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Abstract

Given a partial action of a topological group G on a space X we determine properties

P which can be extended from X to its globalization. We treat the cases when P is any

of the following: Hausdorff, regular, metrizable, second countable and having invariant

metric. Further, for a normal subgroup H we introduce and study a partial action of G/H

on the orbit space X/∼, applications to invariant metrics and inverse limits are presented.
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1 Introduction

Given an action a : G × Y → Y of a group G on a space Y and an invariant subset X of Y

(i.e. a(g, x) ∈ X, x ∈ X, g ∈ G), the restriction of a to G×X is an action of G over X. If X is

not invariant, we get what is called a partial action on X, that is a collection of partial maps

ηg, g ∈ G on X satisfying η1 = idX and ηg ◦ ηh ⊆ ηgh, for each g, h ∈ G. The notion of partial

group action appeared in the context of C∗-algebras in [8], there C∗-algebraic crossed products

by partial automorphisms played an important role to analyze and characterize their internal

structure. Since [8], partial actions have been spreading in several branches of mathematics, for

a detailed account on partial actions the interested reader may consult [5] or [10]. A relevant

question is if a partial action can be obtained by restriction of a corresponding collection of

maps on some superspace. In the topological context, this is known as the globalization problem

and was studied in [1] and independently in [13]. It was proven that for any partial action η

of a topological group G on a topological space X there is a topological superspace Y of X

and a continuous action µ of G on Y such that the restriction of µ to X is η. Such a space is

called a globalization of X. It is also shown that there is a minimal globalization XG called the

enveloping space of X.

We shall mainly work with partial actions for which the partial maps have clopen domains,

that is closed and open, this kind of partial actions were considered in [6] where the authors

studied the ideal structure of the algebraic partial crossed product Lc(X)⋊G being Lc(X) the

algebra consisting of all locally constant, compactly supported functions on X, while in [11]

the authors showed that partial actions on the Cantor set by clopen subsets are exactly the
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ones for which the enveloping space is Hausdorff, also in [3] partial actions with clopen domains

were relevant to introduce and study topological entropy for a partial action of Z on metric

spaces, and in [12] the authors studied topological dynamics arising from partial actions on

clopen subsets of a compact space.

Our work is organized in the following way: After the introduction, in Section 2 we present

some notions, examples and results that will be useful during the work, especially Proposition

2.8 gives conditions for the enveloping space to be T1 while Theorem 2.12 establish that the

globalization of a partial action is actually an orbit space. At the beginning of Section 3 we treat

the question if a structural property P of a space X endowed with a partial action of a group G

is inherited by the spacesX/∼G and XG (see equations (2.6) and (2.2) for the proper definitions

of X/∼G and XG, respectively). To do so we first show in Lemma 3.1 that the quotient map

πG defined in (2.7) is perfect, this allows us to present in Theorem 3.2 sufficient conditions in

which an affirmative answer holds for when P is any properties of being Hausdorff, regular,

metrizable and second countable. Second part of Section 3 deals with invariant metrics, there

we give in Theorem 3.10 a condition for a space X with a partial action of a compact group so

that it admits an invariant metric. At this point it is important to note that in the classical case

of finding characterizations of G-spaces having invariant metric have been extensively studied,

in particular it is known that if a space X with a global action admits an invariant metric,

then the orbit space X/ ∼G is metrizable provided that is T1, however, this result does not

hold for partial actions, where one needs to impose regularity conditions (see Remark 3.11 and

Proposition 3.12, respectively). In Section 4 we take a partial action η of G on a space X , a

normal subgroup H of G and we show in Theorem 4.1 how to construct a partial action ηG/H of

G/H on the orbit space X/ ∼H , moreover, in the same Theorem is shown that the orbit spaces

(X/ ∼H)/ ∼G/H and X/∼G are homeomorphic. The structure of the partial action ηG/H as

well as its globalization are presented in Theorem 4.2. As an application for the construction

of ηG/H we treat in Proposition 4.9 partial actions on inverse limits, where we provide suitable

conditions for which a space X is G-equivalent to an inverse limit lim
←−

Xi, and such that the

partial action on X satisfies a compatibility relation with the partial actions associated to Xi

Throughout the work, several examples are shown to clarify the notions and results.

2 Preliminaries

Let G be a group with identity element 1, X be a set, and η : G×X → X , (g, x) 7→ g · x be a

partially defined function, that is, a function whose domain, denoted by G ∗X, is contained in

G ×X. We shall write ∃g · x to mean that (g, x) belongs to G ∗X. We say that η is a partial

action of G on X if for each g, h ∈ G and x ∈ X the following assertions hold:

(PA1) If ∃g · x, then ∃g−1 · (g · x) and g−1 · (g · x) = x,

(PA2) If ∃g · (h · x), then ∃(gh) · x and g · (h · x) = (gh) · x,

(PA3) ∃1 · x and 1 · x = x.

For g ∈ G set Xg = {x ∈ X | ∃g−1 · x}. Then η induces a family of bijections {ηg : Xg−1 ∋ x 7→

g ·x ∈ Xg}g∈G. We also denote this family by η. Notice that η acts (globally) on X if ∃g ·x, for

all (g, x) ∈ G ×X, or equivalently, Xg = X, for any g ∈ G. The following result characterizes

partial actions in terms of a family of bijections.

Proposition 2.1. [17, Lemma 1.2] A partial action η of G on X is a family η = {ηg : Xg−1 →

Xg}g∈G, where Xg ⊆ X, ηg : Xg−1 → Xg is bijective, for all g ∈ G, and:

(i) X1 = X and η1 = idX ;
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(ii) ηg(Xg−1 ∩Xh) = Xg ∩Xgh;

(iii) ηgηh : Xh−1 ∩Xh−1g−1 → Xg ∩Xgh, and ηgηh = ηgh in Xh−1 ∩Xh−1g−1 ;

for all g, h ∈ G.

Definition 2.2. Let G be a topological group and X be a topological space. A topological

partial action of G on X is a partial action η = {ηg : Xg−1 → Xg}g∈G on the underlying set X

such that Xg is open, ηg is homeomorphism for any g ∈ G.Moreover we say that η is continuous

if η : G ∗X → X is continuous, where G×X has the product topology and G ∗X is endowed

with the relative topology.

Throughout this paper G will denote a Hausdorff topological group, X a topological space

and all partial actions will be topological.

Now we present an example of a continuous and topological partial action that will be useful

in Section 3. We endow Z with the p-adic topology Tp, where p is a prime number. For the

reader’s convenience we recall its construction here. See [18, Example 1.18] for details. The

family V = {pkZ}k∈Z+ satisfy the conditions given in [18, Theorem 1.13], then B = {m+ pkZ :

m ∈ Z, k ∈ Z+} is a basis for the topology Tp and (Z,+, Tp) is a topological group.

Example 2.3. Let X be a disconnected topological space, U ⊆ X be a proper clopen set,

f : U → U be a homeomorphism and n ∈ Z. We set f0 = idU , if n ∈ Z+ we write fn as n-times

the composition of f with itself and if n < 0, then fn = (f−1)−n. We define a partial action η

of Z on X by setting

Z ∗X = (Z×U)∪ ({0}×X) and η : Z ∗X ∋ (n, a) 7→

{

fn(a), if a ∈ U,

a, if n = 0 and a 6∈ U.
∈ X. (2.1)

Suppose there is p a prime number such that fp = idU , and consider Z with the p-adic topology.

Since U is open, then η is a topological partial action. To show that it is continuous take

(n, x) ∈ Z ∗X , and V ⊆ X an open set such that η(n, x) ∈ V . There are two cases to consider.

Case 1: x ∈ U . Then η(n, x) = fn(x) ∈ V . Since V ∩ U is open in U , there is Z ⊆ U an

open set such that fn(Z) ⊆ V ∩ U . First, suppose that p does not divide |n|. Then the open

set W = [(n+ Z1)× Z] ∩ (Z ∗X) ⊆ Z ∗X satisfies η(W ) ⊆ V, because for (t, y) ∈ W we have

y ∈ Z ⊆ U and there is m ∈ Z such that t = n+ pm. Note that t 6= 0 since p does not divide

|n|. Further since y ∈ U , we get (n, y) ∈ Z ∗X, and (pm, fn(y)) ∈ Z ∗X. The fact fn(y) ∈ U

gives

η(t, y) = f t(y) = fpm(fn(y)) = fn(y) ∈ V.

Now if p divides |n| we let i = max{k ∈ Z+ : pk divides n}. Consider the open set

W = [(n + Zi+1) × Z] ∩ (Z ∗X). Then for (t, y) ∈ W , by the maximality of i there is m ∈ Z

such that t = n+ pi+1m, y ∈ Z ⊆ U and t 6= 0. Since y ∈ U , we get

η(t, y) = fn+p
i+1m(y) = fp

i+1m(fn(y)) = fn(y) ∈ V,

and η(W ) ⊆ V .

Case 2: x /∈ U. By (2.1) we have n = 0 and η(n, x) = x ∈ V . Since U is closed, then

V ∩(X\U) is an open subset ofX containing x. Take Z ⊆ X open such that x ∈ Z ⊆ V ∩(X\U)

and let W = (Z1×Z)∩ (Z ∗X). It is clear that (n, x) = (0, x) ∈W . Further if (t, y) ∈ W , then

y /∈ U and t = 0 from this we get η(t, y) = η(0, y) = y ∈ V, showing that η is continuous.
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2.1 On the enveloping space

Partial actions can be induced from global ones as the following example shows.

Example 2.4. (Induced partial action) Let u : G × Y → Y be a continuous action of G on a

topological space Y and X ⊆ Y an open set. For g ∈ G, set Xg = X ∩ ug(X) and let ηg =

ug ↾ Xg−1 . Then η : G ∗X ∋ (g, x) 7→ ηg(x) ∈ X is a continuous and topological partial action

of G on X. In this case we say that η is induced by u.

Remark 2.5. Given a continuous global action η of G on X , its induced partial action on an

open (resp. closed) subset Y of X has open (resp. closed) domain in G× Y .

An important problem on partial actions is whether they can be induced by global actions.

In the topological sense, this turns out to be affirmative and a proof was presented in [1,

Theorem 1.1] and independently in [13, Section 3.1]. For the reader’s convenience, we recall

their construction. Let η be a partial action of G on X. Define an equivalence relation on G×X

as follows:

(g, x)R(h, y) ⇐⇒ x ∈ Xg−1h and ηh−1g(x) = y, (2.2)

and denote by [g, x] the equivalence class of the pair (g, x). Consider XG = (G × X)/R with

the quotient topology and the map

µ : G×XG ∋ (g, [h, x]) 7→ [gh, x] ∈ XG, (2.3)

is a well defined action, and the map

ι : X ∋ x 7→ [1, x] ∈ XG, (2.4)

is injective.

Definition 2.6. Let η be a partial action of G on X. The action µ defined in (2.3) is called

the enveloping action of η and XG is the enveloping space or globalization of X.

In the next result we summarize some basic results about the enveloping space and the

enveloping action, see [1, Theorem 1.1], [13, Theorem 3.13] and [13, Proposition 3.9].

Proposition 2.7. Let η be a partial action of G on X. Then the following assertions hold.

(i) The maps µ and ι are continuous.

(ii) If η is continuous and G ∗X is open in G×X, then ι is an open map.

(iii) The quotient map

q : G×X ∋ (g, x) 7→ [g, x] ∈ XG, (2.5)

is continuous and open.

Now we provide conditions for XG to be T1.

Proposition 2.8. Let η be a continuous partial action of G on X. Consider the following

assertions.

(i) G ∗X is closed;

(ii) For any x ∈ X the set Gx = {g ∈ G | ∃g · x} is closed;

(iii) XG is T1.

Then (i)⇒ (ii), and (ii)⇒(iii) provided that X is Hausdorff.
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Proof. (i)⇒ (ii) For a net (gλ)λ∈Λ in Gx such that lim gλ = g, one has (gλ, x)λ∈Λ → (g, x) ∈

G ∗X = G ∗X , thus g ∈ Gx and Gx is closed.

For the rest of the proof we assume that X is Hausdorff.

(ii)⇒ (iii) Take (g, x) ∈ G×X, and let q be the quotient map defined in (2.5), then

q−1({[g, x]}) =
⋃

l∈G

{gl−1} × ηl({x} ∩Xl−1) = {(gl−1, l · x) | l ∈ Gx}.

We prove that q−1({[g, x]}) is closed. For this let (h, y) ∈ q−1({[g, x]}), then there exists a net

{li}i∈I in Gx such that (gl−1i , li · x) → (h, y), in particular li → h−1g ∈ Gx. Set ηx : Gx ∋ g 7→

g · x ∈ X, using the fact that ηx is continuous one gets li · x → (h−1g) · x, and y = (h−1g) · x

because of the uniqueness of limits in Hausdorff spaces. From this we obtain

(h, y) = (g(h−1g)−1, (h−1g) · x) ∈ q−1({[g, x]}),

thus XG is T1.

Remark 2.9. With respect to Proposition 2.8 we have the next.

• The space XG is T1 when G is discrete and X is Hausdorff.

• Part (ii) ⇒ (i) does not necessarily holds. Indeed, for the partial action of Z2 = {1,−1}

on X = [0, 1] presented in [1, Example 1.4.] that is α1 = idX and α−1 = idV , where

V = (0, 1].One has that Zx2 is closed for any x ∈ [0, 1] while Z2∗[0, 1] = {(−1, 0)}∪(Z2×V )

is not closed in Z2 × [0, 1].

• Also part (iii) ⇒ (ii) does not hold in general, for this let G = GL(2;R) be the gen-

eral linear group of degree 2 acting partially on R as follows: For g =

(

a b

c d

)

∈ G,

set Rg−1 = {x ∈ R : cx + d 6= 0} and ηg : Rg−1 ∋ x 7→
ax+ b

cx+ d
∈ Rg. There is a

homeomorphism from RG to the space C of complex numbers, then RG is Hausdorff but

G0 =

{(

a b

c d

)

∈ G : d 6= 0

}

is not closed in G.

Definition 2.10. Suppose that the spacesX and Y are equipped with partial actions η and ρ by

G. A function ǫ : X → Y is called a orG-map if for every (g, x) ∈ G∗X then (g, ǫ(x)) ∈ G∗Y and

ǫη(g, x) = ρ(g, ǫ(x)). If moreover ǫ is a homeomorphism we say that X and Y are G-equivalent.

We have the next.

Proposition 2.11. The following assertions hold.

(i) Let X and Y be two G-equivalent spaces. Then XG and YG are homeomorphic, as well

as G ∗X and G ∗ Y.

(ii) Let β : G× Y → Y be a continuous action of G on a space Y. Let X ⊆ Y be an open set

such that G · X = Y and η : G ∗ X → X be the induced partial action of β on X (see

Example 2.4). Then the spaces XG and Y are G-equivalent.

Proof. Part (i) is clear, for (ii) let i : G ×X → G × Y be the inclusion and α : XG ∋ [g, x] 7→

β(g, x) ∈ Y , then the following diagram

G×X

q

��

i // G× Y

β

��
XG α

// Y

5



is commutative. Moreover, by [13, Proposition 3.5] the map α is a well defined bijection,

moreover it is continuous because the map α ◦ q is continuous. Also, since β is open the map

α is a homeomorphism, finally the fact that it is a G-map is straighforward.

2.2 The orbit equivalence relation

Given a partial action η of G on X the orbit equivalence relation ∼G on X is:

x ∼G y ⇐⇒ ∃g ∈ Gx such that g · x = y, (2.6)

for each x, y ∈ X . The elements of X/ ∼G are the orbits Gx · x with x ∈ X and X/ ∼G is

endowed with the quotient topology. By [16, Lemma 3.2] the induced quotient map of η

πG : X ∋ x 7→ Gx · x ∈ X/∼G, (2.7)

is continuous and open.

It is known that globalizations of topological spaces endowed with a partial action can be

seen as orbit equivalence spaces. Indeed the following result was shown in [16, Theorem 3.3].

Theorem 2.12. Let η be a topological partial action of G on X, then the family η̂ = {η̂g :

(G×X)g−1 → (G×X)g}g∈G, where (G×X)g = G×Xg and

η̂g : G×Xg−1 ∋ (h, x) 7→ (hg−1, ηg(x)) ∈ G×Xg,

is a topological partial action of G on G×X, and the enveloping space XG of η is the space of

orbits of G×X by η̂.

Let η be a partial action of G on X, and H be a subgroup of G, then the family ηH :

{ηh : Xh−1 → Xh}h∈H is a partial action of H on X. The corresponding orbit equivalence

relation of ηH is denoted by ∼H .

For convenience, the orbits in the space XG/∼H will be denoted by H [g, x] for any [g, x] ∈

XG. We finish this section with the next.

Lemma 2.13. Let η be a continuous partial action of G on X with G∗X open. Then for each

subgroup H of G the map

ϕ : X/∼H∋ Hx · x 7→ H [1, x] ∈ XG/ ∼H (2.8)

is an embedding, that is continuous, open and injective.

Proof. First of all note that ϕ is well defined. In fact, let x, y ∈ X be such that x ∼H y and

take h ∈ Hx with ηh(x) = y. Thus, [1, y]
(2.2)
= [h, x]

(2.3)
= µh([1, x]) and [1, y] ∼H [1, x], then ϕ

is well defined. It is easy to check that ϕ is injective. To prove that ϕ is continuous, consider

πH : X → X/∼H and ΠH : XG → XG/∼H the corresponding quotient maps. Since the map ι

defined in (2.4) is continuous and ϕ ◦πH = ΠH ◦ ι we conclude that ϕ is continuous. It remains

to check that ϕ is open, let U ⊆ X/ ∼H be an open set, then ϕ(U) = ΠH(ι(π−1H (U))) is open

because π−1H (U) is open in X and the functions ι and ΠH are open thanks to Proposition 2.7

and [16, Lemma 3.2], respectively. Therefore ϕ is an open map.

3 Properties preserved by the enveloping space and in-

variant metrics

Recall that a continuous surjection f : X → Y is perfect if it is closed and f−1({y}) is compact

for all y ∈ Y.

We proceed with the next.
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Lemma 3.1. Let η : G ∗X → X be a continuous partial action such that G ∗X is closed in

G×X and G is compact, then the following assertions hold.

(i) η is closed;

(ii) The maps πG and π̂G are perfect, being π̂G the corresponding quotient map of η̂ in

Theorem 2.12 .

Proof. (i). Let C be a nonempty closed subset of G ∗X and y ∈ η(C), then there is a directed

set Λ and a net (gλ, xλ)λ∈Λ in C such that lim gλ · xλ = y. Since G is compact, we can

suppose that lim gλ = g, for some g ∈ G. Note that (g−1λ , gλ · xλ)λ∈Λ is a net in G ∗ X and

lim(g−1λ , gλ · xλ) = (g−1, y), then (g−1, y) ∈ G ∗ X because this is a closed subset of G × X .

Now consider the net (gλ, xλ)λ∈Λ = (gλ, g
−1
λ · (gλ · xλ))λ∈Λ in C, then

(g, g−1 · y) = lim(gλ, g
−1
λ · (gλ · xλ)) = lim(gλ, xλ) ∈ C,

and y = g · (g−1 · y) = η(g, g−1 · y) ∈ η(C) which implies that η is closed.

(ii) The map πG is closed because of (i) above and the equality π−1G (πG(F )) = η((G × F ) ∩

(G ∗ X)), for any closed subset F of X. Hence to prove our assertion we need to check that

π−1G (πG(x)) is a compact for any x ∈ X . First, by Proposition 2.8 we have that Gx is a compact

subset G, then π−1G (πG(x)) = Gx · x = η(Gx × {x}) is a compact subset of X . To show that

π̂G is closed we have by [15, Proposition 2.6] that the map η̂ is continuous, moreover from [15,

Corollary 3.3] we get that G ∗ (G×X) is closed in G× (G×X) then the result follows.

Theorem 3.2. Let G be a compact group and η : G ∗X → X be a continuous partial action

such that G ∗ X is closed in G × X . Let P be any of the properties: Hausdorff, regular,

metrizable and second countable. Then the following statements hold.

(i) If X is P , then X/∼G is P .

(ii) If G×X is P , then XG is P .

Proof. (i) This follows from item (ii) in Lemma 3.1 and [7, Theorem 5.2] while (ii) is a conse-

quence of item (ii) in Lemma 3.1, item (i) above and the last assertion in Theorem 2.12.

Remark 3.3. We remark the following facts.

(i) In general the assumption that G ∗X is closed in G ×X cannot be removed in part (ii)

of Theorem 3.2. Indeed, for the Abadie’s partial action of Z2 = {1,−1} on X = [0, 1]

presented in Remark 2.9 we have by Proposition 2.8 that the space XZ2
is T1 but not

Hausdorff.

(ii) Also the fact that XG is Hausdorff does not imply that G is compact, for instance in [11,

Proposition 2.1] a characterization for XG to be Hausdorff is presented in the case when

G is countable and discrete.

We illustrate the previous theorem with some examples.

Example 3.4. Consider X = R\{0} as a subspace of R. A partial action of Z3 on X is defined

as follows. Let X1 = (−∞, 0) and X2 = (0,∞), note that X1 and X2 are clopen subsets of X

such that X = X1 ∪X2. Set η0 = idX , η2 : X1 ∋ x 7→ −x ∈ X2 and η1 = η−12 , moreover let

Z3 ∗X = ({0} ×X) ∪ ({1} ×X2) ∪ ({2} ×X1),

Then η : Z3 ∗X → X , is a partial action of Z3 on X such that Z3 ∗X is clopen in Z3 ×X thus

by Theorem 3.2 the enveloping space XZ3
is metrizable.
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Example 3.5. Let X be a disconnected space and U ⊆ X be a non-empty clopen subset

of X with U 6= X. Then η : Z2 ∗ X → X is a partial action of Z2 on X where Z2 ∗ X =

({0} × X) ∪ ({1} × U), and η(1, u) = u for any u ∈ U . Since Z2 ∗X is closed in Z2 × X we

conclude that XZ2
is metrizable.

In view of (ii) in Remark 3.3 we give the next.

Proposition 3.6. Let G be a compact group, X be a compact Hausdorff space and η : G∗X →

X be a partial action. If XG is Hausdorff, then G ∗X is closed.

Proof. Let {(gλ, xλ)}λ∈Λ be a net in G∗X such that lim(gλ, xλ) = (g, x) ∈ G×X . Since XG is

Hausdorff, we have by [1, Proposition 1.2] that the space Graph(η) = {(g, x, y) ∈ G×X ×X :

(g, x) ∈ G ∗X, g · x = y} is a closed subset of G ×X ×X , and thus compact. Therefore we

may assume that (gλ, xλ, gλ · xλ)λ∈Λ converges to (g, x, p) ∈ Graph(η), for some p ∈ X . In

particular, (g, x) ∈ G ∗X and G ∗X is closed.

Having at hand Proposition 3.6 one may ask if its assumptions imply that if the orbit space

X/∼G is Hausdorff then G ∗ X is closed in G × X . But this is not the case as Example 3.7

below shows.

Example 3.7. Consider again the partial action of Z2 on X = [0, 1] given in [1, Example 1.4.].

We observed in Remark 2.9 that Z2 ∗X is not closed in Z2 ×X. Moreover, since η(1, x) = x for

any x ∈ (0, 1] we have πZ2
: X → X/∼Z2

is injective and thus a homeomorphism and X/∼Z2

is Hausdorff.

3.1 Invariant metrics

Let η : G ∗X ∋ (g, x) 7→ g · x ∈ X be a partial action of G on the metric space (X, ρ). We say

that ρ is η-invariant if for any g ∈ G and x, y ∈ Xg−1 , ρ(g · x, g · y) = ρ(x, y).

Example 3.8. Let η be as in equation 2.1. Suppose that X is metric, U is a clopen subset

of X and f is an isometry, then η is a topological and continuous partial action with invariant

metric in any of the following cases.

• Z is considered as a discrete space.

• Z is endowed with the p-adic topology and fp = idU , for some prime number p.

In the context of hyperspaces endowed with partial actions we give the next.

Example 3.9. Let η : G ∗ X ∋ (g, x) 7→ g · x ∈ X be a continuous partial action of G on a

compact metric space (X, d). Denote by 2X the hyperspace of nonempty compact subsets of X

endowed with the Hausdorff metric dH , which is defined by the rule

dH(A,B) = inf{ε > 0 : A ⊆ N(B, ε) and B ⊆ N(A, ε)},

where A,B ∈ 2X and N(A, ε) =
⋃

a∈A

Bd(a; ε). If {ηg}g∈G is the induced family of bijections by

η, then follows by [14, Theorem 3.2] that 2η : G ∗ 2X ∋ (g,A) 7→ ηg(A) ∈ 2X , is a continuous

partial action of G in 2X , being

G ∗ 2X = {(g,A) ∈ G× 2X : (g, a) ∈ G ∗X (∀a ∈ A)}.

Suppose that d is η-invariant, we observe that dH is 2η-invariant. For this take g ∈ G and

A,B ∈ 2X for which (g,A), (g,B) ∈ G ∗ 2X . Let ǫ > 0 with A ⊆ N(B, ε) and B ⊆ N(A, ε).

Now given a ∈ A there exists b ∈ B such that a ∈ Bd(b, ε), then d(g ·a, g ·b) = d(a, b) < ε and we

8



have proven than ηg(A) ⊆ N(ηg(B), ε), in a similar way one shows that ηg(B) ⊆ N(ηg(A), ε).

Therefore, dH(ηg(A), ηg(B)) ≤ ε, and dH(ηg(A), ηg(B)) ≤ dH(A,B).

On the other hand, take ε > 0 with ηg(A) ⊆ N(ηg(B), ε) and ηg(B) ⊆ N(ηg(A), ε). For

a ∈ A choose b ∈ B such that g · a ∈ Bd(g · b, ε) then d(a, b) = d(g · a, g · b) < ε and

A ⊆ N(B, ε), again one verifies B ⊆ N(A, ε) which implies dH(A,B) ≤ dH(ηg(A), ηg(B))

hence dH(A,B) = dH(ηg(A), ηg(B)), as desired.

It follows from [2, Proposition 5] that there is a compatible η-invariant metric forX provided

that η is global and G is countably compact. Our next goal is to obtain a generalization of this

result to the frame of partial actions.

Theorem 3.10. Let η : G ∗X → X be a partial action, then X and XG are metrizable by a

invariant metric under any of the following conditions:

(i) G is countably compact and XG is metrizable.

(ii) G is compact and metric, X is metric and G ∗X is closed.

Moreover if (i) holds and XG/ ∼ G is T1, then X/∼G is metrizable.

Proof. In both cases it is enough to prove that XG has a compatible µ-invariant metric ρ.

Indeed, since η is continuous we have by [13, Proposition 3.12] that the spaces X and ι(X)

are homeomorphic, where ι is given by (2.4), thus one obtains an invariant metric for X by

restricting ρ to ι(X). (i) Since the action µ of G on XG given by (2.3) is continuous the result

follows from [2, Proposition 5]. (ii) In this case the space G × X is metrizable, thus XG is

metrizable thanks to Theorem 3.2 and again the result follows from [2, Proposition 5]. To show

the last assertion, we observe that XG admits and invariant metric, then the result follows from

[4, Theorem 2.16] and Lemma 2.13.

Remark 3.11. It is known that when G acts globally on a space X admiting an invariant

metric, then the space X/∼G is metric provided that it is T1, however this not hold for partial

actions. For a concrete example take the partial action given in Remark 2.9 and use Theorem

2.12 and Remark 3.3.

The following result tells us that one needs to impose the regularity condition on X/ ∼G.

Proposition 3.12. Let X be a separable second countable space endowed with a partial action

of G, then the following assertions are equivalent.

(i) X/∼G is metrizable;

(ii) X/∼G is regular and T1.

Proof. Clearly (i) implies (ii). To see that (ii) implies (i), notice that X/∼G is separable and

second countable, because the quotient map πG is open. Therefore, by Urysohn’s metrization

Theorem, the space X/ ∼G is metrizable.

4 Partial actions on orbit spaces

Let η be a partial action of G on X and H be a normal subgroup of G. The idea now is to

construct a partial action of G/H on X/∼H . If η is a global action, then G/H acts globally

on X/∼H via

ηgH(H · x) = H · (g · x), (4.1)

for any g ∈ G and x ∈ X.
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For the case of partial action, we notice that mimicking the construction above does not

yield to a partial action of G/H on X/ ∼H because it is not natural how to define the set

G/H ∗ (X/∼H). Indeed the construction of such a partial action is essentially more laborious

than the global one, as we shall see in the next.

Theorem 4.1. Let η be a partial action of G on X and H be a normal subgroup of G. Then

there is a continuous partial action ηG/H of G/H on X/∼H , such that the the orbit spaces

(X/∼H)/∼G/H and X/∼G are homeomorphic.

Proof. Let µ be the globalization of η. Then µ is continuous and by (4.1) it induces a continuous

action µG/H on XG/∼H as follows:

µgH : XG/∼H∋ H [t, x] 7→ H [gt, x] ∈ XG/∼H ,

for each gH ∈ G/H . Now let ϕ be defined by (2.8). By Example 2.4 and Lemma 2.13 the

map µG/H induces a continuous partial action η′G/H of G/H on the open set Im(ϕ) of XG/∼H ,

where η′G/H = {η′gH : Xg−1H → XgH}gH∈G/H and

XgH = µgH(Im(ϕ)) ∩ Im(ϕ) and η′gH = µgH ↾ Xg−1H . (4.2)

Let Ω := X/ ∼H , then one obtains a partial action ηG/H of G/H on Ω by setting

ΩgH = ϕ−1(XgH), g ∈ G and ηgH : Ωg−1H ∋ x 7→ ϕ−1(η′gH(ϕ(x))) ∈ ΩgH . (4.3)

Then

ηgH(x) = (ϕ−1 ◦ µgH ◦ ϕ)(x), (4.4)

for each x ∈ Ωg−1H . The fact that ηG/H is continuous is straightforward.

Let ∼G/H be the orbit equivalence relation in Ω induced by ηG/H . To finish the proof we

show that the spaces Ω/∼G/H and X/ ∼G are homeomorphic. Consider the diagram:

X

πH

��

πG // X/ ∼G

Ω
πG/H

// Ω/∼G/H

ψ

OO

where ψ is made such that it commutes, that is

ψ(πG/H (πH(x))) = πG(x), (4.5)

for each x ∈ X . Let us prove that ψ is well defined. Take z ∈ Ω/∼G/H and x, y ∈ X such that

πG/H(πH(x)) = πG/H(πH(y)). Then there is g ∈ G with

πH(y) = ηgH(πH(x))
(4.4)
= ϕ−1(µgH(ϕ(πH(x)))) = ϕ−1(H [g, x]),

which implies H [g, x] = H [1, y] and there is h ∈ H such that [hg, x] = [1, y], thus ηhg(x) = y

and πG(x) = πG(y), which shows that ψ is well defined. Moreover by its construction, the map

ψ is continuous and surjective.

Let us prove that ψ is injective. Let z1, z2 ∈ Ω/ ∼G/H be such that ψ(z1) = ψ(z2), and

let x, y ∈ X be such that πG/H(πH(x)) = z1 and πG/H(πH(y)) = z2. Since πG(x) = πG(y),

there is g ∈ Gx satisfying ηg(x) = y. To prove that z1 = z2 we need to find t ∈ G for which

ηtH(πH(x)) = πH(y). We claim that ηgH(πH(x)) = πH(y). In fact, by (4.4) we get

ηgH(πH(x)) = ϕ−1(µgH(ϕ(πH(x)))) = ϕ−1(H [g, x]),
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and ϕ(πH(y)) = H [1, y] = H [g, x], then ηgH(πH(x)) = πH(y) and ψ is injective. Finally let

U ⊆ Ω/∼G/H be an open set. Since πG is open, πG(π
−1
H (π−1G/H (U))) ⊆ X/∼G is open. Thus

ψ(U) is open and ψ : Ω/∼G/H→ XG/∼G is a homeomorphism.

The following result describes explicitly the partial action ηG/H and its globalization.

Theorem 4.2. Let η be a partial action of G on X , H be a normal subgroup of G and ηG/H
be the partial action of G/H on X/∼H defined by (4.4) . Then the following assertions hold.

(i) For g ∈ G we have (X/∼H)gH = {πH(x) | ∃h ∈ H such that (hg−1, x) ∈ G ∗X}.

(ii) The domain of ηG/H is

G/H ∗X/∼H= {(gH, πH(x)) : (g, x) ∈ G×X ∧ ∃h ∈ H such that (hg, x) ∈ G ∗X}.

(iii) We have

ηG/H : G/H ∗X/∼H∋ (gH, πH(x)) 7→ πH((hg) · x) ∈ X/∼H , (4.6)

where h ∈ H is such that (hg, x) ∈ G ∗X.

(iv) The globalization of ηG/H is (G/H)-equivalent to XG/∼H , where G/H acts on XG/∼H ,

via µG/H .

Proof. (i). Take g ∈ G and x ∈ X such that πH(x) ∈ (X/∼H)gH then by (4.3) ϕ(πH(x)) =

H [1, x] ∈ XgH and (4.2) gives an element y ∈ X such that µgH(H [1, y]) = H [1, x], that is,

H [g, y] = H [1, x] and [h0, x] = [g, y] for some h0 ∈ H , therefore (g−1h0, x) ∈ G ∗X. Since H

is normal in G we have g−1h0 = hg−1 for some h ∈ H and (hg−1, x) ∈ G ∗X . Conversely if

x ∈ X verifies (h0g
−1, x) ∈ G ∗X for some h0 ∈ H . Then h0g

−1 = g−1h for some h ∈ H and

we have [h, x] = [g, y], where y = (g−1h) · x and

ϕ(πH(x)) = H [1, x] = H [1, (h−1g) · y]
(2.2)
= H [h−1g, y] = H [g, y] = µgH(H [1, y]) ∈ µgH(Imϕ),

thus πH(x) ∈ (X/∼H)gH thanks to equations (4.2) and (4.3).

(ii). This is a consequence of part (i) and the fact that (gH, πH(x)) ∈ G/H ∗X/∼H if and

only if πH(x) ∈ (X/∼H)g−1H .

(iii). For (gH, πH(x)) ∈ G/H ∗X/∼H , there exists h ∈ H such that (hg, x) ∈ G ∗X . Then

[hg, x] = [1, (hg) · x] and ϕ(πH((hg) · x)) = H [hg, x] = H [g, x]. Then follows by (4.4) that

ηG/H(gH, πH(x)) = ϕ−1(H [g, x]) = πH((hg) · x),

as desired.

(iv). By Lemma 2.13 we know that Imϕ = {H [1, x] | x ∈ X}, then µG/H [Imϕ] = XG/∼H ,

thus by (ii) of Proposition 2.11 the spaces (Imϕ)G/H and XG/∼H are homeomorphic. Now we

must show that the spaces Imϕ and X/∼H are G/H-equivalent, but by (i) in Lemma 2.11 it is

enough to show that ϕ is a (G/H)-map, and this follows from (4.3).

Example 4.3. Consider the partial action η : Z ∗X → X of Example 3.8 and let m ∈ Z+ be

such that fm = idU , where m is the smallest positive integer with this property. If H = mZ,

then the induced quotient morphism πH satisfies πH(x) = {x}, for any x ∈ X, thus the spacesX

and X/∼H are homeomorphic. Now we determine ηZ/H . Take (k+H, πH(x)) ∈ Z/H ∗X/∼H ,

if k ∈ H , by (4.6) we get

ηZ/H(k +H, πH(x)) = ηZ/H(H, πH(x)) = πH(x).
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Suppose k /∈ H. By (ii) of Theorem 4.2, there is h ∈ H such that (h + k, x) ∈ Z ∗ X and

ηZ/H(k +H, πH(x)) = πH(η(h + k, x)), thanks to (4.6). Since (h + k, x) ∈ Z ∗X and k /∈ H

the equality (2.1) implies x ∈ U . Then, (h, x) and (k + h, x) belong to Z ∗ X, which gives

η(h+k, x) = η(k+h, x) = fk+h(x) = fk(x). We have shown that if k /∈ H with (k+H, πH(x)) ∈

Z/H ∗X/ ∼H , one gets

ηZ/H(k +H, πH(x)) = πH(η(h+ k, x)) = πH(fk(x)) = πH(η(k, x)).

Corollary 4.4. Let G be compact and Hausdorff group, H be a closed normal subgroup of G,

and η : G ∗X → X be a continuous partial action on a compact Hausdorff space X . If G ∗X

is closed in G×X , then G/H ∗X/∼H is closed in G/H ×X/∼H .

Proof. Let η′ be the partial action defined (4.2). By construction we get that ηG/H and η′G/H
are G/H-equivalent, and thus it is enough to show that G/H ∗ Im(ϕ) is closed in G/H× Im(ϕ).

Having at hand Remark 2.5 we only need to see that Im(ϕ) is closed in XG/∼H . Now by (ii) in

Theorem 3.2 the enveloping space XG is Hausdorff and since H is compact then the first item

of Theorem 3.2 implies that XG/∼H is Hausdorff. Also X/∼H is compact which implies that

ϕ is a closed map, then Im(ϕ) is closed in XG/∼H and G/H ∗ Im(ϕ) is closed in G/H × Im(ϕ)

which finishes the proof.

The following is clear.

Lemma 4.5. Let G and H be topological groups and φ : G→ H be a group homomorphism.

If {ηh : Xh−1 → Xh}h∈H is a partial action of H on X, then the family {ηφ(g) : Ug−1 → Ug}g∈G,

where Ug = Xφ(g), g ∈ G, is a partial action of G on X such that

G ∗X = (φ× idX)−1(H ∗X) and G ∗X ∋ (g, x) 7→ η(φ(g), x) ∈ X. (4.7)

Remark 4.6. Using ηG/H and the canonical homomorphism pH : G → G/H, it follows by

Theorem 4.1 and Lemma 4.5 that there is a partial action ηpH of G on X/∼H which by (4.7)

has domain

G ∗ (X/∼H) = {(g, πH(x)) | g ∈ G, x ∈ X, (gH, πH(x)) ∈ G/H ∗X/∼H}, (4.8)

and

ηpH (g, πH(x)) = ηG/H(gH, πH(x)). (4.9)

From now on we always consider G acting partially on X/∼H via ηpH .

Let H1, H2 be subgroups of G such that H1 ⊆ H2. We define πH1,H2
: X/∼H1

→ X/∼H2
as

the only map such that

πH2
= πH1,H2

◦ πH1
, (4.10)

in particular for a subgroup H of G the map πH,H is the identity on X/∼H .

Proposition 4.7. Let H,H1 and H2 be normal subgroups of G with H1 ⊆ H2. Then πH and

πH1,H2
are G-maps.

Proof. We first show that πH is a G-map. Take (g, x) ∈ G∗X, by (ii) of Theorem (4.2) the pair

(gH, πH(x)) belongs to G/H ∗X/∼H and follows by (4.6) that πH(η(g, x)) = ηG/H(gH, πH(x)).

Hence (g, πH(x)) ∈ G ∗X/∼H and ηpH (g, πH(x)) = πH(η(g, x)) which shows that πH is a G-

map. Now we show that πH1,H2
is a G-map. Suppose (g, πH1

(x)) ∈ G ∗X/∼H1
. We need to

show that (g, πH2
(x)) ∈ G ∗ X/∼H2

and πH1,H2
(ηG/H1

(gH1, πH1
(x))) = ηG/H2

(gH2, πH2
(x)).

We have (gH1, πH1
(x)) ∈ G/H1 ∗X/∼H1

using (ii) of Theorem 4.2 there exists an h ∈ H1 ⊆ H2
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such that (hg, x) ∈ G∗X , thus (gH2, πH2
(x)) ∈ G/H2 ∗X/ ∼H2

and (g, πH2
(x)) ∈ G∗X/ ∼H2

.

It follows from (4.6) that

ηpH1 (g, πH1
(x)) = ηG/H1

(gH1, πH1
(x)) = πH1

(η(hg, x)),

in a similar way ηpH2 (g, πH2
(x)) = ηG/H2

(gH2, πH2
(x)) = πH2

(η(hg, x)). Therefore

πH1,H2
(g · πH1

(x)) = πH1,H2
(πH1

(hg · x)) = πH2
(hg · x) = g · πH2

(x),

and we conclude that πH1,H2
is a G-map.

4.1 Inverse limits

As an application of Theorem 4.1 we extend [2, Theorem 9] to the context of partial actions.

Suppose that G is a compact group, let (I,≤) be a directed set and consider an inverse system

{Gi; p
j
i ; I} in the category of topological groups such that G = lim

←−

Gi, where {pi : G→ Gi}i∈I

is the family of projections such that pji ◦ pj = pi for i, j ∈ I and i ≤ j. Take i ∈ I, then

Hi = ker(pi) = p−1i ({ei}) is a closed normal subgroup of G thus is compact and Hj ≤ Hi for

every i, j ∈ I with i ≤ j. Let η be a partial action of G on X, now for i ∈ I the group Hi acts

partially on X via restriction, setting Xi = X/ ∼Hi we denote by πji = πHj ,Hi : Xj → Xi, the

G-map defined in (4.10) and πi = πHi : X → Xi, the orbit equivalence map.

We proceed with the next.

Lemma 4.8. Following the notations above consider i, j ∈ I with i ≤ j let η : G ∗X → X be

a continuous partial action with G ∗X is closed, then the family {πi : X → Xi}i∈I separates

points of closed sets in X .

Proof. The proof follows the lines of [2, Lemma 3], where it is shown that πi(x) /∈ πi(C) for

any x ∈ X and C ⊆ X a closed subset such that x /∈ C. On the other hand, the fact that G ∗X

is closed is used to guarantee that Hi ∗X = (G ∗X) ∩ (Hi ×X), is closed in Hi × X, which

implies that πi is closed, for any i ∈ I. Then the family {πi : X → Xi}i∈I separates points of

closed sets in X, as desired.

Assuming X Hausdorff and letting i, j, k ∈ I be such that i ≤ j ≤ k. For x ∈ X, we have

πki (H
x
k ·x) = (πji ◦π

k
j )(H

x
k ·x), and X = {Xi, π

j
i , I} is an inverse system of spaces endowed with

partial actions of G.

We finish this work with the next.

Proposition 4.9. Under the assumptions above, let X = {ϕi : lim
←−

Xi → Xi}i∈I be the family

of projections associated to lim
←−

Xi, if X is Hausdorff and G ∗ X is closed in G × X, then the

following assertions hold.

(i) There is a partial action θ of G on lim
←−

Xi such that X is G-equivalent to lim
←−

Xi.

(ii) For any j ∈ I the diagram

G ∗ lim
←−

Xi

idG×ϕj

��

θ // lim
←−

Xi

ϕj

��
G ∗Xj

η
pHj

// Xj

commutes, where ηpHj is the partial action of G on Xj given by (4.9).
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Proof. (i) It is not difficult to see that the family Π = {πi : X → Xi}i∈I is compatible with X

then by the universal property of the inverse limit there exists a continuous map λ : X → lim
←−

Xi,

such that ϕi ◦ λ = πi, for any i ∈ I. We shall prove that λ is a homeomorphism. First, by

Lemma 4.8, the family Π separates points of closed sets in X, further by (i) in Theorem 3.2

each orbit space Xi is T2, then the map λ is an embedding. Let (xi)i∈I ∈ lim
←−

Xi, since Hi ∗X is

closed in Hi ×X and by Lemma 3.1 the map πi is perfect, we have Ai = π−1i (xi) is a compact

subset of X , for all i ∈ I. Now write A = {Ai}i∈I and take i, j ∈ I such that i ≤ j. For y ∈ Aj
we have πi(y) = πji (πj(y)) = πji (xj) = xi, and Aj ⊆ Ai, from this one concludes that A has the

finite intersection property, therefore
⋂

i∈I

Ai 6= ∅. Finally if y ∈
⋂

i∈I

Ai, then πi(y) = xi, that is

(xi)i∈I = λ(y), therefore lim
←−

Xi = λ(X) and λ is a homeomorphism. To define a partial action

of G on lim
←−

Xi we set G ∗ lim
←−

Xi =
{

(g, x) ∈ G× lim
←−

Xi | (g, λ
−1(x)) ∈ G ∗X

}

and

θ : G ∗ lim
←−

Xi ∋ (g, x) 7→ λ(g · λ−1(x)) ∈ lim
←−

Xi,

thus λ is a G−map which shows the first item.

(ii) Take j ∈ I we first check that the map idG × ϕj is well defined, that is for (g, x) ∈ G ∗

lim
←−

Xi one has that (g, xj) ∈ G∗Xj , where x = (xi)i∈I . Indeed, if (g, x) ∈ G∗ lim
←−

Xi we get that

(g, λ−1(x)) ∈ G ∗X which by item (ii) in Theorem 4.2 implies (gHj, πj(λ
−1(x))) ∈ G/Hj ∗Xj

and thus (g, xj) = (g, πj(λ
−1(x))) ∈ G ∗Xj thanks to (4.8), and idG × ϕj is well defined. To

check that the diagram commutes observe that

ηpHj ◦ (idG × ϕj)(g, x) = ηG/Hj
(gHj , πj(λ

−1(x))) = πj((hg) · λ
−1(x)),

where by (ii) of Theorem 4.2 the element h ∈ Hj is such that (hg, λ−1(x)) ∈ G ∗ X. Since

λ−1(x) ∈ Xg−1h−1 ∩ Xg−1 we get by item (ii) of Proposition 2.1 that g · λ−1(x) ∈ Xh−1 thus

(hg) · λ−1(x) = h · (g · λ−1(x)) and πj((hg) · λ−1(x)) = πj(g · λ−1(x)). On the other hand

ϕj ◦ θ(g, x) = ϕjλ(g · λ−1(x)) = πj(g · λ−1(x)). Then η
pHj ◦ (idG × ϕj) = ϕj ◦ θ which ends the

proof.
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Aportaciones matemáticas: Textos, 2005.

[5] M. Dokuchaev, Recent developments around partial actions, São Paulo J. Math. Sci. (2019)

13 (1) 195-247.

[6] M. Dokuchaev and R. Exel, The ideal structure of algebraic partial crossed products.Proc.

Lond. Math. Soc. (3) 115 (2017), no. 1, 91–134.

[7] J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1966.

14



[8] R. Exel, Circle actions on C∗-algebras, partial automorphisms and generalized Pimsner-

Voiculescu exact sequences, J. Funct. Anal. 122 (1994), (3), 361 - 401.

[9] R. Exel, Partial actions of group and actions of inverse semigroups, Proc. Am. Math. Soc.

126 (12) (1998) 3481–3494.

[10] R. Exel, Partial dynamical systems, Fell bundles and applications, Mathematical surveys

and monographs; volume 224, Providence, Rhode Island: American Mathematical Society,

2017.
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