [Web], while the verification documentary is also available at
[arXiv].
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Pázmány Péter sétány 1/C, H-1117, Budapest, Hungary,
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12. Appendix: the point set
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Table 1. The point set X23
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w0 wT w1(1)

0.378583312921677 0.24697262945998308 1.059383649998022

(i, j) w2(i, j) (i, j) w2(i, j)

(1, 10) 0.014243384098949957 (1, 17) 0.07397413460039694

(1, 23) −0.008047304925038572 (3, 12) 0.03487012105072677

(3, 15) −0.0785963112357179 (4, 22) 0.00022917246188142716

(6, 8) −0.03025769554989927 (6, 15) 0.018185030147879047

(7, 9) −0.17935529642485845 (7, 12) 0.08006137472171244

(7, 15) 0.14034437164315525 (7, 21) −0.017391357599152

(7, 23) 0.09939574113576811 (8, 22) −0.013665295941013265

(8, 23) 0.017535950345541916 (9, 13) −0.0667237004898899

(9, 22) 0.02962214917215127 (9, 23) −0.1543585559725672

(11, 22) −0.050336630381192515 (11, 23) 0.0395556964778143

(12, 19) −0.01728864937672063 (14, 22) −0.03251305281246628

(14, 23) −0.07168501985142882 (15, 16) 0.009019525024808076

(21, 22) −0.08293311685123309 (21, 23) −0.19185162418622392

Table 2. Nonzero dual coefficients of constraints other than (IEC)
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