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REMARKS ON TOTALLY POSITIVE FLAG MANIFOLDS

G. Lusztig

Introduction

0.1. We often identify an algebraic variety defined over R with its set of R-points.
Let G be a split, connected, simply connected semisimple algebraic group of simply
laced type defined over R with a fixed pinning (B+, B−, xi, yi(i ∈ I)) as in [L94].
Here B+, B− are opposed Borel subgroups of G defined over R with unipotent
radicals U+, U− and xi : R −→ U+, yi : R −→ U− are certain imbeddings; I is a
finite set. Let T = B+∩B−. Let G>0, U

+
>0, U

−

>0, T>0 be the (open) sub-semigroups
of G,U+, U−, T defined in [L94].

For any (u, u′) ∈ U−

>0 × U−

>0 we have defined in [L94, 7.1] the open subset

Tu,u′ = {t ∈ T>0; tut
−1u′−1 ∈ U−

>0}

of T>0 and proved that it is nonempty. In this paper we will state a conjecture
on the structure of Tu,u′ (see 0.3), we prove some special cases of it and we derive
some consequences of it.

0.2. We introduce some notation. For any λ = (λi)i∈I ∈ NI let Vλ be an irre-
ducible rational representation of G (over C) whose highest weight is λ. We fix a
highest weight vector eλ of Vλ. Let βλ be the canonical basis of Vλ that contains
eλ, see [L90]. Let e′λ be the lowest weight vector in βλ.

Let j ∈ I and let λ = ω(j) ∈ NI be such that λi = 1 if i = j, λi = 0 if
i 6= j (a fundamental weight). If u ∈ U− we can write ueω(j) as an R-linear
combination of vectors in βω(j); let Zj(u) ∈ R be the coefficient of e′

ω(j) in this

linear combination. This defines a function Zj : U− −→ R (in fact a morphism
of real algebraic varieties). From [L90], [L94] it is known that Zj(U

−

>0) ⊂ R>0.

Hence for (u, u′, t) ∈ U−

>0 × U−

>0 × T>0 such that t ∈ Tu,u′ ,

z(u, u′, t) = (Zj(tut
−1u′−1))j∈I ∈ RI

>0

is defined.
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2 G. LUSZTIG

We define

Θ : {(u, u′, t) ∈ U−

>0 × U−

>0 × T>0; t ∈ Tu,u′} −→ U−

>0 × U−

>0 ×RI
>0

by (u, u′, t) 7→ (u, u′, z(u, u′, t)).

We can now state:

Conjecture 0.3. Θ is a homeomorphism.

This will be verified in §1 in some examples.

0.4. Let B be the (real) flag manifold of G that is, the real algebraic variety whose
points are the Borel subgroups of G defined over R. Following [L4,§8], let B>0 be
the (open) subset

{u′B+u′−1; u′ ∈ U−

>0} = {uB−u−1; u ∈ U+
>0}

of B (the last equality is proved in [L94, 8.7]). According to [L94, 8.9],

(a) for any g ∈ G>0 there is a unique B ∈ G>0 such that g ∈ B;
moreover, the map ζ : G>0 −→ B>0 given by g 7→ B is continuous. According
to [L21, 5.5(a)], the map ζ is surjective. Thus, the fibres of ζ (that is, the sets
B ∩ G>0 for various B ∈ B>0) define a partition of G>0 into non-empty closed
subsets indexed by B>0.

We are interested in the study of the open set B∩G>0 of B (for any B ∈ B>0).
The following result (conjectured in [L21,§5]) shows (assuming 0.3) that this open
set is homeomorphic to a product of copies of R>0.

Proposition 0.5. Assume that 0.3 holds for G. For any B ∈ B>0 there exists a
canonical homeomorphism

σB : B ∩G>0
∼−→ U+

>0 ×RI
>0.

The proof is given in §2.

0.6. We now fix J ⊂ I. Let P+
J be the subgroup of G generated by B+ and by

{yj(a); j ∈ J, a ∈ R}. Let PJ be the set of subgroups of G that are G-conjugate
to P+

J . Following [L98] we define PJ
>0 to be the set of subgroups P ∈ PJ such that

γP := {B ∈ B>0;B ⊂ P} is nonempty. The following result is a generalization of
0.4(a).

Proposition 0.7. Let g ∈ G>0. There is a unique P ∈ PJ
>0 such that g ∈ P .

The proof is given in 3.3.
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0.8. From 0.7 we see that there is a well defined map ζJ : G>0 −→ PJ
>0 given by

g 7→ P where P ∈ PJ
>0 contains g. It generalizes the map ζ : G>0 −→ B>0 in 0.4.

It is again continuous. It is also surjective (this follows from the surjectivity of
ζ). Thus, the fibres of ζJ (that is, the sets P ∩ G>0 for various P ∈ PJ

>0) define
a partition of G>0 into non-empty closed subsets indexed by PJ

>0. Note that, if
P ∈ PJ

>0, then P ∩G>0 = ⊔B∈γP
(B ∩G>0). (In other words, if g ∈ P ∩G>0 and

if B ∈ B>0 is defined by g ∈ B then B ⊂ P . Indeed, we have B ⊂ P ′ for a unique
P ′ ∈ PJ

>0 so that g ∈ P ′, g ∈ P and then P = P ′ by 0.7.) Using then 0.5 (under
the assumption that 0.3 holds) we see that there is a well defined bijection

(a) P ∩G>0 = γP × U+
>0 ×RI

>0

whose restriction to B ∩G>0 (for any B ∈ γP ) is given by g 7→ (B, σB(g)). From
the definitions we see that

(b) the bijection (a) is a homeomorphism.
In 3.4 we show that

(c) if P ∈ PJ
>0 then γP is homeomorphic to a product of copies of R>0.

Combining (b),(c) we obtain:

Proposition 0.9. Assume that 0.3 holds for G. For any P ∈ PJ
>0, the intersec-

tion P ∩G>0 is homeomorphic to a product of copies of R>0.

1. Examples

1.1. In this section we shall give some examples when 0.3 holds. We first assume
that G = SL2(R) with the standard pinning. Let

u =

(

1 0
a 1

)

∈ U−

>0, u′ =

(

1 0
a′ 1

)

∈ U−

>0,

so that (a, a′) ∈ R2
>0. Now T>0 is the set of all matrices

(

r 0
0 s

)

with (r, s) ∈ R>0, rs = 1; we can identify T>0 with R>0 by (r, s) 7→ R = s/r. Let
tR be the element of T>0 corresponding to R ∈ R>0. If t = tR, then

tut−1u′−1 =

(

1 0
Ra− a′ 1

)

so that
Tu,u′ = {R ∈ R;Ra− a′ > 0}.

Now τ : Tu,u′ −→ R>0, R 7→ Ra − a′ is a homeomorphism Tu,u′ −→ R>0. This
shows that 0.3 holds in our case: the map Zi : U

− −→ R (for the unique i ∈ I)
attaches to a matrix

(

1 0
x 1

)

∈ U−

the number x.
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1.2. In this subsection we assume that G = SL3(R) with the standard pinning.
We shall prove 0.3 in this case. Let

u =





1 0 0
a 1 0
c b 1



 ∈ U−

>0, u′ =





1 0 0
a′ 1 0
c′ b′ 1



 ∈ U−

>0,

so that (a, b, c, ab− c, a′, b′, c′, a′b′ − c′) ∈ R8
>0. Now T>0 is the set of all matrices





r 0 0
0 s 0
0 0 p





with (r, s, p) ∈ R>0, rsp = 1; we can identify T>0 with R2
>0 by (r, s, p) 7→ (R, S) =

(s/r, p/s). Let tR,S be the element of T>0 corresponding to (R, S) ∈ R2
>0. If

t = tR,S , then

tut−1u′−1 =





1 0 0
Ra− a′ 1 0

RSc− Sa′b+ a′b′ − c′ Sb− b′ 1





so that

Tu,u′ = {(R, S) ∈ R2;Ra− a′ > 0, Sb− b′ > 0,

(Rc− a′b)S + a′b′ − c′ > 0, R(S(ab− c)− ab′) + c′ > 0}.(a)

(The last inequality is obtain by rewriting (Ra−a′)(Sb−b′)−RSc+Sa′b−a′b′+c′ >
0.) Note that any (R, S) in the right hand side of (a) automatically satisfies
R > 0, S > 0 since Ra > a′, Sb > b′. We define τ : R2 −→ R2 by

τ(R, S) = ((Rc− a′b)S + a′b′ − c′, R(S(ab− c)− ab′) + c′).

Let (A,B) ∈ R2
>0. We show that τ−1(A,B) consists of two elements. Let (R, S) ∈

τ−1(A,B) that is

RSc = a′bS − a′b′ + c′ +A,RS(ab− c) = ab′R− c′ +B.

We have
(ab− c)(a′bS − a′b′ + c′ + A) = c(ab′R − c′ +B)

so that

(b) R = (ab− c)a′b(ab′c)−1S+ (−aa′bb′ + a′b′c+ abc′ + (ab− c)A− cB)(ab′c)−1.
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Substituting this into RSc = a′bS − a′b′ + c′ + A we obtain

(ab− c)a′bS2+(−2aa′bb′+a′b′c+abc′+(ab− c)A− cB)S+(a′b′− c′−A)ab′ = 0.

We set R̃ = R − a′/a, S̃ = S − b′/b. We obtain

(ab− c)a′b(S̃ + b′/b)2 + (−2aa′bb′ + a′b′c+ abc′ + (ab− c)A− cB)(S̃ + b′/b)

+ (a′b′ − c′ − A)ab′ = 0

that is

(c) (ab− c)a′bS̃2 + (abc′ − a′b′c+ (ab− c)A− cB)S̃ − (A+B)cb′/b = 0;

Since (−(A + B)cb′/b)/((ab− c)a′b)−1 < 0, the equation (c) for S̃ has two roots,

S̃+, S̃− such that S̃+ ∈ R>0, S̃− ∈ −R>0. Thus we have

S̃ ∈ {S̃+, S̃−}

and

(d) S̃+ + S̃− = −µ((ab− c)a′b)−1,

where µ = abc′ − a′b′c+ (ab− c)A− cB.
Note that

S̃+ = (−µ+
√

µ2 + 4(ab− c)a′b′c(A+B))/(2(ab− c)a′b),

S̃− = (−µ−
√

µ2 + 4(ab− c)a′b′c(A+B))/(2(ab− c)a′b),

where
√
:R>0 −→ R>0 is the square root.

In the case where S̃ = S̃+ (resp. S̃ = S̃−) we set R̃ = R̃+ (resp. R̃ = R̃−). We
can rewrite (b) as

R̃± = (ab− c)a′b(ab′c)−1S̃±µ(ab
′c)−1.

Using (d) this becomes

R̃± = (ab− c)a′b(ab′c)−1S̃± − ((ab− c)a′b)(ab′c)−1(S̃+ + S̃−)

that is
R̃± = (ab− c)a′b(ab′c)−1(S̃± − S̃+ − S̃−).

Thus,
R̃+ = −(ab− c)a′b(ab′c)−1S̃− ∈ R>0
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(since S̃− ∈ −R>0,)

R̃− = −(ab− c)a′b(ab′c)−1S̃+ ∈ −R>0

(since S̃+ ∈ R>0). We see that

τ−1(A,B) ⊂ {(R̃+ + a′/a, S̃+ + b′/b), (R̃− + a′/a, S̃− + b′/b)}
The same proof shows also the reverse inclusion so that

τ−1(A,B) = {(R̃+ + a′/a, S̃+ + b′/b), (R̃− + a′/a, S̃− + b′/b)}
Note that (A,B) 7→ (R̃++a′/a, S̃++b′/b) is a continuous map R2

>0 −→ Tu,u′ which
is the inverse of the continuous map Tu,u′ −→ R2

>0 defined by τ . This shows that
0.3 holds in our case: one of the two maps Zi : U− −→ R (i ∈ I) attaches to a
matrix





1 0 0
x 1 0
z y 1



 ∈ U−

the number z; the other attaches to the same matrix the number xy − z.

2. Proof of Proposition 0.5

2.1. In this section we prove Proposition 0.5. For u′ ∈ U−

>0, v ∈ U+
>0 we have

u′v ∈ G>0 hence we can define (u′v)+ ∈ U+
>0, t1 ∈ T>0, (u

′v)− ∈ U−

>0 by the

equation u′v = (u′v)+t1(u
′v)−. Note that the map U−

>0×U+
>0 −→ U+

>0×T>0×U−

>0,
(u′, v) 7→ ((u′v)+, t1, (u

′v)−) is continuous.

Lemma 2.2. Let B ∈ B>0. We write B = u′B+u′−1 with u′ ∈ U−

>0 uniquely
determined. We have a homeomorphism

{(v, t) ∈ U+
>0 × T>0; t ∈ T(u′v)−,u′} ∼−→ B ∩G>0

given by (v, t) 7→ u′vtu′−1.

We have B = {u′vtu′−1; v ∈ U+, t ∈ T}. If such u′vtu′−1 is in G>0 then
u′vt ∈ G>0u

′ ⊂ G>0U
−

>0 ⊂ G>0 (see [L94, 2.12]) so that u′vt = u′
0v0t0 with

u′
0 ∈ U−

>0, v0 ∈ U+
>0, t0 ∈ T>0. It follows that u′ = u′

0, v = v0, t = t0 so that

v ∈ U+
>0, t ∈ T>0. Next we have u′v = (u′v)+t1(u

′v)− as in 2.1) and

u′vtu′−1 = (u′v)+t1(u
′v)−tu′−1 = (u′v)+t1t(t

−1(u′v)−tu′−1) ∈ U+
>0T>0U

−.

Since u′vtu′−1 ∈ G>0 we have also u′vtu′−1 = u2t2u
′
2 with u2 ∈ U+

>0, u
′
2 ∈ U−

>0,
t2 ∈ T>0. It follows that (u

′v)+ = u2, t1t = t2, t
−1(u′v)−tu′−1 = u′

2. In particular,
t−1(u′v)−tu′−1 ∈ U−

>0.

Conversely, if v ∈ U+
>0 and t ∈ T>0 are given such that t−1(u′v)−tu′−1 ∈ U−

>0,
then we have u′vtu′−1 ∈ G>0. Indeed, as in 2.1 we have

u′vtu′−1 = (u′v)+t1(u
′v)−tu′−1

= (u′v)+(t1t)(t
−1(u′v)−tu′−1) ∈ U+

>0T>0U
−

>0 = G>0.

The lemma follows.
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2.3. We prove 0.5. Let B ∈ B>0. We write B = u′B+u′−1 with u′ ∈ U−

>0 uniquely
determined. From 0.3 we obtain a homeomorphism

{(v, t) ∈ U+
>0 × T>0; t ∈ T(u′v)−,u′} −→ U+

>0 ×RI
>0

given by (v, t) 7→ (v, z((u′v)−, u′, t)). Composing this with the inverse of the
homeomorphism in Lemma 2.2, we obtain a homeomorphism of B ∩ G>0 with
U+
>0 ×RI

>0 so that 0.5 holds.

3. Proof of Proposition 0.7 and of 0.8(c)

3.1. Let W be the Weyl group of G; let {si; i ∈ I} be the simple reflections in
W . Let w 7→ |w| be the length function; we have |si| = 1 for i ∈ I. For any J ⊂ I
let WJ be the subgroup of W generated by {si; i ∈ J} and let wJ

0 be the unique
element w ∈ WJ with |w| maximal. Let w0 = wI

0 .
For w ∈ W let U+(w) (resp. U−(w)) be the subset of U+ (resp. U−) defined

in [L94, 2.7] (resp. [L94, 2.9]).
In the remainder of this section we fix J ⊂ I. From the definitions we see that
(a) u 7→ uP+

J u−1 is a bijection U−(w0w
J
0 )

∼−→ PJ
>0.

3.2. For any λ = (λi)i∈I ∈ NI let Vλ, βλ be as in 0.2. Let Vλ,R be the R-
subspace of Vλ spanned by βλ. Let P be the set of all lines in Vλ,R. Note that G
acts naturally on P. We shall assume that {i ∈ I;λi 6= 0} = I − J . Then for any
P ∈ PJ there is a unique Lλ

P ∈ P such that the stabilizer of Lλ
P in G is equal to

P ; moreover,
(a) the map P 7→ Lλ

P from PJ to P is injective.
A line in P is said to be in P>0 if it is spanned by a linear combination of elements
in βλ with all coefficients being in R>0. We shall now assume in addition that λ
is such that λi is sufficiently large for any i ∈ I−J so that [L98, 3.4] is applicable;
thus the following holds:

(b) For P ∈ PJ we have P ∈ PJ
>0 if and only if Lλ

P ∈ P>0.
Now let g ∈ G>0. From [L94, 5.2] we see that the following holds.

(c) There is a unique line Lg ∈ P>0 such that gLg = Lg.

3.3. Let g ∈ G>0. We prove Proposition 0.7.
By [L94, 8.9] there exists B ∈ B>0 such that g ∈ B. Let P ∈ PJ be such that

B ⊂ P . We have P ∈ PJ
>0, g ∈ P . This proves the existence in 0.7. Assume

now that P ′ ∈ PJ
>0, P

′′ ∈ PJ
>0 satisfy g ∈ P ′, g ∈ P ′′. In the setup of 3.2(b) we

have Lλ
P ′ ∈ P>0, L

λ
P ′′ ∈ P>0. Since g ∈ P ′, the line Lλ

P ′ is g-stable hence, with
notation of 3.2(c), we have Lλ

P ′ = Lg. Similarly we have Lλ
P ′′ = Lg. Thus we have

Lλ
P ′ = Lλ

P ′′ . Using 3.2(a) we deduce P ′ = P ′′. This proves the uniqueness in 0.7.

3.4. We now fix P ∈ PJ
>0. By 3.1(a) we have P = uP+

J u−1 for a well defined
u ∈ U−(w0w

J
0 ).

We show:



8 G. LUSZTIG

(a) v 7→ uvB+v−1u−1 is a bijection U−(wJ
0 )

∼−→ γP .
If v ∈ U−(wJ

0 ) then uv ∈ U−(w0) = U−

>0 hence uvB+v−1u−1 ∈ B>0; moreover we

have vB+v−1 ∈ P+
J hence uvB+v−1u−1 ⊂ uP+

J u−1 = P so that uvB+v−1u−1 ∈
γP . Thus (a) is a well defined map. Now let B ∈ γP . We have B = u1B

+u−1
1

where u1 ∈ U−(w0) and B ⊂ uP+
J u−1 that is u1B

+u−1
1 ⊂ uP+

J u−1. Now there

is a unique P ′ ∈ PJ containing u1B
+u−1

1 . Since u1P
+
J u−1

1 and uP+
J u−1 are

such P ′, we must have u1P
+
J u−1

1 = uP+
J u−1. We have u1 = u′

1u
′′
1 where u′

1 ∈
U−(w0w

J
0 ), u′′

1 ∈ U−(wJ
0 ); Hence u1P

+
J u−1

1 = u′
1u

′′
1P

+
J u′′

1
−1u′

1
−1 = u′

1P
+
J u′

1
−1

so that u′
1P

+
J u′

1
−1 = uP+

J u−1. Using this and 3.1(a) we deduce u′
1 = u so that

B = uu′′
1B

+u′′
1
−1u−1. We see that the map (a) is surjective. The injectivity of the

map (a) is immediate. This proves (a).
From the definitions we see that (a) is a homeomorphism. Hence 0.8(c) holds.

3.5. Let P ∈ PJ
>0 and let Pred be the reductive quotient of P . Define u ∈

U−(w0w
J
0 ) by P = uP+

J u−1 (see 3.1(a)). Now Pred has a natural pinning. (It is

induced by the obvious pinning of the reductive quotient of P+
J using the isomor-

phism P+
J −→ P given by conjugation by u.) Hence we can define BP,>0 (an open

subset of the real flag manifold of Pred) in terms of Pred with its pinning in the
same way as B>0 was defined in terms of G with its pinning. (Although Pred is not
necessarily semisimple, the same definitions can be applied.) We have a bijection

(a) BP,>0
∼−→ γP

obtained by taking inverse image under the obvious map P −→ Pred. This can be
deduced from the proof in 3.4.
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Birkhäuser, Boston, 1994, pp. 531-568.

[L98] G.Lusztig, Total positivity in partial flag manifolds, Represent.Th. 2 (1998), 70-78.

[L21] G.Lusztig, Total positivity in Springer fibres, Quart.J.Math. 72 (2021), 31-49.

Department of Mathematics, M.I.T., Cambridge, MA 02139


