THE EXTERIOR DIRICHLET PROBLEM FOR HOMOGENEOUS COMPLEX

k-HESSIAN EQUATION
ZHENGHUAN GAO, XINAN MA, AND DEKAI ZHANG

AsstrACT. In this paper, we consider the homogeneous complex k-Hessian equation in
an exterior domain C" \ Q. We prove the existence and uniqueness of the C!*! solution
by constructing approximating solutions. The key point for us is to establish the uniform
gradient estimate and the second order estimate.
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1. INTRODUCTION

Let u be areal C? functionin C" and A = (4;,-- -, A,) be the eigenvalues of the complex

Hessian ( 653‘2,( ), the complex k-Hessian operator is defined by
J

(L.1) Hwy = > -4,

1<ij<-ix<n

where 1 < k < n. Using the operators d = 9 + d and d° = V—=1(d — ), such that
dd® = 2V-100, one gets

(ddu)* A 0" = 4"k \(n — k) H(u)dA,

where w = dd°|z]> is the fundamental Kihler form and dA is the volume form. When
k=1 H(w = iAu. When k = n, H,(u) = detu;; is the complex Monge-Ampere
operator.

Let Q be a bounded smooth domain in C”, the Dirichlet problem for the complex k-
Hessian equation is as follows

H = 1 Q,
(12) { w(u) =f mn

U= on 0Q,

where f and ¢ are given smooth functions. When k£ = 1, the k-Hessian equation is the
Poisson equation. When k = n, it is the well known complex Monge-Ampere equation.

1.1. Some previous results. We briefly give some studies on the Dirichlet problem for
the k-Hessian equation and the complex k-Hessian equation in the nondegenerate case i.e.
f > 0 and in the degenerate cases i.e. f > 0. In general, the k-Hessian equation (the
complex k-Hessian equation) is a fully nonlinear equation.

1.1.1. Results on bounded domains. For the k-Hessian equation in R", if f > 0, Caffarelli-
Nirenberg-Spruck [7] solved the Dirichlet problem in a bounded (k — 1)-convex domain.
Guan [13] solved the Dirichlet problem by only assuming the existence of a subsolution.
For the complex k-Hessian equation in C", Li [30] solved (1.2) in a bounded (k — 1)-
pseudoconvex domain.

There are lots of studies on the Dirichlet problem in bounded domains in R” of de-
generate fully nonlinear equations. Caffarelli-Nirenberg-Spruck [8] show the C!! regu-
larity of the homogeneous Monge-Ampere equation i.e. f = 0. If f =1 € C"!, Guan-
Trudinger-Wang [20] proved the optimal C"! regularity result due to the counterexample
by Wang [36]. The k-Hessian equation case was proved by Krylov [23,24] and Ivochina-
Trudinger-Wang [22] (PDE’s proof) by assuming fi € C"!. Dong [11] proved the C*!
regularity for some degenerate mixed type Hessian equations.

For the Dirichlet problem of degenerate complex Monge-Ampere equation, Lempert
[25] showed that (dd“u)" = 0 in a punched strictly convex domain Q\{z} with logarithm
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growth near z admits a unique real analytic solution. Zeriahi [39] studied the viscosity
solution to the Dirichlet problem of degenerate complex Monge-Ampere equation.

1.1.2. Results on unbounded domains. There are lots of results on the exterior Dirich-
let problem for viscosity solutions of nondegenerate fully nonlinear equations. The C°
viscosity solution for the Monge-Ampére equation: det D’u = 1 with prescribed asymp-
totic behavior at infinity was obtained by Caffarelli-Li [6]. The k-Hessian equation case
was showed by Bao-Li-Li [4]. For the related results on other type nondegenerate fully
nonlinear equations, one can see [3,27,28,31].

The global C¥*2® regularity of the homogeneous Monge-Ampére equation in a strip
region was proved by Li-Wang [29] by assuming that the boundary functions are locally
uniformly convex and C*®. They showed that the uniform convexity of the boundary
functions is necessary.

For 1 <k < 3,the C LI regularity of Dirichlet problem for the homogeneous k-Hessian
equation in R" \ Q was proved by Xiao [38] by assuming that the domain Q is (k — 1)-
convex and starshaped. For 1 < k < n, Ma-Zhang [33] proved the C"! regularity of
the k-Hessian equation when Q is convex and strictly (k — 1) convex. The prescribed

asymptotic behavior is log |x| + O(1) if k = 5 and x> % + 0(1) if k > 3

1.2. Motivation. Our research is motivated by the study of regularity of extremal func-
tion. For the smoothly strictly convex domain Q, Lempert [26] prove the pluricomplex
Green function in C" \ Q is smooth (analytic). In [17, 18], P. F. Guan proved the C'!
regularity of the solution to the homogeneous complex Monge-Ampere equation in a ring
domain. Then he solved a conjecture of Chern-Levine-Nirenberg on the extended intrinsic
norms. For the smoothly strongly pseudoconvex domain , B. Guan [15] proved the C"!
regularity and decay estimates of pluricomplex Green function in C"\Q by considering
the exterior Dirichlet problem for the homogeneous complex Monge-Ampere equation.

Another motivation is on the proof of geometric inequalities by considering the When
Q is (k — 1)-convex and starshaped, Guan-Li [19] proved Alexandrov-Fenchel inequali-
ties by the inverse curvature flows. If Q is k-convex, Chang-Wang [9], Qiu [34] proved
Alexandrov-Fenchel inequalities by the optimal transport method. Whether Alexandrov-
Fenchel inequalities hold for (k — 1)-convex domain is still open. Recently, Agostiniani-
Mazzieri [2] proved some geometric inequalities such as Willmore inequality by consid-
ering the exterior Dirichlet problem of the Laplace equation. Fogagnolo and Mazzieri and
Pinamonti [12] showed the volumetric Minkowski inequality by considering the the exte-
rior Dirichlet problem of the p-Laplacian equation. Agostiniani-Fogagnolo-Mazzieri [1]
removed the convexity assumption in [12] for the domain.

1.3. Our main result. In this paper, we consider the following exterior Dirichlet problem
for the complex k-Hessian equation.
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. . . . . _2n .
For 1 < k < n, since the Green function in this case is —|z]>”%, we consider the k-
Hessian equation as follows

ddwf Aw™ =0  inQ°:=C"\Q,
(1.3) u=-1 on 0QQ,
u(z) - 0 as |z] — oo.

Theorem 1.1. Assume 1 < k < n. Let Q be a smoothly strongly pseudoconvex domain in
C" such that 0 € Q and Q is holomorphically convex in ball centered at 0. There exists a
unique k-subharmonic solution u € C 1’1(5) of the equation (1.3). Moreover, there exists
uniform constant C such that for any z € Q¢ the following holds

1 -2 _

Clz* % < —u(z) < Clzf 7,
2n

|Dul(z) < Clz|'~ %,

Au(z) < Clz %,

|Dulco.1(gc) <C.

(1.4)

Here the k-subharmonic function is defined in Section 2 and we use the notation 5:::
C" \ Q. Let ry be the constant such that B,, cC Q and Ry, S, be constants such that Q is
holomorphically convex in Bg, and Q CC By, CC Bgs,, where B,,, Bg, and By, are balls
centered at 0 with radius ry, Ry and S respectively.

To prove Theorem 1.1, we consider the following approximating equation

Hp(u®) = f¢  in X,
ut = -1 on 0Q,
u®(z) - 0 as |z| — oo.

where ¢ = c,;&2(1 + &2)"*(|x]* + £2)™! (see Section 4).

u® will be obtained by approximating solutions u®* defined on bounded domains:
Yk = Br\Q (see Section 4). The existence and uniqueness of the smooth k-subharmonic
solution of u®® follows from Li [30] if we can construct a subsolution. The key point is
to establish the uniform C? estimates for u®%.

In Section 2, we give some preliminaries. In Section 3, we solve the Dirichlet problem
of degenerate complex k-Hessian equation in a ring domain. Section 4 is the main part
of this paper. We show uniform C!! estimate of the solution which is the limit of the
solutions of nondegenerate complex k-Hessian equation. The key ingredient is to establish
uniform gradient estimates and uniform second order estimates. We use the idea of Hou-
Ma-Wau [21] (see also Chou-Wang [10]) to establish the uniform second order estimates.
Theorem 1.1 will be proved in Section 5.
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2. PRELIMINARIES

2.1. k-subharmonic solutions. In this section we give the definition of k-subharmonic
functions and definition of k-subharmonic solutions.
The I';-cone is defined by

2.1 I = {1€R"S;(1)>0,1<i<k)
Recall Si(d) := ¥ A -+ A, and Sp(A) = 6] FA; ;- A

1<ij<--<ix<n
Kronecker symbol, which has the value +1 (respectively, —1) if iy, i, - - - i} are distinct and
(J1J2 -+ jx) 1s an even permutation (respectively, an odd permutation) of (i;i; - - - i), and
has the value O in any other cases. We use the convention that S((A) = 1. It is clear that
S«(A) = S1(A(A)), where A(A) are the eigenvalues of A.
1

One can find the concavity property of S [ in [7].

iwji» Where 6{11,'.'_'1{(" is the

1
Lemma 2.1. S/ is a concave function in I'y. In particular, 1og S is concave in T.

The following facts about elementary symmetric polynomial are useful in proving gra-
dient estimates.

Proposition 2.2. We have the following two inequalities,
(a) If L €Iy, then
Sl Skl n—k
S — kK n—-k-1

S i1 (A00);
(b) If A € T, then

S (D) - 1n-

Sk_l(/lll') T kn-

Proof. Since A € I'y, we have S;_1(A]i) > 0. The first inequality follows from Newton
inequality. Now we prove (b). Since A € I}, we have S,(1]i)) >0, VA =0,1,--- ,k—1.
If S, (4]i) < 0, (b) holds naturally. If S;(1]i) > 0, the second inequality follows from the
generalized Newton-MacLaurin inequality. O

k .
75 1(l0).

The following two propositions enable us to adopt a casewise argument to deal with
the third order terms as in [10] and [21].

Proposition 2.3. Let A = (4;,---,4,) € Tw and Ay > A, > --- > A,. Then there exists
60 =06(n, k) > 0 such that
Si-1(Ak) = 04,8 (2(A|1k),
from which it follows
(2.2) Sio1(Ai) =044+ 4y, ViZk.

The following proposition was proven in [10]. In [21], Hou-Ma-Wu provided a sharp
constant 6 = % in (2.3).
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Proposition 2.4. Let A = (1, - ,4,) € T, and Ay > Ay > -+ > A,. Then there exists
60 =606(n, k) > 0 such that

(2.3) 1S k=1(AD) = 68 ().
Moreover, for any 6 € (0, 1) there exists K > 0 such that if
Sy <KX or || <KA foranyi=k+1,k+2,---,n,
we have
(2.4) A4Sk (AUD) = (1 = 6)S (.

One can see the Lecture notes by Wang [37] for more properties of the k-Hessian op-
erator, and see Blocki [5] for those of the complex k-Hessian operator. We following the
definition by Blocki [5] to give the definition of k-subharmonic functions.

Definition 2.5. Let @ be a real (1, 1)-form in U, a domain of C". We say that « is k-positive
in U if the following inequalities hold

dANGT20Vj=1,--- k.

Definition 2.6. Let U be a domain in C".
(1). A function u : U — R U {—oo} is called k-subharmonic if it is subharmonic and for
all k-positive real (1, 1)-form ay,--- ,a;_ in U,

dduha A ANy A" *>0.

The class of all k-subharmonic functions in U will be denoted by SH(U). 3
B (2). A Iunction u € C2(U) is called k-subharmonic (strictly k-subharmonic) if 1(0du) €
I, (4 (Gau) eIy).

If u € SH(U)NC(U), (ddu)* A w"* is well defined in pluripotential theory by Blocki
[5]. We need the following comparison principle by Blocki [5] to prove the uniqueness of
the continuous solution of the problem (1.3).

Lemma 2.7. Let U be a bounded domain in C", u,v € SH(U) N C(U) satisfy

25 (dduw)* A O"7F >(ddv)* A WF in U,
’ u <v on OU.

Thenu <vin U.
2.2. The existence of the subsolution.

Definition 2.8. p is called a defining function of C' domain U, if U = {z : p(z) < 0} and
|Dp| # 0 on oU.
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Definition 2.9. A C?> domain U is called pseudoconvex (strictly pseudoconvex) if it is
Levi pseudoconvex (strictly Levi pseudoconvex). That is, for a C* defining function of U
defined in a neighborhood of U, the Levi form at every point z € QU defined by
1 Fp - h
L( = iSko € T(
0:(6) |lzo<z>|;;; Goam i €€ T

is nonnegative (positive). "Tyy. = (£ € C" | 3 j a—pfj = 0} is the holomorphic tangent

0z

space to 0U at z.

Definition 2.10. A C? domain U is called k-pseudoconvex (strictly k-pseudoconvex) if for
a C? defining function of U defined in a neighborhood of U,

0%p —
/1{ - } el (el}), VYzedl,
aZiaZj 1<i,j<n—1
where (21, ,Z,-1) is a holomorphic coordinate system of "Tyy, near z.

We need the following lemmas by Guan [17] to construct the subsolution of the k-
Hessian equation in a ring.

Lemma 2.11. Suppose that U is a bounded smooth domain in C". For h,g € C™(U),
m > 2, for all 6 > 0, there is an H € C"(U) such that

(1) H> max{h, g} and

) h(z), if hz)-gz) >0,
H@‘{g@, if §(2)— h2) > &

(2) There exists |t(z)| < 1 such that

{Hi](Z)} > {1 +2t(Z)gij + %hlj} , forall z € {|g — h| < 6}.

By Lemma 2.1, we see H is k-subharmonic if 4 and g are both k-subharmonic.

The following lemma was proved by Guan [17].

Lemma 2.12. Let Qy and €, be smooth, strongly pseudoconvex domain in R" with Q; CC
Q. Assume that Q2 is holomorphically convex in €. Then there exists a strictly plurisub-
harmonic function u € C*(Q) with Q := Qg \ Q, satisfying

Hi(u) > e, inQ,
(2.6) U =101, near 0€);,

u =1+ Kpo, near 09,

where py and p, are defining functions of )y and €, T and K are uniform constants.
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In [17], Guan considered the Dirichlet problem of homogeneous complex Monge-
Ampere equation in a smooth ring.
(dduy’ =0  inQ:=Q\Q,
2.7) u=20 on 0Q),
u=1 on 0€.

Guan [17] proved the following.

Theorem 2.13. Let Q, Q3 be smooth, strongly pseudoconvex domains and assume that
Q, is holomorphically convex in €. There exists a unique solution u € C“'(Q) of the
equation (2.7).

3. THE DIRICHLET PROBLEM FOR THE HOMOGENEOUS k-HESSIAN EQUATIONS IN THE RING

In this section, we consider the Dirichlet problem of the homogeneous complex k-
Hessian equation in a smooth ring.

(dduff Aw™ =0, inQ:=Q\Q,
(3.1) u=0, on 09,
u=1, on 0€.
We assume that Q; cc € are smooth, strongly pseudoconvex domains and €, is holo-

morphically convex in €. Using Lemma 2.12, there exists a smooth, strictly plurisubhar-
monic subsolution u satisfying

Hi(u) > e, in Q,
3.2) u = Tp, near 02,
u=1+Kpy, near 0€),

where 7, K are positive constants and p; are defining functions of €;.

Theorem 3.1. Let Q, €, be smooth, strongly pseudoconvex domains and assume that
Q, is holomorphically convex in Q. There exists a unique solution u € C“'(Q) of the
equation (3.1).

The uniqueness follows from Lemma 2.7, the comparison principle for k-subharmonic
solutions to complex k-Hessian equations. Next, we prove the existence and regularity of
k-subharmonic solution by approximation. Indeed, for every 0 < € < €, we consider the
following problem

Hi(uf) =€ in Q,
3.3) uc=0 on 0Q2,
uc =1 on 0€.
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Since u in (3.2) is a subsolution to (3.3), by Li [30], the above problem has a unique
smooth solution u¢.

Next, we want to show the C*! estimates of u€ are independent of €. Firstly, by max-
imum principal, u€ > u® for any €, < &. Thus #° := lim u¢ exists. If we could prove

€E—00

uniform C!! estimates, then u is the C!! solution of equation (3.1).

Theorem 3.2. Let u® be the smooth k-subharmonic solution of (3.3). Then there exists a
uniform constant C independent of & such that

|M8|C1y1(ﬁ) SC
In the following subsections, for simplicity, we use « instead of u°.
3.1. C'-estimates.

Lemma 3.3. There exists a uniform constant C such that

(3‘4) |u|C1(U) S C.

Proof. Let h be the unique solution of the problem
Au=20 in Q,

(3.5) h=0 on 0},
h=1 on aQ()

By the maximal principle, we have u < u < h. This gives the uniform C° estimates.
Let F'/ := ai log Hy(u) = %Sk(aau).
n a a n
D; = i— +bi—) with T+b;=1.
¢ ;(a axi ayl) ; ai !
Then
FY(Dsu);; = 0.
Thus we have
max |Du| = max |Dul.
T au
Since u < u® < hin Q and u = u® = h on 6L, we have
h, <u;<u,

where v is the unit outer normal to 92 (unit inner normal to d€2; and unit outer normal to
0€)y). Thus we have

(3.6) max |[Du| = max |Du| < C.
Q 0Q
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3.2. Second order estimates.

Lemma 3.4. There exists a uniform constant C such that

(3.7 max |D?u| < C.
U

Proof. Denote by Dsu = ug. Then

&S £ (95u)
L(l/lg‘;:) = —Wujkgulmf > 0.
Hence
Uge(z) < sup |D*ul.
o)

This impliesVi,j=1,---,n,
2
Uy,x;> Uyy, < SUpP|D7ul,
oQ
2
Ut Unpy;s Uy, < 28Up [D7ul.
0Q

On the other hand, Au(z) > 0 implies

uxix,-’ uyi)’i 2 _(2n - 1)(8(;’;21:) |D2u|)‘

Then
2
+ ux,'xj' = uxii)g - ux,-xi - uijj S (4n - 1)(Sup |D ul)’
0Q

2
T Uy, = Ugay; = Uy, = Uyy,; < (4n- 1)(5(;;213 |D"ul),

2
E Uy, = Uyay, = Uy, — Uy < (40— 1)(s;2p |D~ul).

Thus we have

max |D’u| < C, max |D?ul.
a 0Q

So we need to prove the second order estimate on the boundary 9. Here we use the
method by B. Guan [13,16], P. F. Guan [17] and S. Y. Li [30] .
Tangential derivative estimates on 0€)

Consider a point p € 9Q. Without loss of generality, let p be the origin. Choose the

coordinate z;, - - - , Z, such that the x,, axis is the inner normal direction to Q2 at 0. Suppose
=Y, =Yy s g = Yn, Inrl = X1, Lpa2 = Xo, 00, Top = Xy
Denote by ¢’ = (t;,- - - , t2,-1). Then around the origin, €2 can be represented as a graph

th = X, = p(t') = Bugtats + O(1'P).
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Since
(u—w(t',pt)) =0,
we have
(U=, (0) = —(u — 1), (0)Bog, a@,=1,---,2n-1.
It follows by gradient estimate that
(3.8) ;I <C, a,p=1,---,2n—1.

Tangential-normal derivative estimates on 0.
We use Guan’s method [13,14,16] . Our barrier function here is simpler than before since
u is constant on the boundary and the right hand side of the approximating equation is a
sufficiently small constant €.

To estimate u, , (0) fora = 1,---,2n—1 and 4, , (0), we consider the auxiliary function

N
v:u—g+td—5d2

on Q5 = QN Bs(0) with constant N, 7,6 to be determined later. The following lemma
proven in [14] are needed.

Lemma 3.5. For N sufficiently large and t, 6 sufficiently small, there holds

Ly <-(1+%) in Qs,
v=>0 on 0Q),

where € > 0 is a uniform constant depending only on subsolution u restricted in a small
neighborhood of 0Q).

The following three lemmas was proven by Guan in [16].

= 1 -
Lemma 3.6. Let F" = %S  (00u). Then there is an index r such that
ij

n—1
= 1 11
1] =1/ _ % B 2
(3.9) ; Flugug = ; S DS e (i),
where A = (4, -+, A,) are the eigenvalues of u;;.

Lemma 3.7. Suppose A € Ty. If A, < 0, then

i I~ 1
28 SN 2~ 38T S (7.
e i=1
Lemma 3.8. Suppose A € Ty. Then foranyr=1,--- ,nand & > 0,
(3.10)

PSS < & Y ST S +

i=1 i#r

C Lo
= > S DS + (),
i=1

E £
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where Q(r) = Sk%(/l) - (Cﬁ)% ifd, >20and Q(r) =0if A, <O0.

At any boundary point p € dQ2, we may choose coordinates z, - - - , z, with the origin p
such that the positive x,, axis is the interior normal direction to 02 at p. Let o be a defining
function of Q, thatis 0 < 0in Q, 0 = 0, Dvpo = 1, on 0Q2, where v is a unit outer normal
to 0Q2. We may assume that, g—fj_(O) =0forl <i<n-1and %“j’j(O) =0foralll <i<n.
Moreover, around the orgin, we can write

02) = =x, +Re Y 0i(0)ziz; + . 0(0)2Z; + 0(),

i.j=1 =1
where |Q(2)| < C|z°. Let
ti:yi, i:l,...,n, i = X, i:1,"',n_
Let
n
Oty
ae(x) = —5-, l<sa<2n-L
Oxy
Then
a,(0) = 0.
SoT = % + aa£ is a tangential vector to d€Q near the origin. We write
2n—1 .
ao(2) = Z bagls + boXy + O(i* + x2),  z € Qnear 0.
B=1
And let
8 2n—1 8
Ta/ = —+ ba, 1
at, Z PF ox,
B=1
Then
0 0
T = Ta + ba na— T (0] 2 .
&r (Iz) I
So
To(u—u) = O(t*), ondQ.
Note that
Ot = —lop 1<p<n,
il =
%&ﬁ—n, ﬁ > n.
and

1

51y = Llss 1<B<n,
! Edjﬁ—n’ ﬁ > n.



THE HOMOGENEOUS COMPLEX K-HESSIAN EQUATION 13

We then have
2n—1 B
LT (u—u) :=Tof — LT u+ Z bapF" (1.1, 5 + 1 i)
B=1
2n—1 ) 2n—1 B
=Tof = LTu+?2 Z bapF"/(tg.4y5 + 1p,us) + V=1 Z bopF" (15,1t 5 = 1 7y, i)
p=1 p=1
- Si-1(A) S (AD)]A 1 ij -
>-C(1+ Z S S ) = 3 F s = 1, ) = ),
and

n—-1
2 2
Ly, = u, ) + >l = )
=1

n—1

:2Fi}(uy,,i —u, )y 5 —u o)+ Z Fij((uli = w)ug; — up) + (g — up;)(ug; = u;))
I=1

n—1
+ 2y, = 4, Yy 5= 0, )+ > (= w)F s = ) + (= u) F g = ;)
=1

n—1 n

- i Si-1 (D) S (AD)A]
22ty = 1, )it = 20, 5) + ) Fluguy = C(1+ 3 = klu) ’ Slk(a) )
=1 i=1

Let

n—1
W= A+ Aol = As((ay, = Y2+ Y i — ).
=1
By Lemma 3.5, Lemma 3.6 and Lemma 3.8, we see that

LY +T,(u—u) <0 inQ;
and
Y+T,(u—u)>0 ondQs,
when A; > A, > A3 > 1. Therefore
luy,.,| < C.
In particular, from (4.30), we know
] < C.

Double normal derivative estimates on 9Q
For any fixed p € Q, we choose the coordinate such that p = 0, 9Q () B,(0) = (¢, ¢(t"))
and Vg(0) = 0.
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Case 1: x, € 0Q) Let p, be a defining function of €y which is strictly plurisubharmonic
in a neighborhood of €. So

po(t', (")) =0 on dQy.
Then we have

Po,t‘,tﬁ(o) = L0, (O)SDtat/;(O) l<a,B<2n-1.
On the other hand, we have

1p(0) = —tty,, (0)0ap(0) 1<, B<2n—1.

Thus o
U,
I/tt(ytﬂ(()) = mﬂo’n’[ﬁ(o) 1 S Q,B S 211 - 1.
and
ui(0) = 22O 0) > epos©) > 0
T @) = S0
Since py is strictly plurisubharmonic in Q,, we have
(3.11) S o1 (ui(0i<ijen-1) = 'S ko1 (40070 i<ijen1) = €1 > 0.

Case 2: xy € 08,

Note that # > u near 0Q;, u = uand 0 < u, < u, on 62, v is the unit outer normal to
0Q), there exists a smooth function g such that u = gu near 0Q);, and g > 1 outside of Q
nearby 0Q;. SoV1<i,j<n-1,

u;70) = gi5(0)u(0) + £i(0)u;(0) + g5(0)u,(0) + g(0)u5(0).

Note that u = 7p; near 0€2;, where p; is a given strictly plurisubharmonic function in a
neighborhood €, 7 the a constant independent of £ and R as taken in Lemma 2.12. We
also have

Si-1({ui(0)h<ij<n-1) =r""1g"1(0)S k-1{01,i7(0) }1<ij<n-1)

_ 1 —
(3.12) >7l gk 1okl (el '® min§,” (8dp1) := ¢, > 0.
Let ¢ = min{cy, ¢3} (see (3.11) and (3.12)), we have
una(0)co <t (0)S -1 ({1;5(0) }i<i j<n-1)

n—1

=81 ({50 }<ij<n) — Sk({ui5(0) }i<ijen—1) + Z S k-2 ({ui7(0)} 144, jen-1)
i=1

<C.

Then we obtain

unﬁ(O) < C’
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n—1
where C is a uniform constant. On the other hand, u,;(0) > > u,3(0) > —C. In conclu-
i=1
sion, we have |u,;(0)| < C.
In conclusion, we get the uniform C 2 estimate. O

3.3. Proof of Theorem 3.1. The uniqueness follows from the comparison principle for
k-subharmonic solutions of complex k-Hessian equations in Lemma 2.7 by Blocki [5].
For the existence part, since u€ is increasing on €, u’ := lin(} u€ exits. Since |uE|C2(§) <C,

[Samd

there exists a subsequence u< converges to u° in C"*® on Q and u° € C"'(Q).

4. SOLVING THE APPROXIMATING EQUATION IN X := Bp \ Q.

We always assume € is a smooth, strongly pseudoconvex domain containing the orgin
and Q is holomorphically convex in a ball. Recall that we always assume B,, CC Q CcC
Bg, CC Bg, and Q is holomorphically convex in Bg,.

Since the Green function in this case is —|z|2‘27” , we want to solve the following complex
k-Hessian equation .

(ddw A" =0  inQ :=C"\Q,
4.1) u=-1 on 0Q),
u(z) » 0 as |z| — oo.
By scaling of z, we consider (4.1) with B, CC Q CC B| CC By, where 1 = &, 5 = ;—S ~1.

4.1. Construction of the approximating equation. Let w® be a approximation of the
Green function —|z> %
2, 2011
. " +e7\ %
W) = —(' | )

1+ &2

We have
fo = Hlw) = Si(wf) = cﬁ(% — DA+ ) (2P + e
It is clear that po = |z]> — (1 + s)? is a plurisubharmonic defining function of B,,. Let p;
be a defining function of € such that p; is plurisubharmonic in a neighborhood U of Q.
By Lemma 2.12, there is a smooth plurisubharmonic function p solving

Hi(p) = &, in B).,\Q,
4.2) 0 = Tp1, near 0Q2,
o =1+ Kpy, near 0B,

2
16+52

Leto=(1-(1+

Y= 1 In Bio\Buys, ¥ 6 < o0, 6 < 2,

(L N

1+& 8 + 52

=3 oo
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So

) 21 EENC
woes(lets) () BB

Let V be a neighborhood of Q, Q cC V, then

52

16 + 52

w'<—1 and @>(1-(1+ )1—%)B;n\fvp—1 in B;\V.
1

So

2

s
16 + 52

£ _ < _ 1-0y - .
w—p<(1-(+ )k)gl\fvp in B;\V.

2

1_n 11
Apply Lemma 2.11 with w*, ¢ and 6 < min{(l b ) ' —(1 ; Siz) -+

16+52

2 ny . . . . .
16“”2)17) inf p}, we obtain a smooth k-subharmonic function u® such that ¥* = w® in
B\V - -

1
(C”\BH%, u® = ¢ in B;\Q and u® > max{p, w’} in Q°. Moreover, by the convacity of S,

1+12), 1 1 —1(z)
TH (@) ———

If we take £y < min{]1, 2"‘”t‘2(”“)(Cﬁ)‘l(% -DFA -1+
f? < . So we obtain

1 1
Hu") > H!(w*) in {J¢ —w*| < 6}.

16{;2)1‘%)60}, then for any & < &,
H(u®) > f* inQ°.
In conclusion, for sufficient small £, we can construct a smooth, strictly k-subharmonic
function u® as follows

2 . . . .
Lemma 4.1. For any € € (0, &), & < “g, there exists a strictly k-subharmonic function

u® € C*(C"\Q) satisfying

S_{W in C"\B,..,

- la-d+ e -1 inB\Q,

u® > max{w®, (1 — (1 + s )" -1} in Bi.s\By
- ’ 16 + 52 27

and
Hy ) > f° inQ,
where p is a function satisfying (4.2).

By the preliminaries above in this section, we are able to construct the approximation
equations for £ € (0,&p) and R > 1 + 5.

43 {Hum%:ff in X = Bp\Q,

utk = y# on 9.



THE HOMOGENEOUS COMPLEX K-HESSIAN EQUATION 17

Since u® is a subsolution, by Li [30], (4.3) has a strictly k-subharmonic solution u®f €
C>®(Zg). Our goal is to establish uniform C? estimates of u*®, which is independent of &
and R. We prove the following

Theorem 4.2. For sufficient small & and sufficient large R, u®® satisfies
C 2 < —uR(z) < Clz> ¥,
DU () < Clef' %,
00U ()] < ClzI,
ID*u*(2)| < C.
where C is a uniform constant which is independent of € and R.

In the next subsections, we will prove uniform C?-estimates of solutions to equation
(4.3). The key point is that these estimates are independent of € and R.

4.2. C° estimates. Since u® is a subsolution to (4.3), we obtain that

1-7 n 2
w2tz ~(S—) 2 =+ )Rl

Forany R > R > 1 + s, let u®F and u®® be solutions to (4.3) on Xz and X respectively.
We have

u™® = uf <u®  on OBg.

By Lemma 2.7,

’
&R < &R

u®™ <u®", in Xp.

On the other hand, choose R; := max {1 + s, \/tf_O_tz} Then for any R > Ry,

H (=122 %) = 0 < f¢ = Hu"®)  inZg,

2n _ _2n
us,R =—1<—t% 2|Z|2 13 on 89,
2,.2.1-2 2n _ _2n
0o = () < on 9By,

Using Lemma 2.7 again, we have
W 5 Hd
utR < —tT 277 % in Zg.

So we have, for any R" > R > Ry,

n

2n 7 2n 2n
—(1+ &) e % <uR(z) <uF (@) < 17 2%, zeZx

4.3. Gradient estimates. In this subsection, we prove the global gradient estimate. The
key point is that the estimate here does not depend on £ and R. We also prove that the
positive lower bound of the gradient of the solution.
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4.3.1. Reducing global gradient estimates to boundary gradient estimates. This part
is the key part of gradient estimates. The point in here is that the gradient estimate is
independent of the approximating process. This estimates is motivated by B. Guan [15].

Theorem 4.3. Let u be the solution of the approximating equation (4.3). Denote by
(4.4) P = |DuP(—u) + .

then we have the following gradient estimate

2(n—k)

4.5) max P < max{maxP (m

ER (’)ZR

) <y 7D Tog £}

Proof. For simplicity, we use f instead of f¢ during the proof.
Leta = Zr:’__kk . Select the auxiliary function

= log P = log |Dul* — alog(—u).

Suppose ¢ obtain its maximum at zo € Xz. We can choose the holomorphic coordinate
such that {u;}(z0) is diagonal. Denote by A; = u;(zo). The following computations are at
20-

2
|Dl/l|l Wi Wy + wiug up u;d; + uiug u;

a—=—7F—— —a— = —/—->—— —a—.
|Dul? u |Dul? u |Dul? u

0=¢; =

Then we have the observation

il Pl <O wug .
4.6 a— = + s VZzl,"',n,
(4.6) u |Dul? Z: |Dul?

which implies Y, uuu; is real at 7. Denote by F/ = (,%JS «(00u). By direct computa-
tion, we can get
|Du|2 |Du|?| Dul? U Uil-
0 >Flp;: = F1. ( - : j—ai+a—lj)
Y |Dul? |Dul* u u?

2 2 2
_ ii-(lDul’?’ 1 [DuliDulz )

o YT Y
2Re{u, f; Du’ A Sl e S (ADA?
_ e{u, f7} B [Dul +Z k=1 (D) gl +Z f=1(A]D)A;

ak
|Dul? f u oy |Dul? — |Dul?

n . |Mi|2 ) n & . |Z;l:1 u,-ulilz
“5 % Z DS 1 ADA = 5 Z] S i1 (A1) - Z § 1 (Al 2L

— |Dul* |Dul*

D Wil
|Dul*
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We claim

noul?
k|D |2

| > ugu? 2n Y ”liul’uf) >0

g:= ) ( Sl + 84 (i) = S (UDA?

i=1 =1

“.7) -

S (Al - S i1 (A,
T e T e AT

Then
2 |D ul2

D
0> |Du|2F”<p,-]- > 2Re{u,; f7} —akf| . > =2|Dul|Df| - ak f

It follows that
2 _ 2n-k) B
|Du| < J(—u)lDlogfl = rn=h k)( w)|Dlog f1.
Thus
2(n - k) \? _\2-a 2
W) (—uy D log fI*

Now we prove the Claim (4.7). Since

IDuf -y < (

|Mi|2
|Dul?

D SN =S 1 f = (k+ DS = Z (S1f = k+1Se)
i=1 i

S k(A7) )
S -1 (Ali)

.2 2 J
+Z |”1L|t ((k+ 1 S"(/ul)' — (k+ 1)Sk+1(/1|i))’

:Zf'”” (4 + 5101 = k+ 1)
- u

Z | Duf? S (Al
we have
é W( . S (Al ) ;2 ( S2(Ali) )
E= — A+ S1(4)) - (k+ )————-(k+1)S A
qu)mz A = (k+ DT . Bup 5~ K DSk
|M'| “ 12 |Zz 1”1“11
+;Sk Ao kZ Du PSH(MM ~ 55k 1Z(ﬂ|> T
. o UnuUu;
- S o1 (ADA;
5 _k; 1 ADATE
::(Z+Z)Ti,
ieG i€eH

in which
G={i|4,=20} H={i[4 <0},
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and
|u,-|2( . S 1(Ali) ) |u,-|2( S 2l )
T, = Ai+SA)—-k+1 — |+ k+1 — —(k+ DS (A
Urowe 1 = e+ DTS )+ (K Do = (e DSk (A
: . n |lu z| . |Z?=1 ”iuli|2
+ S_aﬂ—— S (A2 - S (A==
DSk (il g S DA = 5 S A=
2n - o WU
- S o1 (A A; .
2n—k; k-1(A]0) DuP?
We will prove in the following that V i, T; > 0.
Casel.ic H. Let
T,=A+B,
where
Juil? ( S(Ali)
A+ Sl - (k+ 1) )
f|D 2 S -1 (A7)
il (ck+ 1) SiD s () - Il o e
|Dul? S c-1(Ali) ! n—k|Dup” "
and
n n |u;i|? ) - .
B::( - ) SN2 + S (Al
7 )i A ; e (A1)t
X upl? 2n W
- S - S 1 (A A; .
S E S D= Zn_k; 1D
Since
f =81 =81 (ADA; + S (4D,
we have

, P Sl 2fS ) fA SR fS (Al
/1. + — = - + — .
OS2 ) S2 Q) S2 Q) Skl S2 Al S2 (Al

Then

nlwl

—— S, (AU = f

12 . 12 52/1
|uti| (_ na n S )+ |uti| (_ n o S
n

it :
n-— le 2 |Dul? -k n—kSi_ (A |DulP\ n-kSi1(Q)

)-
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By (a) and (b) of Proposition 2.2, we have

Juai ( S (D) n n o Sl )
A+ 84 k+1 - A+
fID 2 (iD= )Sk-1(/1|i) n—k n—kSi (i)
W( S 2l .~ n Si(ﬂli))
+ k+1 —(k+ DS (1) -
pup\ & Vs S DS D s T
Juai ( k . no S )
- 4+ S ) =k + 1 -
fIDu|2 " 1(Ald) = ( n—k)Sk_l(/lli)
, f( n_ . Sl )
k+ —(k+ DSp(2
i (1= = = e DS (D
Juai > ( k k . )
> — /li S1(4 20,
ST L ey SR LD
where the last inequality is due to the assumption of Case 1. Note that
| 2wl
Zsk WDl = 5 S (D= > Zsk (Al
And
2n Y wup 1t - DR
S (A A; < - S (AUDA? + &8y (Al =
el 1(A0) |D PR sy s, WERL 1(ADA; + &8 -1 (D) DiP
Take & = 2=~ then 1 e k)2 =L
Case 2. i€ G Then let
T,=E+F,
where
|ui* ( . S (A7) )
E:= A+ S - (k+ 1
Tipup i 10 = D Crg
o (k4D SiD s () - Il o e
|Dul? S e-1(Alh) ! Dl !
and

n Jui|* ) & .
F::(l— ) S AL+ S S bl
2n =& ipup DA ; k-1 () s

| Y wal? 2n o Wil
Si-1(4 — S k-1 (D) A; .
k-1(Al0) Dl - ; k-1(Al0) Dul?

2—k

Since i € G, we have A; > 0, it follows from (4.6) that

n

Z wiugu; < 0.

=1
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Then
n—k |ul
~ 2n — k|Dul?

n N 2?:1 uiuli|2
== S0,
P kSk—1(/1|l) 0

w12 . 2
S DA + > S (Uil a2

=1

Using (b) of Proposition 2.2, we obtain

| Sl il (Sl .
E = Sl -k k —k+ DS A
ipup \$ 10 =k = ) ¥ ipup K ~ K DS ka0
k=1 |uf kool S
ket ok SR
n — 1 |Dul? n—k|Dul* S ;_1(A]i)

Hence we complete the proof of claim (4.7).
]

4.3.2. Boundary gradient estimates. We always assume R >> R;. To prove the bound-
ary gradient estimates, we will construct upper barriers on d€2 and 9B respectively.
Let h; € C*(Zg,) be the solution of the following equation

h =-1 on 0Q,
hy = -t 2%  on By,

u®R is k-subharmonic in X, thus is subharmonic in Xz. Note that

um_p 2-2
hi=u®®=-1 ondQ and h, = —t* 2R1 ©>uR on OBg,.

By comparison theorem for the Laplace equation, we obtain
utR < hy inZg,.
Let v be the unit outer normal to 0€2, then
2
16 + 52
where p is defined in (4.2). So there is a constant C independent of £ and R such that

IDuf| < C, ondQ.

(1 —(1+ )1‘%)pv =u’ <u® <y, <C(hy) = C(Q,1,R)) ondQ,

Let h, € C* (B_R\Bg) be a solution to the following equations,
Ay =0 in Bg\Bzx,
I’lz = Ze on GBR,
hy=-Q20F 2% ondBs.

For any C? function g, set
§=RT7g(R).
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Then 72(z) = R*2h,(Rz) satisfies

Ahy =0 in Bi\By,
5 2 18

hy, =0 = —(igi) ’ on 0By,
iy = —(21) 72 on 9By

Note that
hy, =a®® ondB; and h, > ia*® onodB 1.

By comparison theorem, we obtain
MS’RSEQ in Bl\B%
Let v be the unit outer normal to B;. Then

hy, <#5% <@ ondB;.

Noted that
S1-t 1+1§—221-% [N
2% > - > —
- (1+82) (1+e§) ’

then h, is uniformly bounded on 0B, \B_%. Since the gradient estimate of harmonic function
depends only on the domain and C° norm of boundary value, there is a positive constant
independent of & and R, such that

|7;12,v| < C, on 631

On the other hand, since

n

2
)

u = , in a neighbourhood of 0B,
- 1+ &2
we have ,
n I+ 2\% Z-y
i, = (- D(75) 9B,
& (k )1+$2 1+¢2 onab
Hence

|Dii*®| < C, ondB;, independent of £ and R.
So we have the (&, R)-independent estimate
IDu®| < CR'"%, on 8Bg.

Seta = zr:‘__kk, from C° estimate, we have

(—u*®)y 4 < (F'RY'T,  on OBy,

So we have
Dy (- < €, on 9%y,

where C is a constant independent of &€ and R.
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Since
ke
(4.8) (=R < (D F) T = el
and
Z
49 Dl €= —+ 1 _ .
4.9) 0 [ = ~(n+ D —
We have
(| log fF < Cpos L0 < Cln
) (2> + €2)* ~ e
By Theorem 4.3,

R12(_ &R\~
|Du™" " (—u™")™ < C,

where C is independent of € and R. Use the C 0 estimate once more, we drive that
IDuRP < C(—u®y < Clef' ¥

4.4. Second order estimates. We will prove the second order estimate of the approxi-
mating equations.

4.4.1. The global second order estimate can be reduced to the boundary second order
estimate. We use the idea of Hou-Ma-Wu [21] (see also Chou-Wang [10]) to prove the
following estimate.

Theorem 4.4. Let u be the k-subharmonic solution to (4.3) and consider H = ugg(—u)‘ﬁw(P).
If(—u)‘ﬁ |Dlog f¢]> and (—u)‘ﬁ |D? log f%| are uniformly bounded which is independent
of € and R, then we have

(4.10) max H < C + max H
T E)

where P = |Dul(~u) %, y(t) = (M -, o < &L and M = 2maxP + 1, a =
R
zr:’__kk, C is a positive constant depending only on n, k, s;lp P, s;p(—u)‘nkalD log f¢)* and
R R

sup(—u)~#%|D? log f7|.
R

1-2

Theorem 4.5. Let u be the k-subharmonic solution to (4.3). Let w := —(M) “. Then

1+&2
for sufficient small & and b, for any unit vector & € R*", there holds

max(W — u — bugs) < max(W — u — bug).
ZR {)ZR

Proof of Theorem 4.4. For simplicity, we write f instead of fduring the proof.
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Suppose the maximum of H is attained at an interior point z, € Xg along the direction
& = g We can choose the holomorphic coordinate such that {u;;} is diagonal at zo and

A; = uz with 4y > A, > --- > A,,. The following calculations are at zo. Then we have
U, P;
O=¢ =gy o Tt
14 Ui ( ) M-P
Denote by F// := - 1og5k(aau) - S—k and FIr = =2 log §,(0du) = 52 Sg:;k
S i . L S (A0u), S s _ g S «(ddu). Then by directly Calculatlon, we have
(4 11) .
0 ZFUQDI'J"
i P Fiu; Fluf  FPj  FiPP
=2, Fluyq — +(a-1 +(a-1 + +
1 £t ”%I (a-1) —u) (a-1) ) TU_—p O-(M— Py
g FlugP @a- Dk Filu?  FIP; — Fiipp
=A7 Fliy g — o+ +(a-1 + +
PR R e vy R VR
=I+II+---+ VL

Take the first and second order derivatives to P, we have

= |Dul;(=u)™ + |Dul*((-u)™),,

and
P =|Dulf;(—u)_“ + | Dul; (—u)™); + IDulﬁ((—u)_“)i + | Dul((—u)™);
=(uug; + wyzup + wing + uggug)(—u) ™

+ a(—u)™ ™ ((ugg + wineg)us + (upug; + ugug)u;)

+ a(—u)_“_llDulzu,-; + ala + 1)(—u)_”_2|Du|2uiu;.
So

FijPi; =Fi. ((u,u,—i; + wysup + wing; + ugug)(—u)™
+ a(—u)_“_l((uzuii + wup)uy + (uug; + ulj'ul)ui)

(4.12) + a(—u)_“_llDulzu,-; + a(a + 1)(—u)_“_2|Du|2uiu;)

=2Re{u; f} (=)™ + Fu(—u) ™ + FT A2 (=)™
+ 2a(—u)_"_1Fﬁxlilu,-l2 + 2a(—u)_“_1F’7u1iu,-u;

+ ka(=u)" "|Dul?* + a(a + 1)(=u) ™ 2|Dul* F|u,)*.
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and
FUP; >2Refu fi}(—u)™ + ka(—u)™ "' |Dul® + a(a + 1)(=u) | Dul* F|u;?
1 ii 2 —a 1 ii 2 —a
4.13) +EF |27 ( u)_ +2F A (—u) _
_ 2a2(_u)—a—2Fii|ui|2|Du|2 _ 2a2(_u)—a—2Fii|ui|4
=a; +---+aj.

We divide the rest computation into two cases: A; > 64; and A; < d4;.
Case 1. A; > 64,. Then

Fif 12 - ; P; 2
II:=- lb;“" = —F”'(a - 1)u— ———
U M-P
7 |ut;|* |P;|?
2—2F”( _ 2 )
(a=1) o M~ PP
So )
Fn 2 Fn 2 Fii Pi2
T4+ 1V + V= - Py '”' o P
“ (M - P)
"uz oy _FUIPF
>((a—l)—2( —1)) (0'—20' )m

il 2
>w—n—ﬂ—n)FM

where the last inequality holds since o <

NI>—‘

1
By the concavity of S |, we have
L= 27 Fluyg = 27 ((og i = F* uggius) = A7 (log fr.
By (2.2), we have
(4.14) Fi2 > F¥2 > 0F 2 > 607 22,

where ¥ =3 | F i g = (n, k) and we use the assumption of Case 1 in the last inequality.
Based on (4.14), we have the following calculation,
1

73 a0+ ::gFuf(—u)-a — 2a*(—u) 2 F'lu;*|Dul* — 2a*(—u) " F"|u,|*

1 -
nguf(—u)—“ — 4a*(—u) " *F |Dul*

2
2(—u)“‘27-‘(¥(11(—u)—““)2 —~ 4a2P2)
>0,
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where the last inequality holds if we suppose
32a?
—a+1y2 2
(4.15) (L (—w)™)" > %P .
By Newton-MacLaurin inequality, we have
Sy n—k+1
<

< S
Sk—l nk !
So
i1 Sk o k
F = 2=l2R g —k+1)—>nkS > —.
Sk Sk Ai
Combined with (4.14), we have
(4.16) Fi22 > k6%0A,.
By (4.16),
1 1 - 3
R ::gF”/lf(—u)_“ + 2Re{u; fi}(—u)™
k6% L
>T/h( u)™* = 2|Dul|D f|(—u)™
k6% . .
> () (S5 A= = 2PHD i) ¢ )
>0,

where last inequality holds if we assume

4.17) Ay (—u)™ > k620|D Fl(—uy 2P
Note thata — 1 = % > 1, it follows from (4.14) that
o 1
——P -Za5+H+IV+VI
o 1 F”|u,|2
> . Fu 2 a -1 =2a-1 2
_M_P8 LW+ ((a-1)=2a-1))—5—
o o |Du|2
> - .- — — —
23— P 7:/11( W+ ((a—-1)=2a-1)> )7:
5%6
a-2 a2 _1\2 _ _
=(-u) ?‘( T S ) = a1 - - )P
>0,

where the last inequality holds if we suppose

(4.18) ey = 2 o0 12— @- 1)p

529
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By (4.16), we have

o 1
M—P za5”
> 7 '—Tﬂz(—u)‘“—/l‘l(lo it
VP 1 1 Uog

o k529 _
25 g M (w0 — D" log f]

oo o k&0 i a

=27 (55 - S Y = 1D log -y )
>0,

where the last inequality holds if we suppose

(4.19) (A (—uy 1y > IDzlogfI( )+,

k 020
From assumptions (4.15), (4.17), (4.18) and (4.19), we have

0> Flgs > 0.

which leads a contradiction. Since P, |Dlog f|(=u)"2*' and |D?log f|(—=u)™“*? are uni-
formly bounded, we finish the proof of Case 1.

Case 2. 1; < 64,. By the first order derivatives condition, we have

iPR 1 Uuii;
Z(M P)ZZE; ‘u%_( _1)_

i>2
E Fll’ulll’ _
Ui

— 1y ZF”'”'

i>2
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Putting the above inequality into (4.11), we have

O ZFUQD,'j
a-Dk - FiUP;
= ( u) +/11 Fjuliij‘l'O-M_P
Uy P F'lw P FTP,P

ta-D—p—+o T M- Py

0
i i 2 i p2
_ZF i, + (@ _I)ZF |M| Z(Af; |PI|J)2

(4.20) l>2 l>2 l>2
(a-Dk | 5 F”Pij
> ( u) +/ll F’uni;+am
Fll 2 Fll 2 FITP 2
_ |u111| +@-1 |u | to | 1|2
11 (M - P)
e F! |U111 € 2
- 0= + (@ —1)—— —@-1?))]
i>2 11 € i>2
="' +1I' +--- + VIII'.
We take
1 3
4.21 €< ,
(4.21) min {Z, 8a—1) o}
then
a—1 - Fily?
VI > .
-2 ; u?
Note that
F11|M111| u P, 2
v =- —HL - _pil H— -
- )( R vy
g ]? 1Py [?
>—2(a-1)°F" - 207 .
>—2(a-1) ” o M - P)?
By the choice of o, we have
1|1/‘1|2

IV +V +VI' > (a—1-2(a-1)*)F!

Fﬁ|1/li|2

u2

29
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Putting the above inequalities into (4.20),

Fu 2 _ 1 k FijPl.—.
|u111| (a ) . J

0 Z/IIIFJ“H;'} - Z (1- _)

= “ (—u) M- P
(4.22) a—1 |ul| a—1 Fﬁ|u-|2
+ —2(a-1)*)F" + ’
(5 ~2a~ D)F=5 2‘; =
=I"+-.-+ VI".
We have
VI” + M(i S (ag -+ a)
a-—1 F”lu,-lz a 2 —a=2 ity 12 2 2 —a=2 piiy,, 14
= - 2a°(—u) " F"u|"|Dul” + 2a”(—u) " F"|u;|
2 ; u? M—P( )
= Fii 2a* | DulP(—u)™ — ——=2a°|u;|*(—u)” )
; - M-P " M-P
= M_P(za (=)™ F "y PIDul + 24> (—u)™ 2 Fjuy )
=|u; |2(a—l oP 2) ) oP 11|u1|2
> F" - “da” |- 4a"—F
‘; 2\ 2 M-p )T MoP TR
> — ( 1)F”@,
u

where the last inequality holds if we take o < %_;21

ﬁ(fs +ag+ay)+ V' +VI”
1 i luay?
F”/l2 2 -1 2 Fll_
2953 (— (a=DIHF"—3
-1
>FY(= “—2(— - a2 (o(q— 1 + L2 P)
>F (-u) Mpg(ﬂ(u))((a) 7)
(4.23) >0,
where the last inequality holds if we assume
16M -1
(4.24) (MY = —=—=(a= 1+ )P
o
By
S k+1(/1) k

ST DS 1A = S1(D) = (k+ 1)

S 1(/1) > /11,
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we have

1 |
Za5 + a; ::gF”/lf(—u)_“ — 2Refu; log f}

X (cuy - 2DullD log fl(-u)
k 1 a
=<—u>-1(8—al<—u>-““ —2P}Dlog fl(—u)‘f“)
n
(4.25) >0,

where the last inequality holds if we assume

16 a
(4.26) Ai(—u) ! > T"P%mlog Fl—uy 1,
By Proposition 2.4, when ¢ is small enough (depending on € and o),
= Fi
IN+IIN :/ll—lFljulIlj_Z(l _ E |ulll
i>2 11
14— € _
>f l/112 Zz |ulii|2(/llsk—2,li - - ;)Sk—l,i) + 44 '(log f)ii

4.27) > — A;'|D*log fl,

where we use the concavity of log S in the first inequality.
Substituting (4.23), (4.25) and (4.27) into (4.22), we obtain

(4.28) 0> (": DK D2 10g £1.
Then
(4.29) (=)™ < (a = DkID* log f](—u)™*.

Since P, |Dlog f|(—u)"2*' and |D?log f|(—u)“*? are uniformly bounded, we finish the
proof of Case 2.
o

Proof of Theorem 4.5. Observe that the equation is equivalent to
1
Flu] := S (80u) = (f°)F.

= e 2 . .
Denote by F/ = % and Fikl = 2F4 - Now we consider any unit vector & € R,
;5 Ou50u

Differentiating the equation above twice with respect to &, we obtain
ol 3T 1
Fuge; =DeeFlul = F™ usaunge > ((F9)%)ee
200+ (f)F

- k& +|7*
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Consider the function
w* + Izl
1+ &2

W= —( )1_%.

1
By the concavity of S |, we have
. 1
Fithg—uz) > FIR=Flul = (CHG = DR+ ) (020 +) ) (a2 )

(4"
82(|Z|2+82)’k’”

B P+ g
82 - 82(|Z|2 + 82)—k—n - 82(t2 + 82)—k—n

If mu > &, then is inscreasing in |z|, we have

2 ) —k—n

> 2% in Zp,

provided u = ¢yt and gy < 2‘%c0(1 + co)llzn. So we can take b < 2(';’;) such that

FI(00 — u = aug);; > 0, in .
Maximum principle leads that

max(W — u — aug:) < max(W — u — auge).
x g

4.4.2. Second order estimate on the boundary 0Xy. .
Stepl: tangential derivative estimates.
Consider a point p € 9Q. Without loss of generality, let p be the origin. Choose the

coordinate z;, - - - , z, such that the x,, axis is the inner normal direction to 9€2 at 0. Suppose
=Y, =Yy, s g = Yuy Inel = X1, Ipg2 = X2, 00, Iop = Xpe
Denote by ' = (¢, - - , t2,-1). Then around the origin, dQ can be represented as a graph

tn = Xn = @(1') = Baglal + O(I'P).
Since
u(t', o)) =0 on dQ,
we have
ut‘,tﬁ(o) = _ul‘zn(o)Bafﬁ’ a,’ﬁ = 1, e ,2’1 - 1
It follows that for any @, =1,---,2n— 1,
(4.30) |t1,1,(0) < €, on OQL.

Note that u > u® near 9Q, u = u® and 0 < u? < u, on 9€2, there exists a smooth function
g such that u = gu near 6€2, and g > 1 outside of Q nearby 0Q. SoV1 <i,j<n-1,

u;5(0) = g;5(0)u”(0) + £i(0)u7(0) + g5(0)u; (0) + g(0)u3(0).
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52
16+s2

Note that u® = cop; near 02, where p; is a given strictly plurisubharmonic function in a
neighborhood Q, ¢y = (1 -(1+ )!=%)1, T is a constant independent of & and R as taken
in Lemma 2.12. We also have
S k1 (U0t jen-1) =5~ €71 O)S k-1 ({0170 1i jn-1)
R P P e T
(4.31) >cy & C, (C)T rgénSk (00py) > 0.
Set R > R, > R;, R, is to be determined later. Consider a harmonic function /3, which

Ahz =0 in Bg\B,,
hy = —(1 + ) (R + &)\t on 0B,
127 on OB,.

1s a solution to

(4.32)
h3 = -

Set
h(z) = hy(z) = R 2h3(Rz).

By maximum principle, we know,

|

where ii(z) = R*2u(Rz). Note that
- 2 p_2n

, ondB;, and h=-(—)" %, ondB:.

Rt R

ety

M+ &2
If we choose R* > (Ry)* := max{(R,)?, 417%4(1 + &), 16}, then
h|a131 z h|6B :

=l

Similarly as in gradient estimates, there is a positive constant C, independent of € and R,

~&

such that
h, <ii, <@’ <C ondB,.

In fact, we can prove that
h, > ¢y > 0,

where ¢ is also independent of £ and R. In fact, we can solve (4.32),

2
1+2\1-% n
_( R2 ) k + (2)2—%
Rt 2-N
|z

1+&2

h=—
(%)Z—N -1
1‘2—22 1-% 2 oon (1%)2_1\/

2,
@) G
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Then

1+5 2

b=~ (1 82)1_% + (%)2‘%)(<E)2—N - 1)*(% - 1)

N n_ 1 1-2 . —
>(— - DR =) (——=) FRY -1
( 5 X )(1 N 83) ( )
>0.
It follows that there exists a (&, R)-independent constant C, such that

C'R"F <u, < CR"% on 0B,

where v is the unit outer normal to dB-.

For any p € dBg, we choose the coordinate such that p = (0,---,—R). Then near p,
0By is locally represented by 1, = x, = ¢(t') = — |R? — ij{ ! tl.z. Since
. R* + &%\1-%
u@. o) =~(—) * ondBe
we have
82t2n _1 _1
Usi(P) = —Uty,, (D) E = =R u,,(p)oop = R u,(P)dyp.
Hence
(4.33) Uyl <CRE, a,B=1,---,2n—1,
1 . . _m ..
(4.34) ui = Z(u[””[”” + Uy, — Wy, + Uy, ) 2 CRTE G, 0, j=1,--+,n.

Step2: tangential-normal derivative estimates 0%y

Follow the approach by Guan in [16], we estimate the tangential-normal derivatives
on boundary. We first prove the tangential-normal derivatives estimate on d€2. Suppose
0 € 0Q, to estimate u, , (0) fora = 1,---,2n — 1, we consider the auxiliary function

N
v:u—g+td—5d2

on Q5 = Q N Bs(0) with constant N, ¢, § to be determined later. Define a linear operator

— Fily -
Lv=F vij’

= 1 —
where F'/ = 22§ (0du). Then

Y ii -1 ; i1
F=> Fi=SISi () =m—k+ DS Sy = Coy >0,

i=1
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By Lemma 3.5, for N sufficiently large and t, ¢ sufficiently small, there holds

Lv < -5(1+%) in Qs,
v>0 on 09,

where € > 0 is a uniform constant depending only on subsolution u restricted in a small
neighborhood of 9Q.
In our setting, € can be taken independent of &€ and R, since u® = cop; near dQ2, where
p1 is a given strictly plurisubharmonic function in a neighborhood Q, ¢y = (1 — (1 +
s )!=%)r, T is a constant independent of & and R as taken in Lemma 2.12.

16+s2
‘We use the similar notation as in subsection 3.2. Let

n-1
W = A+ Asle = As((uy, — 1, Y+ Dl = ).
I=1

After a similar computation as the boundary tangential-normal derivatives estimate on the
pseudoconvex boundary in 3.2, we see that

LY £To(u—uw) <0 inQ;
and

Y+T,(u—u)>0 ondQs,
when A; > A, > Az > 1. Therefore
(4.35) |utz,,| < C  on 0Q.

Nextly we prove the tangential-normal derivatives estimate on dBg. Let
i(z) = R¥2u(Rz) and  #°(2) = R¥u’(Ra).

Consider the boundary tangential-normal derivatives estimate on dB;. Let p = (0,--- ,-1) €
0B;. Write a defining function o of B near p by

n—1

1

0() = =x, = (R* = ) I = )"
i=1

Then
[To(@ - a*)| < C. in B1(0) N Bi(p).

Let w = |z]* — 1, then
L(-w) == > F7 < =Cou(l +F).
i=1
Let

n—1

© = ~Byw + Bolz = pP = Bs( )l - P + (i, — & )?).
=1
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Similarly, we get

L@ +T,(i—u) <0 inQs
and

O+T,(@i—a")>0 onodQs,
when B; > B, > B3 > 1. So we have

lit;, x| < C ondB;.

Therefore
(4.36) | < CR™%  on 0Bx.

Step3: double normal derivative estimates 0%
By pure tangential derivatives estimate (4.30) and (4.33), we have

luy,y,| <C ondQ and |uy,,|< CR™® on 0B.

To estimate the double normal deritive u, ,, , it suffices to estimate u,;. By rotation of
(21,7, Zp-1), We may assume that {u;3}<; j<,—1 1 diagonal. Then

n—1

1% = 8100u) = wiS i1 (uihisi jen-1) + Se(utizh<i jen-1) — Z lgnl*S k2 (i h<i j<n—1)s
B=1

It suffices to give a uniform lower positive bound for S s ({u4;5}1<i j<n-1)-
By (4.30), (4.31) and (4.35), we obtain

u,:0) < C on0Q.
On the other hand,

n—1
I/tm—l(O) > - Ui = —C.
i=1
By (4.33), (4.34) and (4.36), we obtain

_20k-1)
CuniR™ 7 <uin(0)S i1 ({ui5h1<i j<n-1)

n—1

=S 1(00u) — S ({70} 1<i jen1) + Z s, (0)*S k250 i< jen1)
=1
<CR™

Therefore
|t,7(0)] < CR™* on O0Bg.
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Step4: second order derivative estimates in Xy
As in Theorem 4.4, let H = Q(M — P)”, Q = uz(—u)™**', P = |Dul*(—u)™“. Suppose the
maximum of H is obtain at a boundary point z, € 9Xg. Then

(4.37)
QO=(M-P)°H< M H(zy) < M7Q(z0)(M — max P) 7 = max oM - max P)".

Note that P is bounded (uniformly in € and R). By (4.8) and (4.9),
(—u)*“|Dlog f* < C(n,k,r) and (—u)**|D*log f°|* < C(n,k,1).

By Theorem 4.4, if the maximum of H is obtained at a interior point, there is a positive
constant C independent of £ and R such that Q < C. Combined with (4.37), there is a
positive constant C independent of € and R such that

0<C inZXp.
Then we obtain
(4.38) Au < C(—u)*™ < ClzZ *  in Zp.

By boundary second order derivative estimates and C° estimate, we obtain that for any
unit vector ¢ € R?",

max(W — u — aug) < C.
M

Hence
uge <C, in .
u is subharmonic since u is k-admissible, then
—C <Zugx <C inZg.
In conclude, we get

(4.39) |ID*ul < C, in 2.

5. ProoF oF THEOREM 1.1

5.1. Uniqueness. The uniqueness follows from the comparison principle for k-subharmonic
solutions of the complex k-Hessian equation in bounded domains in Lemma 2.7 by Blocki
[5].

Suppose u and v are two solutions to (1.3). For any z5 € C" \ Q, there exists R, such
that zo € Bg,(0)\Q. Since u(z) — 0, v(z) = 0 as |z] = oo, Y& > 0, there exists R > R,
such that

v—e<u<v+e inC"\ Bg.
By the comparison principle Lemma 2.7,

v—e<u<v+e inBgp\Q.
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Note that zy € Bg,(0) \ Q C Bg(0) \ Q, we have
v(zo) — & < u(zp) < v(20) + €.

Let € — 0, we obtain that u(zy) = v(z0). Since z; is arbitrary, u = v in C*"\Q.

5.2. The existence and C!'-estimates. The existence follows from the uniform C?-
estimates for u®X. The proof is similar as that in [15] by Guan.
For any fixed M, > R,, for the solution to (4.3), by the C? estimates, we have

||uR lexg,,) < €1 independent of &, R and My
for all R > M,. By the Evans-Krylov theory, we obtain for 0 < a < 1,
||u®R lc2o,,,) < Ca(e, Mo)  independent of R.
By compactness, we can find a sequence R; — oo such that
ut =t in C(Zyy,),

where u® satisfies

{Hk(m) = inZy,

u=-1 on 0Q,
and
C 7% < —uf(z) < Clz 7,
IDu*(2)] < Clzl' %,
09u°(2)| < Clal" %,
ID*u*(z) < C.
Moreover,

2o s,,,) < Cale. Mo)  forany Mo > R.

By the classical Schauder theory, #® is smooth.

By the above decay estimates for u®, for any sequence &; — 0, there is a subsequence
of {u®} converging to a function u in C"® norm on any compact subset of C" \ Q ( for
any 0 < @ < 1). Thus u € CH(C" \ Q) and satisfies the disired estimates (1.4). By
the convergence theorem of the complex k-Hessian operator proved by Trudinger-Zhang
in [35] (see also Lu [32]), u is a solution to (1.3).
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