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THE EXTERIOR DIRICHLET PROBLEM FOR HOMOGENEOUS COMPLEX

k-HESSIAN EQUATION

ZHENGHUAN GAO, XINAN MA, AND DEKAI ZHANG

Abstract. In this paper, we consider the homogeneous complex k-Hessian equation in

an exterior domain Cn \ Ω. We prove the existence and uniqueness of the C1,1 solution

by constructing approximating solutions. The key point for us is to establish the uniform

gradient estimate and the second order estimate.
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1. Introduction

Let u be a real C2 function in Cn and λ = (λ1, · · · , λn) be the eigenvalues of the complex

Hessian ( ∂2u
∂z j∂z̄k

), the complex k-Hessian operator is defined by

Hk(u) :=
∑

1≤i1<···ik≤n

λi1 · · ·λik ,(1.1)

where 1 ≤ k ≤ n. Using the operators d = ∂ + ∂ and dc =
√
−1(∂ − ∂), such that

ddc = 2
√
−1∂∂, one gets

(ddcu)k ∧ ωn−k = 4nk!(n − k)!Hk(u)dλ,

where ω = ddc|z|2 is the fundamental Kähler form and dλ is the volume form. When

k = 1, H1(u) = 1
4
∆u. When k = n, Hn(u) = det ui j̄ is the complex Monge-Ampère

operator.

Let Ω be a bounded smooth domain in Cn, the Dirichlet problem for the complex k-

Hessian equation is as follows
{

Hk(u) = f in Ω,

u =ϕ on ∂Ω,
(1.2)

where f and ϕ are given smooth functions. When k = 1, the k-Hessian equation is the

Poisson equation. When k = n, it is the well known complex Monge-Ampère equation.

1.1. Some previous results. We briefly give some studies on the Dirichlet problem for

the k-Hessian equation and the complex k-Hessian equation in the nondegenerate case i.e.

f > 0 and in the degenerate cases i.e. f ≥ 0. In general, the k-Hessian equation (the

complex k-Hessian equation) is a fully nonlinear equation.

1.1.1. Results on bounded domains. For the k-Hessian equation inRn, if f > 0, Caffarelli-

Nirenberg-Spruck [7] solved the Dirichlet problem in a bounded (k − 1)-convex domain.

Guan [13] solved the Dirichlet problem by only assuming the existence of a subsolution.

For the complex k-Hessian equation in Cn, Li [30] solved (1.2) in a bounded (k − 1)-

pseudoconvex domain.

There are lots of studies on the Dirichlet problem in bounded domains in Rn of de-

generate fully nonlinear equations. Caffarelli-Nirenberg-Spruck [8] show the C1,1 regu-

larity of the homogeneous Monge-Ampère equation i.e. f ≡ 0. If f
1

n−1 ∈ C1,1, Guan-

Trudinger-Wang [20] proved the optimal C1,1 regularity result due to the counterexample

by Wang [36]. The k-Hessian equation case was proved by Krylov [23,24] and Ivochina-

Trudinger-Wang [22] (PDE’s proof) by assuming f
1
k ∈ C1,1. Dong [11] proved the C1,1

regularity for some degenerate mixed type Hessian equations.

For the Dirichlet problem of degenerate complex Monge-Ampère equation, Lempert

[25] showed that (ddcu)n = 0 in a punched strictly convex domain Ω\{z} with logarithm
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growth near z admits a unique real analytic solution. Zeriahi [39] studied the viscosity

solution to the Dirichlet problem of degenerate complex Monge-Ampère equation.

1.1.2. Results on unbounded domains. There are lots of results on the exterior Dirich-

let problem for viscosity solutions of nondegenerate fully nonlinear equations. The C0

viscosity solution for the Monge-Ampère equation: det D2u = 1 with prescribed asymp-

totic behavior at infinity was obtained by Caffarelli-Li [6]. The k-Hessian equation case

was showed by Bao-Li-Li [4]. For the related results on other type nondegenerate fully

nonlinear equations, one can see [3, 27, 28, 31].

The global Ck+2,α regularity of the homogeneous Monge-Ampère equation in a strip

region was proved by Li-Wang [29] by assuming that the boundary functions are locally

uniformly convex and Ck,α. They showed that the uniform convexity of the boundary

functions is necessary.

For 1 ≤ k < n
2
, the C1,1 regularity of Dirichlet problem for the homogeneous k-Hessian

equation in Rn \ Ω was proved by Xiao [38] by assuming that the domain Ω is (k − 1)-

convex and starshaped. For 1 ≤ k ≤ n, Ma-Zhang [33] proved the C1,1 regularity of

the k-Hessian equation when Ω is convex and strictly (k − 1) convex. The prescribed

asymptotic behavior is log |x| + O(1) if k = n
2

and |x|2− n
k + O(1) if k > n

2
.

1.2. Motivation. Our research is motivated by the study of regularity of extremal func-

tion. For the smoothly strictly convex domain Ω, Lempert [26] prove the pluricomplex

Green function in Cn \ Ω is smooth (analytic). In [17, 18], P. F. Guan proved the C1,1

regularity of the solution to the homogeneous complex Monge-Ampère equation in a ring

domain. Then he solved a conjecture of Chern-Levine-Nirenberg on the extended intrinsic

norms. For the smoothly strongly pseudoconvex domain Ω, B. Guan [15] proved the C1,1

regularity and decay estimates of pluricomplex Green function in Cn\Ω by considering

the exterior Dirichlet problem for the homogeneous complex Monge-Ampère equation.

Another motivation is on the proof of geometric inequalities by considering the When

Ω is (k − 1)-convex and starshaped, Guan-Li [19] proved Alexandrov-Fenchel inequali-

ties by the inverse curvature flows. If Ω is k-convex, Chang-Wang [9], Qiu [34] proved

Alexandrov-Fenchel inequalities by the optimal transport method. Whether Alexandrov-

Fenchel inequalities hold for (k − 1)-convex domain is still open. Recently, Agostiniani-

Mazzieri [2] proved some geometric inequalities such as Willmore inequality by consid-

ering the exterior Dirichlet problem of the Laplace equation. Fogagnolo and Mazzieri and

Pinamonti [12] showed the volumetric Minkowski inequality by considering the the exte-

rior Dirichlet problem of the p-Laplacian equation. Agostiniani-Fogagnolo-Mazzieri [1]

removed the convexity assumption in [12] for the domain.

1.3. Our main result. In this paper, we consider the following exterior Dirichlet problem

for the complex k-Hessian equation.
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For 1 ≤ k < n, since the Green function in this case is −|z|2− 2n
k , we consider the k-

Hessian equation as follows

(1.3)























(ddcu)k ∧ ωn−k = 0 in Ωc := Cn\Ω,
u = −1 on ∂Ω,

u(z)→ 0 as |z| → ∞.

Theorem 1.1. Assume 1 ≤ k < n. Let Ω be a smoothly strongly pseudoconvex domain in

C
n such that 0 ∈ Ω and Ω is holomorphically convex in ball centered at 0. There exists a

unique k-subharmonic solution u ∈ C1,1(Ωc) of the equation (1.3). Moreover, there exists

uniform constant C such that for any z ∈ Ωc the following holds


































C−1|z|2− 2n
k ≤ −u(z) ≤ C|z|2− 2n

k ,

|Du|(z) ≤ C|z|1− 2n
k ,

∆u(z) ≤ C|z|− 2n
k ,

|Du|C0,1(Ωc) ≤ C.

(1.4)

Here the k-subharmonic function is defined in Section 2 and we use the notation Ωc :=

C
n \ Ω. Let r0 be the constant such that Br0

⊂⊂ Ω and R0, S 0 be constants such that Ω is

holomorphically convex in BS 0
and Ω ⊂⊂ BR0

⊂⊂ BS 0
, where Br0

, BR0
and BS 0

are balls

centered at 0 with radius r0, R0 and S 0 respectively.

To prove Theorem 1.1, we consider the following approximating equation






















Hk(u
ε) = f ε in Ωc,

uε = −1 on ∂Ω,

uε(z)→ 0 as |z| → ∞.

where f ε = cn,kε
2(1 + ε2)n−k(|x|2 + ε2)−n−1 (see Section 4).

uε will be obtained by approximating solutions uε,R defined on bounded domains:

ΣR := BR \Ω (see Section 4). The existence and uniqueness of the smooth k-subharmonic

solution of uε,R follows from Li [30] if we can construct a subsolution. The key point is

to establish the uniform C2 estimates for uε,R.

In Section 2, we give some preliminaries. In Section 3, we solve the Dirichlet problem

of degenerate complex k-Hessian equation in a ring domain. Section 4 is the main part

of this paper. We show uniform C1,1 estimate of the solution which is the limit of the

solutions of nondegenerate complex k-Hessian equation. The key ingredient is to establish

uniform gradient estimates and uniform second order estimates. We use the idea of Hou-

Ma-Wu [21] (see also Chou-Wang [10]) to establish the uniform second order estimates.

Theorem 1.1 will be proved in Section 5.
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2. Preliminaries

2.1. k-subharmonic solutions. In this section we give the definition of k-subharmonic

functions and definition of k-subharmonic solutions.

The Γk-cone is defined by

Γk := {λ ∈ Rn|S i(λ) > 0, 1 ≤ i ≤ k}(2.1)

Recall S k(λ) :=
∑

1≤i1<···<ik≤n

λi1 · · · λik , and S k(A) := δ
j1 ··· jk
i1 ···ik Ai1 j1 · · ·Aik jk , where δ

j1 ··· jk
i1 ···ik is the

Kronecker symbol, which has the value +1 (respectively, −1) if i1, i2 · · · ik are distinct and

( j1 j2 · · · jk) is an even permutation (respectively, an odd permutation) of (i1i2 · · · ik), and

has the value 0 in any other cases. We use the convention that S 0(A) = 1. It is clear that

S k(A) = S k(λ(A)), where λ(A) are the eigenvalues of A.

One can find the concavity property of S
1
k

k
in [7].

Lemma 2.1. S
1
k

k
is a concave function in Γk. In particular, log S k is concave in Γk.

The following facts about elementary symmetric polynomial are useful in proving gra-

dient estimates.

Proposition 2.2. We have the following two inequalities,

(a) If λ ∈ Γk, then

S 2
k
(λ|i)

S k−1(λ|i) ≥
k + 1

k

n − k

n − k − 1
S k+1(λ|i);

(b) If λ ∈ Γk, then
S k(λ|i)

S k−1(λ|i) ≤
1

k

n − k

n − 1
S 1(λ|i).

Proof. Since λ ∈ Γk, we have S k−1(λ|i) > 0. The first inequality follows from Newton

inequality. Now we prove (b). Since λ ∈ Γk, we have S h(λ|i) > 0, ∀ h = 0, 1, · · · , k − 1.

If S k(λ|i) ≤ 0, (b) holds naturally. If S k(λ|i) > 0, the second inequality follows from the

generalized Newton-MacLaurin inequality. �

The following two propositions enable us to adopt a casewise argument to deal with

the third order terms as in [10] and [21].

Proposition 2.3. Let λ = (λ1, · · · , λn) ∈ Γk, and λ1 ≥ λ2 ≥ · · · ≥ λn. Then there exists

θ = θ(n, k) > 0 such that

S k−1(λ|k) ≥ θλ1S k−2(λ|1k),

from which it follows

S k−1(λ|i) ≥ θλ1λ2 · · ·λk−1, ∀ i ≥ k.(2.2)

The following proposition was proven in [10]. In [21], Hou-Ma-Wu provided a sharp

constant θ = k
n

in (2.3).
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Proposition 2.4. Let λ = (λ1, · · · , λn) ∈ Γk, and λ1 ≥ λ2 ≥ · · · ≥ λn. Then there exists

θ = θ(n, k) > 0 such that

λ1S k−1(λ|i) ≥ θS k(λ).(2.3)

Moreover, for any δ ∈ (0, 1) there exists K > 0 such that if

S k(λ) ≤ Kλk
1 or |λi| ≤ Kλ1 for any i = k + 1, k + 2, · · · , n,

we have

λ1S k−1(λ|1) ≥ (1 − δ)S k(λ).(2.4)

One can see the Lecture notes by Wang [37] for more properties of the k-Hessian op-

erator, and see Blocki [5] for those of the complex k-Hessian operator. We following the

definition by Blocki [5] to give the definition of k-subharmonic functions.

Definition 2.5. Let α be a real (1, 1)-form in U, a domain ofCn. We say that α is k-positive

in U if the following inequalities hold

α j ∧ ωn− j ≥ 0,∀ j = 1, · · · , k.

Definition 2.6. Let U be a domain in Cn.

(1). A function u : U → R ∪ {−∞} is called k-subharmonic if it is subharmonic and for

all k-positive real (1, 1)-form α1, · · · , αk−1 in U,

ddcu ∧ α1 ∧ · · · ∧ αk−1 ∧ ωn−k ≥ 0.

The class of all k-subharmonic functions in U will be denoted by SHk(U).

(2). A function u ∈ C2(U) is called k-subharmonic (strictly k-subharmonic) if λ(∂∂u) ∈
Γk (λ (∂∂u) ∈ Γk).

If u ∈ SHk(U)∩C(U), (ddcu)k∧ωn−k is well defined in pluripotential theory by Blocki

[5]. We need the following comparison principle by Blocki [5] to prove the uniqueness of

the continuous solution of the problem (1.3).

Lemma 2.7. Let U be a bounded domain in Cn, u, v ∈ SHk(U) ∩C(U) satisfy











(ddcu)k ∧ ωn−k ≥(ddcv)k ∧ ωn−k in U,

u ≤v on ∂U.
(2.5)

Then u ≤ v in U.

2.2. The existence of the subsolution.

Definition 2.8. ρ is called a defining function of C1 domain U, if U = {z : ρ(z) < 0} and

|Dρ| , 0 on ∂U.
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Definition 2.9. A C2 domain U is called pseudoconvex (strictly pseudoconvex) if it is

Levi pseudoconvex (strictly Levi pseudoconvex). That is, for a C2 defining function of U

defined in a neighborhood of U, the Levi form at every point z ∈ ∂U defined by

L∂U,z(ξ) =
1

|Dρ(z)|
∑

j,k

∂2ρ

∂z j∂z̄k

ξ jξ̄k, ξ ∈ hT∂U,z

is nonnegative (positive). hT∂U,z := {ξ ∈ Cn | ∑ j
∂ρ

∂z j
ξ j = 0} is the holomorphic tangent

space to ∂U at z.

Definition 2.10. A C2 domain U is called k-pseudoconvex (strictly k-pseudoconvex) if for

a C2 defining function of U defined in a neighborhood of U,

λ

{

∂2ρ

∂zi∂z̄ j

}

1≤i, j≤n−1

∈ Γk (∈ Γk), ∀ z ∈ ∂U,

where (z1, · · · , zn−1) is a holomorphic coordinate system of hT∂U,z near z.

We need the following lemmas by Guan [17] to construct the subsolution of the k-

Hessian equation in a ring.

Lemma 2.11. Suppose that U is a bounded smooth domain in Cn. For h, g ∈ Cm(U),

m ≥ 2, for all δ > 0, there is an H ∈ Cm(U) such that

(1) H ≥ max{h, g} and

H(z) =

{

h(z), if h(z) − g(z) > δ,

g(z), if g(z) − h(z) > δ;

(2) There exists |t(z)| ≤ 1 such that

{

Hi j̄(z)
}

≥
{

1 + t(z)

2
gi j̄ +

1 − t(z)

2
hi j̄

}

, for all z ∈ {|g − h| < δ} .

By Lemma 2.1, we see H is k-subharmonic if h and g are both k-subharmonic.

The following lemma was proved by Guan [17].

Lemma 2.12. Let Ω0 andΩ1 be smooth, strongly pseudoconvex domain in Rn withΩ1 ⊂⊂
Ω0 . Assume thatΩ1 is holomorphically convex inΩ0. Then there exists a strictly plurisub-

harmonic function u ∈ C∞(Ω) with Ω := Ω0 \Ω1 satisfying

(2.6)























Hk(u) ≥ ǫ0, in Ω,

u = τρ1, near ∂Ω1,

u = 1 + Kρ0, near ∂Ω0,

where ρ0 and ρ1 are defining functions of Ω0 and Ω1, τ and K are uniform constants.
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In [17], Guan considered the Dirichlet problem of homogeneous complex Monge-

Ampère equation in a smooth ring.

(2.7)























(ddcu)n = 0 in Ω := Ω0\Ω1,

u = 0 on ∂Ω1,

u = 1 on ∂Ω0.

Guan [17] proved the following.

Theorem 2.13. Let Ω0,Ω1 be smooth, strongly pseudoconvex domains and assume that

Ω1 is holomorphically convex in Ω0. There exists a unique solution u ∈ C1,1(Ω) of the

equation (2.7).

3. The Dirichlet problem for the homogeneous k-Hessian equations in the ring

In this section, we consider the Dirichlet problem of the homogeneous complex k-

Hessian equation in a smooth ring.

(3.1)























(ddcu)k ∧ ωn−k = 0, in Ω := Ω0\Ω1,

u = 0, on ∂Ω1,

u = 1, on ∂Ω0.

We assume that Ω1 ⊂⊂ Ω0 are smooth, strongly pseudoconvex domains and Ω1 is holo-

morphically convex inΩ0. Using Lemma 2.12, there exists a smooth, strictly plurisubhar-

monic subsolution u satisfying

(3.2)























Hk(u) ≥ ǫ0, in Ω,

u = τρ1, near ∂Ω1,

u = 1 + Kρ0, near ∂Ω0,

where τ,K are positive constants and ρi are defining functions of Ωi.

Theorem 3.1. Let Ω0,Ω1 be smooth, strongly pseudoconvex domains and assume that

Ω1 is holomorphically convex in Ω0. There exists a unique solution u ∈ C1,1(Ω) of the

equation (3.1).

The uniqueness follows from Lemma 2.7, the comparison principle for k-subharmonic

solutions to complex k-Hessian equations. Next, we prove the existence and regularity of

k-subharmonic solution by approximation. Indeed, for every 0 < ǫ < ǫ0, we consider the

following problem






















Hk(u
ǫ) = ǫ in Ω,

uǫ = 0 on ∂Ω1,

uǫ = 1 on ∂Ω0.

(3.3)
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Since u in (3.2) is a subsolution to (3.3), by Li [30], the above problem has a unique

smooth solution uǫ .

Next, we want to show the C1,1 estimates of uǫ are independent of ǫ. Firstly, by max-

imum principal, uǫ1 ≥ uǫ2 for any ǫ1 ≤ ǫ2. Thus u0 := lim
ǫ→∞

uǫ exists. If we could prove

uniform C1,1 estimates, then u0 is the C1,1 solution of equation (3.1).

Theorem 3.2. Let uǫ be the smooth k-subharmonic solution of (3.3). Then there exists a

uniform constant C independent of ε such that

|uε|C1,1(Ω) ≤C.

In the following subsections, for simplicity, we use u instead of uǫ .

3.1. C1-estimates.

Lemma 3.3. There exists a uniform constant C such that

|u|C1(U) ≤ C.(3.4)

Proof. Let h be the unique solution of the problem






















∆u = 0 in Ω,

h = 0 on ∂Ω1,

h = 1 on ∂Ω0.

(3.5)

By the maximal principle, we have u ≤ u ≤ h. This gives the uniform C0 estimates.

Let F i j := ∂
∂ui j

log Hk(u) = ∂
∂ui j

S k(∂∂̄u).

Dξ =

n
∑

i=1

(ai

∂

∂xi

+ bi

∂

∂yi

) with

n
∑

i=1

a2
i + b2

i = 1.

Then

F i j(Dξu)i j = 0.

Thus we have

max
U

|Du| = max
∂U
|Du|.

Since u ≤ uε ≤ h in Ω and u = uε = h on ∂Ω, we have

hν ≤ uεν ≤ u
ν

where ν is the unit outer normal to ∂Ω (unit inner normal to ∂Ω1 and unit outer normal to

∂Ω0). Thus we have

max
Ω

|Du| = max
∂Ω
|Du| ≤ C.(3.6)

�
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3.2. Second order estimates.

Lemma 3.4. There exists a uniform constant C such that

max
U

|D2u| ≤ C.(3.7)

Proof. Denote by Dξu = uξ. Then

L(uξξ) = −
∂2S

1
k

k
(∂∂̄u)

∂u jk̄∂ulm̄

u jk̄ξulm̄ξ ≥ 0.

Hence

uξξ(z) ≤ sup
∂Ω

|D2u|.

This implies ∀ i, j = 1, · · · , n,
uxi xi

, uyiyi
≤ sup

∂Ω

|D2u|,

uxi±x j
, uxi±y j

, uyi±y j
≤ 2 sup

∂Ω

|D2u|.

On the other hand, ∆u(z) > 0 implies

uxi xi
, uyiyi

≥ −(2n − 1)(sup
∂Ω

|D2u|).

Then
± uxi x j

= uxi±x j
− uxi xi

− ux j x j
≤ (4n − 1)(sup

∂Ω

|D2u|),

± uxiy j
= uxi±y j

− uxixi
− uy jy j

≤ (4n − 1)(sup
∂Ω

|D2u|),

± uyiy j
= uyi±y j

− uyiyi
− uy jy j

≤ (4n − 1)(sup
∂Ω

|D2u|).

Thus we have

max
Ω

|D2u| ≤ Cn max
∂Ω
|D2u|.

So we need to prove the second order estimate on the boundary ∂Ω. Here we use the

method by B. Guan [13, 16], P. F. Guan [17] and S. Y. Li [30] .

Tangential derivative estimates on ∂Ω

Consider a point p ∈ ∂Ω. Without loss of generality, let p be the origin. Choose the

coordinate z1, · · · , zn such that the xn axis is the inner normal direction to ∂Ω at 0. Suppose

t1 = y1, t2 = y2, · · · , tn = yn, tn+1 = x1, tn+2 = x2, · · · , t2n = xn.

Denote by t′ = (t1, · · · , t2n−1). Then around the origin, ∂Ω can be represented as a graph

tn = xn = ρ(t′) = Bαβtαtβ + O(|t′|3).
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Since

(u − u)(t′, ρ(t′)) = 0,

we have

(u − u)tαtβ(0) = −(u − u)tn(0)Bαβ, α, β = 1, · · · , 2n − 1.

It follows by gradient estimate that

(3.8) |utαtβ(0)| ≤ C, α, β = 1, · · · , 2n − 1.

Tangential-normal derivative estimates on ∂Ω.

We use Guan’s method [13,14,16] . Our barrier function here is simpler than before since

u is constant on the boundary and the right hand side of the approximating equation is a

sufficiently small constant ǫ.

To estimate utαtn(0) for α = 1, · · · , 2n−1 and utntn(0), we consider the auxiliary function

v = u − u + td − N

2
d2

on Ωδ = Ω ∩ Bδ(0) with constant N, t, δ to be determined later. The following lemma

proven in [14] are needed.

Lemma 3.5. For N sufficiently large and t, δ sufficiently small, there holds














Lv ≤ − ǫ
4
(1 + F ) in Ωδ,

v ≥ 0 on ∂Ω,

where ǫ > 0 is a uniform constant depending only on subsolution u restricted in a small

neighborhood of ∂Ω.

The following three lemmas was proven by Guan in [16].

Lemma 3.6. Let F i j̄ = ∂
∂ui j̄

S
1
k

k
(∂∂̄u). Then there is an index r such that

n−1
∑

l=1

F i j̄uil̄ul j̄ ≥
1

2

∑

i,r

S
1
k
−1

k
(λ)S k−1(λ|i)λ2

i ,(3.9)

where λ = (λ1, · · · , λn) are the eigenvalues of ui j̄.

Lemma 3.7. Suppose λ ∈ Γk. If λr < 0, then

∑

i,r

S
1
k
−1

k
(λ)S k−1(λ|i)λ2

i ≥
1

n

n
∑

i=1

S
1
k
−1

k
(λ)S k−1(λ|i)λ2

i .

Lemma 3.8. Suppose λ ∈ Γk. Then for any r = 1, · · · , n and ε > 0,

n
∑

i=1

S
1
k
−1

k
(λ)S k−1(λ|i)|λi| ≤ ε

∑

i,r

S
1
k
−1

k
(λ)S k−1(λ|i)λ2

i +
C

ε

n
∑

i=1

S
1
k
−1

k
(λ)S k−1(λ|i) + Q(r),

(3.10)
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where Q(r) = S
1
k

k
(λ) − (Ck

n)
1
k if λr ≥ 0 and Q(r) = 0 if λr < 0.

At any boundary point p ∈ ∂Ω, we may choose coordinates z1, · · · , zn with the origin p

such that the positive xn axis is the interior normal direction to ∂Ω at p. Let ̺ be a defining

function of Ω, that is ̺ < 0 in Ω, ̺ = 0, Dν̺ = 1, on ∂Ω, where ν is a unit outer normal

to ∂Ω. We may assume that,
∂̺

∂x j
(0) = 0 for 1 ≤ i ≤ n − 1 and

∂̺

∂y j
(0) = 0 for all 1 ≤ i ≤ n.

Moreover, around the orgin, we can write

̺(z) = −xn + Re

n
∑

i, j=1

̺i j(0)ziz j +

n
∑

i, j=1

̺i j̄(0)ziz̄ j + Q(z),

where |Q(z)| ≤ C|z|3. Let

ti = yi, i = 1, · · · , n, tn+i = xi, i = 1, · · · , n.
Let

aα(z) = −
∂̺

∂tα

∂̺

∂xn

, 1 ≤ α ≤ 2n − 1.

Then

aα(0) = 0.

So T = ∂
∂tα
+ aα

∂
∂xn

is a tangential vector to ∂Ω near the origin. We write

aα(z) =

2n−1
∑

β=1

bαβtβ + bαxn + O(|t|2 + x2
n), z ∈ Ω near 0.

And let

Tα =
∂

∂tα
+

2n−1
∑

β=1

bαβtβ
∂

∂xn

.

Then

T = Tα + bαxn

∂

∂xn

+ O(|z|2)
∂

∂xn

.

So

Tα(u − u) = O(|t|2), on ∂Ω.

Note that

∂itβ =















−
√
−1
2
δiβ, 1 ≤ β ≤ n,

1
2
δiβ−n, β > n.

and

∂ j̄tβ =















√
−1
2
δ jβ, 1 ≤ β ≤ n,

1
2
δ jβ−n, β > n.
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We then have

LTα(u − u) :=Tα f − LTαu +

2n−1
∑

β=1

bαβF
i j̄(tβ,iuxn j̄ + tβ, j̄uxni)

=Tα f − LTαu + 2

2n−1
∑

β=1

bαβF
i j̄(tβ,iun j̄ + tβ, j̄un̄i) +

√
−1

2n−1
∑

β=1

bαβF
i j̄(tβ,iuyn j̄ − tβ, j̄uyni)

≥ −C
(

1 +

n
∑

i=1

S k−1(λ|i)
S k(λ)

+
S k−1(λ|i)|λi|

S k(λ)

)

− 1

4
F i j̄(uyni − u

yni
)(uyn j̄ − u

yn j̄
),

and

L
(

(uyn
− u

yn
)2 +

n−1
∑

l=1

|ul − u
l
|2)

=2F i j̄(uyni − u
yni

)(uyn j̄ − u
yn j̄

) +

n−1
∑

l=1

F i j̄((uli − u
li
)(ul̄ j̄ − u

l̄ j̄
) + (ul j̄ − u

l j̄
)(ul̄i − u

l̄i
)
)

+ 2(uyn
− u

yn
)F i j̄(uyni j̄ − u

yni j̄
) +

n−1
∑

l=1

(

(ul − u
l
)F i j̄(ul̄i j̄ − u

l̄i j̄
) + (ul̄ − u

l̄
)F i j̄(uli j̄ − u

li j̄
)
)

≥2F i j̄(uyni − u
yni

)(uyn j̄ − u
yn j̄

) +

n−1
∑

l=1

F i j̄ul j̄ul̄i −C
(

1 +

n
∑

i=1

S k−1(λ|i)
S k(λ)

+
S k−1(λ|i)|λi|

S k(λ)

)

.

Let

Ψ = A1v + A2|z|2 − A3

(

(uyn
− u

yn
)2 +

n−1
∑

l=1

|ul − u
l
|2).

By Lemma 3.5, Lemma 3.6 and Lemma 3.8, we see that

L(Ψ ± Tα(u − u)) ≤ 0 in Ωδ

and

Ψ ± Tα(u − u) ≥ 0 on ∂Ωδ,

when A1 ≫ A2 ≫ A3 ≫ 1. Therefore

|utαxn
| ≤ C.

In particular, from (4.30), we know

|uynyn
| ≤ C.

Double normal derivative estimates on ∂Ω

For any fixed p ∈ ∂Ω, we choose the coordinate such that p = 0, ∂Ω
⋂

Br(0) = (t′, ϕ(t′))
and ∇ϕ(0) = 0.
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Case 1: x0 ∈ ∂Ω0 Let ρ0 be a defining function ofΩ0 which is strictly plurisubharmonic

in a neighborhood of Ω0. So

ρ0(t′, ϕ(t′)) = 0 on ∂Ω0.

Then we have

ρ0,tαtβ(0) = −ρ0,t2n
(0)ϕtαtβ(0) 1 ≤ α, β ≤ 2n − 1.

On the other hand, we have

uαβ(0) = −ut2n
(0)ϕαβ(0) 1 ≤ α, β ≤ 2n − 1.

Thus

utαtβ(0) =
ut2n

(0)

ρ0,t2n
(0)

ρ0,tαtβ(0) 1 ≤ α, β ≤ 2n − 1.

and

ui j̄(0) =
ut2n

(0)

ρ0,t2n
(0)

ρ0,i j̄(0) ≥ cρ0,i j̄(0) > 0.

Since ρ0 is strictly plurisubharmonic in Ω0, we have

S k−1({ui j̄(0)}1≤i, j≤n−1) ≥ ck−1S k−1({ρ0,i j̄(0)}1≤i, j≤n−1) ≥ c1 > 0.(3.11)

Case 2: x0 ∈ ∂Ω1

Note that u ≥ u near ∂Ω1, u = u and 0 < u
ν
≤ uν on ∂Ω1, ν is the unit outer normal to

∂Ω1, there exists a smooth function g such that u = gu near ∂Ω1, and g ≥ 1 outside of Ω

nearby ∂Ω1. So ∀ 1 ≤ i, j ≤ n − 1,

ui j̄(0) = gi j̄(0)u(0) + gi(0)u
j̄
(0) + g j̄(0)u

i
(0) + g(0)u

i j̄
(0).

Note that u = τρ1 near ∂Ω1, where ρ1 is a given strictly plurisubharmonic function in a

neighborhood Ω, τ the a constant independent of ε and R as taken in Lemma 2.12. We

also have

S k−1({ui j̄(0)}1≤i, j≤n−1) =τk−1gk−1(0)S k−1({ρ1,i j̄(0)}1≤i, j≤n−1)

≥τk−1gk−1
0 Ck−1

n (Ck
n)

1−k
k min

∂Ω
S

k−1
k

k
(∂∂̄ρ1) := c1 > 0.(3.12)

Let c0 = min{c1, c2} (see (3.11) and (3.12)), we have

unn̄(0)c0 ≤unn̄(0)S k−1({ui j̄(0)}1≤i, j≤n−1)

=S k({ui j̄(0)}1≤i, j≤n) − S k({ui j̄(0)}1≤i, j≤n−1) +

n−1
∑

i=1

|uin̄|2S k−2({ui j̄(0)}1≤i, j≤n−1)

≤C.

Then we obtain

unn̄(0) ≤ C,
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where C is a uniform constant. On the other hand, unn̄(0) ≥
n−1
∑

i=1

uαᾱ(0) ≥ −C. In conclu-

sion, we have |unn̄(0)| ≤ C.

In conclusion, we get the uniform C2 estimate. �

3.3. Proof of Theorem 3.1. The uniqueness follows from the comparison principle for

k-subharmonic solutions of complex k-Hessian equations in Lemma 2.7 by Blocki [5].

For the existence part, since uǫ is increasing on ǫ, u0 := lim
ǫ→0

uǫ exits. Since |uǫ |C2(Ω) ≤ C,

there exists a subsequence uǫi converges to u0 in C1,α on Ω and u0 ∈ C1,1(Ω).

4. Solving the approximating equation in ΣR := BR \Ω.

We always assume Ω is a smooth, strongly pseudoconvex domain containing the orgin

and Ω is holomorphically convex in a ball. Recall that we always assume Br0
⊂⊂ Ω ⊂⊂

BR0
⊂⊂ BS 0

and Ω is holomorphically convex in BS 0
.

Since the Green function in this case is −|z|2− 2n
k , we want to solve the following complex

k-Hessian equation .

(4.1)























(ddcu)k ∧ ωn−k = 0 in Ωc := Cn\Ω,
u = −1 on ∂Ω,

u(z)→ 0 as |z| → ∞.

By scaling of z, we consider (4.1) with Bt ⊂⊂ Ω ⊂⊂ B1 ⊂⊂ B1+s, where t = r0

R0
, s = S 0

R0
−1.

4.1. Construction of the approximating equation. Let wε be a approximation of the

Green function −|z|2− 2n
k

wε(z) = −
( |z|2 + ε2

1 + ε2

)1− n
k

.

We have

f ε := Hk(w
ε) = S k(w

ε

i j̄
) = Ck

n(
n

k
− 1)kε2(1 + ε2)n−k(|z|2 + ε2)−n−1.

It is clear that ρ0 = |z|2− (1+ s)2 is a plurisubharmonic defining function of B1+s. Let ρ1

be a defining function of Ω such that ρ1 is plurisubharmonic in a neighborhood U of Ω.

By Lemma 2.12, there is a smooth plurisubharmonic function ρ solving

(4.2)























Hk(ρ) ≥ ǫ0, in B1+s\Ω,
ρ = τρ1, near ∂Ω,

ρ = 1 + Kρ0, near ∂B1+s,

Let ϕ = (1 − (1 + s2

16+s2 )1− n
k )ρ − 1. In B1+s\B1+ s

2
, ∀ ε ≤ ε0, ε0 <

s2

8
,

wε ≥ −
( (1 + s

2
)2

1 + ε2
0

)1− n
k

> −
(

1 +
s2

8 + s2

)1− n
k

.
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So

wε − ϕ >
(

1 +
s2

16 + s2

)1− n
k

−
(

1 +
s2

8 + s2

)1− n
k

in B1+s\B1+ s
2
.

Let V be a neighborhood of Ω, Ω ⊂⊂ V , then

wε ≤ −1 and ϕ ≥ (1 − (1 +
s2

16 + s2
)1− n

k ) inf
B1\V

ρ − 1 in B1\V.

So

wε − ϕ ≤ (1 − (1 +
s2

16 + s2
)1− n

k ) inf
B1\V

ρ in B1\V.

Apply Lemma 2.11 with wε, ϕ and δ < min

{(

1 + s2

16+s2

)1− n
k

−
(

1 + s2

8+s2

)1− n
k

, (1 − (1 +

s2

16+s2 )1− n
k ) inf

B1\V
ρ

}

, we obtain a smooth k-subharmonic function uε such that uε = wε in

C
n\B1+ s

2
, uε = ϕ in B1\Ω and uε ≥ max{ϕ,wε} in Ωc. Moreover, by the convacity of S

1
k

k
,

H
1
k

k
(uε) ≥ 1 + t(z)

2
H

1
k

k
(ϕ) +

1 − t(z)

2
H

1
k

k
(wε) in {|ϕ − wε| < δ}.

If we take ε0 < min{1, 2k−nt−2(n+1)(Ck
n)−1(n

k
− 1)k(1− (1+ s2

16+s2 )1− n
k )ǫ0}, then for any ε ≤ ε0,

f ε < ǫ0. So we obtain

Hk(u
ε) ≥ f ε in Ωc.

In conclusion, for sufficient small ε, we can construct a smooth, strictly k-subharmonic

function uε as follows

Lemma 4.1. For any ε ∈ (0, ε0), ε0 <
s2

8
, there exists a strictly k-subharmonic function

uε ∈ C∞(Cn\Ω) satisfying

uε =















wε in Cn\B1+ s
2
,

(1 − (1 + s2

16+s2 )1− n
k )ρ − 1 in B1\Ω,

uε ≥ max{wε, (1 − (1 +
s2

16 + s2
)1− n

k )ρ − 1} in B1+ s
2
\B1,

and

Hk(u
ε) ≥ f ε in Ωc,

where ρ is a function satisfying (4.2).

By the preliminaries above in this section, we are able to construct the approximation

equations for ε ∈ (0, ε0) and R > 1 + s.

(4.3)















Hk(uε,R) = f ε in ΣR := BR\Ω,
uε,R = uε on ∂ΣR.
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Since uε is a subsolution, by Li [30], (4.3) has a strictly k-subharmonic solution uε,R ∈
C∞(ΣR). Our goal is to establish uniform C2 estimates of uε,R, which is independent of ε

and R. We prove the following

Theorem 4.2. For sufficient small ε and sufficient large R, uε,R satisfies

C−1|z|2− 2n
k ≤ −uε,R(z) ≤ C|z|2− 2n

k ,

|Duε,R(z)| ≤ C|z|1− 2n
k ,

|∂∂̄uε,R(z)| ≤ C|z|− 2n
k ,

|D2uε,R(z)| ≤ C.

where C is a uniform constant which is independent of ε and R.

In the next subsections, we will prove uniform C2-estimates of solutions to equation

(4.3). The key point is that these estimates are independent of ε and R.

4.2. C0 estimates. Since uε is a subsolution to (4.3), we obtain that

uε,R ≥ uε ≥ −
( |z|2 + ε2

1 + ε2

)1− n
k ≥ −(1 + ε2

0)
n
k−1|z|2− 2n

k .

For any R′ ≥ R ≥ 1 + s, let uε,R and uε,R
′

be solutions to (4.3) on ΣR and ΣR′ respectively.

We have

uε,R = uε ≤ uε,R
′

on ∂BR.

By Lemma 2.7,

uε,R ≤ uε,R
′
, in ΣR.

On the other hand, choose R1 := max

{

1 + s, tε0√
1−t2

}

. Then for any R ≥ R1,























Hk(−t
2n
k
−2|z|2− 2n

k ) = 0 < f ε = Hk(u
ε,R) in ΣR,

uε,R = −1 ≤ −t
2n
k
−2|z|2− 2n

k on ∂Ω,

uε,R = −(R2+ε2

1+ε2

)1− n
k ≤ −t

2n
k
−2R2− 2n

k on ∂BR,

Using Lemma 2.7 again, we have

uε,R ≤ −t
2n
k
−2|z|2− 2n

k in ΣR.

So we have, for any R′ > R ≥ R1,

−(1 + ε2
0)

n
k
−1|z|2− 2n

k ≤ uε,R(z) ≤ uε,R
′
(z) ≤ −t

2n
k
−2|z|2− 2n

k , z ∈ ΣR.

4.3. Gradient estimates. In this subsection, we prove the global gradient estimate. The

key point is that the estimate here does not depend on ε and R. We also prove that the

positive lower bound of the gradient of the solution.
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4.3.1. Reducing global gradient estimates to boundary gradient estimates. This part

is the key part of gradient estimates. The point in here is that the gradient estimate is

independent of the approximating process. This estimates is motivated by B. Guan [15].

Theorem 4.3. Let u be the solution of the approximating equation (4.3). Denote by

P = |Du|2(−u)−
2n−k
n−k .(4.4)

then we have the following gradient estimate

max
ΣR

P ≤ max

{

max
∂ΣR

P,
( 2(n − k)

k(2n − k)

)2
(−u)−

k
n−k |D log f ε|2

}

.(4.5)

Proof. For simplicity, we use f instead of f ε during the proof.

Let a = 2n−k
n−k

. Select the auxiliary function

ϕ = log P = log |Du|2 − a log(−u).

Suppose ϕ obtain its maximum at z0 ∈ ΣR. We can choose the holomorphic coordinate

such that {ui j̄}(z0) is diagonal. Denote by λi = uiī(z0). The following computations are at

z0.

0 = ϕi =
|Du|2i
|Du|2 − a

ui

u
=

ulul̄i + uliul̄

|Du|2 − a
ui

u
=

uiλi + uliul̄

|Du|2 − a
ui

u
.

Then we have the observation

a
|ui|2

u
=
|ui|2λi

|Du|2 +
n

∑

l=1

uliul̄uī

|Du|2 , ∀ i = 1, · · · , n,(4.6)

which implies
∑n

l=1 uliul̄uī is real at z0. Denote by F i j = ∂
∂ui j̄

S k(∂∂̄u). By direct computa-

tion, we can get

0 ≥F i j̄ϕi j̄ = F i j̄ ·
( |Du|2

i j̄

|Du|2 −
|Du|2

i
|Du|2

j̄

|Du|4 − a
ui j̄

u
+ a

uiu j̄

u2

)

=F i j̄ ·
( |Du|2

i j̄

|Du|2 − (1 − 1

a
)
|Du|2

i
|Du|2

j̄

|Du|4 − a
ui j̄

u

)

=
2Re{ul fl̄}
|Du|2 − ak f

|Du|2
u
+

n
∑

i,l=1

S k−1(λ|i)|uli|2
|Du|2 +

n
∑

i=1

S k−1(λ|i)λ2
i

|Du|2

− n

2n − k

n
∑

i=1

|ui|2
|Du|4 S k−1(λ|i)λ2

i −
n

2n − k

n
∑

i=1

S k−1(λ|i) |
∑n

l=1 ul̄uli|2
|Du|4 − 2n

2n − k

n
∑

i=1

S k−1(λ|i)λi

∑n
l=1 uliul̄uī

|Du|4 .
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We claim

E :=

n
∑

i=1

( n
∑

l=1

S k−1(λ|i)|uli|2 + S k−1(λ|i)λ2
i −

n

2n − k

|ui|2
|Du|2 S k−1(λ|i)λ2

i

− n

2n − k
S k−1(λ|i) |

∑n
l=1 ul̄uli|2
|Du|2 − 2n

2n − k
S k−1(λ|i)λi

∑n
l=1 uliul̄uī

|Du|2
)

≥ 0.(4.7)

Then

0 ≥ |Du|2F i j̄ϕi j̄ ≥ 2Re{ul fl̄} − ak f
|Du|2

u
≥ −2|Du||D f | − ak f

|Du|2
u

.

It follows that

|Du| ≤ 2

ak
(−u)|D log f | = 2(n − k)

k(2n − k)
(−u)|D log f |.

Thus

|Du|2(−u)−a ≤
(

2(n − k)

k(2n − k)

)2

(−u)2−a|D log f |2.

Now we prove the Claim (4.7). Since

n
∑

i=1

S k−1(λ|i)λ2
i =S 1 f − (k + 1)S k+1 =

n
∑

i=1

|ui|2
|Du|2

(

S 1 f − (k + 1)S k+1

)

=

n
∑

i=1

f
|ui|2
|Du|2

(

λi + S 1(λ|i) − (k + 1)
S k(λ|i)

S k−1(λ|i)

)

+

n
∑

i=1

|ui|2
|Du|2

(

(k + 1)
S 2

k
(λ|i)

S k−1(λ|i) − (k + 1)S k+1(λ|i)
)

,

we have

E =
n

∑

i=1

f
|ui|2
|Du|2

(

λi + S 1(λ|i) − (k + 1)
S k(λ|i)

S k−1(λ|i)

)

+

n
∑

i=1

|ui|2
|Du|2

(

(k + 1)
S 2

k
(λ|i)

S k−1(λ|i) − (k + 1)S k+1(λ|i)
)

+

n
∑

i,l=1

S k−1(λ|i)|uli|2 −
n

2n − k

n
∑

i=1

|ui|2
|Du|2 S k−1(λ|i)λ2

i −
n

2n − k
S k−1

n
∑

i=1

(λ|i) |
∑n

l=1 ul̄uli|2
|Du|2

− 2n

2n − k

n
∑

i,l=1

S k−1(λ|i)λi

uliul̄uī

|Du|2

:=

(

∑

i∈G
+

∑

i∈H

)

Ti,

in which

G = {i | λi ≥ 0} H = {i | λi < 0},
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and

Ti = f
|ui|2
|Du|2

(

λi + S 1(λ|i) − (k + 1)
S k(λ|i)

S k−1(λ|i)

)

+
|ui|2
|Du|2

(

(k + 1)
S 2

k
(λ|i)

S k−1(λ|i) − (k + 1)S k+1(λ|i)
)

+

n
∑

l=1

S k−1(λ|i)|uli|2 −
n

2n − k

|ui|2
|Du|2 S k−1(λ|i)λ2

i −
n

2n − k
S k−1(λ|i) |

∑n
l=1 ul̄uli|2
|Du|2

− 2n

2n − k

n
∑

l=1

S k−1(λ|i)λi

uliul̄uī

|Du|2 .

We will prove in the following that ∀ i, Ti ≥ 0.

Case 1. i ∈ H. Let

Ti = A + B,

where

A := f
|ui|2
|Du|2

(

λi + S 1(λ|i) − (k + 1)
S k(λ|i)

S k−1(λ|i)

)

+
|ui|2
|Du|2

(

(k + 1)
S 2

k
(λ|i)

S k−1(λ|i) − (k + 1)S k+1(λ|i)
)

− n

n − k

|ui|2
|Du|2 S k−1(λ|i)λ2

i ,

and

B :=

(

n

n − k
− n

2n − k

) |ui|2
|Du|2 S k−1(λ|i)λ2

i +

n
∑

l=1

S k−1(λ|i)|uli|2

− n

2n − k
S k−1(λ|i) |

∑n
l=1 ul̄uli|2
|Du|2 − 2n

2n − k

n
∑

l=1

S k−1(λ|i)λi

uliul̄uī

|Du|2 .

Since

f = S k(λ) = S k−1(λ|i)λi + S k(λ|i),

we have

λ2
i =

f 2

S 2
k−1

(λ|i)
+

S 2
k
(λ|i)

S 2
k−1

(λ|i)
− 2 f S k(λ|i)

S 2
k−1

(λ|i)
=

fλi

S k−1(λ|i) +
S 2

k
(λ|i)

S 2
k−1

(λ|i)
− f S k(λ|i)

S 2
k−1

(λ|i)
.

Then

− n

n − k

|ui|2
|Du|2 S k−1(λ|i)λ2

i = f
|ui|2
|Du|2

(

− n

n − k
λi +

n

n − k

S k(λ|i)
S k−1(λ|i)

)

+
|ui|2
|Du|2

(

− n

n − k

S 2
k
(λ|i)

S k−1(λ)

)

.
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By (a) and (b) of Proposition 2.2, we have

A = f
|ui|2
|Du|2

(

λi + S 1(λ|i) − (k + 1)
S k(λ|i)

S k−1(λ|i) −
n

n − k
λi +

n

n − k

S k(λ|i)
S k−1(λ|i)

)

+
|ui|2
|Du|2

(

(k + 1)
S 2

k
(λ|i)

S k−1(λ|i) − (k + 1)S k+1(λ|i) − n

n − k

S 2
k
(λ|i)

S k−1(λ)

)

= f
|ui|2
|Du|2

(

− k

n − k
λi + S 1(λ|i) − (k + 1 − n

n − k
)

S k(λ|i)
S k−1(λ|i)

)

+
|ui|2
|Du|2

(

(k + 1 − n

n − k
)

S 2
k
(λ|i)

S k−1(λ|i) − (k + 1)S k+1(λ|i)
)

≥ f
|ui|2
|Du|2

(

− k

n − k
λi +

k

n − 1
S 1(λ|i)

)

≥ 0,

where the last inequality is due to the assumption of Case 1. Note that

n
∑

l=1

S k−1(λ|i)|uli|2 −
n

2n − k
S k−1(λ|i) |

∑n
l=1 ul̄uli|2
|Du|2 ≥ n − k

2n − k

n
∑

l=1

S k−1(λ|i)|uli|2.

And

2n

2n − k
S k−1(λ|i)λi

∑n
l=1 uliul̄uī

|Du|2 ≤ 1

ε

n2

(2n − k)2

|ui|2
|Du|2 S k−1(λ|i)λ2

i + εS k−1(λ|i) |
∑n

l=1 ul̄uli|2
|Du|2 .

Take ε = n−k
2n−k

, then 1
ε

n2

(2n−k)2 =
n

n−k
− n

2n−k
. It follows that B ≥ 0.

Case 2. i ∈ G. Then let

Ti = E + F,

where

E := f
|ui|2
|Du|2

(

λi + S 1(λ|i) − (k + 1)
S k(λ|i)

S k−1(λ|i)

)

+
|ui|2
|Du|2

(

(k + 1)
S 2

k
(λ|i)

S k−1(λ|i) − (k + 1)S k+1(λ|i)
)

− |ui|2
|Du|2 S k−1(λ|i)λ2

i ,

and

F :=

(

1 − n

2n − k

) |ui|2
|Du|2 S k−1(λ|i)λ2

i +

n
∑

l=1

S k−1(λ|i)|uli|2

− n

2n − k
S k−1(λ|i) |

∑n
l=1 ul̄uli|2
|Du|2 − 2n

2n − k

n
∑

l=1

S k−1(λ|i)λi

uliul̄uī

|Du|2 .

Since i ∈ G, we have λi ≥ 0, it follows from (4.6) that
n

∑

l=1

uliul̄uī < 0.
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Then

F ≥ n − k

2n − k

|ui|2
|Du|2 S k−1(λ|i)λ2

i +

n
∑

l=1

S k−1(λ|i)|uli|2 −
n

2n − k
S k−1(λ|i) |

∑n
l=1 ul̄uli|2
|Du|2 ≥ 0.

Using (b) of Proposition 2.2, we obtain

E = f
|ui|2
|Du|2

(

S 1(λ|i) − k
S k(λ|i)

S k−1(λ|i)

)

+
|ui|2
|Du|2

(

k
S 2

k
(λ|i)

S k−1(λ|i) − (k + 1)S k+1(λ|i)
)

≥k − 1

n − 1

|ui|2
|Du|2 S 1(λ|i) + k

n − k

|ui|2
|Du|2

S 2
k
(λ|i)

S k−1(λ|i) ≥ 0.

Hence we complete the proof of claim (4.7).

�

4.3.2. Boundary gradient estimates. We always assume R >> R1. To prove the bound-

ary gradient estimates, we will construct upper barriers on ∂Ω and ∂BR respectively.

Let h1 ∈ C∞(ΣR1
) be the solution of the following equation























∆h1 = 0 in ΣR1
,

h1 = −1 on ∂Ω,

h1 = −t
2n
k
−2|z|2− 2n

k on ∂BR1
.

uε,R is k-subharmonic in ΣR, thus is subharmonic in ΣR. Note that

h1 = uε,R = −1 on ∂Ω and h1 = −t
2n
k
−2R

2− 2n
k

1
≥ uε,R on ∂BR1

.

By comparison theorem for the Laplace equation, we obtain

uε,R ≤ h1 in ΣR1
.

Let ν be the unit outer normal to ∂Ω, then

(

1 − (1 +
s2

16 + s2
)1− n

k

)

ρν = uε
ν
≤ uε,Rν ≤ h1,ν ≤ C(h1) = C(Ω, t,R1) on ∂Ω,

where ρ is defined in (4.2). So there is a constant C independent of ε and R such that

|Duε,R| ≤ C, on ∂Ω.

Let h2 ∈ C∞(BR\B R
2
) be a solution to the following equations,



























∆h2 = 0 in BR\B R
2
,

h2 = uε on ∂BR,

h2 = −(2t)
2n
k
−2|z|2− 2n

k on ∂B R
2
.

For any C2 function g, set

g̃ = R
2n
k
−2g(R·).
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Then h̃2(z) = R
2n
k
−2h2(Rz) satisfies































∆h̃2 = 0 in B1\B 1
2
,

h̃2 = ũε = −
( 1+ ε

2

R2

1+ε2

)1− n
k

on ∂B1,

h̃2 = −(2t)
2n
k
−2 on ∂B 1

2
.

Note that

h̃2 = ũε,R on ∂B1 and h̃2 ≥ ũε,R on ∂B 1
2
.

By comparison theorem, we obtain

uε,R ≤ h̃2 in B1\B 1
2
.

Let ν be the unit outer normal to B1. Then

h̃2,ν ≤ ũε,Rν ≤ ũε
ν

on ∂B1.

Noted that

−21− n
k ≥ −

(1 + ε2

R2

1 + ε2

)1− n
k

≥ −( 1

1 + ε2
0

)1− n
k ,

then h̃2 is uniformly bounded on ∂B1\B 1
2
. Since the gradient estimate of harmonic function

depends only on the domain and C0 norm of boundary value, there is a positive constant

independent of ε and R, such that

|h̃2,ν| ≤ C, on ∂B1.

On the other hand, since

ũε = −
( |z|2 + ε2

R2

1 + ε2

)1− n
k

, in a neighbourhood of ∂B1,

we have

ũε
ν
= (

n

k
− 1)

(1 + ε2

R2

1 + ε2

)− n
k z̄ · ν
1 + ε2

on ∂B1.

Hence

|Dũε,R| ≤ C, on ∂B1 independent of ε and R.

So we have the (ε,R)-independent estimate

|Duε,R| ≤ CR1− 2n
k , on ∂BR.

Set a = 2n−k
n−k

, from C0 estimate, we have

(−uε,R)−a ≤ (t−1R)
4n−2k

k , on ∂BR.

So we have

|Duε,R|2(−uε,R)−a ≤ C, on ∂ΣR,

where C is a constant independent of ε and R.
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Since

(−uε,R)2−a ≤
(

(t−1|z|)2− 2n
k

)− k
n−k
= t−2|z|2,(4.8)

and

D log f ε = −(n + 1)
z̄

|z|2 + ε2
.(4.9)

We have

(−uε,R)2−a|D log f ε|2 ≤ Cn

1

t2

|z|4
(|z|2 + ε2)2

≤ C(n, t).

By Theorem 4.3,

|Duε,R|2(−uε,R)−a ≤ C,

where C is independent of ε and R. Use the C0 estimate once more, we drive that

|Duε,R|2 ≤ C(−uε,R)a ≤ C|z|1− 2n
k .

4.4. Second order estimates. We will prove the second order estimate of the approxi-

mating equations.

4.4.1. The global second order estimate can be reduced to the boundary second order

estimate. We use the idea of Hou-Ma-Wu [21] (see also Chou-Wang [10]) to prove the

following estimate.

Theorem 4.4. Let u be the k-subharmonic solution to (4.3) and consider H = uξξ̄(−u)−
n

n−kψ(P).

If (−u)−
k

n−k |D log f ε|2 and (−u)−
k

n−k |D2 log f ε| are uniformly bounded which is independent

of ε and R, then we have

max
ΣR

H ≤ C +max
∂ΣR

H(4.10)

where P = |Du|2(−u)−
2n−k
n−k , ψ(t) = (M − t)−σ, σ ≤ a−1

8a2 and M = 2 max
ΣR

P + 1, a =

2n−k
n−k

, C is a positive constant depending only on n, k, sup
ΣR

P, sup
ΣR

(−u)−
k

n−k |D log f ε|2 and

sup
ΣR

(−u)−
k

n−k |D2 log f ε|.

Theorem 4.5. Let u be the k-subharmonic solution to (4.3). Let ŵ := −
(

µ2+|z|2
1+ε2

)1− n
k
. Then

for sufficient small ε and b, for any unit vector ξ ∈ R2n, there holds

max
ΣR

(ŵ − u − buξξ) ≤ max
∂ΣR

(ŵ − u − buξξ).

Proof of Theorem 4.4. For simplicity, we write f instead of f εduring the proof.
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Suppose the maximum of H is attained at an interior point z0 ∈ ΣR along the direction

ξ0 =
∂
∂z1

. We can choose the holomorphic coordinate such that {ui j̄} is diagonal at z0 and

λi := uiī with λ1 ≥ λ2 ≥ · · · ≥ λn. The following calculations are at z0. Then we have

0 = ϕi =
u11̄i

u11̄

− (a − 1)
ui

u
+ σ

Pi

M − P
.

Denote by F i j̄ := ∂
∂ui j̄

log S k(∂∂̄u) =
S

i j̄

k

S k
, and F i j̄,rs̄ = ∂2

∂ui j̄urs̄
log S k(∂∂̄u) = S i j̄,rs̄

S k
− S

i j̄

k
S rs̄

k

S 2
k

,

S
i j̄

k
:= ∂

∂ui j̄
S k(∂∂̄u), S

i j̄,rs̄

k
= ∂2

∂ui j̄∂urs̄
S k(∂∂̄u). Then by directly calculation, we have

(4.11)

0 ≥F i j̄ϕi j̄

=λ−1
1 F i j̄u11̄i j̄ −

F iī|u11̄i|2
u2

11̄

+ (a − 1)
F i j̄ui j̄

(−u)
+ (a − 1)

F iī|ui|2
u2

+ σ
F i j̄Pi j̄

M − P
+ σ

F iī|Pi|2
(M − P)2

=λ−1
1 F i j̄u11̄i j̄ −

F iī|u11̄i|2
u2

11̄

+
(a − 1)k

(−u)
+ (a − 1)

F iī|ui|2
u2

+ σ
F i j̄Pi j̄

M − P
+ σ

F iī|Pi|2
(M − P)2

:=I + II + · · · + VI.

Take the first and second order derivatives to P, we have

Pi = |Du|2i (−u)−a + |Du|2((−u)−a)i,

and

Pi j̄ =|Du|2
i j̄

(−u)−a + |Du|2i ((−u)−a) j̄ + |Du|2
j̄
((−u)−a)i + |Du|2((−u)−a)i j̄

=
(

ulul̄i j̄ + uli j̄ul̄ + uliul̄ j̄ + ul j̄ul̄i

)

(−u)−a

+ a(−u)−a−1
(

(

ulul̄i + uliul̄

)

u j̄ +
(

ulul̄ j̄ + ul j̄ul

)

ui

)

+ a(−u)−a−1|Du|2ui j̄ + a(a + 1)(−u)−a−2|Du|2uiu j̄.

So

(4.12)

F i j̄Pi j̄ =F i j̄ ·
(

(

ulul̄i j̄ + uli j̄ul̄ + uliul̄ j̄ + ul j̄ul̄i

)

(−u)−a

+ a(−u)−a−1
(

(

ulul̄i + uliul̄

)

u j̄ +
(

ulul̄ j̄ + ul j̄ul

)

ui

)

+ a(−u)−a−1|Du|2ui j̄ + a(a + 1)(−u)−a−2|Du|2uiu j̄

)

=2Re{ul f̃l̄}(−u)−a + F iī|uli|2(−u)−a + F iīλ2
i (−u)−a

+ 2a(−u)−a−1F iīλi|ui|2 + 2a(−u)−a−1F iīuliul̄uī

+ ka(−u)−a−1|Du|2 + a(a + 1)(−u)−a−2|Du|2F iī|ui|2.
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and

(4.13)

F i j̄Pi j̄ ≥2Re{ul f̃l̄}(−u)−a + ka(−u)−a−1|Du|2 + a(a + 1)(−u)−a−2|Du|2F iī|ui|2

+
1

2
F iī|uli|2(−u)−a +

1

2
F iīλ2

i (−u)−a

− 2a2(−u)−a−2F iī|ui|2|Du|2 − 2a2(−u)−a−2F iī|ui|4

:=a1 + · · · + a7.

We divide the rest computation into two cases: λk ≥ δλ1 and λk < δλ1.

Case 1. λk ≥ δλ1. Then

II := − F iī|u11̄i|2
u2

11̄

= −F iī
∣

∣

∣

∣

(a − 1)
ui

u
− σ Pi

M − P

∣

∣

∣

∣

2

≥ − 2F iī

(

(a − 1)2 |ui|2
u2
+ σ2 |Pi|2

(M − P)2

)

.

So

II + IV + VI := − F iī|u11̄i|2
u2

11̄

+ (a − 1)
F iī|ui|2

u2
+ σ

F iī|Pi|2
(M − P)2

≥((a − 1) − 2(a − 1)2)F iī|ui|2
u2

+
(

σ − 2σ2) F iī|Pi|2
(M − P)2

≥((a − 1) − 2(a − 1)2)F iī|ui|2
u2

.

where the last inequality holds since σ ≤ 1
2
.

By the concavity of S
1
k

k
, we have

I := λ−1
1 F i j̄u11̄i j̄ = λ

−1
1

(

(log f )11̄ − F i j̄,rs̄ui j̄1urs̄1̄

) ≥ λ−1
1 (log f )11̄.

By (2.2), we have

(4.14) F iīλ2
i ≥ Fkk̄λ2

k ≥ θF λ2
k ≥ δ2θF λ2

1,

where F = ∑n
i=1 F iī, θ = θ(n, k) and we use the assumption of Case 1 in the last inequality.

Based on (4.14), we have the following calculation,

1

4
a5 + a6 + a7 :=

1

8
F iīλ2

i (−u)−a − 2a2(−u)−a−2F iī|ui|2|Du|2 − 2a2(−u)−a−2F iī|ui|4

≥1

8
F iīλ2

i (−u)−a − 4a2(−u)−a−2F |Du|4

≥(−u)a−2F
(

δ2θ

8

(

λ1(−u)−a+1)2 − 4a2P2
)

≥0,
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where the last inequality holds if we suppose

(4.15)
(

λ1(−u)−a+1)2 ≥ 32a2

δ2θ
P2.

By Newton-MacLaurin inequality, we have

S k

S k−1

≤ n − k + 1

nk
S 1.

So

F =
∑n

i=1 S k−1,i

S k

= (n − k + 1)
S k−1

S k

≥ nkS −1
1 ≥

k

λ1

.

Combined with (4.14), we have

(4.16) F iīλ2
i ≥ kδ2θλ1.

By (4.16),
1

4
a5 + a1 :=

1

8
F iīλ2

i (−u)−a + 2Re{ul f̃l}(−u)−a

≥kδ2θ

8
λ1(−u)−a − 2|Du||D f̃ |(−u)−a

≥(−u)−1

(

kδ2θ

8
λ1(−u)−a+1 − 2P

1
2 |D f̃ |(−u)−

a
2
+1

)

≥0,

where last inequality holds if we assume

(4.17) λ1(−u)−a+1 ≥ 16

kδ2θ
|D f̃ |(−u)−

a
2
+1P

1
2 .

Note that a − 1 = n
n−k

> 1, it follows from (4.14) that

σ

M − P
· 1

4
a5 + II + IV + VI

≥ σ

M − P
· 1

8
F iīλ2

i (−u)−a +
(

(a − 1) − 2(a − 1)2)F iī|ui|2
u2

≥ σ

M − P
· δ

2θ

8
F λ2

1(−u)−a +
(

(a − 1) − 2(a − 1)2)F |Du|2
u2

=(−u)a−2F
(

σ

M − P
· δ

2θ

8

(

λ1(−u)−a+1)2 − (

2(a − 1)2 − (a − 1)
)

P

)

≥0,

where the last inequality holds if we suppose

(4.18)
(

λ1(−u)−a+1)2 ≥ 16M

σδ2θ

(

2(a − 1)2 − (a − 1)
)

P.
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By (4.16), we have

σ

M − P
· 1

4
a5 + I

≥ σ

M − P
· δ

2θ

8
F λ2

1(−u)−a − λ−1
1 (log f )11̄

≥ σ

M − P
· kδ2θ

8
λ−1

1 (−u)−a − λ1|D2 log f |

=(−u)a−2λ−1
1

(

σ

M − P
· kδ2θ

8

(

λ1(−u)−a+1)2 − |D2 log f |(−u)−a+2

)

≥0,

where the last inequality holds if we suppose

(4.19)
(

λ1(−u)−a+1)2 ≥ 16M

kσδ2θ
|D2 log f |(−u)−a+2.

From assumptions (4.15), (4.17), (4.18) and (4.19), we have

0 ≥ F i j̄ϕi j̄ > 0.

which leads a contradiction. Since P, |D log f |(−u)−
a
2
+1 and |D2 log f |(−u)−a+2 are uni-

formly bounded, we finish the proof of Case 1.

Case 2. λk ≤ δλ1. By the first order derivatives condition, we have

σ
∑

i≥2

F iī|Pi|2
(M − P)2

=
1

σ

∑

i≥2

F iī
∣

∣

∣

∣

u11̄i

u11̄

− (a − 1)
ui

u

∣

∣

∣

∣

2

≥ ǫ
σ

∑

i≥2

F iī
∣

∣

∣

∣

u11̄i

u11̄

∣

∣

∣

∣

2

− 1

σ
· ǫ

1 − ǫ (a − 1)2
∑

i≥2

F iī |ui|2
u2

.
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Putting the above inequality into (4.11), we have

(4.20)

0 ≥F i j̄ϕi j̄

=
(a − 1)k

(−u)
+ λ−1

1 F i j̄u11̄i j̄ + σ
F i j̄Pi j̄

M − P

− F11̄|u11̄1|2
u2

11̄

+ (a − 1)
F11̄|u1|2

u2
+ σ

F11̄|P1|2
(M − P)2

−
∑

i≥2

F iī|u11̄i|2
u2

11̄

+ (a − 1)
∑

i≥2

F iī|ui|2
u2

+ σ
∑

i≥2

F iī|Pi|2
(M − P)2

≥(a − 1)k

(−u)
+ λ−1

1 F i j̄u11̄i j̄ + σ
F i j̄Pi j̄

M − P

− F11̄|u11̄1|2
u2

11̄

+ (a − 1)
F11̄|u1|2

u2
+ σ

F11̄|P1|2
(M − P)2

−
∑

i≥2

(

1 − ǫ

σ

)F iī|u11̄i|2
u2

11̄

+
(

(a − 1) − 1

σ
· ǫ

1 − ǫ (a − 1)2
)
∑

i≥2

F iī|ui|2
u2

:=I′ + II′ + · · · + VIII′.

We take

(4.21) ǫ ≤ min
{1

4
,

3

8(a − 1)
σ
}

,

then

VIII′ ≥ a − 1

2

∑

i≥2

F iī|ui|2
u2

.

Note that

IV′ = − F11̄|u11̄1|2
u2

11̄

= −F11̄
∣

∣

∣

∣

(a − 1)
u1

u
− σ P1

M − P

∣

∣

∣

∣

2

≥ − 2(a − 1)2F11̄ |u1|2
u2
− 2σ2 |P1|2

(M − P)2
.

By the choice of σ, we have

IV′ + V′ + VI′ ≥ (

a − 1 − 2(a − 1)2)F11̄ |u1|2
u2

.
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Putting the above inequalities into (4.20),

(4.22)

0 ≥λ−1
1 F i j̄u11̄i j̄ −

∑

i≥2

(

1 − ǫ

σ

)F iī|u11̄i|2
u2

11̄

+
(a − 1)k

(−u)
+ σ

F i j̄Pi j̄

M − P

+
(a − 1

2
− 2(a − 1)2)F11̄ |u1|2

u2
+

a − 1

2

∑

i≥2

F iī|ui|2
u2

:=I′′ + · · · + VI′′.

We have

VI′′ +
σ

M − P
(a6 + a7)

:=
a − 1

2

∑

i≥2

F iī|ui|2
u2

− σ

M − P

(

2a2(−u)−a−2F iī|ui|2|Du|2 + 2a2(−u)−a−2F iī|ui|4
)

=
∑

i≥2

F iī |ui|2
u2

(

a − 1

2
− σ

M − P
· 2a2|Du|2(−u)−a − σ

M − P
2a2|ui|2(−u)−a

)

− σ

M − P

(

2a2(−u)−a−2F11̄|u1|2|Du|2 + 2a2(−u)−a−2F11̄|u1|4
)

≥
∑

i≥2

F iī |ui|2
u2

(

a − 1

2
− σP

M − P
· 4a2

)

− 4a2 σP

M − P
F11̄ |u1|2

u2

≥ − (a − 1)F11̄ |u1|2
u2

,

where the last inequality holds if we take σ ≤ a−1
8a2 .

σ

M − P

(1

4
a5 + a6 + a7

)

+ V′′ + VI′′

≥ σ

M − P
· 1

8
F iīλ2

i (−u)−a − (a − 1

2
+ 2(a − 1)2)F11̄ |u1|2

u2

≥F11̄(−u)a−2

(

σ

M − P
· 1

8

(

λ1(−u)−a+1)2 − (2(a − 1)2 +
a − 1

2
)P

)

≥0,(4.23)

where the last inequality holds if we assume

(4.24)
(

λ1(−u)−a+1)2 ≥ 16M

σ

(

2(a − 1)2 +
a − 1

2

)

P.

By

S −1
k (λ)S k−1(λ|i)λ2

i = S 1(λ) − (k + 1)
S k+1(λ)

S k(λ)
≥ k

n
S 1(λ) ≥ k

n
λ1,
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we have

1

4
a5 + a1 :=

1

8
F iīλ2

i (−u)−a − 2Re{ul log fl}

≥ k

8n
λ1(−u)−a − 2|Du||D log f |(−u)−a

=(−u)−1

(

k

8n
λ1(−u)−a+1 − 2P

1
2 |D log f |(−u)−

a
2+1

)

≥0,(4.25)

where the last inequality holds if we assume

(4.26) λ1(−u)−a+1 ≥ 16n

k
P

1
2 |D log f |(−u)−

a
2+1.

By Proposition 2.4, when δ is small enough (depending on ǫ and σ),

I′′ + II′′ :=λ−1
1 F i j̄u11̄i j̄ −

∑

i≥2

(

1 − ǫ

σ

)F iī|u11̄i|2
u2

11̄

≥ f −1λ−2
1

∑

i≥2

|u11̄i|2
(

λ1S k−2,1i − (1 − ǫ

σ
)S k−1,i

)

+ λ−1
1 (log f )11̄

≥ − λ−1
1 |D2 log f |,(4.27)

where we use the concavity of log S k in the first inequality.

Substituting (4.23), (4.25) and (4.27) into (4.22), we obtain

(4.28) 0 ≥ (a − 1)k

−u
− λ−1

1 |D2 log f |.

Then

(4.29) λ1(−u)−a+1 ≤ (a − 1)k|D2 log f |(−u)−a+2.

Since P, |D log f |(−u)−
a
2
+1 and |D2 log f |(−u)−a+2 are uniformly bounded, we finish the

proof of Case 2.

�

Proof of Theorem 4.5. Observe that the equation is equivalent to

F[u] := S
1
k

k
(∂∂̄u) = ( f ε)

1
k .

Denote by F i j̄ =
∂F[u]

∂ui j̄
and F i j̄,kl̄ =

∂2F[u]

∂ui j̄∂ukl̄
. Now we consider any unit vector ξ ∈ R2n.

Differentiating the equation above twice with respect to ξ, we obtain

F i j̄uξξi j̄ =DξξF[u] − F i j̄,kl̄ui j̄ξukl̄ξ ≥ (( f ε)
1
k )ξξ

≥ − 2(n + k)

k

( f ε)
1
k

ε2 + |z|2 .
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Consider the function

ŵ := −(µ
2 + |z|2
1 + ε2

)1− n
k .

By the concavity of S
1
k

k
, we have

F i j̄(ŵi j̄−ui j̄) ≥ F[ŵ]−F[u] =
(

Ck
n(

n

k
−1)k(1+ε2)n−k

)
1
k

(

(

µ2(|z|2+µ2)−k−n)
1
k−(ε2(|z|2+ε2)−k−n)

1
k

)

.

If mu > ε, then
µ2(|z|2+µ2)−k−n

ε2(|z|2+ε2)−k−n is inscreasing in |z|, we have

µ2

ε2
≥ µ

2(|z|2 + µ2)−k−n

ε2(|z|2 + ε2)−k−n
≥
µ2(r2

0
+ µ2)−k−n

ε2(t2 + ε2)−k−n
≥ 2k, in ΣR,

provided µ = c0t and ε0 ≤ 2−
1
2 c0(1 + c0)

k+n
2 . So we can take b ≤ kt2

2(n+k)
such that

F i j̄(ŵ − u − auξξ)i j̄ ≥ 0, in ΣR.

Maximum principle leads that

max
ΣR

(ŵ − u − auξξ) ≤ max
∂ΣR

(ŵ − u − auξξ).

�

4.4.2. Second order estimate on the boundary ∂ΣR. .

Step1: tangential derivative estimates.

Consider a point p ∈ ∂Ω. Without loss of generality, let p be the origin. Choose the

coordinate z1, · · · , zn such that the xn axis is the inner normal direction to ∂Ω at 0. Suppose

t1 = y1, t2 = y2, · · · , tn = yn, tn+1 = x1, tn+2 = x2, · · · , t2n = xn.

Denote by t′ = (t1, · · · , t2n−1). Then around the origin, ∂Ω can be represented as a graph

t2n = xn = ϕ(t′) = Bαβtαtβ + O(|t′|3).

Since

u(t′, ϕ(t′)) = 0 on ∂Ω,

we have

utαtβ(0) = −ut2n
(0)Bαβ, α, β = 1, · · · , 2n − 1.

It follows that for any α, β = 1, · · · , 2n − 1,

(4.30) |utαtβ(0)| ≤ C, on ∂Ω.

Note that u ≥ uε near ∂Ω, u = uε and 0 < uε
ν
≤ uν on ∂Ω, there exists a smooth function

g such that u = gu near ∂Ω, and g ≥ 1 outside of Ω nearby ∂Ω. So ∀ 1 ≤ i, j ≤ n − 1,

ui j̄(0) = gi j̄(0)uε(0) + gi(0)uε
j̄
(0) + g j̄(0)uε

i
(0) + g(0)uε

i j̄
(0).



THE HOMOGENEOUS COMPLEX K-HESSIAN EQUATION 33

Note that uε = c0ρ1 near ∂Ω, where ρ1 is a given strictly plurisubharmonic function in a

neighborhoodΩ, c0 = (1− (1+ s2

16+s2 )1− n
k )τ, τ is a constant independent of ε and R as taken

in Lemma 2.12. We also have

S k−1({ui j̄(0)}1≤i, j≤n−1) =ck−1
0 gk−1(0)S k−1({ρ1,i j̄(0)}1≤i, j≤n−1)

≥ck−1
0 gk−1

0 Ck−1
n (Ck

n)
1−k

k min
∂Ω

S
k−1

k

k
(∂∂̄ρ1) > 0.(4.31)

Set R ≥ R2 ≥ R1, R2 is to be determined later. Consider a harmonic function h3, which

is a solution to

(4.32)























∆h3 = 0 in BR\B2,

h3 = −(1 + ε2)
n
k
−1(R2 + ε2)1− n

k on ∂BR,

h3 = −t
2n
k −2|z|2− 2n

k on ∂B2.

Set

h̄(z) := h̃3(z) = R
2n
k
−2h3(Rz).

By maximum principle, we know,

ũε ≤ ũ ≤ h̄,

where ũ(z) = R
2n
k
−2u(Rz). Note that

h̄ = −(
1 + ε2

R2

1 + ε2

)1− n
k , on ∂B1, and h̄ = −( 2

Rt

)2− 2n
k , on ∂B 2

R
.

If we choose R2 ≥ (R2)2 := max{(R1)2, 4t−24(1 + ε2
0), 16}, then

h̄
∣

∣

∣

∂B1
≥ h̄

∣

∣

∣

∂B 2
R

.

Similarly as in gradient estimates, there is a positive constant C, independent of ε and R,

such that

h̄ν ≤ ũν ≤ ũε
ν
≤ C on ∂B2.

In fact, we can prove that

h̄ν > c0 > 0,

where c0 is also independent of ε and R. In fact, we can solve (4.32),

h̄ = −
−
( 1+ ε2

R2

1+ε2

)1− n
k
+

( 2
Rt

)2− n
k

( 2
R

)2−N − 1
|z|2−N

− ( 2

Rt

)2− n
k +

(

−
(1 + ε2

R2

1 + ε2

)1− n
k
+

( 2

Rt

)2− n
k

)

( 2
R

)2−N

( 2
R

)2−N − 1
.
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Then

h̄ν =
(

−
(1 + ε2

R2

1 + ε2

)1− n
k
+

( 2

Rt

)2− n
k

)

(

(
2

R
)2−N − 1

)−1
(
N

2
− 1)

≥(
N

2
− 1)(2

n
k
−1 − 1)

( 1

1 + ε2
0

)1− n
k (2N−2 − 1)−1

>0.

It follows that there exists a (ε,R)-independent constant C, such that

C−1R1− 2n
k ≤ uν ≤ CR1− 2n

k on ∂B2,

where ν is the unit outer normal to ∂B2.

For any p ∈ ∂BR, we choose the coordinate such that p = (0, · · · ,−R). Then near p,

∂BR is locally represented by t2n = xn = ϕ(t′) = −
√

R2 −∑2n−1
i=1 t2

i
. Since

u(t′, ϕ(t′)) = −
(R2 + ε2

1 + ε2

)1− n
k

on ∂BR,

we have

utαtβ(p) = −ut2n
(p)

∂2t2n

∂tα∂tβ
= −R−1ut2n

(p)δαβ = R−1uν(p)δαβ.

Hence

|utαtβ | ≤ CR−
2n
k , α, β = 1, · · · , 2n − 1,(4.33)

ui j̄ =
1

4
(utn+itn+ j

+ utit j
− iutitn+ j

+ iutn+it j
) ≥ CR−

2n
k δi j, i, j = 1, · · · , n.(4.34)

Step2: tangential-normal derivative estimates ∂ΣR

Follow the approach by Guan in [16], we estimate the tangential-normal derivatives

on boundary. We first prove the tangential-normal derivatives estimate on ∂Ω. Suppose

0 ∈ ∂Ω, to estimate utαtn(0) for α = 1, · · · , 2n − 1, we consider the auxiliary function

v = u − u + td − N

2
d2

on Ωδ = Ω ∩ Bδ(0) with constant N, t, δ to be determined later. Define a linear operator

Lv = F i j̄vi j̄,

where F i j̄ = ∂
∂ui j̄

S
1
k

k
(∂∂̄u). Then

F =
n

∑

i=1

F iī = S
1
k−1

k
S k−1(λ|i) = (n − k + 1)S

1
k−1

k
S k−1 ≥ Cn,k > 0.



THE HOMOGENEOUS COMPLEX K-HESSIAN EQUATION 35

By Lemma 3.5, for N sufficiently large and t, δ sufficiently small, there holds














Lv ≤ − ǫ
4
(1 + F ) in Ωδ,

v ≥ 0 on ∂Ω,

where ǫ > 0 is a uniform constant depending only on subsolution u restricted in a small

neighborhood of ∂Ω.

In our setting, ǫ can be taken independent of ε and R, since uε = c0ρ1 near ∂Ω, where

ρ1 is a given strictly plurisubharmonic function in a neighborhood Ω, c0 = (1 − (1 +
s2

16+s2 )1− n
k )τ, τ is a constant independent of ε and R as taken in Lemma 2.12.

We use the similar notation as in subsection 3.2. Let

Ψ = A1v + A2|z|2 − A3

(

(uyn
− u

yn
)2 +

n−1
∑

l=1

|ul − u
l
|2).

After a similar computation as the boundary tangential-normal derivatives estimate on the

pseudoconvex boundary in 3.2, we see that

L(Ψ ± Tα(u − u)) ≤ 0 in Ωδ

and

Ψ ± Tα(u − u) ≥ 0 on ∂Ωδ,

when A1 ≫ A2 ≫ A3 ≫ 1. Therefore

|utαxn
| ≤ C on ∂Ω.(4.35)

Nextly we prove the tangential-normal derivatives estimate on ∂BR. Let

ũ(z) = R
2n
k
−2u(Rz) and ũε(z) = R

2n
k
−2uε(Rz).

Consider the boundary tangential-normal derivatives estimate on ∂B1. Let p = (0, · · · ,−1) ∈
∂B1. Write a defining function ̺ of B1 near p by

̺(z) = −xn −
(

R2 −
n−1
∑

i=1

|zi|2 − y2
n

)
1
2 .

Then

|Tα(ũ − ũε)| ≤ C. in B1(0) ∩ B 1
2
(p).

Let w = |z|2 − 1, then

L(−w) = −
n

∑

i=1

F iī ≤ −Cn,k(1 + F ).

Let

Φ = −B1w + B2|z − p|2 − B3

(

n−1
∑

l=1

|ũl − ũε
l
|2 + (ũyn

− ũε
yn

)2
)

.
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Similarly, we get

L(Φ ± Tα(ũ − ũε)) ≤ 0 in Ωδ

and

Φ ± Tα(ũ − ũε) ≥ 0 on ∂Ωδ,

when B1 ≫ B2 ≫ B3 ≫ 1. So we have

|ũtαxn
| ≤ C on ∂B1.

Therefore

|utαxn
| ≤ CR−

2n
k on ∂BR.(4.36)

Step3: double normal derivative estimates ∂ΣR

By pure tangential derivatives estimate (4.30) and (4.33), we have

|uynyn
| ≤ C on ∂Ω and |uynyn

| ≤ CR−
2n
k on ∂BR.

To estimate the double normal deritive uxn xn
, it suffices to estimate unn̄. By rotation of

(z1, · · · , zn−1), we may assume that {ui j̄}1≤i, j≤n−1 is diagonal. Then

f ε = S k(∂∂̄u) = unn̄S k−1({ui j̄}1≤i, j≤n−1) + S k({ui j̄}1≤i, j≤n−1) −
n−1
∑

β=1

|uβn|2S k−2({ui j̄}1≤i, j≤n−1),

It suffices to give a uniform lower positive bound for S k−1({ui j̄}1≤i, j≤n−1).

By (4.30), (4.31) and (4.35), we obtain

unn̄(0) ≤ C on ∂Ω.

On the other hand,

unn̄(0) ≥ −
n−1
∑

i=1

uiī ≥ −C.

By (4.33), (4.34) and (4.36), we obtain

Cunn̄R−
2n(k−1)

k ≤unn̄(0)S k−1({ui j̄}1≤i, j≤n−1)

=S k(∂∂̄u) − S k({ui j̄(0)}1≤i, j≤n−1) +

n−1
∑

β=1

|uβn(0)|2S k−2({ui j̄(0)}1≤i, j≤n−1)

≤CR−2n

Therefore

|unn̄(0)| ≤ CR−
2n
k on ∂BR.
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Step4: second order derivative estimates in ΣR

As in Theorem 4.4, let H = Q(M − P)σ, Q = uiī(−u)−a+1, P = |Du|2(−u)−a. Suppose the

maximum of H is obtain at a boundary point z0 ∈ ∂ΣR. Then

Q = (M − P)σH ≤ MσH(z0) ≤ MσQ(z0)(M −max
ΣR

P)−σ = max
∂ΣR

Q(M −max
ΣR

P)−σ.

(4.37)

Note that P is bounded (uniformly in ε and R). By (4.8) and (4.9),

(−u)2−a|D log f ε|2 ≤ C(n, k, t) and (−u)2−a|D2 log f ε|2 ≤ C(n, k, t).

By Theorem 4.4, if the maximum of H is obtained at a interior point, there is a positive

constant C independent of ε and R such that Q ≤ C. Combined with (4.37), there is a

positive constant C independent of ε and R such that

Q ≤ C in ΣR.

Then we obtain

∆u ≤ C(−u)a−1 ≤ C|z|− 2n
k in ΣR.(4.38)

By boundary second order derivative estimates and C0 estimate, we obtain that for any

unit vector ξ ∈ R2n,

max
∂ΣR

(ŵ − u − auξξ) ≤ C.

Hence

uξξ ≤ C, in ΣR.

u is subharmonic since u is k-admissible, then

−C ≤ uξξ ≤ C in ΣR.

In conclude, we get

|D2u| ≤ C, in ΣR.(4.39)

5. Proof of Theorem 1.1

5.1. Uniqueness. The uniqueness follows from the comparison principle for k-subharmonic

solutions of the complex k-Hessian equation in bounded domains in Lemma 2.7 by Blocki

[5].

Suppose u and v are two solutions to (1.3). For any z0 ∈ Cn \ Ω, there exists R0 such

that z0 ∈ BR0
(0)\Ω. Since u(z) → 0, v(z) → 0 as |z| → ∞, ∀ ε > 0, there exists R ≫ R0

such that

v − ε ≤ u ≤ v + ε in Cn \ BR.

By the comparison principle Lemma 2.7,

v − ε ≤ u ≤ v + ε in BR \Ω.
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Note that z0 ∈ BR0
(0) \Ω ⊂ BR(0) \Ω, we have

v(z0) − ε ≤ u(z0) ≤ v(z0) + ε.

Let ε→ 0, we obtain that u(z0) = v(z0). Since z0 is arbitrary, u = v in Cn\Ω.

5.2. The existence and C1,1-estimates. The existence follows from the uniform C2-

estimates for uε,R. The proof is similar as that in [15] by Guan.

For any fixed M0 > R2, for the solution to (4.3), by the C2 estimates, we have

‖uε,R‖C2(ΣM0
) ≤ C1 independent of ε,R and M0.

for all R ≥ M0. By the Evans-Krylov theory, we obtain for 0 < α < 1,

‖uε,R‖C2,α(ΣM0
) ≤ C2(ε, M0) independent of R.

By compactness, we can find a sequence R j →∞ such that

uε,R j → uε in C2(ΣM0
),

where uε satisfies














Hk(uε) = f ε in ΣM0
,

u = −1 on ∂Ω,

and

C−1|z|2− 2n
k ≤ −uε(z) ≤ C|z|2− 2n

k ,

|Duε(z)| ≤ C|z|1− 2n
k ,

|∂∂̄uε(z)| ≤ C|z|− 2n
k ,

|D2uε(z)| ≤ C.

Moreover,

‖uε‖C2,α(ΣM0
) ≤ C2(ε, M0) for any M0 > R2.

By the classical Schauder theory, uε is smooth.

By the above decay estimates for uε, for any sequence ε j → 0, there is a subsequence

of {uε j} converging to a function u in C1,α norm on any compact subset of Cn \ Ω ( for

any 0 < α < 1). Thus u ∈ C1,1(Cn \ Ω) and satisfies the disired estimates (1.4). By

the convergence theorem of the complex k-Hessian operator proved by Trudinger-Zhang

in [35] (see also Lu [32]), u is a solution to (1.3).
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