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2 Topics in Polar Actions

Claudio Gorodski∗

July 2022

Abstract

These are the notes for a series of lectures at the Institute of Geome-

try and Topology of the University of Stuttgart, Germany, in July 13-15,

2022. We wish to thank Uwe Semmelmann and Andreas Kollross for the

invitation to give these lectures. We assume basic knowledge of isomet-

ric actions on Riemannian manifolds, including the normal slice theorem

and the principal orbit type theorem. Lecture 1 introduces polar actions

and culminates with Heintze, Liu and Olmos’s argument to characterize

them in terms of integrability of the distribution of normal spaces to the

principal orbits. The other two lectures are devoted to two of Lytchak

and Thorbergsson’s results. In Lecture 2 we briefly review Riemannian

orbifolds from the metric point of view, and explain their characterization

of orbifold points in the orbit space of a proper and isometric action in

terms of polarity of the slice representation above. In Lecture 3 we present

their proof of the fact that variationally complete actions in the sense of

Bott and Samelson on non-negatively curved manifolds are hyperpolar.

The appendix contains explanations of some results used in the lectures,

namely: a criterion for the polarity of isometric actions on symmetric

spaces, a discussion of Cartan’s and Hermann’s criterions for the exis-

tence of totally geodesic submanifolds, and a more or less self-contained

derivation of Wilking’s transversal Jacobi equation.

Introduction

J. Dadok [Dad85] considered orthogonal representations of compact Lie groups
with the property that there is a subspace meeting all orbits, and always or-
thogonally. He pointed out that they resemble generalized polar coordinates
and introduced the name polar representations for them. In the same paper he
proved a number of basic properties, and especially classified polar representa-
tions up to orbit-equivalence1 using highest weight theory. As an aftermath,

∗Instituto de Matemática e Estat́ıstica, Universidade de São Paulo,

Rua do Matão, 1010, São Paulo, SP 05508-090, Brazil, E-mail address:
claudio.gorodski@usp.br

1Two isometric actions are said to be orbit-equivalent if they have the same orbits, up to
an isometric identification between the target spaces.
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he realized that every polar representation of a compact connected Lie group
is orbit-equivalent to the isotropy representation of a (Riemannian) symmetric
space.

Polar actions had already been considered before, in one way or another.
One form of É. Cartan’s maximal torus theorem states that a maximal torus
with a bi-invariant metric meets every adjoint orbit in the group, orthogonally,
and similarly, the Lie algebra of the maximal torus meets every adjoint or-
bit in the Lie algebra, orthogonally. A generalization of this result applies to
the (resp. linear) isotropy action of a symmetric space and the (resp. Cartan
subspaces) maximal flats. L. Conlon [Con71], building on work of Bott and
Samelson and Hermann, for an action of compact connected Lie group K on
a complete Riemannian manifold M , considered his so-called “K-transversal
domain”, namely, a flat closed connected totaly geodesic embedded submani-
fold meeting every K-orbit, and orthogonal at every point of intersection. J.
Szenthe, coming from a background on transformation groups, and initially
unaware of Conlon’s work, studied the generalized Weyl group for isometric
actions of compact Lie groups admitting “orthogonally transversal manifolds”,
and proved that such submanifolds are automatically totally geodesic. Palais
and Terng [PT87], initially unaware of Dadok’s and Conlon’s works, defined a
section of an isometric action of a compact Lie group on a connected complete
Riemannian manifold M to be a connected closed regularly embedded smooth
submanifold Σ of M that meets all orbits orthogonally. They also note that the
compactness assumption on G can be replaced by the hypothesis that the ac-
tion is proper, without substantial changes in the results. They especially took
the differential geometric viewpoint and emphasized the relation to Riemannian
geometry of submanifolds (more especifically, isoparametric submanifolds, an-
other area with important contributions by Cartan). In the same paper, they
mention applications to invariant theory and calculus of variations. These are
further exposed in their book [PT88]. Much more recently, later developments
in the area of polar actions are collected in [BCO16], which has also an extensive
list of bibliographic references.

Singular Riemannian foliations form a class of foliations that generalize the
foliations by orbits of an isometric group action. Much of the theory of polar
actions has been generalized to “singular Riemannian sections with sections”,
or “polar foliations” as they are now called, but the lack of group action causes
some difficulties. We will not discuss them here and instead refer to [AB15,
Rad17, Tho22] for discussions and references.
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1 Lecture 1: Polar actions

1.1 Sections

A proper isometric action of a Lie group G on a complete Riemannian manifold
M is called polar if there exists a complete connected immersed submanifold Σ
of M which intersects all the orbits and such that Σ is perpendicular to every
orbit it meets2. Such a submanifold is called a section.

A number of basic properties of polar actions is listed in Proposition 1.1.2
below. First, we prove a related result about general proper isometric actions.

1.1.1 Lemma Let (G,M) be a proper isometric action. Then, for every p ∈ M ,
the subset expp(νp(Gp)) meets all the orbits of G.

Proof. Fix an arbitrary orbit N of G and a point q ∈ N . Since the action
is proper, N is a properly embedded, thus closed submanifold of M . By com-
pleteness of M , there exists a minimizing geodesic γ : [0, 1] → M joining q to
Gp, so γ(0) = q and γ(1) ∈ Gp. Due the first variation of length formula, γ is
perpendicular to Gp at γ(1). Write γ(1) = gp for some g ∈ G. Then γ̃ = g−1 ◦γ

2It is possible to consider a more general situation in which Σ is replaced by an isometric
immersion ι : Σ → M , non-necessarily injective. In [BCO16] such actions are called locally

polar, and the term “polar” is reserved to those actions with an embedded section. It is
clear from the discussion below that ι can fail to be injective at p only if ι(p) is a singular
point of the action. The brothers Alekseevsky [AA93] proved that an isometrically immersed
section of dimension 1 must be injective, but the case of higher dimension remains open. For
simplicity of exposition, herein we restrict to injectively immersed sections and just make
some comments in the general case.
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is a geodesic joining g−1q ∈ N to p, and it is perpendicular to Gp at p. There-
fore g−1q = expp v where v = −γ̃′(1) ∈ νp(Gp). This proves that expp(νp(Gp))
meets N at g−1q. �

1.1.2 Proposition Let (G,M) be a polar action. Then:

a. If Σ is a section of (G,M) and g ∈ G, then gΣ is a section of (G,M). In
other words, any G-translate of a section is a section.

b. There exists a section of (G,M) through every point of M .

c. The dimension of a section of (G,M) equals the co-homogeneity of the
action.

d. Any section of (G,M) contains an open and dense subset consisting of
regular points of the action.

e. A section of (G,M) is totally geodesic in M .

f . There exists a unique section of (G,M) through a regular point p ∈ M ,
and it is given by expp(νp(Gp)).

g. If Σ1 and Σ2 are two sections of (G,M), then there exists g ∈ G such that
gΣ1 = Σ2. In other words, any two sections differ by an element of the
group.

Proof. (a) If Σ meets a given orbit N at a point p, then gΣ meets N at the
point gp. This shows that gΣ meets all the orbits. Moreover, if gΣ meets N at
a point q, then it is perpendicular there, because Σ meets N at g−1q and this
is perpendicular and G acts by isometries. It follows that gΣ satisfies the two
defining conditions of a section.

(b) Let Σ be a section of (G,M). Given p ∈ M , the orbit Gp meets Σ in a
point gp for some g ∈ G by the definition of a section. Then g−1Σ is a section
by (a) and p ∈ g−1Σ.

(c) Let Σ be a section. Then

TpΣ ⊂ νp(Gp)

for every p ∈ Σ by definition of a section. Denote by Σreg = Σ ∩ Mreg the
open set of regular points of M that lie in Σ. Since dim νp(Gp) equals the co-
homogeneity of (G,M) for p ∈ Σreg, the above inclusion implies that dimΣ is
not larger than this co-homogeneity. Recall the submersion π : Mreg → Mreg/G.
Since Σ intersects all the orbits, the restriction π|Σreg

: Σreg → Mreg/G is
surjective. It follows that dimΣreg ≥ dimMreg/G. Since dimMreg/G is equal
to the co-homomogeneity of (G,M), we conclude that dimΣ is also equal to
this co-homogeneity.

(d) It is clear that the set of regular points in Σ is open. Suppose, on the
contrary, that there exists a non-empty open subset V of Σ that does not contain
regular points of (G,M). Let p ∈ V be a point whose isotropy subgroup Gp
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has the minimal dimension and the smallest number of connected components
among the points in V . By the normal slice theorem, (Gp) = (Gq) for q ∈ V .
It follows that GV ≈ Gp × V is a submanifold of M . If S is the normal slice
at p, then TpS = νp(Gp) and Tp(GV ) = Tp(Gp) ⊕ TpΣ. It follows that GV is
transversal to S at p. By shrinking V , we can assume S ∩GV is a submanifold
W , where dimW = dimΣ. Gp cannot fix all the points of S because p is
not regular, but it fixes all the points of W , so the co-homogeneity of (Gp, S)
is at least dimW + 1 = dimΣ + 1. The cohomogeneity of a slice is also the
co-homogeneity of (G,M), which contradicts part (c).

(e) Let Σ be a section. By part (d), Σreg is dense in Σ. Thus, by continuity,
it suffices to prove that the second fundamental form of Σ in M vanishes along
Σreg. Let p ∈ Σreg and consider a normal vector u ∈ νpΣ. Since p is a regular
point, νpΣ = Tp(Gp), so we can find an element X in the Lie algebra of G such
that X∗

p = u. Owing to the polarity of the action, X∗ is perpendicular to Σ
everywhere along Σ. Therefore the Weingarten operator A of Σ can be written
as 〈Auv, v〉 = −〈∇vX

∗, v〉 = 0 for all v ∈ TpM , where we have used that X∗ is
a Killing field. Hence A vanishes along Σreg, as we wanted.

(f) Let p ∈ M be a regular point and let Σ be a section through p. We
have seen that TpΣ = νp(Gp) and Σ is totally geodesic, so Σ ⊃ expp(TpΣ) =
expp(νp(Gp)). For the converse inclusion, let q ∈ Σ. By part (e) and com-
pleteness of Σ, there exists a minimizing geodesic of M , γ : [0, 1] → Σ, with
γ(0) = p and γ(1) = q. Then q = expp(γ

′(0)) where γ′(0) ∈ TpΣ, proving that
Σ ⊂ expp(TpΣ) = expp(νp(Gp)).

(g) Let p ∈ Σ1 be a regular point. There exists g ∈ G such that gp ∈ Σ2.
Now gΣ1 and Σ2 are two sections through the regular point gp, so they must
coincide by part (f). �

The next result shows that the property of being polar is inherited by the
slice representations.

1.1.3 Proposition Let (G,M) be a polar action, and let p ∈ M . Then the slice
representation at p is also polar. In fact, if Σ is a section of (G,M) through p,
then TpΣ is a section of (Gp, νp(Gp)).

Proof. Set K = Gp and V = νp(Gp) for convenience. The co-homogeneity
of the slice representation is the same as that of the slice action of K on the
normal slice S at p. This shows that TpΣ has the right dimension of a section
of (K,V ).

We claim that TpΣ contains regular points of (K,V ). In fact, let ξ be a
principal orbit of G, and choose a connected component β of ξ ∩ Σ. Let γ be
a minimizing geodesic in Σ from γ(0) = p to γ(1) ∈ β. Then γ′(0) ∈ TpΣ is
a regular point of (K,V ). Next, if we can prove that TpΣ is perpendicular to
Kv for every v ∈ TpΣ, this will finish the proof, for it will follow that, for a
(K,V )-regular point w ∈ TpΣ, TpΣ coincides with the normal space of Kw in
V , and hence TpΣ meets all the K-orbits in V owing to Lemma 1.1.1.

So let v ∈ TpΣ. The Lie algebra k consists of the elements X of g such
that X∗

p = 0. We also have that k induces Killing fields on V via the action
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of (K,V ); denote them with ()∗∗. The tangent space TvKv is spanned by the
vectors X∗∗

v ∈ V , where X ∈ k. Let γ be an integral curve of v through p. In
view of

X∗∗
v =

∇

dt

∣

∣

∣

t=0
d(exp(tX))p(v)

=
∇

dt

∣

∣

∣

t=0

d

ds

∣

∣

∣

s=0
(exp(tX))(γ(s))

=
∇

ds

∣

∣

∣

s=0

d

dt

∣

∣

∣

t=0
(exp(tX))(γ(s))

=
∇

ds

∣

∣

∣

s=0
Xγ(s)

= ∇vX,

for u ∈ TpΣ we have

〈X∗∗
v , u〉 = 〈(∇vX

∗)p, u〉 = −〈AX∗

p
v, u〉 = 0.

This shows that Kv is perpendicular to TpΣ and completes the proof. �

1.1.4 Corollary Let (G,M) be a polar action, and let p ∈ M . Then the
isotropy subgroup Gp acts transitively on the set of sections of (G,M) through p.

Proof. Let Σ1 and Σ2 be two sections containing the point p. According
to Proposition 1.1.3, the slice representation (Gp, νp(Gp)) is polar and TpΣ1,
TpΣ2 are two of its sections. By Propostion 1.1.2(g), there exists g ∈ Gp such
that dgp(TpΣ1) = TpΣ2. Since Σ1 and Σ2 are totally geodesic, this implies that
gΣ1 = Σ2, as wished. �

1.2 The generalized Weyl group

Let (G,M) be a proper isometric action. By the normal slice theorem, locally,
the study of the orbit space near an orbit Gp is reduced to the study of the orbit
space of the action of Gp on the normal slice Sp. Next, we explain how this
reduction can be done globally in the case in which (G,M) is a polar action.

Let (G,M) be a polar action, and let Σ be a section. Denote by N(Σ) the
normalizer of Σ in G, namely, the subgroup of G consisting of the elements that
restrict to isometries of Σ. Then the action of G on M restricts to an action of
N(Σ) on Σ. In the following, it will be interesting to consider the effectivized
action of N(Σ) on Σ; we say an action is effective if the only group element that
acts as the identity map is the identity element in the group. For that purpose,
denote by Z(Σ) the centralizer of Σ in G, namely, the subgroup of G consisting
of the elements that restrict to the identity on Σ. Take any regular point p ∈ Σ.
It is obvious that Z(Σ) ⊂ Gp, and the reverse inclusion is a consequence of
the fact that the slice representation at a regular point is trivial. In particular,
Z(Σ) = Gp is a closed subgroup of G. Note also that N(Σ) is a subgroup of the
normalizer of Gp in G, N(Σ) ⊂ NG(Gp).
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The generalized Weyl group of the polar action (G,M) with respect to the
section Σ is defined to be the quotient group

W (Σ) = N(Σ)/Z(Σ).

In the following proposition we collect a number of properties related to the
generalized Weyl group.3

1.2.1 Proposition Let (G,M) be a polar action admitting a section Σ.

a. The generalized Weyl group W (Σ) is a discrete closed subgroup of N(Gpr)/Gpr,
for some principal isotropy group Gpr of (G,M). In particular, W (Σ) acts
properly on Σ.

b. The inclusion ι : Σ → M induces a map ῑ : Σ/W (Σ) → M/G, which takes
a N(Σ)-orbit of a point in Σ to the G-orbit of that point. This map is is
a homeomorphism between the quotient topological spaces.

c. For every p ∈ Σ, Gp ∩ Σ = W (Σ)p.

d. If Σ1 and Σ2 are sections, then there exists an isomorphism between the
generalized Weyl groups W (Σ1) and W (Σ2) which is uniquely defined up
to an inner automorphism of W (Σ1).

Proof. (a) Let p ∈ Σ be a regular point and write Gp = Gpr. Let S be the
normal slice at p. Then S is an open neighborhood of p in Σ. The continuity
of the action implies that gp ∈ S for an element g ∈ N(Σ) sufficiently close to
the identity of N(Σ). Since Gp is a principal orbit, S meets every orbit near
p at a unique point, so gp = p, namely, g ∈ Gp = Z(Σ). This argument thus
shows that Z(Σ) contains an open neighborhood of the identity in N(Σ), and
this is equivalent to saying that Z(Σ) is an open subgroup of N(Σ). Hence the
quotient N(Σ)/Z(Σ) is a discrete Lie group. Now every discrete subgroup of a
Hausdorff topological group is closed. The properness of the W (Σ)-action on Σ
is immediate from this and the properness of the G-action on M .

(b) Since Σ meets all the orbits of G in M , this map is surjective. We claim
that the map ῑ is also injective. In order to prove this claim, suppose that p,
q ∈ Σ lie in the same G-orbit; we need to prove that they lie in the same N(Σ)-
orbit, too. We can write q = gp for some g ∈ G. Then q lies in gΣ, so Σ and gΣ
are two sections through the point q. By Corolllary 1.1.4, there exists h ∈ Gq

such that hgΣ = Σ. It follows that q = hq = hgp where hg ∈ N(Σ), and this
proves the claim.

We already know that ῑ is a continous and bijective map, so now we need
only to prove that it is an open map. For that purpose, let U be an open
set of Σ/W (Σ) and denote by πΣ : Σ → Σ/W (Σ) and πM : M → M/G the

3In the case of an isometrically immersed section ι : Σ → M , W (ι) is defined as the
normalizer of the image of ι, quotiented by its centralizer. One then shows that the W (ι)-
action on ι(Σ) lifts to an action on Σ: this is clear on the G-regular points of Σ, and follows
on the other points by continuity.
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projections. By the definition of quotient topology, we know that π−1
Σ (U) is

open and we want to show that this implies that π−1
M ῑ(U) is open. Since G acts

by homeomorphisms on M , this is a consequence of the following relation that
we prove in the sequel:

π−1
M ◦ ῑ(U) = Gπ−1

Σ (U).

In fact, we have that a point p ∈ M belongs to the left hand side if and only
if πM (p) ∈ ῑ(U), and this means that πM (p) = ῑ(πΣ(q)) = πM (ι(q)) for some
q ∈ π−1

Σ (U). But the latter is equivalent to having p lying in the same G-orbit
as a point q ∈ π−1

Σ (U), which is exactly the meaning that p ∈ Gπ−1
Σ (U).

(c) One inclusion is obvious, and the other one is the injectivity of the map ῑ
proved in part (b).

(d) By Proposition 1.1.2(g), there exists an element g ∈ G such that gΣ1 =
Σ2. It is easy to see that gN(Σ1)g

−1 = N(Σ2) and gZ(Σ1)g
−1 = Z(Σ2). So

the conjugation by g induces an isomorphism W (Σ1) → W (Σ2). If g′ ∈ G is
another element satisfying g′Σ1 = Σ2, then g−1g′ ∈ N(Σ1), so this element
defines an inner automorphism of W (Σ1) and the conjugations by g and g′

induce isomorphisms W (Σ1) → W (Σ2) that differ by that inner automorhism.
�

1.3 The orbit space

Let (G,M) be a proper isometric action, where M is assumed connected. The
set of manifold points of M∗ = M/G is open and dense, but M∗ is, in general,
not a manifold. For this reason, it is interesting to consider a natural metric
space structure on M∗.

Let x, y ∈ M∗. Define the distance d(x, y) to be the distance between the
G-orbits π−1(x) and π−1(y) in M . Since the G-action is proper, its orbits are
properly embedded submanifolds of M , and therefore d(x, y) > 0 for x 6= y. It
is now clear that d defines a structure of metric space on M∗.

1.3.1 Remark Note that d(x, y) is equal to the length of a geodesic of M
joining a point in π−1(x) to a point in π−1(y), which is horizontal in the sense
that it is orthogonal to every G-orbit that it meets; the initial point of the
geodesic in one of the two orbits can be any chosen point, by G-invariance, but
this determines the endpoint in the other orbit.

Consider the metric space structures thus obtained onM/G and Σ/W , where
W = W (Σ). It is clear that the quotient spaces Σ/N = Σ/W , where N = N(Σ),
and that the inclusion4 ι : Σ → M induces a continuous map ῑ : Σ/W → M/G
that maps a N -orbit of a point in Σ to the G-orbit of that point. In this respect,
we have the following proposition.

1.3.2 Proposition The map ῑ : Σ/W (Σ) → M/G is an isometry of metric
spaces.

4Or isometric immersion.
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Proof. The map ῑ is non-expanding (or 1-Lipschitz), namely,

d(ῑ(x), ῑ(y)) ≤ d(x, y)

for all x, y ∈ Σ/W , since every geodesic in Σ is a geodesic in M .
We already know from Proposition 1.2.1 that ῑ is injective. In view of the

continuity of ῑ and the denseness of G-regular points in Σ, to finish the proof
we need only show that ῑ is an isometry on Σreg. In fact let x = Np, y = Nq
where p, q ∈ Σreg. The minimizing geodesic γ in M from p to Gq is entirely
contained in Σ. Let r ∈ Σ ∩ Gq be the endpoint of γ. Clearly γ minimizes
the distance from Np to Nr. Since Gr = Gq, by the injectivity of ῑ we have
Nr = Nq. Hence d(ῑ(x), ῑ(y)) = Length(γ) = d(x, y) as desired. �

Recall that a Riemannian orbifold is a length space locally isometric to the
quotient of a Riemannian manifold by a finite group of isometries (cf. Lecture 2).
For a section Σ of a polar action (G,M), the generalized Weyl group W (Σ) is
a discrete group acting properly on Σ (Proposition 1.2.1(a)); thus its isotropy
subgroups are finite. It follows from Proposition 1.3.2 that the orbit space of a
polar action is a Riemannian orbifold.

Due to Proposition 1.3.2, the action of (W (Σ),Σ) can also be seen as a
“reduction” of the action (G,M) to a discrete group action, namely, one can
recover the same orbit space from a much simpler action of a discrete group
action. It easily follows from O’Neill’s equation (3.2.4) and Theorem 1.5.2 that
a proper and isometric action admits a reduction to a discrete group if and only
if it is a polar action.

Consider for instance the case of an orthogonal representation (G, V ). In
invariant theory, if (H,W ) is a reduction of (G, V ), that is, W/H is isometric to
V/G, it is a natural question to ask if the invariant rings of these representations
are isomorphic. In some special cases this question has an affirmative answer,
namely, polar representations (by Chevalley’s theorem) and the reduction to
the principal isotropy group (by Luna-Richardson’s theorem [LR79]). In [AR15]
it is shown that the answer is also positive in case the isometry preserves the
codimension of the orbits, and in [AL11] it is remarked to hold for infinitesimally
polar actions (cf. section 2); see also [Men21] for the special case of isometries
of V/G. In full generality, the question remains open.

The reduction principle for orthogonal representations was apparently first
stated in [Str94]. In [GL14] a systematic study of reductions of orthogonal
representations was initiated, going much beyond polar representations.

1.4 Examples and classification

We first discuss the linear case. The standard examples of polar representations
are the isotropy representations of symmetric spaces without an Euclidean fac-
tor, sometimes called s-representations. Let M = G/K be a such a symmet-
ric space, and consider the associated decomposition on the Lie algebra level
g = k+ p into the ±1-eigenspaces of the involution. Then the isotropy represen-
tation of M is equivalent to the adjoint representation of K on p. Recall that
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a symmmetric space of compact type and its noncompact dual have equivalent
isotropy representations. By passing to a covering, we may assume that K is
connected, and M is irreducible. Then the metric is proportional to the Killing
form B on p. Let a be a maximal Abelian subalgebra of p (a exponentiates
to a maximal flat of G/K through the basepoint). Let X ∈ k, Y , Z ∈ a be
arbitrary. Then [X,Y ] is an arbitrary tangent vector to the K-orbit through Y
at the point Y , and

B([X,Y ], Z) = B(X, [Y, Z]) = 0,

where we have used the ad-invariance of the Killing form, and the fact that a

is Abelian. This shows that a is orthogonal to K(Y ) at Y . If Y is a K-regular
point, then dimK(Y ) equals the codimension of a, so in this case a coincides
with the normal space νY (K(Y )). It follows from Lemma 1.1.1 that (K, p) is a
polar representation. Here the generalized Weyl group coincides with the (little)
Weyl group of the symmetric space.

The classification theorem of Dadok [Dad85] implies that every polar rep-
resentation of a compact connected Lie group is orbit-equivalent to such an
s-representation, for some symmetric space (see also [Kol03] for an alternative
approach, and [EH99b] for a geometric proof in case of cohomogeneity bigger
than two). The list of representations orbit-equivalent to an s-representation
is not difficult to compile. Besides the cohomogeneity one case which was pre-
viously known, in the irreducible case there is a short list [EH99a], and in the
general case there is a description [Ber01].

Note that the orthogonal conjugacy of real symmetric matrices to diago-
nal matrices proved in basic Linear Algebra courses is the polarity of the s-
representation associated to SL(n,R)/SO(n).

Moving to polar actions on more general Riemannian manifolds, for a proper
and isometric action, a geodesic orthogonal to an orbit remains orthogonal to
every orbit it meets, due to Clairault’s lemma. It follows that cohomogeneity
one actions form a class of polar actions with a flat section.5 It is interesting to
remark that flat sections of polar actions on symmetric spaces of compact type
equipped with metrics coming from the Cartan-Killing form were shown to be
compact tori (hence properly embedded) in [HPTT95].6

A polar action with flat sections is sometimes called hyperpolar. In [Her60],
Hermann constructed examples of “variationally complete” actions (in the sense
of Bott and Samelson, cf. Lecture 3), which were later found to be hyperpolar,
as follows. Let (G,H) and (G,K) be two symmetric pairs where, say, G is
compact. Then G/H and G/K are compact symmetric spaces. The left-action

5Either due to the brothers Alekseevsky result, or to the broader definition of a section,
cf. footnote 1.

6A cohomogeneity one action on a torus can of course have as section a dense irrational
torus. Even in the case of a cohomogeneity one action on a compact symmetric space without
flat factor, taking a metric non-proportional to the Cartan-Killing form in the reducible case,
one can have a non-embedded section: one such example is the diagonal action of SO(3) on
the product of spheres S2(1) × S2(R) where R2 is irrational. (This follows because γ(t) =
((cos t, sin t, 0), (R sin t

R2 , R cos t

R2 , 0)) is a geodesic normal to the orbits.)
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of H on G/K, now called a Hermann action, is hyperpolar7 (cf. section 4.1).
Kollross classified hyperpolar actions (in particular, cohomogeneity one ac-

tions) on compact irreducible symmetric spaces in his thesis, which is published
as [Kol02]. Later in [Kol17] he showed that one can remove the irreducibility
assumption if the cohomogeneity of the action is bigger than one.8 His result is
that an indecomposable9 hyperpolar action of cohomogeneity at least two on a
compact symmetric space is orbit-equivalent to a Hermann action.

There are easy examples of polar actions with nonflat sections on compact
symmetric spaces of rank one. A simple example is the action of the maximal
torus T n of the isometry group SU(n + 1) of complex projective space CPn,
which is polar with sections isometric to a totally geodesic RPn. According to
the classification result of Podestà and Thorbergsson [PT02], the polar actions
on classical symmetric spaces of rank one are induced from certain polar actions
on spheres using the Hopf fibration. In the case of the Cayley projective plane,
there is no Hopf fibration, and their analysis found four polar actions with
cohomogeneity one, and four polar actions with cohomogeneity two; a further
polar action of cohomogeneity two which was overlooked in [PT02] was later
found to be polar in [GK16] (it is given by a maximal subgroup of the isometry
group of OP 2 whose Lie algebra is not regular).

No examples of polar actions with nonflat sections on irreducible compact
symmetric spaces of rank bigger than one were known, so eventually the question
of their existence became a folklore problem. Many special cases were examined,
most notably in the case of a Hermitian symmetric space in [Bil06]. Finally,
Lytchak and Kollross proved that they do not exist in [KL13].

One direction in which to extend the above results is to pass from compact
symmetric spaces to compact non-negatively curved manifolds. Using the theory
of Tits buildings, Fang, Grove and Thorbergsson proved in [FGT17] that a polar
action of a compact Lie group on a simply connected compact positively curved
manifold of cohomogeneity at least two is equivariantly diffeomorphic to a polar
action on a compact rank-one symmetric space.

Another direction to go is to consider polar actions on symmetric spaces
of non-compact type. Here much fewer results are known. On real hyperbolic
space RHn the classification is the work of Wu [Wu92]. On complex hyperbolic
space CHn it has been achieved by Dı́az-Ramos, Domı́nguez-Vázques and Koll-
ross [DDK17] (previously, the case of CH2 was dealt with in [BD13]). Next,
there is a general description and a partial classification of cohomogeneity one
actions on irreducible symmetric spaces of non-compact type, due to Berndt
and Tamaru [BT13]. They fall into two cases, namely, either there is a unique
singular orbit and the other orbits are distance tubes around the singular or-

7The left- and right-action of H × K on G is also hyperpolar. These actions generalize
the isotropy action (K,G/K), and the left- and right-action (K × K,G), which had been
previously considered by Bott and Samelson.

8The classification of cohomogeneity one actions on reducible symmetric spaces is still
open.

9Here an isometric action on a Riemannian manifold is called decomposable if the manifold
can be written as a Riemannian product, and the action is orbit equivalent to the product of
isometric actions on the factors, and indecomposable otherwise.
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bit, or there are no singular orbits and the orbits define a regular Riemannian
foliation. More generally, hyperpolar actions with no singular orbits on sym-
metric spaces of non-compact type are classified in [BDT10]. Regarding polar
actions on higher rank symmetric spaces of non-compact type, there is a clas-
sification of those polar actions with a fixed point [DK11]. In another work,
Kollross [Kol11] used Cartan duality between symmetric spaces of compact type
and non-compact type, which maps an action of reductive algebraic group to a
dual action, and showed that the dual action shares many properties in common
with the original action, for instance (hyper)polarity; in this way, he obtained
a number of new results on polar and hyperpolar actions on noncompact sym-
metric spaces. See the survey [DDS21] for more details on polar actions on
symmetric spaces of non-compact type.

All examples of polar actions discussed above turn out to be on symmetric
spaces. In [GZ12] an algorithm to recover a polar action, up to equivariant
diffeomorphism, from the specification of the orbit space and the isotropy groups
along the strata, which must satisfy certain compatibility conditions, is given,
which allows to construct polar actions on a variety of non-symmetric manifolds.
This algorithm was used in [Goz15] to classify polar actions on compact simply-
connected manifolds up to dimension 5, up to equivariant diffeomorphism (see
also [Muc11] for examples of polar actions on non-symmetric manifolds).

1.5 Polarity and the integrability of the distribution of

normal spaces to the principal orbits

For a polar action (G,M), the sections are clearly integral manifolds of the
tangent distribution H on the regular set Mreg, defined by Hp = νp(Gp). Note
that this is the horizontal distribution of the Riemannian submersion Mreg →
Mreg/G. As early as 1987, Palais and Terng conjectured that if H is integrable
then its integral manifolds can be extended to sections, see [PT87, Remark 3.3],
where they callH the principal horizontal distribution. As of now, the conjecture
has been verified and there are different proofs in the literature, using different
techniques, and with differents degrees of generality. We shall now sketch the
approach of Heintze, Liu and Olmos [HLO06, Appendix A].

For ease of presentation, we start with the linear case.

1.5.1 Proposition Let (G, V ) be an orthogonal representation of a compact Lie
group G on an Euclidean vector space V . If the principal horizontal distribution
H is integrable, then (G, V ) is polar.

Proof. Let L be a leaf of H. It follows from the argument in Proposi-
tion 1.1.2(e) that L is totally geodesic. Therefore it is a non-empty open subset
of an affine subspace Σ of V . We claim that Σ is a section of (G, V ). In fact,
Σ = TpL = νp(Gp) for Gp ∈ L, so Σ meets all G-orbits by Lemma 1.1.1. To
see that it meets always orthogonally, let X ∈ g, and let γ be any horizon-
tal geodesic with γ(0) = p ∈ L. Then the image of γ is contained in Σ and
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J := X∗ ◦ γ is a Jacobi field along γ. Since Σ is totally geodesic, also the hori-
zontal component Jh of J is a Jacobi field. Now Jh vanishes on a neighborhood
of t = 0, so Jh vanishes identically. This shows that X∗

γ(t) is orthogonal to Σ

for all t ∈ γ−1(Vreg). Since γ is arbitrary, Σ is orthogonal to all principal orbits
it meets, and hence to all orbits it meets, by denseness. �

In the case of an arbitrary complete Riemannian manifold M , we can start
the proof with the same argument, but the main issue is the completeness of the
leaf L of H. For that, we shall use Hermann’s extension of Cartan’s criterion
for the existence of a totally geodesic submanifolds with given tangent space at
one point (cf. section 4.2).

1.5.2 Theorem Let (G,M) be a proper isometric action, where M is connected
and complete. Assume that the principal horizontal distribution H is integrable.
Then (G,M) is polar in the broader sense (cf. footnote 1).

Proof. Fix a G-regular point p ∈ M . Let L be maximal leaf of H through p,
and put S = TpL. Consider a S-admissible once-broken geodesic γ : [0, ℓ] → M
emanating from p (cf. section 4.2 for this terminology) that does not meet the
set of singular points, that is, γ(t) lies either in a principal or in an exceptional
G-orbit, for all t ∈ [0, ℓ]. Then H is defined along γ, and it is an auto-parallel
distribution; in particular, Hγ(t) is invariant under Rγ(t) for all t. It follows
that (4.2.5) is satisfied along γ. Next, we consider a S-admissible once-broken
geodesic emanating from p which meets the singular set at finitely many points.
It follows from Lemma 1.5.3 below that (4.2.5) is satisfied along γ. Finally, we
observe that the classes above are dense in the set of S-admissible once-broken
geodesic emanating from p. We deduce that (4.2.5) is satisfied in general, by
continuity. Now Theorem 4.2.4 yields a complete totally geodesic isometric
immersion Σ → M such that TpΣ = S, which is clearly a section. �

For v ∈ TM , write γv(t) = exp(tv).

1.5.3 Lemma Assume H is integrable, and let q ∈ M be a singular point.
Then the slice representation at q is polar and, for any section Σ0 of it, and any
Gq-regular v ∈ Σ0, Σ0 is the parallel transport of Hγv(t) along γv from γv(t) to
q, for small t > 0.

Proof. We first prove that the slice representation at q is polar. Let γv be
any geodesic such that v ∈ νq(Gq) is a regular point for the slice representation.
Then γv(t) is G-regular for small t > 0. Take a sequence tn % 0; by compactness,
we may pass to a subsequence and assume that Hγv(tn) converges to a subspace
Σ0 ∈ νq(Gq). Note that v ∈ Σ0. Now 〈∇uX

∗|γv(tn), w〉 = −〈AX∗

γv(tn)
u,w〉 = 0,

for all X ∈ g, u, w ∈ Hγv(tn). By continuity, 〈X∗∗
u , w〉 = 〈∇uX

∗|q, w〉 = 0 for
all X ∈ gq, u, w ∈ Σ0. It follows that Σ0 is a section for the slice representation.

Next, recall that expq : ν≤ǫ
q (Gq) → Sq is a Gq-equivariant diffeomorphism,

where Sq is the normal slice and ǫ > 0 is small. It follows that

(1.5.4) d(expq)tv(TvGq(v)) = Tγv(t)(Gqγv(t))
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for t > 0 small. Put Σ = expq(Σ0). Since the metric (exp∗q g)tv → gq uniformly
on compact subsets as t → 0, taking orthogonal complements in (1.5.4) we
obtain that the distance in Λc(Tγv(t)Sq) satisfies d(Tγv(t)Σ,Hγv(t)) → 0 as t → 0,
where c is the cohomogeneity of (G,M). Together with Tγv(t)Σ → Σ0, this
implies that Hγv(t) → Σ0, and hence Σ0 is the parallel transport of Hγv(t), by
continuity. �

2 Lecture 2: Orbifold points

Historically, orbifolds first arose as manifolds with singular points long before
they were formally defined. Definitions of orbifolds were given by Satake in
1950s in the context of automorphic forms (“V -manifolds”), by Thurston in the
1970’s in the context of 3-manifolds (when together with students he coined the
name orbifold; the notions of orbifold coverings and orbifold fundamental groups
are also due to him), and by Haefliger in he 1980’s in the context of CAT(κ)-
spaces (“orbihedrons”). Formally speaking, today there are two accepted ways
to define orbifolds: by means of orbifold atlases, and this can be done in the
topological, differentiable or Riemannian category; or by means of Lie grupoids,
which yields a slightly more general definition, albeit less geometrical. A more
direct definition, in the restricted Riemannian setting, has been proposed by
Lytchak (see [LT10]). Herein we follow this approach and sketch some of the
main ideas. A fuller account can be found in [Lan20].

2.1 Riemannian orbifolds

An intrinsic metric space X is called a Riemannian orbifold if every point x ∈ X
admits a neighborhood U isometric to a quotient M/Γ, where M is a Rieman-
nian manifold and Γ is a finite group of isometries. In this definition, M is
endowed with the induced intrinsic metric, and M/G with the corresponding
quotient metric, which measures the distance between orbits in M . Recall that
a intrinsic metric space is a special kind of metric space in which the distance
between any pair of points can be realized as the infimum of the lengths of all
rectifiable paths connecting these points.

A Riemannian orbifold is called good if it is globally isometric to the quotient
space of a Riemannian manifold by a discrete group of isometries, and bad
otherwise.

Lemma 2.1.2 below shows that a Riemannian orbifold X is locally repre-
sented as a quotient in a unique way. We first recall a special case proved
in [Swa02]. Let V be an Euclidean space and denote by S(V ) its unit sphere.
If Γ, Γ′ are two finite subgroups of O(V ) which are conjugate, then the orbit
spaces V/Γ, V/Γ′ are isometric. In fact, if Γ′ = fΓf−1 for some f ∈ O(V ), then
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there is an induced isometry

V
f
> V

V/Γ

π
∨

......
f̄
> V/Γ′

π′

∨

given by f̄(Γv) = Γ′f(v). Conversely:

2.1.1 Lemma If V/Γ, V/Γ′ are isometric then Γ, Γ′ are conjugate in O(V ).

Proof. We proceed by induction on n = dimV . In the initial case of n = 1,
V ∼= R and the only possibilities for Γ are {1} and {±1}, which yield R and
[0,+∞), resp., non-isometric orbit spaces, so we are done.

Assume now n ≥ 2. It is enough to work with X = S(V )/Γ, X ′ = S(V )/Γ′.
Suppose F : X → X ′ is an isometry. Let x ∈ X be such that Γ · x and
Γ′ ·F (x) are principal orbits. Choose points p ∈ π−1(x), p′ ∈ π′−1(x′) and open
neighborhoods Up, Up′ , Ux, Ux′ such that π|Up

: Up → Ux, π
′|U ′

p
: Up′ → Ux′

are isometries and F (Ux) = Ux′ . Then (π′|Up′
)−1Fπ : Up → Up′ is an isometry,

where we view π : S(V ) → X , π′ : S(V ) → X ′; since S(V ) is a space of constant
curvature, we can (uniquely) extend it to a global isometry f : S(V ) → S(V ).
Let f̄ : X ′′ → X ′ be the isometry induced on the level of quotients, where Γ′′ :=
f−1Γ′f and X ′′ = S(V )/Γ′′. Then π′′ = f̄−1π′f : S(V ) → X ′′. Therefore,
identifying X ∼= X ′′ using the isometry f̄−1F , we get π′′|Up

= π|Up
. We will

show that Γ′′ = Γ as subgroups of O(V ).
It suffices to prove that:

(a) π is completely determined by its restriction to an open neighborhood Up

of a Γ-regular point p.

(b) Γ is completely determined by π.

Since π is a local isometry on the principal stratum, it is determined along any
unit speed geodesic γ in S(V ) emanating from p, until γ reaches a non-regular
point, say q = γ(t0) for some t0 > 0. Now γ̇(t0) belongs to the unit sphere Sq of
TqS(V ). The space of directions ΣyX for y = π(q) ∈ X is isometric to Sq/Γq.
Since dimTqS(V ) = n − 1, the action of Γq on Sq is known by the induction
hypothesis. It follows that the exit direction of π ◦ γ from y is known and thus
π is determined along γ beyond t0; this proves (a). Finally, the elements of Γ
are in bijective correspondence with the points in π−1(x) via the map γ 7→ γ(p).
For each γ ∈ Γ, we have a commutative diagram:

Up

Ux

π
∨

<
π

γ(Up) = Uγ(p)

γ

>
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Since γ is an isometry of S(V ), using (a) this completely determines it as an
element of O(V ). Hence (b) is proved. �

2.1.2 Lemma Every isometry F : M/Γ → M ′/Γ′ is locally induced by a lo-
cally defined isometry f : M → M ′. Namely, for every x ∈ M/Γ, there exist
connected open neighborhoods U , U ′ of x, x′ = F (x) of the form V/Γp, V

′/Γ′
p′ ,

where V , V ′ are normal neighborhoods of p ∈ π−1(x), p′ ∈ π−1(x′), resp., and
U ′ = F (U) (π : V → V/Γp, π

′ : V ′ → V ′/Γ′
p′ denote the canonical projections).

Moreover F ◦ π = π′ ◦ f for some isometry f : V → V ′ with f(p) = p′ and
Γ′
p′ = fΓpf

−1.

Proof. Let G = Γp, G
′ = Γ′

p′ . By restriction to slices we have an isometry
F : V/G → V ′/G′ with F (x) = x′. Here V , V ′ can be taken to be metric balls
of the same, small radius, around p, p′, resp. Consider the actions of G, G′ on
TpV , Tp′V ′, resp. Then there is an isometry

TpV/G ∼= Tx(V/G) → Tx′(V ′/G′) ∼= Tp′V ′/G′,

which we denote by dFx. By Lemma 2.1.1, there is an isometry ϕ : TpV → Tp′V ′

such that

TpV
ϕ

> Tp′V ′

TpV/G

dπp
∨

dFx

> Tp′V ′/G′

dπ′
p′

∨

is commutative. Since the Riemannian exponential maps expp : TpV → V ,
expp′ : Tp′V ′ → V ′ are G-, G′-equivariant diffeomorphisms, resp., we can define
an equivariant diffeomorphism f : V → V ′ by

TpV
ϕ
> Tp′V ′

V

expp
∨

..............
f

> V ′

expp′

∨

Finally, there is an induced map

V
f

> V ′

V/G

π
∨

......
f̄
> V ′/G′

π′

∨

We claim that f̄ = F . In fact, for a geodesic γ(t) = expp tγ̇(0) in V :

f̄πγ(t) = f̄π expp tγ̇(0)(2.1.3)

= π′ expp′ tϕ(γ̇(0))
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by commutativity of the last two diagrams. Since x is a fixed point of G, π ◦ γ
is a metric geodesic of V/G. Thus it is mapped under F to a metric geodesic
emanating from x′, namely, π′ ◦ γ′, where γ̇′(0) = ϕ(γ̇(0)):

(2.1.4) Fπγ(t) = π′γ′(t) = π′ expp′ tϕ(γ̇(0)).

Comparison of (2.1.3) and (2.1.4) proves the claim.
It follows f : V → V ′ is a local isometry on the regular set and thus, by

continuity, an isometry everywhere. Now the groups G′, fGf−1 acting on V ′

are orbit-equivalent. If not coincident, they generate a strictly larger group
with the same (finite) orbits and thus non-trivial principal isotropy groups, a
contradiction (since the slice representation at regular points must be trivial).
Hence G′ = fGf−1. �

Let X be a Riemannian orbifold and let x ∈ X . Locally represent X around
x as a quotient M/Γ and write x = Γp for some p ∈ M . Since the isotropy group
Γp acts by isometries on M , it can be viewed as a subgroup of the orthogonal
group O(TpM). Moreover, it follows from Lemma 2.1.2 that the congruence
class of Γp is independent of the local representation of X as a quotient. After
identification TpM ∼= Rn, we get a congruence class of subgroups of O(n), called
the local group of X at x and denoted by Isox(X). A point x ∈ X is called a
manifold point of X if Isox(X) = {1}.

2.1.5 Example Let a Lie groupG act by isometries on a Riemannian manifold.
Then the orbit space has a canonical structure of Riemannian orbifold in the
following two cases:

(a) G is discrete and the action is proper (such orbifolds are called good or
developable; non-good orbifolds are also called bad);

(b) G is compact and connected and all orbits have the same dimension.

An orbi-covering is a continuous map π : Y → X between Riemannian
orbifolds where every x ∈ X admits a neighborhood U ∼= Ũ/G such that every
component V of π−1(U) must be of the form Ṽ /H , with H ⊂ G, and π|V :
V → U lifts to a H-equivariant homeomorphism Ṽ → Ũ . Here G is the local
group Isox(X) of x and H is the local group Isoy(Y ) at a point y ∈ π−1(x). If

we identify Ṽ ∼= Ũ via this map, the local representation of the covering map is
Ũ/H → Ũ/G for H a subgroup of G.

It is a fact that every connected orbifold X admits a universal orbi-covering
X̃, unique up to equivalence, with the property that it orbi-covers any other orbi-
covering space of X . The orbifold fundamental group of X is the group πorb

1 (X)
of deck transformations of the universal orbi-covering; it acts simply transitively
on the fibers of this orbi-covering. In general, one can write a presentation of
the orbifold fundamental group in terms of its usual fundamental group and its
strata of codimension 1 and 2 (cf. [Dav10]). The orbifold fundamental group is
a refinement of the usual fundamental group in the sense that an orbifold can
be simply-connected in the topological sense without being simply-connected in
the orbifold sense.
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2.1.6 Example Let the cyclic group Zm act by rotations around a fixed axis
on the sphere S2. The orbit space X is a Riemannian orbifold and topologically
a 2-sphere but πorb

1 (X) ∼= Zm.

2.1.7 Example There is a Riemannian orbifold structure Xm,n on S2 with
exactly two non-manifold (conical) points whose local groups are respectively
Zm and Zn. Then πorb

1 (Xm,n) = Zd where d is the greatest common divisor of
m and n. The orbifold Xm,n is good if and only if m = n. In particular, Xm,1

for m > 1 is called a teardrop, and the bad 2-orbifold depicted in Fig. 1 is the
quotient of X2,1 by a reflection.

Fig. 1: A bad 2-orbifold

2.2 Orbifold points in orbit spaces

Consider a proper and isometric action of a Lie group G on a Riemannian
manifold M , and let X = M/G be its orbit space. The set Xreg of regular
points of X is exactly the set of points that have neighborhoods isometric to
Riemannian manifolds, whereas the slightly larger set Xorb of orbifold points of
X consists of the set of points that have neighborhoods isometric to quotients
of Riemannian manifolds by finite groups of isometries. The main goal of this
lecture is to prove the following result [LT10]:

2.2.1 Theorem (Lytchak and Thorbergsson) Let (G,M) be a proper iso-
metric action of a Lie group G on a complete Riemannian manifold M , and
consider its orbit space X = M/G. A point x = Gp ∈ X is an orbifold point if
and only if the slice representation at p ∈ M is polar.

It follows from this theorem that Xorb contains all strata of codimension
at most two, since representations of cohomogeneity at most two are always
polar [HL71].

2.2.2 Lemma Let (M, g) be a Riemannian manifold, fix a point p ∈ M , and
consider the locally defined family of homotheties {hλ}0≤λ≤1, given by

hλ(expp v) = expp(λv)

for v ∈ TpM . Then the Riemannian metrics gλ := 1
λ2 h

∗
λg converge smoothly on

compact neighborhoods of p to g0 := (exp−1
p )∗gp as λ → 0.

18



Proof. The proof reduces to a standard calculation in normal coordinates.
Write hλ = expp ◦h̃λ ◦ exp−1

p , where h̃λ(v) = λv. It is equivalent to show that

the metrics 1
λ2 h̃

∗
λ exp

∗
p g = (exp∗p g) ◦ h̃λ smoothly converge to the flat metric gp

on compact neighborhoods of 0 in TpM .
For v ∈ TpM and e1, . . . , en an orthonormal basis of (TpM, gp), we have

(exp∗p g)λv(ei, ej) = gij(λv) =: Gij(λ, v), where gij are the coefficients of the
metric in the induced normal coordinates. But on a compact neighborhood K
of 0 and all i, j, the smooth function Gij and all its partial derivatives in v

converge uniformly to their value at λ = 0 as λ → 0, that is, gij ◦ h̃λ converges
in the C∞-topology on K to the constant function δij . �

Proof of Theorem 2.2.1. Let S be a normal slice at p, and note that the
homotheties hλ restrict to S and induce isometries hλ : (S, gλ) → (hλ(S),

1
λ2 g),

where we have used the notation of Lemma 2.2.2. The G-action preserves the
metrics gλ. For a regular point q ∈ S, denote by κ̄gλ(q) the supremum of all
sectional curvatures of the metric induced by gλ on the local quotient GS/G at
Gq. Owing to Lemma 2.2.2, κ̄gλ(q) → κ̄g0(q) as λ → 0. On the other hand,

κ̄gλ(q) = κ̄ 1
λ2 g(hλ(q))

= λ2κ̄g(hλ(q))

=
1

||v||2
d(hλ(q), p)

2κ̄g(hλ(q)),

where q = expp v for v ∈ νp(Gp), so d(hλ(q), p) = λd(q, p) = λ||v||.
If x is an orbifold point, the sectional curvatures ofMreg/G near x are locally

bounded, so

κ̄g0(q) =
1

||v||2
lim
λ→0

d(hλ(q), p)
2κ̄g(hλ(q)) = 0.

It follows that the orbit space of the slice representation at p is flat at regular
points. By O’Neill’s formula (3.2.4), the principal horizontal distribution of the
slice representation is integrable, and hence the slice representation is polar.

Conversely, assume that the slice representation at p is polar, and let Σ be
a section with associated Weyl group W . Let N = expp(Σ) ∩ S, where S is
a normal slice at p. Then W acts on N , and we shall define a W -invariant
Riemannian metric g̃ on N such that N/W is isometric to a neighborhood of x
in X .

For q ∈ S, put Vq = (TqN)⊥g0 and Hq = (Vq)
⊥g. These are smooth dis-

tributions, with Vq ⊃ Tq(Gq) (since Σ is gp-orthogonal to Tv(Gpv) for v ∈ Σ),
Hq ⊂ Tq(Gq)⊥g , and the latter inclusion is an equality if q is a regular point.
Let Pq denote the orthogonal projection of TqM onto Hq, and define

g̃q(u, v) = g(Pq(u), Pq(v))

for u, v ∈ TqN . Since Pq : (TqN, g̃q) → (Hq, g) is an isometry, the projection
π : (N, g̃) → M/G preserves the lengths of all curves contained in the regular set
of (G,M). Since π is W -invariant, the action of W on N preserves the length
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of curves in N ∩ Mreg; by continuity, W acts by isometries on N . It follows
that N/W → M/G is an isometric embedding onto a neighborhood of x, where
N/W is a Riemannian orbifold. �

2.3 Applications

A Riemannian orbifold comes along with a canonical stratification given by the
connected components of the set of points with the same local group. Each
stratum is a connected Riemannian manifold, which is locally convex with re-
spect to the ambient metric. The closure of any stratum is a union of strata.
Any Riemannian orbifold B can be written as a quotient of a Riemannian man-
ifold (the orthonormal frame bundle of B) by an almost free isometric action
of a compact Lie group. The canonical stratification of B is then exactly the
stratification by orbit type.

Let X = M/G be the orbit space of a proper and isometric action (G,M).
The boundary ∂X of X (in the sense of Alexandrov geometry) is the closure
of the union of strata of codimension 1. Since Xorb contains all strata of X
of codimension at most 2, Xorb has non-empty boundary if and only if X has
non-empty boundary. A Riemannian orbifold with a non-empty boundary can
be doubled. It follows that a Riemannian orbifold B has ∂B 6= ∅ if and only if
πorb
1 (B) contains a reflection.

2.3.1 Example Let X be the quotient of S2 by the reflection across the equa-
tor. Then Xorb = X and πorb

1 (X) ∼= Z2.

2.3.2 Remark Let (G,M) be a proper and isometric action, where G is con-
nected. Denote by B0 the subset of points in X = M/G representing non-
singular G-orbits (that is, principal and exceptional G-orbits), so that B0 =
M0/G, where M0 is the union of principal and exceptional G-orbits in M . Then
B0 has the structure of a Riemannian orbifold. We lift (G,M) to a proper
and isometric action of the simply-connected covering Lie group G̃ of G on
the simply-connected Riemannian covering M̃ of M [Bre72, Thm. I.9.1]. Then
B0 = M̃0/G̃. Since all G̃-orbits have the same dimension in M̃0, there is an
epimorphism π1(M̃0) → πorb

1 (B0) [Sal88]. Since the union of singular orbits in
M̃0 has codimension at most 2 [Bre72, Thm. IV.3.8], π1(M̃0) = π1(M̃) = {1},
so also πorb

1 (B0) = {1}.

A proof of the following result, probably folklore, can be found in [Lyt10].

2.3.3 Proposition Let G be a connected compact Lie group of isometries of a
simply-connected complete Riemannian manifold, consider the orbit space X =
M/G, and the subset Xorb of orbifold points of X. Then X0 := Xorb \ ∂Xorb

is exactly the set of non-singular (that is, principal and exceptional) G-orbits.
Furthermore πorb

1 (X0) = {1}.
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Proof. Due to Theorem 2.2.1, B = Xorb consists precisely of the projections
of points inM where the slice representation is polar. Let us show that all points
x ∈ B \ ∂B represent non-singular G-orbits in M . In fact, let x ∈ B represent
a singular orbit. Choose p ∈ M projecting to x. Since the slice representation
at p is polar, for the normal slice S at p we have that S/Gp is isometric to a
Weyl chamber. The projection S → X induces an open isometric embedding
S/Gp → B. Since the Weyl chamber has non-empty boundary, so does its image
in B. Hence any neighborhood of x in B contains boundary points. Since the
boundary is closed, we deduce that x ∈ ∂B.

Under the assumption that M is simply-connected, we now show that all
points in ∂B represent singular orbits. Indeed due to Remark 2.3.2, the subset
of non-singular orbits B0 ⊂ B has πorb

1 (B0) = {1}, so B0 cannot contain strata
of codimension 1. But B0 is open, so, if it has a point in ∂B, then it has a point
lying in a stratum of codimension 1, and hence the whole stratum is contained
in B0, a contradiction. We have shown that X0 = B0, as desired. �

We mention two further instances of major applications of Theorem 2.2.1.
A polar action is called infinitesimally polar if all of its slice representations
are polar. Due to Proposition 1.1.3, every polar representation is infinitesimally
polar. Theorem 2.2.1 was the main tool in [GL16] to classify the infinitesimally
polar actions on Euclidean spheres. In particular:

2.3.4 Theorem (Gorodski-Lytchak) An isometric quotient X of the unit
sphere by a compact Lie group is isometric to a Riemannian orbifold if and only
if the universal orbi-covering X̃ of X is a weighted complex or quaternionic
projective space, or X̃ has constant curvature 1 or 4.

Further, in [GK16] this classification of quotients isometric to Riemannian
orbifolds was extended to compact rank one symmetric spaces.

3 Lecture 3: Variationally complete actions

In the 1950s Bott and Samelson introduced the concept of variatonally com-
pletess as a means of studying the topology of symmetric spaces and their loop
spaces [BS58]. Roughly speaking, a proper and isometric action on a complete
Riemannian manifold is variationally complete if it produces enough Jacobi
fields along geodesics to determine the multiplicities of the focal points to the
orbits. In modern terminology, they proved that the orbits of a variationally
complete action are taut submanifolds of the ambient space, in the sense that
the energy functional on the space of curves10 joining a generic point to an ar-
bitrary, fixed orbit is a perfect Morse function. This establishes strong relations
between the topology of the ambient manifold and the topology of the orbits.

10Of H1-Sobolev class.
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3.1 Bott and Samelson’s and related results

Let a Lie group G act properly and isometrically on a complete Riemannian
manifold M . A geodesic γ of M is called horizontal if it is orthogonal to one
orbit (and hence to every orbit it meets). Fix a G-orbit N and a horizontal
geodesic γ meeting N at time t = 0. A Jacobi field along γ is called an N -Jacobi
field if it is the variational field of a variation of γ through horizontal geodesics
starting at N . Finally, the action (G,M) is called variationally complete if for
every G-orbit N and every horizontal geodesic γ starting at N , every N -Jacobi
field that vanishes for some t > 0 is the restriction of a G-Killing vector field
along γ.11

The motivation of Bott and Samelson to consider variationally complete
actions of G onM was to construct an explicit basis of cycles in the Z2-homology
of the path space Ω(M ;x,N), where N is an arbitrary G-orbit, x ∈ M , and the
paths start at x and end at a point in N . In modern terminology, we can state
their result as follows:

3.1.1 Theorem (Bott-Samelson) The orbits of a variationally complete ac-
tion are taut submanifolds (with respect to Z2-coefficients).

Here a submanifold N of M is called taut if, for every nonfocal point x, the
energy functional E : Ω(M ;x,N) → R, E(γ) = 1

2

∫

||γ′||2ds, is a perfect Morse
function, that is, every critical point (geodesic) of E corresponds to a basis
element of H∗(Ω(M ;x,N)). Indeed, Bott and Samelson provide an algorithm
to construct an explicit cycle for each critical point. In the same paper, for
a symmetric space G/K, they prove that the isotropy action of K on G/K,
the K ×K-action on G by left and right-multiplication, and the linear isotropy
action of K on Tx0(G/K) ∼= p are variationally complete. Soon thereafter,
Hermann [Her60] found a more general family of variationally complete actions
on symmetric spaces. Namely, if K and H are both symmetric subgroups of the
compact Lie group G, then the action of H on G/K is variationally complete.

L. Conlon was a student of Conlon. In [Con71] he proved the following
theorem:

3.1.2 Theorem (Conlon) A hyperpolar action of a compact Lie group G on
a complete Riemannian manifold M is variationally complete.

Proof. Let N = Gp be a fixed orbit and let q be a focal point of N (that is,
a critical value of the normal exponential map) along a geodesic γ : [0, ℓ] → M
with γ(0) = p and γ(ℓ) = q. Then there exists a Jacobi field J along γ satisfying
J(0) ∈ TpN , J ′(0) +Aγ′(0)J(0) ∈ νpN and J(ℓ) = 0; denote by V the space of
Jacobi fields satisfying the first two of these conditions, and note that dimV =
dimM .

Fix s0 ∈ (0, ℓ) such that p0 = γ(s0) is a regular point for the action of G and
p0 is not a focal point of N . There exists a unique section Σ passing through

11It is equivalent to require that every N-Jacobi field that is tangent to another orbit is the
restriction of a G-Killing vector field.
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p0. Of course, Σ is flat and contains the image of γ. Since p0 is not a focal point
of N , the map J ∈ V 7→ J(s0) ∈ Tp0M is a linear isomorphism.

Decompose J = Jv + Jh where Jh is the orthogonal projection of J on Σ.
Due to the total-geodesicness of Σ, both Jv and Jh are Jacobi fields along γ.
Since Jh vanishes at s = 0 and s = ℓ and Σ is flat, we have Jh ≡ 0. Since p0
is a regular point, Jv(s0) ∈ Tp0(Gp0). Let X ∈ g be such that X∗

p0
= Jv(s0).

Owing to X∗ ◦ γ ∈ V , we have X∗ ◦ γ = Jv = J , finishing the proof. �

3.2 The converse results

It was proved in [GT00], by means of classification, that a variationally complete
representation is orbit-equivalent to the isotropy representation of a symmetric
space, and hence is polar. In [DO01], a direct proof of this result was provided.
Since the idea of the proof is very simple and geometric, we present it in the
sequel.

3.2.1 Theorem (Di Scala-Olmos) A variationally complete representation
of a compact Lie group G on an Euclidean space V is polar.

Proof. Let p ∈ V be a regular point so that N = Gp is a principal orbit.
Owing to Lemma 1.1.1, Σ := νpN meets all orbits.

Choose ξ ∈ νpN such that the Weingarten operator Aξ has all eigenvalues
nonzero. This is possible, since Ap = −id, and indeed the set of such vectors is
open and dense in νpN . Consider the geodesic γ(s) = p+ sξ, normal to N , and
fix s1 > 0 such that N1 = Gq, q = γ(s1), is also a principal orbit. Due to the
assumption of variational completeness, q is not a focal point of N along γ. We
will show that TpN = TqN1 as subspaces of V .

Each eigenvector u ∈ TpN of Av, with corresponding eigenvalue λ 6= 0,
gives rise to a Jacobi field J(s) = (1 − λs)u along the geodesic γ(s) = p + sξ,

associated to the variation γt(s) = c(t) + sξ̂(t), where c is a smooth curve in N

with c(0) = p and c′(0) = u, and ξ̂ is the parallel extension of ξ to a normal
vector field along c. Since J(0) = u ∈ TpN and J( 1

λ
) = 0, the assumption of

variational completeness yields a Killing vector field X induced by G such that
X ◦ γ = J . In particular, J(s) ∈ Tγ(s)(Gγ(s)) for all s. Since q is not a focal

point of N along γ, s1 6= 1
λ
and therefore u ∈ TqN1. As the eigenvectors of Aξ

span TpN , this shows TqN1 = TpN .
We have seen that Σ is orthogonal to all principal orbits passing through an

open and dense subset of itself. By a continuity argument, Σ is orthogonal to
every orbit it meets. This finishes the proof. �

An isometric action of a compact Lie group on a compact symmetric space
can be lifted to a proper and Fredholm action of a Hilbert-Lie group on a Hilbert
space via the so-called “holonomy map”, see [TT95]. This idea was combined
with the basic idea of the proof of Theorem 3.2.1 to prove the following result
in [GT02]:
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3.2.2 Theorem (Gorodski-Thorbergsson) A variationally complete action
of a compact Lie group on a compact symmetric space is hyperpolar.

The following result was proved in [LT07] and generalizes Theorems 3.2.1
and 3.2.2. Its proof is the main goal of this lecture.

3.2.3 Theorem (Lytchak-Thorbergsson) A variationally complete action
on a complete Riemannian manifold with nonnegative sectional curvature is
hyperpolar.

A special case of this theorem is when the group is discrete. It says that a
complete Riemannian manifold without conjugate points and with nonnegative
sectional curvature is flat. We shall explain the proof of Theorem 3.2.3 in the
sequel. The main tool is Wilking’s transversal Jacobi equation [Wil07], which
can be viewed as an extension of the methods of Morse theory from the case of
Riemannian submersions to the case of singular Riemannian foliations and, in
particular, isometric actions.

Let π : M → B be a Riemannian submersion with horizontal and vertical
distributions H and V, respectively. Then one of O’Neill’s equation says that
the sectional curvature of a horizontal 2-plane σ ⊂ H and its projection σ∗ =
dπ(σ) ⊂ TB are related by

(3.2.4) K(σ∗) = K(σ) + 3||AXY ||2,

where A : H ×H → V is one of O’Neill’s tensors associated to π, namely,

AXY = (∇XhY h)v + (∇XhY v)h,

for all X , Y ∈ TM . The following properties of A are easily established:

a. AXH ⊂ V and AXV ⊂ H for all X ∈ TM .

b. AX is skew-symmetric on TpM for all p ∈ M .

c. AXY = 1
2 [X,Y ]v for all X , Y ∈ H.

In particular H is integrable if and only if AXH = 0 for all X ∈ H.
Let now X , Y be an orthonormal basis of the horizontal 2-plane σ. Then

the right hand-side of O’Neill’s equation (3.2.4) reads

〈R(Y,X)X,Y 〉+ 3〈AXY,AXY 〉 = 〈(R(Y,X)X)h − 3A2
XY, Y 〉.

Every projectable Jacobi field J along a horizontal geodesic γ projects to a
Jacobi field along γ̄ = π◦γ, and this projection induces an isomorphism between
space of projectable Jacobi fields modulo the vertical Jacobi fields along γ, and
the space of Jacobi fields along γ̄. It follows that for every projectable Jacobi
field J along γ, the horizontal component Jh satifies the “transversal Jacobi
equation”

(Jh)′′ + (R(Jh, γ′)γ′)h − 3A2
γ′Jh = 0.
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Let now (G,M) be a proper and isometric action. On the regular part there
is a Riemannian submersion π : Mreg → Mreg/G, to which the above consid-
erations apply. Moreover, Wilking explained how to overcome the difficulties
that arise when the horizontal geodesic γ passes through singular points of the
action; here we assume γ is a regular complete geodesic in the sense that it
passes through regular points; it follows that the singular points along γ form
a discrete set of parameters.

The first step is to extend the principal horizontal distribution H along the
regular part of the horizontal geodesic γ to a smooth distribution defined every-
where along γ, namely Ht ⊂ Tγ(t)M for all t ∈ R, where Ht = (Tγ(t)(Gγ(t)))⊥

if γ(t) is a regular point of the G-action. Let Λ be the space of Nt-Jacobi fields
along γ, where Nt = Gγ(t), and let Υ be the subspace of vertical Jacobi fields.
We put Ht := (Vt)

⊥, where we define

Vt := {J(t)|J ∈ Υ} ⊕ {J ′(t)|J ∈ Υ, J(t) = 0}.

3.2.5 Proposition Vt is a smooth vector bundle of rank dimΥ along γ. More-
over, Vt = Tγ(t)Nt if γ(t) is regular.

Proof. It is easy to see that {J(t)|J ∈ Υ} = Tγ(t)Nt for all t. Indeed denote
the Lie algebra of G by g. Then Tγ(t)Nt = span{X∗

γ(t)|X ∈ g} and, for each
X ∈ g, the induced Killing field X∗ on M restricts to a Jacobi field J along γ
which is tangent to the G-orbits everywhere, that is, J ∈ Υ.

Suppose now γ(t0) is regular for some t0. Then {J ′(t0)|J ∈ Υ, J(t0) = 0}
is trivial. Indeed if there was J ∈ Υ with J(t0) = 0 and J ′(t0) 6= 0, then γ(t0)
would be a focal point of all Nt, but this is impossible as Nt0 is a principal orbit.

Finally, if Y is a smooth vector field along γ that has an isolated zero at t1,
then the vector field Ỹ , given by

Ỹ (t) :=

{

1
t−t1

Y (t), if t 6= t1,

Y ′(t1), if t = t1,

is smooth, and the span of Y (t), Ỹ (t) is one-dimensional on a neighborhood
of t1. This proves all statements. �

The second step is to extend the definition of Aγ′(t) to all t, namely, a skew-
symmetric operator At on Tγ(t)M such that At coincides with the O’Neill tensor
Aγ(t) if γ(t) is regular. Let Y be a smooth vector field along γ. Set

AtY (t) := ((Y h)′(t))v + ((Y v)′(t))h.

The tensor At clearly satisfies the requirements.
The last step is to write the differential equation along γ that vector fields

of the form Y = Jh for some J ∈ Λ must satisfy. This equation was derived
in [Wil07], and reads

(3.2.6)
(∇h)2

dt2
Y + (R(Y, γ′)γ′)h − 3A2

tY = 0.
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where ∇h

dt
is the connection induced on horizontal vector fields along γ (see

subsection 4.3).
The idea of the proof of Theorem 3.2.3 is roughly as follows. Owing to The-

orem 1.5.2, it suffices to show that H is integrable over Mreg. This, in turn,
follows if At vanishes identically. On the other hand, if At is not identically zero,
due to nonnegative curvature of M , we obtain that M/G “has positive curva-
ture” somwhere and thus “conjugate points”. But variationally completeness of
(G,M) more or less means “absence of conjugate points” in M/G, leading to a
contradiction.

For each t the operator

R(t) : v 7→ (R(v, γ′(t))γ′(t))h − 3A2
tv

is self-adjoint and positive semidefinite on Ht. Therefore

(3.2.7) Y ′′(t) +R(t)Y (t) = 0

is a differential equation of Morse-Sturm type (generalization of the Jacobi equa-

tion), where the “prime” refers to ∇h

dt
, to which is associated an index form

Ia,b(X,Y ) =

∫ b

a

〈X ′, Y ′〉 − 〈R(t)X,Y 〉 dt,

for each a < b, where X and Y are piecewise smooth sections of the horizontal
distribution along γ|[a,b] vanishing at a and b. Suppose, to the contrary, that
there is t0 such that At0 6= 0. Then there is a unit vector v0 ∈ Ht0 such that
〈R(t0)v0, v0〉 > 0. Let Z0 be the ∇h-parallel vector field along γ such that
Z0(t0) = v0. Then

(3.2.8) C :=

∫ t0+1

t0−1

〈R(t)Z0(t), Z0(t)〉 dt > 0.

Let ϕ : R → [0, 1] be a (smooth) bump function with support contained in
[t0−N, t0+N ] and satisfying ϕ|[t0−1,t0+1] ≡ 1, for some N > 1. In fact, we can
take N as large as needed to further have

∫ t0+N

t0−N

ϕ′(t)2 dt < C.

Set Z(t) = ϕ(t)Z0(t). For a = t0 −N and b = t0 +N , our choices yield

Ia,b(Z,Z) =

∫ t0+N

t0−N

||Z ′(t)||2 − 〈R(t)Z(t), Z(t)〉 dt

=

∫ t0+N

t0−N

ϕ′(t)2 dt−

∫ t0+N

t0−N

ϕ(t)2〈R(t)Z0(t), Z0(t)〉 dt

< C −

∫ t0+1

t0−1

〈R(t)Z0(t), Z0(t)〉 dt

= 0.
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This shows that Ia,b has negative index. By the Sturm oscillation theorem,
which is a generalization of the Morse index theorem, there is a nonzero solu-
tion Y of (3.2.7) such that Y (a) = Y (c) = 0 for some c ∈ (a, b) (a “conjugate
point”). By continuity of the index, if necessary, we may perturb a slightly so
that γ(a) and γ(c) become regular points of the G-action and remain conjugate
points.

Finally, we show that Y has the form Y = Jh for some J ∈ Λ. There
is an Na-Jacobi field J along γ with initial conditions J(a) = 0 and J ′(a) =
∇hY
dt

(a). Set Ŷ = Jh. Then Y and Ŷ are both solutions of the same differential
equation (3.2.6), with the same initial conditions at a. It follows that they
coincide. This yields a Jacobi field J along γ, tangent to orbits at t = a and
t = c, which is not tangent to orbits everywhere, leading to a contradiction with
the assuption that (G,M) is a variationally complete action.

We have shown that At ≡ 0 for all t, which says that H is integrable
over Mreg, and this implies that its integral manifolds can be extended to sec-
tions of (G,M), due to Theorem 1.5.2. It only remains to check that sections
are flat. Let Σ be a section of (G.M). Since Σ is totally geodesic, it is nonneg-
atively curved. Suppose, to the contrary, that Σ has a tangent 2-plane σ with
positive curvature at a point p ∈ Σ, which we can assume is a regular point
of the G-action, by denseness. Let γ be a horizontal geodesic with γ(0) = p
and γ′(0) ∈ σ. Then we can find v0 ∈ H0 such that 〈R(0)v0, v0〉 > 0, and pro-
ceed as in (3.2.8) to reach a contradiction. Hence Σ is flat and this completes
the proof of Theorem 3.2.3.

4 Appendix

4.1 An algebraic criterion for polar actions on symmetric

spaces

The following criterion was proved in [Gor04].

4.1.1 Proposition (Gorodski) Let M = G/K be a symmetric space without
Euclidean factor endowed with a Riemannian metric induced from some Ad(G)-
invariant inner product on the Lie algebra g of G. Consider a closed, connected
subgroup H ⊂ G. By replacing H by a conjugate, if necessary, we may assume
that 1̄ = 1K ∈ G/K is a regular point. Write g = k + p for the Cartan
decomposition, denote by h the Lie algebra of H, and define m = p ∩ h⊥. Then
the action of H on M is polar if and only if the following two conditions hold:

(i) m is a Lie triple system (LTS), that is [m, [m,m]] ⊂ m; and

(ii) [m,m] ⊥ h.

Proof. Let π : G → G/K be the canonical projection, and for a ∈ G
write ā = π(a) = aK ∈ G/K. We have that H × K acts on G by left and
right translations, H acts on G/K by left translations, and π is an equivariant
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Riemannian submersion. Therefore the tangent space to the orbit H · ā at the
point ā is

Tā(H · ā) = dπa(h · a+ a · k),

so that
a−1 · Tā(H · ā) = π∗(Ada−1h)

where π∗ : g → p is the projection. Taking orthogonal complements we get that

a−1 · νā(H · ā) = p ∩ Ada−1h⊥

where νā(H · ā) denotes the normal space to H · ā at ā. In particular we have

ν1̄(H · 1̄) = m.

Since 1̄ is a regular point, the action of H on M is polar if and only if Σ =
Exp1̄[m] is a section, where Exp denotes the Riemannian exponential map of
M .

If Σ is a section, then it is totally geodesic in M . Now the fact that m = T1̄Σ
is a LTS is a standard fact from the theory of symmetric spaces, see [Hel78],
p. 224. This proves condition (i) and shows that s = [m,m] +m is a subalgebra
of g. Let S denote the corresponding connected subgroup of G. Now π(S) = Σ
and the elements of S induce isometries of Σ. Let a ∈ S. Since Σ intersects the
orbits of H orthogonally, we have that TāΣ ⊂ νā(H · ā) and therefore

m = T1̄Σ = a−1 · TāΣ ⊂ a−1 · νā(H · ā) = p ∩ Ada−1h⊥.

This proves that Adam ⊂ h⊥, so by taking X , Y ∈ m arbitrary and a = exp tX
we get that Adexp tXY ∈ h⊥ and hence [X,Y ] = d

dt

∣

∣

t=0
Adexp tXY ∈ h⊥. This

gives condition (ii) and proves half the proposition.
Conversely, if conditions (i) and (ii) hold, and s, S are as above, then s ⊂ h⊥

so s = Ada−1s ⊂ Ada−1h⊥ for a ∈ S and then m = s ∩ p ⊂ Ada−1h⊥ ∩ p.
This implies that TāΣ ⊂ νā(H · ā) for ā ∈ Σ and hence Σ intersects the orbits
of H orthogonally. The fact that Σ intersects all the orbits of H follows from
Lemma 1.1.1, and this finishes the proof of the proposition. �

4.1.2 Corollary The action of H on M is hyperpolar if and only if m is an
Abelian subalgebra of p.

Proof. If m is an Abelian subalgebra of p then the criterion of the proposition
is satisfied, and Σ is flat by the curvature formula for symmetric spaces. Con-
versely, if the action of H on M is hyperpolar, then Σ is flat so [[m,m],m] = 0.
But

〈[m,m], [m,m]〉 = 〈[[m,m],m],m〉 = 0.

Since [m,m] ⊂ k and the Killing form of g is negative definite on k, we deduce
that m is Abelian, as wished. �

4.1.3 Corollary (Hermann actions) If H is a symmetric subgroup of G,
then its action on M is hyperpolar.
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Proof. By replacing H by a conjugate, we may assume that 1̄ is a regular
point. Write g = h+q for the involutive decomposition realtive to the symmetric
pair (G,H). Then m as in the proposition is given by p ∩ q, and we only need
to see that it is Abelian.

The orbit through 1̄ is HK/K = H/K ∩ H , and ν1̄(HK/K) = m. Since 1̄
is a regular point, the slice representation (K ∩ H,m) is trivial. In particular
[k ∩ h,m] = 0. Since [m,m] ⊂ k ∩ h, we see that [[m,m],m] = 0, and hence
[m,m] = 0 as in Corollary 4.1.2. �

4.2 Cartan’s and Hermann’s theorems

Let M be a Riemannian manifold. In his book on Riemannian geometry, Cartan
states a criterion for the local existence of a totally geodesic submanifold in M
with a given tangent space at a given point.

4.2.1 Theorem (Cartan) Let M be a Riemannian manifold, fix a point p ∈
M and a subspace S ⊂ TpM . Assume that there is a normal ball

V = expp(B(0p, ǫ))

such that for every unit speed radial geodesic γ : [0, ℓ] → V emanating from p
(ℓ < ǫ),

(4.2.2) R(Pγ(u), Pγ(v))Pγ(w) ∈ Pγ(S),

for every u, v, w ∈ S, where Pγ denotes the parallel transport along γ, from 0
to ℓ. Then there exists a totally geodesic submanifold manifold N of M such
that TpN = S.

Proof. LetN = expp(S∩B(0p, ǫ)). We will explain whyN is totally geodesic.
It suffices to see that parallel transport in M , along piecewise smooth curves in
N , preserves the tangent spaces of N .

In the case of a radial geodesic γ(t) = expp(tv) with v ∈ S and ||v|| < ǫ,
t ∈ [0, 1], this follows from the Jacobi equation. In fact consider q = γ(t0) for
some t0 ∈ (0, 1). Recall that the Jacobi field J along γ with J(0) = 0 and
J ′(0) = u ∈ S is given by J(t) = d(expp)t0v(t0u). Let E1 = γ′, E2,. . . ,En

be a parallel orthonormal frame along γ, where E1(0) . . . , Ek(0) are tangent to
S and Ek+1(0) . . . , En(0) are normal to S. Write J =

∑

i aiEi. Then −a′′i +
∑

j〈R(E1, Ej)E1, Ei〉aj = 0 for all i, where ai(0) = 0 for all i, and a′i(0) = 0
for i > k. Owing to (4.2.2), 〈R(E1, Ej)E1, Ei〉 ≡ 0 for i > k and j ≤ k, so we
deduce that ai ≡ 0 vanishes identically for i > k. Therefore J is everywhere
tangent to the parallel translates of S along γ. Since TqN = d(expp)t0v(S), this
proves that the tangent spaces of N along γ are parallel along γ.

In the case of an arbitrary piecewise smooth curve η : [0, 1] → V , we join
each point η(s) to p by a radial geodesic, so as to obtain a parametrized surface
f(s, t), (s, t) ∈ [0, 1] × [0, 1], where γs = f(s, ·) is a radial geodesic for each s,
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and f(s, 0) = p, f(s, 1) = η(s) for all s. Consider the vector fields along f given
by

∂̄

∂s
= f∗

∂

∂s
and

∂̄

∂t
= f∗

∂

∂t
.

Then ∂̄
∂s

is a Jacobi field along each γs, and we already know from the argument
in the previous paragraph that it is everywhere tangent to N and sits in the
parallel translate of S along γs, whose value at f(s, t) we denote by Ss,t; note

that Tf(s,t)N = Ss,t. Further, it is clear that
∂̄
∂t

is everywhere tangent to N . Let
z ∈ TqN = S0,1 be arbitrary, where q = η(0) = f(0, 1). We parallel translate z
along γ0 from q to p to obtain z0 ∈ S, and then we parallel translate z0 along
each γs from p to η(s) to obtain a vector field Z along f . By the previous
paragraph we know that Z(s, t) ∈ Ss,t. The main calculation now is

(4.2.3) R

(

∂̄

∂t
,
∂̄

∂s

)

Z =
∇

dt

∇

ds
Z,

since Z is parallel along each γs. Let w ∈ TpM be normal to S and extend it
to a vector field W along f and parallel along each γs. Then W (s, t) ⊥ Ss,t for
all (s, t). We take the inner product of (4.2.3) throughout with W . Since the
left hand-side of (4.2.3) lies in Ss,t by (4.2.2), we obtain

0 = 〈
∇

dt

∇

ds
Z,W 〉 =

d

dt
〈
∇

ds
Z,W 〉.

Now 〈∇
ds
Z,W 〉 is constant in t. Since it vanishes at t = 0, it must also vanish

at t = 1. This proves that {Ss,1}s∈[0,1] is a parallel family of subspaces along η,
that is the tangent spaces to N are parallel along η. �

We next introduce some terminology. Let M be a Riemannian manifold, fix
a point p ∈ M and a subspace S ⊂ TpM . A once-broken geodesic γ : [0, ℓ] → M ,
emanating from p and broken at t0 ∈ (0, ℓ), is called S-admissible if γ′(0) ∈ S,
γ′(t+0 ) lies in the parallel transport of S along γ from p to γ(t0), and γ|[t0,ℓ] sits
in a convex neighborhood of γ(t0).

4.2.4 Theorem (Hermann) Let M be a Riemannian manifold, fix a point
p ∈ M and a subspace S ⊂ TpM . Assume that for every S-admissible once-
broken geodesic γ : [0, ℓ] → M emanating from p,

(4.2.5) R(Pγ(u), Pγ(v))Pγ(w) ∈ Pγ(S),

for every u, v, w ∈ S, where Pγ denotes the parallel transport along γ, from
0 to ℓ. Then there exists a complete totally geodesic isometric immersion of
Riemannian manifold N into M with p ∈ N and TpN = S.

Proof. By Cartan’s local existence theorem 4.2.1, there exists a totally
geodesic immersion of a Riemannian manifold N into a normal neighboorhood
of p such that p ∈ N and TpN = S. We take N maximal and assume, by
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contradiction, that N is not complete. Then there is a geodesic γ : [0, 1) → N
such that limt→1− γ(t) does not exist in N . By completeness of M , γ can be
continued past t = 1 to a complete geodesic γ̃ : [0,+∞) → M . Let S̃ be the
parallel translate of S along γ̃ to q = γ̃(1). Due to 4.2.5 and using again Theo-
rem 4.2.1, there is totally geodesic submanifold Ñ with q ∈ Ñ and Tq̃Ñ = S̃. Of
course the parallel translate of S along γ̃ from p to γ(t1) for t1 ∈ (0, 1) coincides
with the parallel transport of S̃ along γ̃ from q to γ(t1). This shows that the
tangent spaces of N and Ñ coincide at γ(t) for t = 1− δ with δ > 0 sufficiently
small, and hence implies that N and Ñ coincide on a neighborhood of γ(0, 1).
Since q ∈ Ñ , this contradicts the maximality of N . �

4.3 Wilking’s transversal Jacobi equation

Let (G,M) be a proper and isometric action, and let π : M → M/G be the pro-
jection. In this appendix we reproduce the derivation of Wilking’s transversal
Jacobi equation [Wil07] in this special case:

(4.3.1)

(

∇h

dt

)2

Y + (R(Y, γ′)γ′)h − 3A2
tY = 0,

along a horizontal geodesic γ for vector fields of the form Y = Jh, where J
belongs to the space Λ of Nt-Jacobi fields along γ, Nt = Gγ(t).

We denote by J the space of all Jacobi fields along γ. Consider the skew-
symmetric bilinear form ω(J1, J2) = 〈J ′

1, J2〉 − 〈J1, J
′
2〉, for J1, J2 ∈ J. Then

ω is constant and defines a symplectic form on J such that Λ is a Lagrangian
subspace and Υ is an isotropic subspace. Indeed an Nt-Jacobi field J satifies
that J(t) is vertical and J ′(t) + SξJ(t) is horizontal for this t, where ξ = γ′(t)
and Sξ denotes the shape operator in the direction of a normal vector ξ to the
orbit Nt, so

ω(J1, J2) = ω(J1(t), J2(t))

= 〈J ′
1(t), J2(t)

v〉 − 〈J1(t)
v, J ′

2(t)〉

= −〈SξJ1(t), J2(t)〉 + 〈J1(t), SξJ2(t)〉

= 0

for J1, J2 ∈ Λ; in addition, dimΛ = 1
2 dimJ, and Υ ⊂ Λ.

By continuity it suffices the check equation (4.3.1) at a point t0 such that
Nt0 is a principal orbit. Since we can add a vertical Jacobi field to J without
changing Y , we may assume that J(t0) ∈ Ht0. Let E1, . . . , En be a ∇h-parallel
orthonormal frame field of H along γ with E1(t0) = J(t0). We first claim that

(4.3.2) (J ′(t0))
v = −At0J(t0).
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Indeed, for any vertical Jacobi field V along γ,

〈J ′(t0), V (t0)〉 = 〈J(t0), V
′(t0)〉

= 〈J(t0), (V
′(t0))

h〉

= 〈J(t0), At0V (t0)〉

= −〈At0J(t0), V (t0)〉,

where we have used that Λ is Lagrangian and At0 is skew-symmetric.
The second claim is that

(4.3.3) E′
i(t) = AEi(t)

for all t. In fact, for any vertical Jacobi field V along γ,

〈E′
i(t), V (t)〉 = −〈Ei(t), V

′(t)〉

= −〈Ei(t), (V
′(t))h〉

= −〈Ei(t), AtV (t)〉

= 〈AtEi(t), V (t)〉,

proving the claim.
Now we can finish the proof of (4.3.1) as follows. First note that

〈E1, E
′′
k 〉t0 = −〈E′

1, E
′
k〉t0 +

d

dt

∣

∣

∣

t=t0
〈E1, E

′
k〉

= −〈E′
1, E

′
k〉t0 ,

since E1 is horizontal and E′
k is vertical. Now

〈

(

∇h

dt

)2

Jh, Ek〉 =
d2

dt2

∣

∣

∣

t=t0
〈Jh, Ek〉

=
d2

dt2

∣

∣

∣

t=t0
〈J,Ek〉

= 〈J ′′, Ek〉t0 + 2〈J ′, E′
k〉t0 + 〈J,E′′

k 〉t0

= −〈R(J, γ′)γ′, Ek〉t0 + 2〈J ′, E′
k〉t0 + 〈E1, E

′′
k 〉t0

= −〈R(Jh, γ′)γ′, Ek〉t0 + 2〈J ′, E′
k〉t0 − 〈E′

1, E
′
k〉t0

= −〈R(Jh, γ′)γ′, Ek〉t0 − 2〈At0E1, At0Ek〉 − 〈At0E1, At0Ek〉

= −〈R(Jh, γ′)γ′, Ek〉t0 + 3〈A2
t0
Jh, Ek〉,

as wished.
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