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Quasiconformal mappings and curvatures on
metric measure spaces

Jialong Deng

Abstract

In an attempt to develop higher-dimensional quasiconformal mappings on metric

measure spaces with curvature conditions, i.e. from Ahlfors to Alexandrov, we show

that a non-collapsed RCD(0, n) space (n ≥ 2) with Euclidean volume growth is an

n-Loewner space and satisfies the infinitesimal-to-global principle.

Originating in cartography that represents the regions of the surface of the earth on a
Euclidean piece of paper and beginning in the works of Tissot [Tis80], [Pap17], [Pap20],
Grötzsch [Grö28], [AP20b], Lavrentieff [Lav20], [AP20a] and others [Pap18], the study
of quasiconformal mappings on the Euclidean spaces E

n has a rich history of over one
hundred years, see the books [Ahl06], [GMP17] and the references therein.

Beginning with Alexandrov’s insight in the 1940s [Ale48], the geometry of metric
(measure) spaces became an important part of modern geometry [BBI01], [Vil09]. Since
the metric structure plays an essential role in the theory of higher-dimensional quasicon-
formal mappings, it is natural to see how this theory behaves on the metrics with curvature
conditions. For example, according to Heinonen and Koskela, it is a fundamental fact that
a quasiconformal homeomorphism of the Euclidean space En with n ≥ 2 is quasisymmet-
ric, if it maps bounded sets to bounded sets [HK98]. We argue that the Euclidean metrics
on ℝ

n with n ≥ 2 satisfy the infinitesimal-to-global principle. What are the other metrics
ℝ

n satisfy the infinitesimal-to-global principle is a matter of interest.
We will show in the following that the metrics d that make (ℝn, d,n) to be non-

collapsed RCD(0, n) spaces with Euclidean volume growth also satisfy the principle.

Theorem 1. A quasiconformal homeomorphism f of a non-collapsed RCD(0, n) space
with Euclidean volume growth and n ≥ 2 (n ∈ ℕ) is quasisymmetric, if it maps bounded
sets to bounded sets.

The idea of the proof came from Heinonen-Koskela [HK98]. That is, we need the
following result to prove the above theorem.

Theorem 2. Non-collapsed RCD(0, n) spaces (X, d,n) with n ≥ 2 (n ∈ ℕ) and Eu-
clidean volume growth are n-Loewner spaces.

The definitions and details will be given later. As an application of the two afore-
mentioned theorems, we can show the distortion volume inequality of quasisymmetric
mappings of a non-collapsed RCD(0, n) space (X, d,n) with Euclidean volume growth.
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Remark 3. The note is a step to answering the question of what facts of the classical theory
on E

n are applicable to quasiconformal/quasiregular mappings on metric measure spaces
with curvature conditions. More results are expected to be found in this direction.

The paper is organized as follows. In Section 1, we introduce the notions of quasicon-
formality and RCD spaces. Section 2 is devoted to the main results. In Section 3, we give
two applications of the theorems and two further questions.

Acknowledgment: The author appreciates the anonymous reviewer’s constructive
feedback. This note is a part of my proposal that was submitted to MathJobs for a post-
doctoral position in May 2021. The funding is derived from a postdoctoral fellowship of
Yau Mathematical Sciences Center, Tsinghua University. This note was dedicated to the
mathematicians who were working in Ukraine during 2022.

1 Preliminaries

In this section, we recall the definition of Alexandrov spaces, non-collapsed RCD(0, n)

spaces and quasiconformality for the reader’s convenience.
A metric space (X, d) is said to be quasiconvex if there is a constant C > 0 so that

every pair of points x and y in X can be joined by a curve  , whose length satisfies l() ≤
Cd(x, y). A metric space (X, d) is a length metric space if the distance between each pair
of points equals the infimum of the lengths of curves joining the points. Thus, a locally
compact and complete length space is quasiconvex.

Throughout this section, a metric space (X, d) refers to a locally compact and complete
length metric space. For 1 ≤ n ∈ ℕ, n refers to the n-dimensional Hausdorff measure
of (X, d). A metric measure space (X, d,n) is a locally compact and complete length
space with the full support of n-dimensional Hausdorff measure n.

Recall that a model space in Riemannian geometry is a simply connected complete
Riemannian surface with the constant sectional curvature �.

A geodesic triangle △ in X with geodesic segments as its sides is said to satisfy the
CAT(�)-inequality if it is slimmer than its comparison triangle in the model space. That
is, if there is a comparison triangle △′ in the model space with its sides of the same length
as the sides of △ such that the distance between the points on △ is less than or equal to
the distance between the corresponding points on △′. A length metric d on X is said to
be a locally CAT(�)-metric if every point in X has a geodesically convex neighborhood,
in which every geodesic triangle satisfies the CAT(�)-inequality.

Similarly, an Alexandrov space (X, d) with nonnegative curvature means that every
point in X has a geodesically convex neighborhood, in which every geodesic triangle is
fatter than the comparison triangle in the Euclidean plane. More details about comparison
geometry can be found in the book [BBI01] and the references therein.

Alexandrov geometry is a generalized Riemannian manifold with sectional curvature
bounded below (or above). Similarly, Lott-Sturm-Villani theory on metric measure spaces
is a synthetic generalized Ricci curvature bounded below, see [LV09], [Stu06] and [Vil09].
Later, the Riemannian curvature-dimensional condition was introduced as a refinement in
order to single out “Riemannian structures” from the “possibly Finslerian CD structures”
so that the study of RCD(K,N) spaces became active, see Ambrosio’s survey [Amb18]

2



and the references therein. Recently, a generalized scalar curvature bounded below on
metric measure spaces was studied by the author in [Den21a], [Den21b] and [Den21c].

The curvature-dimension conditionCD(K,N) of Lott–Sturm–Villani was defined through
optimal transport theory and the convexity properties of N-dimensional entropy on the
space of all Borel probability measures over a metric spaces at the beginning. Thanks to
the works [EKS15], [AMS19], [CM21], we can choose an equivalently shorter version in
the following way.

Let (X, d, m) be a metric measure space with the full Borel measure m and the parame-
tersK ∈ ℝ (lower bound on Ricci curvature) and N ∈ (1,∞) (upper bound on dimension)
will be kept fixed. Define the Cheeger energy Ch ∶ L2(X,m) → [0,∞] by

Ch(f ) ∶= inf{lim inf
i→∞ ∫

X

lip2fidm ∣ fi ∈ Lipb(X, d) ∩ L2(X,m), ‖fi − f‖L2 → 0},

where Lipb(X, d) is the set of all bounded Lipschitz functions on X and

lipf (x) ∶= lim
r→0+

sup
y∈Br(x)∖{x}

|f (x) − f (y)|

d(x, y)
,

if x is not isolated, lipf (x) ∶= 0 otherwise. Given f ∈ L2(X,m), a function g ∈ L2(X,m)

is called a relaxed gradient if there exists a sequence {fn} ⊂ Lip(X, d) and g̃ ∈ L2(X,m)

so that

(1). fn → f in L2(X,m) and lipfn converge weakly to g̃ ∈ L2(X,m).

(2). g ≥ g̃ m-a.e..

A minimal relaxed gradient is a relaxed gradient that is minimal in L2-norm in the family
of relaxed gradients of f . If this family is non-empty, the minimal relaxed gradient which
is denoted by |∇f | exists and is unique m-a.e..

Then the Sobolev space H1,2 = H1,2(X, d, m) is defined as the finiteness domain of Ch
in L2(X,m) and it is a Banach space equipped with the norm ‖f‖2

H1,2
∶= ‖f‖2

L2
+Ch(f ).

(X, d, m) is said to be infinitesimally Hilbertian if H1,2(X, d, m) is a Hilbert space. In
particular, for all fi ∈ H1,2 (i = 1, 2),

< ∇f1,∇f2 >∶= lim
t→0

|∇(f1 + tf2)|
2 − |∇f1|

2

2t
∈ L2(X,m).

is well defined. Then, by using the infinitesimally Hilbertian condition, f ∈ H1,2 is said
to be in the domain of the Laplacian (f ∈ D(Δ)) if there exists Δf ∈ L2(X,m) so that

∫
X

gΔfdm + ∫
X

< ∇g,∇f > dm = 0

for any g ∈ H1,2. The following definition of RCD(K,N) spaces comes from [Hon20,
Definition 2.1].

Definition 4 (RCD(K,N) spaces). Let (X, d, m) be a metric measure space, let K ∈ ℝ

and let N ∈ (1,∞). We say (X, d, m) is an RCD(K,N) spaces if the following hold:

(1). (Volume growth condition) There exist x ∈ X and C > 1 such that m(Br(x)) ≤
CeCr2 for all r ∈ (0,∞).
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(2). (Riemannian structure) The Sobolev space H1,2 = H1,2(X, d, m) is a Hilbert space.

(3). (Sobolev-to-Lipschitz property) Any function f ∈ H1,2 satisfying |∇f |(y) ≤ 1 for
m-a.e. y ∈ X has 1-Lipschitz representative.

(4). (Bochner inequality) For all f ∈ D(Δ) with Δf ∈ H1,2,

1

2 ∫
X

|∇f |2Δ'dm ≥ ∫
X

'[
(Δf )2

N
+ < ∇f,∇Δf > +K|∇f |2]dm

for all ' ∈ D(Δ) ∩ L∞(X,m) with ' ≥ 0 and Δ' ∈ L∞(X,m).

In fact, a metric measure space (X, d, m) is an RCD(K,N) space iff (X, d, m) satisfies
the CD(K,N) condition and is infinitesimally Hilbertian [Den20, Theorem 2.14]. Typical
examples of RCD spaces are measured Gromov–Hausdorff limit spaces of Riemannian
manifolds with Ricci bounds from below and dimension bounds from above, so-called
Ricci limit spaces. RCD(0, n) spaces come out naturally as the metric cone of RCD(n −

2, n − 1) spaces.
An RCD(K,N) space (X, d, m) is noncollapsed if n is a natural number and m = n.

Noncollapsed RCD(K, n) spaces give a natural intrinsic generalization of noncollapsing
Ricci limit spaces. Furthermore, the class of RCD(K, n) spaces strictly contains the non-
collapsed Ricci limit spaces. A metric cone (resp. a spherical suspension) over ℝℙ2 is
an example of a noncollapsed RCD(0, 2) (resp. RCD(1, 3)) space. A convex body in E

n

with boundary cannot arise as a noncollapsed Ricci limit of manifolds without boundary.
However, this is a noncollapsed RCD(0, n) space [KM21, Theorem 1.10].

Petrunin shows that an n-dimensional Alexandrov space with non-negative curvature
and equipped with the induced Hausdorff measure satisfiesCD(0, n) condition, see [Pet11]
and [Den21a, Section 2]. A finite dimensional Alexandrov space with curvature bounded
below is infinitesimally Hilbertian. Thus an n-dimensional Alexandrov space with non-
negative curvature and equipped with the induced Hausdorff measure is a non-collapsed
RCD(0, n) space.

The reason why we focus on the subject of noncollapsed RCD(0, n) spaces is because
the measures are determined by the metrics. In the following, we will elaborate on the
metric definition of quasiconformality, which is one of the three commonly adopted defi-
nitions in the existing literature.

Definition 5 (Quasiconformal). A homeomorphismf ∶ X → Y between the metric spaces
(X, dX) and (Y , dY ) is said to be K-quasiconformal if there is a constant 0 < K < ∞ so
that

lim sup
r→0

Lf (x, r)

lf (x, r)
≤ K

for all x ∈ X, where
Lf (x, r) ∶= sup

dX (x,y)≤r
dY (f (x), f (y))

and
lf (x, r) ∶= inf

dX (x,y)≥r
dY (f (x), f (y)).
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Quasiconformal homeomorphisms arise not only in cartography and geometric func-
tional theory, but also in some parts of dynamics system, topology, and Riemannian ge-
ometry, see the survey [Sul87] and the references therein.

The theory of quasiconformal mappings plays a role in applied mathematics. For ex-
ample, combining quasiconformal Teichmüller theory [GL00] with scientific computing
techniques, computational quasiconformal geometry has various applications in engineer-
ing and medical imaging, see [LWZ+12], [GZL+12] and the references therein.

Definition 6 (Quasisymmetric). A homeomorphism f ∶ X → Y between the metric
spaces (X, dX) and (Y , dY ) is said to be quasisymmetric if there is a constant Hf < ∞ so
that

Hf (x, r) ∶=
Lf (x, r)

lf (x, r)
≤ Hf

for all x ∈ X and all r > 0.
Namely,

dX(x, a) ≤ dX(x, b) implies dY (f (x), f (a)) ≤ HfdY (f (x), f (b))

for each triple x, a, b of points of X.

A quasiconformal homeomorphism is a local and infinitesimal condition, whereas a
quasisymmetric homeomorphism is a global condition that imposes a uniform requirement
on the relative metric distortion of any triple of points.

Definition 7 (�-quasisymmetric). A homeomorphism f ∶ X → Y between the metric
spaces (X, dX) and (Y , dY ) is said to be �-quasisymmetric if there is a homeomorphism
� ∶ [0,∞) → [0,∞) so that

dX(x, a) ≤ tdX(x, b) implies dY (f (x), f (a)) ≤ �(t)dY (f (x), f (b))

for each t > 0 and for each triple x, a, b of points of X.

Though �-quasisymmetry implies quasisymmetric, these two notions are not equiva-
lent in general. However, if X and Y are path-connected doubling metric spaces, then
these two notions are equivalent.

�-quasisymmetric mappings naturally arise in one variable complex dynamics, see
[MSS83]. �-quasisymmetric mappings can be used in geometric group theory. For in-
stance, quasi-isometric mappings of Gromov hyperbolic spaces are in one-to-one corre-
spondence with �-quasisymmetric mappings on the Gromov boundaries, see [Pan89].

Definition 8 (Ahlfors Q-regular). A metric space (X, d) is said to be Ahlfors Q-regular if
there is a constant C ≥ 1 so that

C−1RQ ≤ Q(B(R)) ≤ CRQ

for all R-balls B(R) in X of radius R less than the diameter of X (the diameter may be
infinite).
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Let (M, g) be a complete open Riemannian n-manifold, then the asymptotic volume
ratio of (M, g) is defined as following:

AVRg ∶= lim
r→∞

Volg(Bx(r))

!nr
n

,

where !n is the volume of the Euclidean unit ball in E
n. The manifold M is said to have

Euclidean volume growth when AVRg > 0. The constant AVRg is a global geometric
invariant of M , i.e., it is independent of the base point. Also, when AVRg > 0, we have
Volg(Bx(r)) ≥ AVRg!nr

n for all x ∈ M and for all r > 0.
Similarly, the asymptotic volume ratio can be defined for a metric measure space

(X, d,n). That is

AVRd ∶= lim
r→∞

n(Bx(r))

!nr
n

.

2 Quasiconformality VS. Quasisymmetry on ℝ
n

In this section, we search metrics with curvature conditions on ℝ
n to satisfy the condition

that quasiconformal mappings are quasisymmetric.
A complete open nonnegatively curved Riemannian manifold may not have Euclidean

volume growth in general. For example, the product metric of a standard spherical metric
and a Euclidean metric is a complete Riemannian metric with nonnegative sectional cur-
vature and without Euclidean volume growth. However, a complete open non-negatively
curved Riemannian manifold with Euclidean volume growth is diffeomorphic to ℝ

n, since
its asymptotic cone at infinity has its dimension strictly smaller than n if the soul is not a
point, while manifolds with Euclidean volume growth have asymptotic cones of dimen-
sion n. Non-negatively curved Alexandrov spaces with Euclidean volume growth do not
have to be smooth or even topological manifolds. For example, a metric cone over any
(n − 1)-dimensional Alexandrov space of curvature ≥ 1 is Alexandrov of curvature ≥ 0

and has Euclidean volume growth.
Assume (M, g) is a complete open Riemannian n-manifold with non-negative Ricci

curvature and AVRg = 1, then the Bishop-Gromov inequality implies that M is isometric
to E

n. It is known that if n = 3 and AVRg > 0, then M is contractible [Zhu93]; if n = 4

and AVRg > 0, then the manifolds may have infinite topological types [Men00]. However,
Perelman shows that if M has maximal Euclidean volume growth, i.e. there exists a small
positive constant a(n) such that AVRg ≥ 1 − a(n) > 0, then M is contractible and homeo-
morphic to ℝ

n [Per94, Theorem 2]. Here a(n) only depends on the dimension n ≥ 2 of the
manifold. Furthermore, Cheeger and Colding show that M is indeed C1,�-diffeomorphic
to ℝ

n on the same assumption of Perelman’s theorem in [CC97, Theorem A.1.11].

Remark 9. However, there exists Riemannian manifolds with non-negative Ricci curvature
and linear volume growth, thus it cannot beQ-regular forQ > 1. Furthermore, there exists
Riemannian metrics g with non-negative Ricci curvature and arbitrarily small AVRg on
ℝ

n. For example, let n ≥ 3 and f ∶ [0,∞) → [0, 1] be a smooth nonincreasing function
such that f (0) = 1 and

lim
s→∞

f (s) = a ∈ (0, 1],
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then the warped product metric g ∶= dr2 + F (r)2d�2 is the rotationally invariant metric
on ℝ

n. Here

F (r) ∶= ∫
r

0

f (s)ds

and d�2 is the standard metric on the sphere Sn−1. If x = (x1, �1) and x̃ = (x2, �2) are in
ℝ

n, then one has dg(x, x̃) ≥ ‖x1 − x2‖ and it implies that the metric g is complete. One
can show that the sectional curvature of g is nonnegative and AVRg = an−1, see [BK22,
Example 2.4].

A conformal deformation of the Euclidean metric onℝn with infinite volume and under
Ln∕2 scalar curvature bounds has Euclidean volume growth, see [Car20, Theorem 2.8].

Inspired by Perelman’s theorem, Kapovitch and Mondino show that there exists a small
positive constant �(n) such that if a metric measure space (X, d,n) is a non-collapsed
RCD(0, n) space and AVRd ≥ 1 − �(n) > 0, then X is homeomorphic to ℝ

n in [KM21,
Theorem 1.3], also see [HH22, Proposition 7.1]. Kapovitch-Mondino theorem does not
hold for CD(0, n) space in general. Notice that there exists CD(0, n) spaces that are not
non-collapsedRCD(0, n) spaces. For instance, sinceℝn that is endowed with the Lebesgue
measure and the distance coming from a norm is a CD(0, n) space, one can equip ℝ

n with
the L∞-norm such that it is not a non-collapsed RCD(0, n) space.

Definition 10 (Heinonen-Koskela). A metric measure space (X, d, �) is a p-Loewner
space if there exists a decreasing function � ∶ (0,∞) → (0,∞) so that

ModpΓ(E, F ) ≥ �(△(E, F ))

for all disjoint compact connected subsets E, F ⊂ X. Here Γ(E, F ) denotes the collection
of curves joining E to F , the p-modulus (p ≥ 1) of Γ(E, F ) is defined as

ModpΓ(E, F ) ∶= inf ∫
X

%pd�

where the infimum takes over all nonnegative Borel functions % ∶ X → [0,∞] satisfying

∫


%ds ≥ 1

for all locally rectifiable curves  ∈ Γ(E, F ). Note that by definition the modulus of all
curves in X that are not locally rectifiable is zero.

And here

△(E, F ) ∶=
d(E, F )

min{diam(E), diam(F )}

denotes the relative distance between E and F and diam(E) denotes the diameter of E.

We recap the two main theorems mentioned at the beginning of the paper and recall
the definition of non-branching geodesic space for convenience. Let Geo(X) be the space
of constant speed geodesics in the geodesic space (X, d), i.e.,

Geo(X) ∶= { ∈ C([0, 1];X) ∶ d((t), (s)) = |t − s|d((0), (1)), for any t, s ∈ [0, 1]}.

The geodesic space (X, d) is non-branching iff for any 1, 2 ∈ Geo(X) we have: if there
exists t ∈ (0, 1) such that 1(s) = 2(s) for all s ∈ [0, t], then 1 = 2.
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Theorem 11. Non-collapsed RCD(0, n) spaces (X, d,n) with n ≥ 2 (n ∈ ℕ) and Eu-
clidean volume growth are n-Loewner spaces.

Proof. Since an RCD(0, n) space with n ≥ 2 is non-branching [Den20, Theorem 1.3],
non-collapsed RCD(0, n) spaces with n ≥ 2 satisfy (1, 1)-Poincare inequality [Vil09, The-
orem 30.26]. In addition, non-collapsed RCD(0, n) spaces with Euclidean volume growth
are proper, doubling and quasiconvex, then Heinonen-Koskela theorem implies that these
are n-Loewner spaces [HK98, Theorem 5.7].

Remark 12. The non-collapsed condition is not necessary for this theorem to hold. Having
said that, we state the theorem with non-collapsed condition because our target is the
metrics on ℝ

n.

Theorem 13. A quasicomformal homeomorphism f of a non-collapsed RCD(0, n) space
with Euclidean volume growth and n ≥ 2 (n ∈ ℕ) is quasisymmetric, if it maps bounded
sets to bounded sets.

Proof. Since a non-collapsed RCD(0, n) space (X, d,n) satisfies Bishop-Gromov in-
equality, (X, d,n) with Euclidean volume growth is Ahlfors n-regular. On the other
hand, Theorem 11 implies that it is an n-Loewner space. Then the quasiconformal home-
omorphisms that maps bounded sets to bounded sets between n-regular Loewner spaces
(n ≥ 2) are quasisymmetric [HK98, Corollary 4.8].

Thus, the homeomorphism f is also �-quasisymmetric. We do not need any of the
priori regularity assumptions on the metrics or homeomorphisms to obtain global bounds.
Since the classic Liouville theorem shows that the unit balls in ℝ

n with Euclidean metric
(n ≥ 3) can be conformally equivalent to half-spaces, the condition that maps bounded
sets to bounded sets in Theorem 13 is necessary.

Since non-collapsed RCD(K, n) spaces (K > 0) are compact according to the gen-
eralized Bonnet-Meyer theorem, a quasiconformal homeomorphism of a non-collapsed
RCD(K, n) space (X, d,n) is quasisymmetric. The proof of Theorem 13 shows that a
quasiconformal homeomorphism from non-collapsed RCD(0, n) spaces (X, d,n) with
maximal Euclidean volume growth and n ≥ 2 to E

n is quasisymmetric.

Remark 14. A separable metric space is said to be purely n-dimensional if every non-
empty open subset has the topological dimension n. Then a purely n-dimensional, proper,
geodesically complete CAT(0) space (X, d) with AVRd(X) < 3!n∕2 is homeomorphic
to ℝ

n [Nag22, Theorem 1.2]. It is not clear to the author whether quasiconformal homeo-
morphism of the space satisfies the infinitesimal-to-global principle.

Remark 15. The hyperbolic n-plane ℍ
n is an n-Loewner space. However, the volume

of balls in ℍ
n increases exponentially with respect to the radius of the ball rather than

polynomially as in the Euclidean space such that ℍn is not n-regular.

Remark 16. A complete open Riemannian n-manifold with uniformly positive scalar cur-
vature is also not n-regular in general. Because ℝ

3 can be given a complete Riemannian
metric gs with scalar curvature greater than 2, one can take the metric product of ℍn and
(ℝ3, gs). Then the scalar curvature of the product manifold is bounded below by 1 and the
volume of the balls in the product manifold has exponential growth.
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3 Final Remarks

Since the second-order differential calculus is developed on RCD spaces [Gig18], [GP20],
one can also develop a distortion theory of quasiconformal mappings in a non-collapsed
RCD(0, n) space (X, d,n)with Euclidean volume growth, which deals with the estimates
for the modulus of continuity and change of distances under these mappings. We will give
two generalized results in this section.

Assume that f is an �-quasisymmetric homeomorphism of a non-collapsed RCD(0, n)

space (X, d,n) with Euclidean volume growth and n ≥ 2, then one can define the volume
derivative of f at x ∈ X as

�f (x) ∶= lim
r→0

n(f (Bx(r)))

n(Bx(r))
.

This limit exists according to the Lebesgue-Radon-Nikodym theorem and it is finite for
almost every x in X. The function �f is an n-measurable function on X and is known
as the generalized Jacobian of f .

Recall that a doubling Borel measure � is A∞-related to the Hausdorff measure n in
X if for each � > 0 there is � > 0 such that n(E) < �n(E) implies �(E) < ��(E).
The function �f can be related to the pull-back measure f ∗n(E) ∶= n(f (E)) in the
following way.

Theorem 17. Let f be an �-quasisymmetric homeomorphism of a non-collapsedRCD(0, n)
space (X, d,n) with Euclidean volume growth and n ≥ 2, then the pull-back measure
f ∗n is A∞-related to n in X. Moreover, df ∗n = �fdn with �f > 0 for n-almost
every x in X, and there is � > 0 such that

(⨍
B

�1+�
f

dn)
1

1+� ≤ C ⨍
B

�fdn

for all balls B in X, quantitatively.

Proof. Since non-collapsed RCD(0, n) spaces with n ≥ 2 satisfy (1, 1)-Poincare inequal-
ity, then the pull-back measure f ∗n(E) is A∞-related to the Hausdorff measure n in X

[HK98, Theorem 7.11], [KZ08, Theorem 1.0.4].

Therefore, Theorem 17 implies that n(E) = 0 if and only if n(f (E)) = 0 for an n-
measurable subset E ⊂ X. That is, f and its inverse are absolutely continuous. Theorem
17 also implies that the �-quasisymmetric homeomorphism f preserves the dimensions of
the sets of Hausdorff dimension n. Furthermore, we can bound the measure of the image
of a set by the measure of the set in the following way.

Corollary 18. Letf be an �-quasisymmetric homeomorphism of a non-collapsedRCD(0, n)
space (X, d,n) with Euclidean volume growth and n ≥ 2, let � be the constant in Theo-
rem 17 and let F be a compact subset of X, then for each a ∈ (0, �∕1 + �) there exists a
constant b such that

n(f (E)) ≤ bn(E)a

for each n-measurable subset E of F .
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Proof. Fix a ∈ (0,
�

1+�
) and let q =

1

1−a
∈ (1, 1 + �). Since �f is locally Lq-integrable in

X by Theorem 17, then

b ∶= (∫
E

�
q

f
dn)

1

q < ∞,

and for each measurable E ⊂ F , we have

n(f (E)) = ∫
E

�fdn ≤ (∫
F

�
q

f
dn)

1

qn(E)a = bn(E)a.

However, based on the existence of the Cantor sets on E
n, Gehring and Väisälä [GV73]

show that quasiconformal homeomorphisms of En, n ≥ 2, can distort the Hausdorff di-
mensions of the subsets, whose Hausdorff dimensions are not zero or n. Thus, the quasi-
conformal homeomorphisms of En can distort the perimeters of the subsets.

It is not clear to the author whether or not quasiconformal homeomorphisms of a non-
collapsedRCD(0, n) space (X, d,n)with Euclidean volume growth and n ≥ 2 can distort
the Hausdorff dimension of subsets. Recall that the perimeter of E on the metric measure
space (X, d,n) can be defined as the relaxed Minkowski content of E for a finite n-
measureable set E [ADMG17, Theorem 3.6].

Some of the examples of the distortion theory of quasiconformal mappings in E
n are

the quasiconformal counterparts of the Schwarz Lemma by Grötzsch [Grö32], the classical
Schwarz-Pick-Ahlfors Lemma [Ahl38], [Oss99] and Mori-Fehlmann-Vuorinen theorem
[Mor56], [FV88].

Theorem 19 (Mori-Fehlmann-Vuorinen Theorem). LetBn be the unit ball of the Euclidean
space (En, d

En), n ≥ 2, andf be aK-quasiconformal mapping ofBn ontoBn withf (0) = 0.
Then,

d
En(f (x), f (y)) ≤ M(n, K)d

En(x, y)K
1

1−n

for all x, y ∈ B
n and the constant M(n, K) has the following three properties:

(1) M(n, K) → 1 as K → 1, uniformly in n;

(2) M(n, K) remains bounded for fixed K and varying n;

(3) M(n, K) remains bounded for fixed n and varying K .

Motivated by the similarity of the inequalities in Corollary 18 and Mori-Fehlmann-
Vuorinen Theorem, one could ask the following question:

Question 20. Do the classical Schwarz-Pick-Ahlfors Lemma and Mori-Fehlmann-Vuorinen
Theorem hold for CAT(−1) spaces?

If we do not require the homeomorphisms mapping in Definition 5 (of quasiconfor-
mality), then we get the definition of quasiregular mappings on metric spaces. To answer
Zorich’s question, Rickman shows that a nonconstant quasiregular mapping f ∶ E

n
→ E

n

can only omit finite values for n ≥ 3 [Ric80]. Zorich [Zor67] shows that any locally
injective quasiconformal mapping f ∶ E

n
→ E

n for n ≥ 3 is globally injective.

Question 21. Can those two classic theorems be extended to non-collapsed RCD(0, n)

spaces (X, d,n) with Euclidean volume growth and n ≥ 3?
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