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Superlinear stochastic heat equation on R
d

Le Chen∗ Jingyu Huang†
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Abstract

In this paper, we study the stochastic heat equation (SHE) on R
d subject to a centered

Gaussian noise that is white in time and colored in space. We establish the existence and
uniqueness of the random field solution in the presence of locally Lipschitz drift and diffusion
coefficients, which can have certain superlinear growth. This is a nontrivial extension of the
recent work by Dalang, Khoshnevisan and Zhang [DKZ19], where the one-dimensional SHE on
[0, 1] subject to space-time white noise has been studied.

Keywords. Global solution; Stochastic heat equation; Reaction-diffusion; Dalang’s condition;
superlinear growth.

1 Introduction

In this paper, we study the following stochastic heat equation (SHE) on R
d with a drift term:





∂u(t, x)

∂t
=

1

2
∆u(t, x) + b (u(t, x)) + σ (u(t, x)) Ẇ (t, x) , t > 0, x ∈ R

d,

u(0, ·) = u0(·),
(1.1)

with both b and σ being locally Lipschitz continuous. The noise Ẇ is a centered Gaussian noise
which is white in time and colored in space with the following covariance structure

E

[
Ẇ (s, y)Ẇ (t, x)

]
= δ(t− s)f(x− y) . (1.2)

We assume that the correlation function f in (1.2) satisfies the improved Dalang’s condition:

Υα := (2π)−d

∫

Rd

f̂(ξ)dξ

(1 + |ξ|2)1−α
< ∞ , for some 0 < α < 1, (1.3)

where f̂(ξ) is the Fourier transform of f , namely, f̂ = Ff(ξ) =
∫
Rd f(x)e

−ix·ξdx. Recall that
condition (1.3) with α = 0 refers to Dalang’s condition [Dal99]:

Υ(β) := (2π)−d

∫

Rd

f̂(dξ)

β + |ξ|2 < +∞ for some and hence for all β > 0. (1.4)
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The case when f = δ0 refers to the space-time white noise. The solution to (1.1) is understood in
the mild formulation:

u(t, x) = (pt ∗ u0)(x) +
∫ t

0

∫

Rd

pt−s(x− y)b(u(s, y))dyds

+

∫ t

0

∫

Rd

pt−s(x− y)σ(u(s, y))W (ds,dy) ,

(1.5)

where the stochastic integral is theWalsh integral [Wal86; Dal+09], pt(x) = (2πt)−d/2 exp
(
−|x|2/2t

)

is the heat kernel, and “∗” denotes the convolution in the spatial variable.

Motivated by the work of Fernandez Bonder and Groisman [FG09], Dalang, Khoshnevisan and
Zhang [DKZ19] established the global solution with superlinear and locally Lipschitz coefficients
for the one-dimensional SHE on [0, 1] subject to the space-time white noise. In particular, they
assumed that

|b(z)| = O (|z| log |z|) and |σ(z)| = o
(
|z| (log |z|)1/4

)
. (1.6)

Foondun and Nualart [FN21] studied SHE with an additive noise, i.e., σ(·) ≡ const., and showed
that the solution to (1.1) blows up in finite time if and only if b satisfies the Osgood condition:

∫ ∞

c

1

b(u)
du < ∞ for some c > 0. (1.7)

Salins [Sal21] studied this problem for SHE on a compact domain in R
d under the following Osgood-

type conditions, which are weaker than (1.6): There exists a positive and increasing function
h : [0,∞) → [0,∞) that satisfies

∫ ∞

c

1

h(u)
du = ∞ for all c > 0

such that for some γ ∈ (0, 1/2) (which depends on the noise),

|b(z)| ≤ h (|z|) for all z ∈ R, and |σ(z)| ≤ |z|1−γ (h (|z|))γ for all z > 1. (1.8)

Extending the above results to the SHE on the whole space R
d with both superlinear drift and

diffusion coefficients is a challenging problem due to the non-compactness of the spatial domain.
Indeed, for the wave equation on R

d (d = 1, 2, 3), the compact support of the corresponding
fundamental solution can help circumvent this difficulty; see Millet and Sanz-Solé [MS21]. The aim
of this present paper is to carry out such extension by proving the following theorem:

Theorem 1.1. Assume the improved Dalang’s condition (1.3) is satisfied for some α ∈ (0, 1). Let
u(t, x) be the solution to (1.1) starting from u0 ∈ L∞(Rd)∩Lp(Rd) for some p > (d+2)/α. Suppose
that b and σ are locally Lipschitz functions such that b(0) = σ(0) = 0.

(a) (Global solution) If

max

(
|b(z)|
log |z| ,

|σ(z)|
(log |z|)α/2

)
= o(|z|) as |z| → ∞, (1.9)

then for any T > 0, there is a unique solution u(t, x) to (1.1) for all (t, x) ∈ (0, T ]× R
d.
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(b) (Local solution) If

max

(
|b(z)|
log |z| ,

|σ(z)|
(log |z|)α/2

)
= O(|z|) as |z| → ∞, (1.10)

then for some deterministic time T > 0, there exists a unique solution solution u(t, x) to (1.1)
for all (t, x) ∈ (0, T ] × R

d.

(c) In either case (a) or (b), the solution u(t, x) is Hölder continuous: u ∈ Cα/2−, α−
(
(0, T ] × R

d
)

a.s., where Cα1−, α2− (D) denotes the Hölder continuous function on the space-time domain D
with exponents α1 − ǫ and α2 − ǫ in time and space, respectively, for any small ǫ > 0.

Theorem 1.1 is proved in Section 3.

Remark 1.2 (Critical vs sub-critical cases). We call the case under conditions in (1.10) the critical
case and the one in (1.9) the sub-critical case. Dalang et al [DKZ19] established the global solution
for the critical case using the semigroup property of the heat equation. In this paper, we cannot
restart our SHE (1.1) to pass the local solution to global solution due to the fact that it is not
clear whether at time T , u(T, ·) as the initial condition for the next step is again an element in
L∞(Rd) ∩ Lp(Rd) a.s. This issue does not present for a continuous random field on a compact
spatial domain, which is the case in [DKZ19] and [Sal21].

Remark 1.3 (Regularity of the initial conditions). In [DKZ19], the initial condition u0 is assumed
to be a Hölder continuous function on [0, 1]. In contrast, in this paper, we only assume that
u0 ∈ L∞(Rd) ∩ Lp(Rd) for some large p. This is one example of the smoothing effect of the heat
kernel in the stochastic partial differential equation context. This improvement from a Hölder
continuous function to a measurable function is due to the factorization representation of the
solution (see (2.10) below). Similar arguments using this factorization have also been carried out
by Salins [Sal21].

Example 1.4 (Examples of b and σ in Theorem 1.1). (1) The function g(x) = x sin(x) for x ∈ R

is locally Lipschitz, but not globally Lipschitz, continuous with linear growth and g(0) = 0. Hence
Theorem 1.1 holds when either b or σ takes the form of g. (2) For the function ga,b(x) := |x|b loga(1+
|x|) for x, a, b ∈ R, it is easy to see that the conditions a+b > 0 and a+b ≥ 1 imply that ga,b(0) = 0
and ga,b is locally Lipschitz continuous, respectively. The growth condition of either (1.9) or (1.10)
makes the further restriction on the suitable choices of (a, b).

The extension given in Theorem 1.1 from a compact spatial domain to the entire space R
d

critically relies on the sharp moment formulas obtained in Theorem 1.5 below. These moment
formulas, as extensions of those in [CD15; CK19; CH19] to allow a Lipschitz drift term, constitute
the second and independent contribution of the paper. Indeed, when the drift term is linear, i.e.,
b(u) = λu, then one can work with the following heat kernel Gd(t, x) = pt(x)e

λt. However, when
b is a Lipschitz nonlinear function, the situation is much more trickier, especially if one wants to
allow rough initial conditions [CD15; CK19; CH19], namely, u0 being a signed Borel measure such
that

∫

Rd

e−a|x|2 |u0|(dx) < ∞ for all a > 0, (1.11)

where |u0| = u0,+ + u0,− and u0 = u0,+ − u0,− is the Jordan decomposition of the signed measure
u0. The existence and uniqueness of the solution u is proved in [Hua17] (the proof still works for
signed Borel measure). We will prove the following theorem:
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Theorem 1.5 (Moment formulas with a Lipschitz drift term). Let u(t, x) be the solution to (1.1)
and suppose that b and σ are globally Lipschitz continuous functions and the correlation function
f satisfies the improved Dalang’s condition (1.3) for some α ∈ (0, 1). Then we have the following:

(a) If u0 ∈ L∞(Rd), then for all p ≥ max
(
2, 2−6L−2

b Υ−1
α

)
, t > 0 and x ∈ R

d, it holds that

||u(t, x)||p ≤
(τ
2
+ 2 ||u0||L∞

)
exp

(
Ctmax

(
p1/α L2/α

σ ,Lb

))
, (1.12)

where ||·||p and ||·||L∞ denote the Lp (Ω)-norm and L∞(Rd)-norm, respectively,

τ :=
|b(0)|
Lb

∨ |σ(0)|
Lσ

, (1.13)

C = max
(
4, 26/α−1Υ

1/α
α

)
, and

Lb := sup
z∈R

|b(z) − b(0)|
|z| and Lσ := sup

z∈R

|σ(z) − σ(0)|
|z| . (1.14)

(b) If u0 is a rough initial condition (see (1.11)), then for all t > 0, x ∈ R
d and p ≥ 2,

||u(t, x)||p ≤
√
3 [τ + J+(t, x)] exp

(
Ctmax

(
p1/α L2/α

σ ,Lb

))
, (1.15)

where J+(t, x) := (pt ∗ |u0|)(x) and the constant C does not depend on (t, x, p, Lb, Lσ).

(c) If u0 ∈ L∞(Rd) ∩ Lp(Rd) for some p ≥ (2 + d)/α and if σ(0) = b(0) = 0, then for all t > 0,
∣∣∣∣∣

∣∣∣∣∣ sup
(s,x)∈[0,t]×Rd

u(s, x)

∣∣∣∣∣

∣∣∣∣∣
p

≤ ||u0||L∞ +C ||u0||Lp (Lb + Lσ) exp
(
Ctmax

(
p1/αL2/α

σ , Lb

))
, (1.16)

where ||·||Lp denotes the Lp(Rd)-norm and the constant C does not depend on (t, x, p, Lb, Lσ).

Remark 1.6. Part (a) of Theorem 1.5 can be derived from part (b) by noticing that J+(t, x) ≤
||u0||L∞ . However, we still keep part (a) due to the simplicity of its proof.

Using the moment bounds in (1.15), one can extend the Hölder regularity from the SHE without
drift (see [SS02] for the bounded initial condition case and [CH19] for the rough initial condition
case) to the one with a Lipschitz drift.

Corollary 1.7 (Hölder regularity). Let u(t, x) be the solution to (1.1) starting from a rough initial
condition (see (1.11)) and suppose that b and σ are globally Lipschitz continuous functions. If the
correlation function f satisfies the improved Dalang’s condition (1.3) for some α ∈ (0, 1). Then
u ∈ Cα/2−, α−

(
(0,∞) × R

d
)
a.s.

Parts (a), (b), and (c) of Theorem 1.5 are proved in Sections 2.1, 2.3, and 2.4, respectively.
Corollary 1.7 is proved in Section 2.5.

Finally, we list a few open questions for future exploration: (1) Theorem 1.1 cannot handle
either the constant one initial condition or the Dirac delta initial condition. It is interesting to
investigate if either global or local solution exists for these two special initial conditions. (2) Can
one improve Theorem 1.1 by relaxing the growth conditions in (1.9) and (1.10) to the Osgood-type
conditions in (1.8) as in [Sal21]?

In the rest of the paper, we prove Theorems 1.5 and 1.1 in Sections 2 and 3, respectively.
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2 Moment bounds with a Lipschitz drift term

2.1 The bounded initial data case – Proof of part (a) of Theorem 1.5

Proof of Theorem 1.5 (a): By Minkowski’s inequality,

||u(t, x)||p ≤(pt ∗ u0)(x) +
∫ t

0

∫

Rd

pt−s(x− y)
(
|b(0)| + Lb ||u(s, y)||p

)
dyds

+ zp

(∫ t

0

∫

Rd

∫

Rd

pt−s(x− y)pt−s(x− y′)
(
|σ(0)| + Lσ ||u(s, y)||p

)

×
(
|σ(0)| + Lσ

∣∣∣∣u(s, y′)
∣∣∣∣
p

)
f(y − y′)dydy′ds

)1/2

,

where zp is the constant coming from the Burkholder-Davis-Gundy inequality and zp ∼ 2
√
p as

p → ∞; see [CK12, Theorem 1.4] and references therein. For β > 0, consider the following norm

Nβ(u) := sup
(t,x)∈(0,∞)×Rd

e−βt ||u(t, x)||p .

Then we see that

e−βt ||u(t, x)||p

≤‖u0‖L∞ +

∫ t

0

∫

Rd

e−β(t−s)pt−s(x− y)

(
|b(0)| + Lb

(
sup

(s,y)∈(0,∞)×Rd

e−βs‖u(s, y)‖p
))

dyds

+ zp

(∫ t

0

∫

Rd

∫

Rd

e−2β(t−s)pt−s(x− y)pt−s(x− y′)

×
(
|σ(0)| + Lσ sup

(s,y)∈(0,∞)×Rd

e−βs ||u(s, y)||p

)2

f(y − y′)dydy′ds

)1/2

.

Hence,

Nβ(u) ≤ ||u0||L∞ +
1

β
(|b(0)| + Lb Nβ(u))

+ zp

(
(2π)−d

∫ ∞

0

∫

Rd

e−2βse−s|ξ|2f̂(ξ)dξds

)1/2(
|σ(0)| + Lσ Nβ(u)

)
.

By the improved Dalang’s condition (1.3) and by assuming that β > 1/2, we see that

(2π)−d
∫ ∞

0

∫

Rd

e−2βse−s|ξ|2 f̂(ξ)dξds = (2π)−d
∫

Rd

f̂ (dξ)

(2β + |ξ|2)1−α (2β + |ξ|2)α
≤ (2β)−αΥα.

Therefore,

Nβ(u) ≤ ||u0||L∞ +
Lb

β

( |b(0)|
Lb

+Nβ(u)

)
+ zp (2β)

−α/2 Υ1/2
α Lσ

( |σ(0)|
Lσ

+Nβ(u)

)
.

Now by choosing β large enough, namely,

β >
1

2
,

Lb

β
≤ 1

4
, zp (2β)

−α/2 Υ1/2
α Lσ ≤ 1

4
⇐⇒ β > max

(
4Lb,

1

2
,
1

2

(
16z2pL

2
σΥα

)1/α
)
,
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we form a contraction map, which can be easily solved:

Nβ(u) ≤ 2 ||u0||L∞ +
|b0|
2Lb

∨ |σ(0)|
2Lσ

.

Notice that zp ≤ 2
√
p, we have that

1

2
<

1

2

(
16z2pL

2
σΥα

)1/α ⇐⇒ 1/p < 64L2
bΥα.

Therefore, for all t > 0, when 1/p < min
(
64L2

bΥα, 1/2
)
, we can take

max

(
4Lb,

1

2

(
16(2

√
p)2L2

σΥα

)1/α
)

≤ max
(
4, 26/α−1Υ1/α

α

)
max

(
Lb, p

1/αL2/α
σ

)
=: β

to have that

||u(t, x)||p ≤
(
2 ||u0||L∞ +

|b0|
2Lb

∨ |σ(0)|
2Lσ

)
exp (βt) , for all t > 0.

This proves part (a) of Theorem 1.5.

2.2 A Gronwall-type lemma

Let us introduce some functions. For a, b ≥ 0, denote

ka,b(t) :=

∫

Rd

(af(z) + bt)G(t, z)dz = ak1,0(t) + bt. (2.1)

By the Fourier transform, this function can be written in the following form

k1,0(t) := (2π)−d

∫

Rd

f̂(dξ) exp

(
− t|ξ|2

2

)
. (2.2)

Define ha,b0 (t) := 1 and for n ≥ 1,

ha,bn (t) =

∫ t

0
ds ha,bn−1(s)ka,b(t− s). (2.3)

Let

Ha,b(t; γ) :=

∞∑

n=0

γnha,bn (t), for all γ ≥ 0. (2.4)

When we have a = 1 and b = 0, we will use k(t), hn(t) and H(t; γ) to denote k1,0(t), h
1,0
n (t) and

H1,0(t; γ), respectively. Note that this convention makes our notation in case of a = 1 and b = 0
consistent with those in [CH19], [CK19] or [BC18]. The following lemma generalizes Lemma 2.5 in
[CK19] or Lemma 3.8 in [BC18] from the case a = 1 and b = 0 to the case with general parameters
a and b.

Lemma 2.1. Suppose that the correlation function f satisfies Dalang’s condition (1.4). Then for
all a ≥ 0, b ≥ 0, and γ ≥ 0, it holds that

lim sup
t→∞

1

t
logHa,b(t; γ) ≤ inf

{
β > 0 : aΥ(2β) +

b

2β2
<

1

2γ

}
, (2.5)

where Υ(β) is defined in (1.4).
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Proof. Here we follow the arguments in the proof of Lemma 3.8 of [BC18]. In particular,

lim sup
t→∞

1

t
logHa,b(t; γ) ≤ inf

{
β > 0;

∫ ∞

0
e−βtHa,b(t; γ)dt < ∞

}
.

Notice that
∫ ∞

0
e−βtHa,b(t; γ)dt =

∑

n≥0

γn
∫ ∞

0
e−βtha,bn (t)dt

=
∑

n≥0

γn
[∫ ∞

0
e−βtka,b(t)dt

]n [∫ ∞

0
e−βtha,b0 (t)dt

]

=
1

β

∑

n≥0

γn
[
a

∫ ∞

0
e−βtk(t)dt+

b

β2

]n

=
1

β

∑

n≥0

γn

[
a (2π)−d

∫

Rd

f̂(dξ)

β + |ξ|2

2

+
b

β2

]n

=
1

β

∑

n≥0

γn
[
2aΥ(2β) +

b

β2

]n
,

where in the fourth equality we have used (2.2). The lemma is proved by noticing that

∫ ∞

0
e−βtHa,b(t; γ)dt < ∞ ⇐⇒ 2aΥ(2β) +

b

β2
<

1

γ
.

One may check the proof of Lemma 3.8 of [BC18] for more details. This proves the lemma.

Corollary 2.2. Suppose that the correlation function f satisfies the improved Dalang’s condition
(1.3) for some α ∈ (0, 1). Then for all a ≥ 0 and b ≥ 0, when γ > 0 is large enough, it holds that

lim sup
t→∞

1

t
logHa,b(t; γ) ≤ max

(
23/α (aCγ)1/α ,

√
2bγ
)
, (2.6)

where the constant C can be chosen to be

C = (2π)−d 2−α max

(∫

|ξ|≤1
f̂(dξ),

∫

|ξ|>1

f̂(dξ)

|ξ|2(1−α)

)
. (2.7)

Proof. Notice that for β > 0,

Υ(2β) = (2π)−d

∫

Rd

1

(2β + |ξ|2)α
f̂(dξ)

(2β + |ξ|2)1−α

≤ (2π)−d

(2β)α

(∫

|ξ|≤1

f̂(dξ)

(2β)1−α
+

∫

|ξ|>1

f̂(dξ)

|ξ|2(1−α)

)
≤ C

(
1

β
+

1

βα

)
,

where the constant C can be chosen as in (2.7). When γ is large enough, we may assume that
β > 1. Hence, in light of (2.6),

aΥ(2β) +
b

2β2
≤ 2aC

βα
+

b

2β2
.
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Therefore,

aΥ(2β) +
b

2β2
<

1

2γ
⇐=

2aC

βα
+

b

2β2
<

1

2γ

⇐=
2aC

βα
<

1

4γ
and

b

2β2
<

1

4γ

⇐⇒ β > 23/α (aCγ)1/α and β >
√

2bγ.

This proves the corollary.

2.3 Moment bounds for rough initial data – Proof of part (b) of Theorem 1.5

In this part, we extend the moment bounds obtained in [CH19] to allow a Lipschitz drift term.

Proof of Theorem 1.5 (b). Taking the p-th norm on both sides of the mild form (1.5) with p ≥ 2
and applying the Minkowski inequality, we see that

||u(t, x)||p ≤ J+(t, x) + Lb

∫ t

0
ds

∫

Rd

pt−s(x− y)

( |b(0)|
Lb

+ ||u(s, y)||p
)
dy + ||I(t, x)||p . (2.8)

By the Burkholder-Davis-Gundy inequality (see also a similar argument in the step 1 of the proof
of Theorem 1.7 of [CH19] on p. 1000), we see that

||I(s, y)||2p ≤4pL2
σ

∫ s

0

∫∫

R2d

ps−r(y − z1)ps−r(y − z2)f(z1 − z2)

×
√

2

(
σ(0)2

L2
σ

+ ||u(r, z1)||2p
)√

2

(
σ(0)2

L2
σ

+ ||u(r, z2)||2p
)
drdz1dz2.

Then by the sub-additivity of square root,

||I(t, x)||2p ≤8pL2
σ

∫ t

0
ds

∫∫

R2d

dy1dy2 pt−s(x− y1)pt−s(x− y2)f(y1 − y2)

×
( |σ(0)|

Lσ
+ ||u(s, y1)||p

)( |σ(0)|
Lσ

+ ||u(s, y2)||p
)
.

(2.9)

By the Cauchy-Schwartz inequality applied to the dt integral, the square of second term on the
right-hand side of (2.8) is bounded by

L2
b t

∫ t

0
ds

(∫

Rd

pt−s(x− y)

( |b(0)|
Lb

+ ||u(s, y)||p
)
dy

)2

.

Hence, by raising both sides of (2.8) by a power two and recalling that the constant τ is defined in
(1.13), we obtain that

||u(t, x)||2p ≤ 3J2
+(t, x) + 3L2

b t

∫ t

0
ds

(∫

Rd

pt−s(x− y)

( |b(0)|
Lb

+ ||u(s, y)||p
)
dy

)2

+ 24pL2
σ

∫ t

0
ds

∫∫

R2d

dy1dy2 pt−s(x− y1)pt−s(x− y2)f(y1 − y2)

×
( |σ(0)|

Lσ
+ ||u(s, y1)||p

)( |σ(0)|
Lσ

+ ||u(s, y2)||p
)

8



≤ 3J2
+(t, x) + 3

∫ t

0
ds

∫∫

R2d

dy1dy2 pt−s(x− y1)pt−s(x− y2)

×
(
8pL2

σ f(y1 − y2) + L2
b t
) (

τ + ||u(s, y1)||p
)(

τ + ||u(s, y2)||p
)
.

Now apply the same arguments as those in the proof of Theorem 1.7 of [CH19] with k(t) replaced
by k8pL2

σ ,L
2
b
(t) to see that

||u(t, x)||p ≤
[
τ +

√
3 J+(t, x)

]
H8pL2

σ ,L
2
b
(t; 1)1/2 .

In particular, if f satisfies the improved Dalang’s condition (1.3) for some α ∈ (0, 1), then by
Corollary 2.2, for all t > 0 and x ∈ R

d,

||u(t, x)||p ≤
√
3

[ |b(0)|
Lb

∨ |σ(0)|
Lσ

+ J+(t, x)

]
exp

(
Ctmax

(
p1/α L2/α

σ ,Lb

))
.

This proves part (b) of Theorem 1.5.

2.4 Uniform moment bounds – Proof of part (c) of Theorem 1.5

Proof of Theorem 1.5 (c). Fix arbitrary T > 0 and recall that α ∈ (0, 1) as in (1.3). The proof
relies on the factorization lemma (see, e.g., Section 5.3.1 of [DZ14]), which says that

u(t, x) = (pt ∗ u0)(x) + Ψ(t, x) + Φ(t, x), (2.10)

where

Φ(t, x) =
sin(πα/2)

π

∫ t

0

∫

Rd

(t− r)−1+α/2pt−r(x− z)Y (r, z)dzdr with

Y (r, z) =

∫ r

0

∫

Rd

(r − s)−α/2pr−s(z − y)σ(u(s, y))W (ds,dy)

and

Ψ(t, x) =
sin(πα/2)

π

∫ t

0

∫

Rd

(t− r)−1+α/2pt−r(x− z)B(r, z)dzdr with

B(t, x) =

∫ t

0

∫

Rd

(r − s)−α/2pr−s(z − y)b (u(s, y)) dsdy.

It is clear that

sup
(t,x)∈[0,T ]×Rd

|(pt ∗ u0)(x)|p ≤ ||u0||pL∞(Rd)
.

Step 1. In this step, we will show that

E

(
sup

(t,x)∈[0,T ]×Rd

|Φ(t, x)|p
)

≤ C ||u0||pLp(Rd)
Lp
σ exp

(
CTpmax

(
Lb, p

1/αL2/α
σ

))
. (2.11)

Let p and q be a conjugate pair on positive numbers, i.e., 1/p + 1/q = 1, whose values will be
determined below. By Hölder’s inequality, we see that

|Φ(t, x)| ≤ sin(πα/2)

π

∫ t

0
(t− r)−1+α/2 ||pt−r(x− ·)||Lq(Rd) ||Y (r, ·)||Lp(Rd) dr
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≤ C

∫ t

0
(t− r)−1+α/2−(1−1/q)d/2 ||Y (r, ·)||Lp

ρ(Rd) dr

≤ C

(∫ t

0
(t− r)(−1+α/2)q−(q−1)d/2dr

)1/q (∫ t

0
||Y (r, ·)||p

Lp(Rd)
dr

)1/p

,

where we have used the fact that ||pt−r(x− ·)||q
Lq(Rd)

≤ C(t− r)−d(q−1)/2 in the second inequality.

Hence, since

(−1 + α/2) q − (q − 1) d/2 > −1 ⇐⇒ p > (2 + d)/α,

we have

E

(
sup

(t,x)∈[0,T ]×Rd

|Φ(t, x)|p
)

≤ CT

∫ t

0
E

(
||Y (r, ·)||p

Lp(Rd)

)
dr

= CT

∫ t

0
dr

∫

Rd

dz E (|Y (r, z)|p) .

Notice that

||Y (r, z)||2p ≤ L2
σ

∫ r

0
ds

∫∫

R2d

dydy′ (r − s)−αf(y − y′)pr−s(z − y) ||u(s, y)||p
×pr−s(z − y′)

∣∣∣∣u(s, y′)
∣∣∣∣
p
.

Since b(0) = σ(0) = 0, by (1.15),

||u(s, y)||p ≤ C exp
(
CT max

(
Lb, p

1/αL2/α
σ

))
J+(s, y).

Combining the above three bounds shows that

E

(
sup

(t,x)∈[0,T ]×Rd

|Φ(t, x)|p
)

≤ C exp
(
CTpmax

(
Lb, p

1/αL2/α
σ

))∫ t

0
dr

∫

Rd

dz Ip/2(r, z)

with

I(r, z) :=

∫ r

0
ds

∫∫

R2d

dydy′ (r − s)−αpr−s(z − y)J+(s, y)f(y − y′)pr−s(z − y′)J+(s, y
′).

By the same arguments as the proof of Theorem 1.8 of [CH19] (see, in particular, the bound for
I1,1(t, x, x

′) on p. 1006 ibid.), we see that

I(r, z) ≤ J2
+(r, z)

∫ r

0

∫

Rd

e−
(r−s)s|ξ|2

r (r − s)−αf̂(ξ)dξds ≤ CJ2
+(r, z)

∫

Rd

f̂(ξ)dξ

(1 + |ξ|2)1−α
.

By Hölder’s inequality, we see that

∫ T

0
dr

∫

Rd

dz Jp
+(r, z) ≤

∫ T

0
dr

∫

Rd

dx p2r(x− z)

∫

Rd

dz|u0(z)|p = T ||u0||pLp(Rd)
.

Therefore,

E

(
sup

(t,x)∈[0,T ]×Rd

|Φ(t, x)|p
)

≤ CLp
σe

CTpmax
(

Lb, p
1/αL

2/α
σ

) ∫ T

0
dr

∫

Rd

dz Jp
+(r, z).
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Combining the last two inequalities proves (2.11).

Step 2. In this step, we will show that

E

(
sup

(t,x)∈[0,T ]×Rd

|Ψ(t, x)|p
)

≤ C ||u0||pLp(Rd)
Lp
b exp

(
CTpmax

(
Lb, p

1/αL2/α
σ

))
. (2.12)

By the same arguments as in Step 1, we see that

E

(
sup

(t,x)∈[0,T ]×Rd

|Φ(t, x)|p
)

= CT

∫ t

0
dr

∫

Rd

dz E (|B(r, z)|p) .

Notice that

||B(r, z)||p ≤ Lb

∫ r

0

∫

Rd

(r − s)−α/2pr−s(z − y) ||u(s, y)||p dsdy

≤ CLb exp
(
CT max

(
Lb, p

1/αL2/α
σ

)) ∫ r

0

∫

Rd

(r − s)−α/2pr−s(z − y)J+(s, y)dsdy

≤ CLb exp
(
CT max

(
Lb, p

1/αL2/α
σ

))
J+ (r, z)

∫ r

0
(r − s)−α/2ds,

from which we deduce (2.12). This proves part (c) of Theorem 1.5.

2.5 Hölder regularity – Proof of Corollary 1.7

Proof of Corollary 1.7. Denote the last two parts of right-hand side of (1.5) by B(t, x) and I(t, x).
One can use the same arguments as those in the proof of Theorem 1.8 of [CH19], but with the
slightly different moment formula (1.15), to show that I ∈ Cα/2−, α−

(
(0,∞) ×R

d
)
. It remains to

show that B ∈ Cα/2−, α−
(
(0,∞) ×R

d
)
. Now choose and fix arbitrary n > 1 and p > 2. For any

(t, x), (t′, x′) ∈ [1/n, n]× R
d with t′ > t, an application of the Minkowski inequality shows that

∣∣∣∣B(t, x)−B(t′, x′)
∣∣∣∣
p
≤ CLb

(
I1(t, x, x

′) + I2(t, t
′, x′) + I3(t, t

′, x′)
)
, with

I1(t, x, x
′) =

∫ t

0

∫

Rd

∣∣pt−s(x− y)− pt−s(x
′ − y)

∣∣ ||u(s, y)||p dsdy,

I2(t, t
′, x′) =

∫ t

0

∫

Rd

∣∣pt−s(x
′ − y)− pt′−s(x

′ − y)
∣∣ ||u(s, y)||p dsdy,

I3(t, t
′, x′) =

∫ t′

t

∫

Rd

pt′−s(x
′ − y) ||u(s, y)||p dsdy.

By the moment formula (1.15) and by setting µ(dz) := |u0|(dz) + τdz, we see that

I1(t, x, x
′) ≤ C

∫ t

0
ds

∫

Rd

dy

∫

Rd

µ(dz)
∣∣pt−s(x− y)− pt−s(x

′ − y)
∣∣ ps(y − z),

I2(t, t
′, x′) ≤ C

∫ t

0
ds

∫

Rd

dy

∫

Rd

µ(dz)
∣∣pt−s(x

′ − y)− pt′−s(x
′ − y)

∣∣ ps(y − z),

I3(t, t
′, x′) ≤ C

∫ t′

t
ds

∫

Rd

dy

∫

Rd

µ(dz) pt′−s(x
′ − y)ps(y − z).
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It is clear that µ is a rough initial condition, i.e., condition (1.11) is satisfied for µ. Denote
J0(t, x) = (pt ∗ µ)(x). It is straightforward to see that I3(t, t

′, x′) ≤ C(t′ − t)J0 (t
′, x′). As for I1

and I2, for any α ∈ (0, 1), by Lemma 3.1 of [CH19], we have that

I1(t, x, x
′) ≤ C|x− x′|α

∫ t

0

ds

(t− s)α/2

∫

Rd

dy

∫

Rd

µ(dz)
[
p2(t−s)(x− y) + p2(t−s)(x

′ − y)
]
p2s(y − z),

= C|x− x′|αt1−α/2
(
J0(2t, x) + J0(2t, x

′)
)
,

and similarly,

I2(t, t
′, x′) ≤ C(t′ − t)α/2

∫ t

0

ds

(t′ − s)α/2

∫

Rd

dy

∫

Rd

µ(dz) p4(t′−s)(x
′ − y)p4s(y − z),

≤ C(t′ − t)α/2J0
(
4t, x′

)
.

Combining the above bounds proves Corollary 1.7.

3 Proof of Theorem 1.1

Proof of Theorem 1.1. For N ≥ 1, let us consider the truncated stochastic heat equation:

uN (t, x) = (pt ∗ u0) (x) +
∫ t

0

∫

Rd

pt−s(x− y)bN (uN (s, y))dyds

+

∫ t

0

∫

Rd

pt−s(x− y)σN (uN (s, y))W (ds,dy) ,

(3.1)

where

σN (x) = σ

((
1 ∧ N

|x|

)
x

)
and bN (x) = b

((
1 ∧ N

|x|

)
x

)
. (3.2)

Recall that LbN and LσN
denote the growth rate; see (1.14). According to Theorem 1.1 of [Hua17],

there exists a unique solution {uN (t, x) : t > 0, x ∈ R
d} to (3.1). In the following, we will use C

to denote a generic constant that may change its value at each appearance, does not depend on
(N, t, x, ǫ), but may depend on (p, α).

Step 1. In this step, we will prove (a). For any T > 0 fixed, consider the following stopping time

τN := inf

{
t > 0 : sup

x∈Rd

|uN (t, x)| ≥ N

}
∧ T .

Noticing that for all M ≥ N , we have that τN ≤ τM and

uN (t, x) = uM (t, x) a.s. on (t, x) ∈ [0, τN )× R
d,

we can construct the solution u(t, x) via

u(t, x) = uN (t, x) , for all N ≥ 1 and (t, x) ∈ [0, τN )× R
d. (3.3)

From the definition, it is clear that on 0 ≤ t ≤ τN ,

bN (uN (t, x)) = b(uN (t, x)) = b(u(t, x)) and σN (uN (t, x)) = σ(uN (t, x)) = σ(u(t, x)).
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By the Chebyshev inequality and the moment formula (1.16),

P (0 ≤ τN < T ) = P

(
sup

(t,x)∈[0,T ]×Rd

|uN (t, x)| ≥ N

)
≤ 1

Np
E

(
sup

(t,x)∈[0,T ]×Rd

|uN (t, x)|p
)

≤ C

Np

(
||u0||pL∞ + C ||u0||pLp (LbN + LσN

)p exp
(
CpT max

(
LbN , p

1/αL2/α
σN

)))
. (3.4)

The sub-critical conditions in (1.9) implies that

LbN = o (logN) and LσN
= o

(
(logN)α/2

)
,

which ensure that above probability in (3.4) goes to zero as N → ∞. Therefore, by sendingN → ∞,
we see that u(t, x) is well defined on (0, T ] × R

d. The uniqueness is inherited from the uniqueness
of uN (t, x) in (3.1).

Step 2. Now we prove part (b), the proof of which is similar to that of part (a). Fix an arbitrary
T0 > 0. Denote

τN := inf

{
t > 0 : sup

x∈Rd

|uN (t, x)| ≥ N

}
∧ T0 .

We claim that

lim
N→∞

P (0 ≤ τN < T ) = 0 , for some non-random constant T > 0. (3.5)

Indeed, for all ǫ > 0, by replacing T by ǫ in (3.4), we see that

P (0 ≤ τN < ǫ) ≤ C

Np

(
||u0||pL∞ + C ||u0||pLp (LbN + LσN

)p exp
(
Cpǫmax

(
LbN , p

1/αL2/α
σN

)))
. (3.6)

By the critical conditions in (1.10), for some C > 0,

LbN ≤ C logN and LσN
≤ C(logN)α/2.

Hence, when ǫ is small enough, by plugging the above constants into (3.6), we see that the proba-
bility in (3.6) goes to zero as N → ∞. Therefore, by choosing any positive constant T ∈ (0, ǫ), we
prove the claim (3.5). The uniqueness is proved in the same way as the proof of part (a).

Step 3. Finally, the Hölder continuity of the solution of u inherits that of uN thanks to their
relation given in (3.3), where the Hölder regularity of uN with given exponents is proved in Corollary
1.7. This completes the proof of Theorem 1.1.
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