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Scaling limits and fluctuations of a family of
N-urn branching processes
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Abstract: In this paper we are concerned with a family of N-urn branching processes,
where some particles are put into N urns initially and then each particle gives birth to
several new particles in some urn when dies. This model includes the N-urn Ehrenfest
model and the N-urn branching random walk as special cases. We show that the scaling
limit of the process is driven by a C(T)-valued linear ordinary differential equation and
the fluctuation of the process is driven by a generalized Ornstein-Uhlenbeck process in the
dual of C*°(T), where T = (0, 1] is the one-dimensional torus. A crucial step for proofs of
above main results is to show that numbers of particles in different urns are approximately
independent. As applications of our main results, limit theorems of hitting times of the
process are also discussed.
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1 Introduction

In this paper we are concerned with a family of N-urn branching processes. We first intro-
duce the model. Initially, some particles are put into N urns, where N > 1 is an integer.
Let T = (0,1] be the one-dimensional torus and {Ax}r>0,{¥r}r>0 be positive functions
such that A\, € C*°(T?) and ¢, € C°°(T) for all k£ > 0, then our model evolves according to
following two rules.

1) For any 1 <4 # j < N and k > 0, each particle in the ith urn dies and meanwhile
gives birth to k& new particles in the jth urn at rate %/\k (%, %)

2) For any 1 <4 < N and k > 0, each particle in the ith urn dies and meanwhile gives
birth to k& new particles in the ¢th urn at rate ¥ (%)

Let X;(¢) be the number of particles in the ith urn at moment ¢ and
Xy = (X4(1), X¢(2), ..., Xi(N)),

then our N-urn branching process {X;};>0 is a continuous-time Markov process with sate
space
X={0,1,2,....}".

For any © € X and 1 <14 < N, we use z(i) to denote the ith coordinate of x. For any

*E-mail: 20121634@bjtu.edu.cn Address: School of Mathematics and Statistics, Beijing Jiaotong Uni-
versity, Beijing 100044, China.

TE-mail: xfxue@bjtu.edu.cn Address: School of Mathematics and Statistics, Beijing Jiaotong Univer-
sity, Beijing 100044, China.


http://arxiv.org/abs/2208.03874v1

reXk>0and 1 <i#j<N. we use ng’j) to denote the configuration in X such that

- (1) if 1 #14,7],
2y = ai)y -1 ifl=1,
x(j) + ifl=y
forall 1 <! < N. For any z € X,1 < i < N and integer k, we use z} to denote the

configuration in X such that

i Jx() if 1 # 4,
(l)_{x(i)—l—k ifl =i

for all 1 <1 < N. According to the definition of {X,};>0, the generator £ of {X;};>¢ is
given by

+o0o N N . o
¥ L LD () (el - )
+oo N

£ Y3 atin (37) Uk - 1) )

k=0 i=1

for any v € X and f from X to R. From now on, to distinguish different N, we write X,
and £ as XY and Ly respectively.
In this paper we assume that

sup Zk2+€°)\k(u v suka2+€°¢k( ) < +oo
u,veT k>0 u€eT k>0

and Y, oo KT, € C%(T?), 3050 K04y € C(T) for some o > 0.

Example 1 Ehrenfest models. If Ay, = 0 and ¢, = 0 for all k¥ # 1, then our model
reduces to the N-urn generalized Ehrenfest model (see [I] and [8]), where particles perform
independent random walks between N urns such that a particle in the ith urn jumps to the
jth one at rate N/\1 (N, N)

Example 2 Branching random walks. If Ay = 0 for all £ £ 1, then our model reduces
to the N-urn branching random walk, which also includes the Ehrenfest model as a special
case. In the branching random walk, each particle jumps between N-urns and eventually
dies in a urn and meanwhile gives birth to some new particles in the same urn.

In [8], limit theorems of empirical density fields of N-urn generalized Ehrenfest models
are given, which we will extend to the branching process case in this paper. That is to say,

we will give law of large numbers and central limit theorem of Zi\;l XN(i)o i (du), where
dq(du) is the Dirac measure concentrated on a. Inspired by Section 11.4 of [2], we also
consider limit theorems of hitting times of {X}¥},>0 as applications of our main results. For

mathematical details, see Section
In the special case where A\, = 0 for all k # 1 and 1, = ¢ for some ¢ € [0, +00) for all

k > 0, the total number NN = El L XN (i) of particles is an example of density-dependent
Markov chains introduced in [3] such that

N
N —>/\/'N—i-k—1a‘cra‘ceNﬁ;C (A]/;] )

for all k > 0, where 4 (u) = gru. Then limit theorems of N}V are applications of main theo-

rems given in [3] and Chapter 11 of [2]. Since A}V can be considered as ZZ L XN i)6.i (f) for

f = 1, we can revisit limit theorems of NV according to our main results. For mathematical
details, see Section



2 Main results

In this section we give our main results. First we introduce some notations and definitions
for later use. For any a,b € R, we use N(a, b?) to denote the normal distribution with mean
a and variance b?. For any integer m > 1, we use || - ||« to denote the lo-norm on C(T™),

ie.,
[flloc = sup [f(u)
ueT™

for any f € C(T™). We use || - ||2 to denote the lp-norm on L?(T™) for any integer m > 1,

i.e.,
2
= d
= [ 7
for any f € L*(T™).

For any integer m > 1, we use S, to denote the dual of C°°(T™) endowed with weak
topology, i.e., m,, — 7 in S, if and only if

lim 7, (f) = n(f)

n—-+oo

for all f € C°°(T™). For simplicity, we write S; as S. For integers m,k > 1 and any
continuous linear operator R from C°°(T™) to C*°(T*), we use R* to denote the adjoint
operator of R, i.e., R* is a continuous linear operator from Sy to S,, such that

(R*m)(f) = m(Rf)

for any m € S and f € C°°(T™). For any t > 0, we define

I O

where 6, (du) is the Dirac measure concentrated on a, i.e., pl¥ is in the dual of C(T) and
hence a S-valued random variable such that

- < iXtN(i)f (%)

for any f € C(T). We define P1, P2 as continuous linear operators from C(T) to C(T) such
that

2‘

+o0 400
Puf)w) = [ 3 Ml 0)(e7 () = Fl)do -+ £ 3k~ Do)
T =0 k=0
and
+o00 too
(P2f)(u) = f(U)Z( — D)t (u /Zk)\k (v,u) f(v)dv — (U)/Z)\k(u,v)dv
k=0 T k=0

for any uw € T and f € C(T). Note that Py, P, are continuous since

+oo +oo
[Pifllee < ( > (E+ DA > (k+ 1) ) /1l (2.1)
k=0 oo k=0 o)




for any f € C(T). By Equation (ZI), for any ¢ > 0 and ¢ = 1,2 it is reasonable to define
et as
+oo tkplk

tP; __
e
k!

k=0

Since 3,5 2T\, € C°°(T?) and SOpS ey, € O°°(T), it is easy to check that P; and
e'Pi are also continuous linear operators from C*(T) to C°°(T) for i = 1, 2.

Throughout this paper we adopt the following initial assumption.

Assumption (A): {X{'(i)}1<i<n are independent and XY (i) follows the Poisson dis-
tribution with mean ¢ (%) for all 1 <7 < N, where ¢ € C>°(T).

Now we can give our first main result about the law of large numbers of {u };>o.

Theorem 2.1. Under Assumption (A),

i N = w) f(uw)du
lim ¥ (f) = / pu(w) f (w)d

N —+o00
in L* for any t > 0 and f € C(T), where {pi}+>0 is the unique solution to the ordinary
differential equation
{ %pt - Pthv (22)
po=¢
on C(T) endowed with the norm || - ||oc-

Remark 2.1. By Fquation (1)), Fquation (Z2) satisfies the global Lipschitz’s condition.
Hence, the unique solution {p;}i>0 to Equation [2.2) is given by

pr =€

according to Theorem 19.1.2 of [3]. Furthermore, let p,(du) = py(u)du, then {u}i>0 is the
unique element from [0,400) to the dual of C(T) such that

(f) = / $(u) f (u)du + / 1a(PLf)ds

for any t >0 and f € C(T) according to the exchange of integration order.

By Theorem 21} the scaling limit of X/, i.e., law of large numbers of the empirical
density field u¥ (du), is driven by a C(T)-valued linear ordinary differential equation. It is
natural to further discuss the fluctuation of X}V, i.e., the central limit theorem from above
law of large numbers of ;. Hence, for any ¢ > 0 we define

- . )
V) = 7 3 (X0~ X)) 8 .

2|~

where EE is the expectation operator. For some technical reasons we consider V," as random
elements in S, i.e.,

N 1 & Ny Ny i
V(D) = = 30 (N0 - ExY () /1)

for all f € C°°(T). Then for any T' > 0, {V,N }o<i<r is a random element in D (0,77, S),
where D ([0, T, S) is the set of cadlag functions from [0, T'] to S endowed with the Skorokhod
topology.



To state our main result about the fluctuation of X}V, we need introduce some notations
and definitions as preliminaries. For any s > 0, we use A to denote the continuous linear
operator from C*°(T) to C*°(T) such that

+oo
(A (w) = | > (k= 1)20k (u)/ps(u) f(u
k=1

for any w € T and f € C°°(T), where p; is the unique solution to Equation ([22)). Note
that p; € C°°(T) since €' is from C*°(T) to C*°(T) and p; = e¢'72¢ as we have shown in

Remark 21} For any s > 0 and k > 0, we use U¥ to denote the continuous linear operator
from C°°(T) to C*°(T?) such that

(U £)(u,0) = VA, 0)y/ ps(u) (kF () = f(u))

for any w,v € T and f € C°°(T). We use {B;s}s>0 to denote the standard Brownian motion
on L?(T) such that {Bs(f)}s>0 is a real-valued Brownian motion with

Cov (Ba(f), Ba(/)) —stHz—s/f

for any s > 0 and f € C°°(T). Similarly, we use {Ws}s>0 to denote the standard Brownian
motion on L?(T?) such that {Ws(f)}s>0 is a real-valued Brownian motion with

Cov WP W) = sl 71 = s [ F(u0)dud

for any s > 0 and f € C°°(T?). Let {WF : ¢t > 0}x>0 be independent copies of {W, : t > 0}
and be independent of {B; : ¢ > 0}, then for any 7' > 0 we introduce the definition of the
following S-valued Ornstein-Uhlenbeck (O-U) process {V;}o<i<r:

dVi = PiVidt + AfdB, + 3,20 (UF) " dW) for 0 <t < T, (2.3)
Vo is independent of {B;}i>0 and {Wt : t > 0}k>o. '

We define the solution to Equation (23] as the solution to the martingale problem with
respect to Equation (23). In detail, according to an analysis similar with that leading
to Theorem 1.4 of Eﬂ when the distribution of Vj is given, there exists a unique random
element {V;}o<i<7 in D ([0,T],S) with following two properties.

1) For any f € C(T), {Vi(f)}o<t<r is continuous in ¢.

2) For any G € C°(R) and f € C=(T),

{G(Vt(f))—G(Vo(f)) / G (Va(f)) Vi (Prf) ds

3 [ew <||A f|2+Z|U’“f||2> ds}
0<t<T
is a martingale.

We define the above {V,}o<;<7 as the unique solution to Equation ([Z3). Now we can
give our second main result, which is about the fluctuation of X}V.

Theorem 2.2. Under Assumption (A), {V,N }o<i<T converges weakly to {V;}o<i<r as N —
+oo for any T > 0, where {V;}o<i<r is the unique solution to Equation (Z3)) with Vo(f)
following normal distribution N (0, [ ¢(u) f*(u)du) for all f € C>(T).



Remark 2.2. Since €™ is a continuous linear operator from C>(T) to C°°(T), (e!P1)* is
well-defined. Furthermore,

(etP1)* _ +§ tk(Pf)k

kKl
k=0
which can be formally written as e'F1. Hence it is also reasonable to define the solution V;
to Equation [2.3) as
Vi =eP1Vp + / e IPL A B+ / e=PL (kY AWk, (2.4)
0 k=

An important and natural question is whether above two definitions of Vi are equivalent. The
answer is positive since the analysis leading to the uniqueness of the solution to the mar-
tingale problem gives Fourier transforms of the distribution of this solution, which coincide
with Fourier transforms of the distribution of V; given by Equation 24l). For mathematical
details, see the proof of Theorem 1.4 of [{)] or a similar analysis given in Appendiz A.2 of [§)].

By Theorem 2 the fluctuation of X}V is driven by a S-valued O-U process. By Remark
221 we have the following corollary of Theorem

Corollary 2.3. Under Assumption (A), VN (f) converges in distribution to N (0,02(f)) as
N — 400 for any t >0 and f € C=(T), where

/¢ t7>1f (u)du + /Ot HASe(t_S)Plf

2 2 ot 2
e 3 [ e o
2 =0 0 2

Remark 2.3. Theorems[21] and[2.2 extend results about scaling limit and fluctuation of the
N-urn Ehrenfest model to the branching process case. The main new difficulty in the branch-
ing process case is that the total number of particles is not conserved, which makes several
techniques given in [8] for the Ehrenfest model not feasible for the branching process case.
For example, it is easy to show that numbers of particles in different urns are uncorrelated
in the Ehrenfest model by introducing fixed number of indicator functions recording positions
of every particles. However, in the branching process case new particles are born randomly
and then the proof of approximated independence between numbers of particles in different
urns follows from a totally different approach, where covariance of numbers of particles in
two different urns is bounded by the difference of respective solutions to two different linear
ordinary differential equations. For mathematical details, see Section[3.

As applications of our main result, we discuss limit theorems of hitting times of u¥. For
given f € C°°(T) and r > [ f(u)¢(u)du, we define

Ny =inf{t: p(f) >r}.
Let pt(du) = pt(u)du as we have defined in Remark [Z], then we define

frg = inf{t s ) =r}.
We have the following result about law of large numbers and central limit theorem of Tfyf.
Theorem 2.4. If 7,y < 400 and pr, ; (P1f) >0, then ™ ‘¢ converges to T,y in probability

and N
\/N (T"'vf — Trﬁf)

()

’W) wn distribution as N — 4o00.
s

converges to N (



Remark 2.4. As we have introduced in Remark 2],

Snll) = m(PL).

Hence, if f € C°°(T) makes puo(P1f) > 0, then there exists Ty > 0 such that us(P1f) >0
for s € [0,To] and p(f) is increasing in t € [0,Tp]. Let r € (po(f), pr, (f)), then (f,r)
satisfies the assumption in Theorem [2].

The remainder of this paper is organized as follows. As a preliminary for proofs of main
theorems, in Section 3] we show that numbers of particles in different urns are approximately
independent as N — 400, which is the main difficulty in our proofs. Proofs of Theorems
21 and are given in Section @l With the approximate independence between numbers
of particles in different urns given in Section B, Theorem 2.1 follows from a mean-variance
analysis and Theorem [2.2] follows from a martingale strategy. Proof of Theorem 2.4]is given
in Section Bl According to the fact that quf(f) ~ pr, ;(f), the central limit of TT{Yf can

be related to fluctuation of {uf};>0. As applications of our main results, in Section
we revisit a special case which reduces to a density-dependent Markov chain. We apply
our main results to give new proofs of limit theorems of total particles number which are
corollaries of main theorems given in [3] and Chapter 11 of [2].

3 Approximate independence

In this section we prove the following lemma.

Lemma 3.1. For anyt > 0, there exists C; = C1(t) < +o0 independent of N such that

. . Cy
|Cov (XN(1), XN (5))] < N

forall N >1,1<i#j< N and0<s<t.

For the Ehrenfest model case, it is not difficult to show that Cov (X2 (i), XN (5)) =0
for i # j under Assumption (A) according to the fact that >.7% XN (i) = S5 XV (i). For
the branching process case, new particles are born randomly and hence we only have Lemma
Bl which is a weaker conclusion that covariance of numbers of particles in two different
urns is O(N 1),

As a preliminary for the proof of Lemma[B.l we introduce some definitions and notations.
For a finite set A, we call a function from A? to R a A x A matrix. For any two A x A
matrices My, My, we define My Ms as the A x A matrix such that

My My(k,1) = > M (k,m)Ma(m,1)
meA
for any k,I € A. Then for a A x A matrix M, ¢ > 0 and any inter n > 2, we define
M?=MM, M™ = M™'M for n > 3 and
+oo
otM th
k!

k=0

Furthermore, for a A x A matrix M and function H from A to R, we define M H as the
function from A to R such that

MH(k) = > M(k,m)H (m)
meA



for all k € A. Let TN = {1,2,..., N}, then we define TN, T'N as functions from (TV)? to R
such that .
L7 (i) = EX (EXE () and TY (G, 5) = E (X (5) X, (7))

for all i,j € TVN. As a result,
Cov (X¥(0), X{¥ (7)) = T (i,4) = Te(i, )
for all i, j € TV. Now we give the proof of Lemma 311

Proof of LemmalZl According to the generator Ly of {X}¥}:>¢ given in Section [l and
Chapman-Kolmogorov equation, for ¢t > 0 and 1 <7 < N,

L) - - BN ZZA(’%) S ET o (Fy) B

N
k=0 j#i k=0 j#i
+EXgV(> Do (). (31)

As a result,

d
Sy = MYy

and hence T'NV = MY TN where MY is a (TV)? x (TV)2 matrix such that

MY (i, ') (w,m)) =

Jif k= Ok)\k(%,%) if 1 £ j,w # 1 and m = j,
N Do Ok)\k(%,%) 1fz7éj,w—zandm7éj,‘
NZ Zl;ﬁz)‘k (%’W) NZ Zl;ﬁj)\k (% %)
+Zk o( —Dn (%) + 2otk — Doy (%) if i # j and (w, m) = (i,7),
—2 Y (e §)+2z (k= 1) (&) i i=jand (w,m) = (i,7),
J{, kok)\k(% %) ifi=j,w=#1iand m =1,
LSk (=, L) ifi=j,w=1iand m#1,
0 else.

Similarly, according to the generator £y and Chapman-Kolmogorov equation,

CE (XN )XV ()
+o0o iJ
_ /\k(JNV’N)E(XtN()( XN () + kXN (@) - k)
k=0
f”k(i’%)mxy()( XN (@) + kXN (G) — k)
k=0
_E(XtN(i)XtN(j))fZ)\k(i L)_E(XN ' ZZAk(i )
N N'N N’
k=014, k=0 1#£i,]
- FE X OXYG) ' XN(Z)) I
+kzz N ( N) ZZ A’“(N’N)
0140, k=0 1#1i,5

+o0 . +oo ;
2= DE (P OXT ) o () + 0= DB OX ) (4

k=0 k=0



for i # j and

%E((XW)
:—ZZ < ) (XN () (—2xV (i) + 1))
1#i k=0
1 <X 1 No o
+NZZ)\1€ (N’N)E(Xt () (2kXt (i) + K ))
1#i k=0
+00 i
+ <N> E (XY (i) (2(k — DX (@) + (k — 1)?)) .
k=0

Then, since X (i) < (XtN(z))2 forall1 <i <N,
AN don,. . AN

for any 1 <i,j < N, where MY, MY are (T™V)? x (TV)? matrices such that

M, ((lvj)v(wvm)) =
+ EZ)M’“(%’%—) if i # j,w #4,j and m = j,
%1 szolz)\k(%,%) ifi;«éj,w—iandm;éij,
N kfgozl;ei)‘k(%vﬁ) NZ Zl;ﬁj)‘k(N’N)
+zf:0<k—1>wk(ﬁ)+z Sk~ D (%) if i # j and (w,m) = (i, ),
— % Yico i M (3 L) £INFS k= i (4) i i = and (w,m) = (i),
= :z?)k)\k(%,%) if i =4, w+#iand m =1,
LSS kA (=, L) ifi=j,w=1iand m #1,
0 else
and
M3 (i, 7)., (w,m))
]{, kok)‘k(%v%) if i # j,w # i and m = j,
]{, kok)\k(ﬂ,%) 1f17éj,w—zandm7é], 1
NZ Zz;&z)‘k (%vﬁ)—_z Zl;éj)‘k‘(N’N)
+E “ok 1)1/%(%2 Salolk = D (&) it i #jand (w,m) = (i, ),
NZ Zz;&z)‘k(% ~) ‘
+ 300 (2(k - 1)+ (k- D) (%) if i=j and (w,m) = (i,1),
§ TR (5 4) =g imdmes
i ,j;gk)\k(%,%) ifi =j,w=1and m# i,
Do kB (%, %) ifi=jand w=m#i,
0 else
Since MY ((i,7), (w,m)) > 0 when (w,m) # (i, j) for [ = 2,3, we have
N BN o N
AN (i,7) ST, 5) < Ay (0, 4)



for alli,j € {1,2,..., N}, where Kiv is the solution to
—N —N
{ %A/,\t = MéVAt )
and AY is the solution to
{ %NA]{V = MYAY,
Ao = 1—\6\7,
ie., Kﬁv = etMévf‘év and AN = etMévf‘éV. As a result, for 4,5 € {1,2,..., N} and any ¢ > 0,
= e ) - T )| (3.3)

) . Nan, . . N .
< Cov (XY (1), XN () < [ BN (1, 5) — T (0, g)

To bound lower and upper bounds in the above inequality, we point out some properties of
MY for I = 1,2,3. According to definitions of M}¥ for | = 1,2, 3, there exists Cy < 400
independent of N such that

MY H (i, j)| < ColH (i, )] (3.4)

for any H from (TV)2 to R, [ =1,2,3 and 1 <4,j < N. For any i # 7,
card {(w,m) : M ((i,5), (w,m)) #0} <3N (3.5)

for I = 1,2, 3, where card(A) is the cardinality of set A. For any i # j and [ = 2,3,

card {(w,m) = M ((i,7), (w,m)) # MY (7, ), (w,m))} < 2. (3.6)
For any i # 7,
MY ((5y9), (i,5)) = MY ((i.5), (,)) = M5 ((3..9), (i, 1)) - (3.7)
There exists C's < +o00 independent of N such that
MY (G9), w,m))]| < S (39)

for any 1 < 4,5 < N, (w,m) # (i,j) and I = 1,2,3. There exists Cy < 400 independent of
N such that N
| MY ((3,5), (5, 5))] < Ca (3.9)

forany 1 <1i,5 < N.
Now we bound the upper bound in inequality (33)) from above. For integer k > 0, let
kAN, k . .,
G = sup { | (M3) TN (1,9) — (M) T )|+ 1<i 25 < Y,
then ¢} = 0 according to Assumption (A). Since

(MO TEN G ) = S0 MY (), (w,m) (M) T (w,m)
(w,m)
and )k+1

(MO TN ) = S0 MY (), (w,m) (M) TN (w,m),

(w,m)

10



by Equations ([B4]) to (B3] we have

4C5

CyCk
&y <y +3nS G+ =708 (19112 + 19]10) = Cs¢lY + =2

N )

where C5 = Cy + 3C3 and Cg = 4C5 ([|¢]|2, + [[¢]lsc)- Since ¢}’ = 0, by induction,

Co 0! congkmtom 06(02+C5)k*1
N = N

G <
for k > 1. As a result, for i # j,

P Cegt
etMéVFév(Z',j) _ etMivFéV(i,j) < Wﬁet(c2+05),

According to a similar analysis, the above inequality still holds when we replace M2 by
MY . Therefore, Lemma Bl holds with C; = Cy(t) = Cgtet(©2+C5),

O
4 Proofs of Theorems 2.1 and
In this section we prove Theorems 2] and
Proof of Theorem [Z1l By Equation (3.4)),
1
EX{ () = (T (1.4)) < e3¢ (4.1)
and
Var (XM () < TN i) < s TN()) (42)
1<i,j<N
= sup E(X]N()X () < e (I9ll% + 1 0lloc)

1<i,j<N

for any 1 <i < N and ¢t > 0. Hence, for f € C(T),

Var (1) < M1 ZV )+ e 5 o (), 20

i#]

e (o3 + H¢>||oo) ||f||§o L Gi@ISIE

< N N — 0

as N — 400 by Equation (£2)) and Lemma Bl As a result, by Chebyshev’s inequality, to
prove Theorem 2] we only need to show that

Jim @ () = () (4.3)

for any f € C(T), where pu:(du) = pe(u)du as we have defined in Section 2l and

ZEXN 0 (du).

11



For u € T and ¢t > 0, we define p)(u) = EX{¥(i) when 1 < u < £ for some i €
{1,2,...,N}. By Equations B1]) and @I,

DN () — P ()

et | ds

0<s<t,u€T

=O(N™h.

Since ¢ € C(T), [|po — pd [|loc = O(N ™). As a result, according to the fact that % p,(u) =
Pth(u)a

wyﬂwmsmNﬂ+/n%wﬂw%mm
0

for 0 < s < t, where O(N~1) can be chosen uniformly in s € [0,¢]. Since

+oo +oo
[P2flloe < < Yok + > (k+ D ) £l
k=0 0o k=0 00

for any f € C(T), by Grownwall’s inequality we have

+oo +oo
o = pilloc < O(N™!)exp {t< Doy A+ Dok + 1A )} (4.4)
k=0 oo k=0 00

Equation (@3] follows from Equation ([@4]) and the proof is complete.

As a preliminary for the proof of Theorem 2.2l we need following two lemmas.
Lemma 4.1. For any T >0, {VYN : 0<t < T}n>1 are tight.
Lemma 4.2. For any e >0 andt > 0,

lim P < sup |l (f) — pd (f)] = %) =0,

N—+o0 0<s<t T N,

where s— is the moment just before s, i.e., ¥ (f) = limy<s s u (f).

Lemma FT] ensures that {V,¥ : 0 <t < T}xy>1 has weakly convergent subsequence.
Lemma 2] ensures that any weak limits of {uY(f): 0< s <t}n>1 and {VN(f): 0<s<
t}n>1 are continuous. This lemma is trivial in the Ehrenfest case where p (f) — p¥ (f) =
O(N~1).

Proof of Lemma[{.1} By Aldous’ criterion and Theorem 4.1 of [6], Lemma ] follows from
following two Equations.

(1) For any ¢t > 0 and f € C*(T),

lim li P(IVN(f)| = M) =o0. 4.5
ym tim sup P[VE(f)] > M) (4.5)

(2) For any € > 0 and f € C°(T),

limlimsup sup P(|V,%,(f) = VN ()| >¢€) =0, (4.6)
020 N 400 vET,5<5

where T is the set of stopping times of { X} };>0 bounded by T.
By Lemma Bl and Equation (£2)),

E((V¥()*) =0

12



and then Equation ({3 follows from Markov’s inequality.
We define

t
TN = V() + / (Cx +0)VN(f)ds and =N = V() - TV,

then to prove Equation (£0) we only need to show that

limlimsup sup P(|Y, (f) =YY (f)] >€) =0 (4.7)
0—0 N—s+4oo veET,s<68

and

lim limsup sup P(|HU+S(f)—Ef)V(f)| >€) = 0. (4.8)
0—0 N—+4o0 veT,s<68

According to the definition of Ly,

(L +0.) V; >33 ( CEXN(0) M (% %) (kf (%) iy (%))
N +oo N N (; i k—l)f(i> (4.9)
ZkZX EXt())wk(N)( )
Hence, by Equations ([@2]), (£9) and Lemma Bl we have
o E((Lv ) v i)*) = o) (4.10)
Since T+1
(|Tu+s( ) — <5/ EN-I—(?) (f))z) ds

for 6 < 1 and s < ¢ according to Cauchy-Schwarz inequality, Equation (7)) follows from
Markov’s inequality and Equation (£I0).

According to Dynkin’s martingale formula, {ZN }i>0 is a martingale with quadratic vari-
ation process

&= [ (ex (020)) -2 eV (1) s

According to the definition of Ly,

Therefore, by Equation (£2),

sw B (e (3 0)) -2 e () ) o @y

0<s<T+1

13



By Cauchy-Schwarz inequality,
E (|20 () —EY (A7) =E(EN)urs — (E¥))
e ([ (v (2 007) -2 e ) av)

< \/ 3[R ((ex (007 - e ) ) as

for 0 < 1 and s < 6. Therefore, Equation (L)) follows from Markov’s inequality and
Equation (£IT]). Since Equations (1) and (@8] hold, Equation (&) holds and the proof
is complete.

O

Proof of Lemma[f-3 For each integer k > 1, let J» be the number of moments in [0, ]
when some particle dies and meanwhile gives birth to k£ new particles, then to complete the
proof we only need to show that

lim P JN>1| =o0. 4.12
MUY D DI (1.12)
kZEN8+450

For M > 0, conditioned on supg<g<; va_l XN(@) < MN, Y sreo JIY is stochastic
ST k>eN 5F3c0

dominated from above by Y (C&¥ M Nt), where {Y (t)};>0 is the Poisson process with rate 1
and

=l X M+ X o
4+e 4+e
kZN 8+4eq ¢ o kZN 8+4eq ¢ .
Since
k2+ao k2+€0
N
7 = Z 44eq 2+e0 Ak + Z 44eq 2+e0 Yk
4+¢€ 8+4e 4+¢€ 8+4e
k>N8++45005 (N i 06) k>N8++45005 (N ’ 06) IS
I e
N1+ 1 €2+60
by Markov’s inequality we have
( S ¥ =1 sup ZXN <MN>
0<s<t
k>eVN
_ okt 4 [k
< M. (4.13)
N7 e2teo

Let XtN be our process with parameters {S\k}kzo and {Q/A%}kzo such that \g = 0, z/AJo =0 and
Mo = M, U = ¥y, for all k > 1, then Ef;l )A(tN(z) is increasing in ¢. Let Xév = X, then

14



El L XV (i) is stochastic dominated from above by ZZ L XV (i) and hence

su XN@)>MN | <P X >NM
P (s o 2 ) < (oo = )

i=1

Then by {XN},so-version Equation (4.1) and Markov’s inequality,

lim limsup P | su XN > MN 4.14
M—+o0 N—>+£ (0<s];<)tZ ) ( )

Equation [@I2]) follows from Equations [@I3]) and ([@I4) and the proof is complete.
O
At last, we prove Theorem

Proof of Theorem [Z2. By Lemmald] any subsequence of {V,/¥ : 0 <t < T} y>1 has weakly
convergent subsequence. Let {V;}o<;<1 be a weak limit of a subsequence of {V;¥ : 0 <t <
T} n>1, then we only need to show that {V;}o<i<r = {Vi}o<i<r to complete the proof. In

this proof we still denote the subsequence convergent to {‘Zz}ogtST by {VN : 0<t<T}n>1
for simplicity. By Lemma 2]

lim P( sup ’V} -vy (H| = L) =0
N—+o0 0<t<T N 4o

for any f € C(T) and e > 0. Hence, {Vi(f)}o<i<7 is continuous in ¢ for any f € C>(T).
According to Assumption (A), Vo(f) follows from N (0, [z ¢(u) f*(u)du). Therefore, to

complete the proof we only need to show that {m.(G, f)}o<i<r is a martingale for any
G € C°(R) and f € C(T), where

(6= 6 (70) 6 (60) - [ @ (%) Ve Puas
-3/ o (1) (IIAstS ¥ f |u§f||§> s

For each N > 1, let

m (G, 1) = G (VY (f) - G (VN () - / (Cx +0)G (VN(f)) ds,

then {m (G, f)}o<i<r is a martingale by Dynkin’s martingale formula. According to the
definition of Ly, Equation ([@2) and Taylor’s expansion up to the second order with La-
grange’s remainder,

NG, ) =G (VN () - G (Vv ()
t t
_/ G (V) 1 ds — %/ G" (VN () U ds + 67,
0 0
for 0 <t < T, where

O G/// 2
sup B ((o3))?) < Sel
0<t<T ’ N

15



for some C1g < 400 independent of N,

1 _%ﬁiw EXY0) T u (o) (0 (%) -7 (%))

i=1 J;éz k=0

o e m() (3)

z:l

2)—‘

and

w0k S5 (54 (s (4) 1 (4)

+ — ZXN Zwk( ) —1)2f2(%).

Therefore, {m¥ (G, f)}n>1 are uniformly integrable for any 0 < ¢ < T' according to Lemma
B and Equation [@2]). Hence, by Theorem 5.3 of [7], to prove that {m.(G, f)}o<i<r is a
martingale we only need to show that m¥ (G, f) converges weakly to m:(G, f) as N — 400
for any 0 <t < T. By the definition of IV, Lemma B0 and Equation (ZZ),

= V(P f) + 65,

and
0 = g (P3'f) + 051,
where ) )
N _ —1 N _ -2
3w B ((65)%) = o), o E ((6)%) =on-2),
N 1 N +oo ] ] +oo
PN =5 23 x () (5(£) - 1)) + X wntae - D)
j=1k=0 k=0
and

PN = =33 (w2 (b (£) - )+ gwuxk S12Pw)
for any u € T. Since f € C(T),

IPif =P flloo = O(N™)
for [ = 1,3, where

(Psf)(u /TZAMU ) (kf(v dv+2¢k k—1)%f2(u)

k=0

for any u € T. Therefore, by Theorem 2T Lemma Bl and Equation ({2,
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and
Y = pa(Psf) + 65 I\Af||2+ZHU’“fH2+5sS,
k=0

where

T T
lim |68 Jds =0 and  lim |68 |ds =0
N—+oc0 0 ’ N—+o00 0 s

in probability. In conclusion,

m (G, ) =G (V¥ (f) - G (VY (f)) - / G (VN () V2 (Prf) ds

0

3 [ewu <|A f||2+Z|U’“f|2> ds + 63,

k=0

where limy_, o 6'; = 0 in probability. Let N — 400 in the above equation, then m} (G, f)

converges weakly to m:(G, f) and the proof is complete.
O

5 Proof of Theorem [2.4]

In this sect1on we prove Theorem [Z4] Throughout this section we assume that f € C*(T)
and r > fﬂ, u)du make 7, 5 < +o0 and pr, (P1f) > 0.

Proof of Theorem[27] As we have introduced in Remark 2.1] %Mt(f) = p(P1f). Since

o (Puf) = TP >0,

t=Trf

there exists d; > 0 such that %ut(f)‘ > 0 for s € [7, 5 — 01,75 + 01] and then g (f) is
t=s ’
strictly increasing in s € [,y — 1, 7. ¢ + 01]. For any e € (0,61),

N N
{TT)f > T p+ e} - {“n,fﬂ < r}

and hence
P (T,{Yf > Trf + 6) <P (ui\i’f_‘_e < 7“) .

By Theorem 2.1}

. N o _
NEIEOO Mo, pe = Hrp pte > P p =T

in probability and hence

NETMP(Tf>TTj+6)_O (5.1)
For any T > 0, consider {ul¥ (f)}o<t<7 as a random element in D ([0, 7], R), then we claim
that {uN(f) : 0 <t < T}n>1 are tight. We prove this claim at the end of this section.
Then, by Theorem BIL {ul¥ (f)}o<i<7 converges weakly to {:(f)}o<i<r as N — +o0 and
hence

lim  sup p(f) = sup pu(f)
N—+oog<t<T 0<t<T

17



in probability. Since {Tgf < Trf — 6} C {SUPogtgn e plN(f) > r} and

sup  u(f) <,
0<t<T, s—e¢

we have

lim P(T]Yf <Tr7f—6) =0.

N ——+oco r

By Equations (B.1) and (B2)), imy— 4o TT]Yf = 7,y in probability.

For each N > 1, let 6 = /N (MJTVN (f) - r), then
s

5N < VN (uiizyf (f) = uﬁyf_(f))

and hence

{6 =} c{rNy>mp+13 {Ogsilgfﬂ X (f) = 12 ()] > \/LN}

for any € > 0. Therefore, by Equation (.1 and Lemma [1.2]

lim 65 =0
N —+o00

in probability. Let 0} = ’\/N ('“Tﬁf’f (f)— W, (f)) ’ By Equation (@4,

sup |pe(f) — @ (f)] = O(N 1)
0<t<T

for given f € C°°(T) and T > 0. Hence, for any € > 0,
s VN () - = ()| < e

0<t< T, s+1

and
{5§V > e} C {TTNI > T+ 1}

when N is sufficiently large. Therefore, by Equation (G.1),

lim 63 =0
N—+oc0

in probability. Since i, ,(f) = r, by Equations (2.3) and (5.4,

V() = =VN (7, (F) = (1)) + 07

v f
with limpy_ 4o 62 = 0 in probability. By Lagrange’s mean value theorem,

o, () = 1m (1) = )

v f

t=on (Tﬂ?[j a Tr,f)

= oy (P1f) (Tgf - Tr,f)

for some oy between Tgf and 7, . Since limy_, oo Tgf = T, ¢ in probability,

NEIEOO Moy (Plf) = M. 5 (Pl f)

18



in probability. Therefore, by Corollary and Equation (&h]), to complete the proof we
only need to show that VN (f) converges weakly to V;, . (f) as N — +o0. For any bounded
N ,

continuous function H and e > 0,
EH(V (£) = E (HVX (M, —r, 120y) +0(1)

<E ( sup H(VsN(f))> +o(1).

Tr f—€SSSTr pFe€

Then, by Theorem 2.2]

limsup EH (V ~ yf(f)) <E ( sup H(Vs(f))> :

N —+oc0 T, f—€<8<T fte
Since € is arbitrary and V;(f) is continuous in ¢, let € — 0, then

hmsupEH(VN (f)) <EH(V;,,(f)).
N —+4o00

Since H is arbitrary, replace H by —H in the above inequality, then

lim inf EH(VN (f) > EH(V:,(f))

and hence

Jim EH (VX () =BH(V:_,(f)).

As a result, VTJ}C (f) converges weakly to V7, . (f) as N — 400 and the proof is complete.
T f ’

O
At last, we prove the tightness of {uN(f): 0 <t < TIn>1.

Proof of the tightness of {uN (f): 0 <t < T}n>1. By Aldous’ criterion, we only need to
check following two Equations.
(1) For any ¢t > 0,
lim limsup P(|uy (f)| > M) = 0. (5.6)

M—+oo N 5100

(2) For any € > 0,

lim limsup  sup P (|, (f) = ) (f)] > €) =0, (5.7)
020 N 400 vET,5<5

where T is the set of stopping times of {X}Y};>0 bounded by T as we have introduced in
Section A

N
By Markov’s inequality, P(|uf (f)] > M) < w
from Equation (@I). To check Equation (5.7), we define

and hence Equation (E.0) follows

t
28 =i (5)+ [ Lwud (s and 9 = () - 27,
then Equation (&) follows from

limlimsup sup P(|Z).,(f) = Z)(f)|>¢€) =0 (5.8)

0—=0 Nt oo veT,s<8
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and

lim limsup sup P (|Q),,(f) — Q) (f)] > €) = 0. (5.9)
0—0 N 100 veT,s<d

By direct calculation

ex (1) = X5 S o (5. 2) (s (£) -1 (£))

i=1 j£i k=0
1 N +oo N i i
Fy 2 Ko () 607 (7).

Then, by Equation ([2]), there exists Cy < 400 independent of N such that

E (vl (1)) < Coll I (5.10)

for all 0 < s < T + 1. By Cauchy-Schwarz inequality,

N N/ 2 h N 2
B0~ 2 (P) <6 | E((Lwnl (1)) ds

for 6 < 1 and s < ¢, then Equation (E8) follows from Markov’s inequality and Equation
GI0).

According to Dynkin’s martingale formula, {Q{¥ },>¢ is a martingale with quadratic vari-
ation process

@)= [ (e ((200)°) - 22 1) () s

By direct calculation,

n ((Y(9)7) =20 (DLl (f)

~wE I (3) w0 (v (5) -1 ()

i=1 j#i k=0

+ %ifxév(im <%> (k- 1)%f ( i

i=1 k=0

2|~

=|
~—

Therefore, by Equation (41]),
E(|0).. - 0)[") = E (@01, — (@Y),) (5.11)
e N 2\ o N N G — —1
< [ E(en ((0)%) —2X (e () ds = O

for § < 1 and s < §. As a result, Equation (59) follows from Markov’s inequality and
Equation (&I1)). Since Equations (B8] and (B3] hold, Equation (57) holds and the proof
is complete.

O
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6 Revisit to a density-dependent Markov chain case

As an application of our main result, in this section we revisit a special case of our model
which reduces to a density-dependent Markov chain. Throughout this section we assume
that Ay = 0 for k # 1 and ¢, = g for some g € [0, +00) for all £ > 0. Let

N
NN =3 XN (),
i=1

then {NV}N }+>0 is a density-dependent Markov chain as we have introduced in Section[l Ac-
cording to limit theorems of density-dependent Markov chains given in [3], we have following
propositions.

Proposition 6.1. (Kurtz, 1978) Under Assumption (A),

N
lim AL:

U
N—+o00 N

in probability for any t > 0, where

{ dine = ne 3% (k= D,
no = [ ¢(u)du.

els N _ NN-ENF N
Proposition 6.2. (Kurtz, 1978) Let o' = ——5 > then {o" Yo<i<T converges weakly to

{at}o<i<r as N — +o0 for any T > 0, where

doy = ( zig(k - l)qk) apdt + \/( Z:a(k — l)zqk) n.dBy,
aq follows N (O, fﬂ, (b(u)du) ,

where {Bi}i>0 is a standard Brownian motion.

We further assume that 2,25 (k — 1)g; > 0, then for any r > Jp #(u)du we define
By =inf{t >0: ny =r} and B~ = inf {t >0: A]/\f,N > r}. By Theorem 11.4.1 of [2], we
have the following proposition.

Proposition 6.3. (Ethier and Kurtz, 1986) For r > fT o(u)du, VN ([3,{\7 — Br) converges

_ B,
weakly to A=A as N — 4o0.

Now we apply Theorems 2] and 24l to give alternative proofs of above propositions.

An alternative proof of Proposition [61. Let 1 be the constant function taking value 1, then
N -
Ajf\‘[ = p¥(1). Hence, by Theorem BT}

. t o g o
NLHEOO I —Apt(u)l(u)dU—Apt(u)du
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such that

+oo
/TPth(u)du = (};)(k - 1)qk> /Tpt(u)du
+ /11*2 A1 (v, u)pe(v)dudv — /11‘2 A1 (u, v)pe(u)dudv
oo
= (;(k - 1)%) /Tpt(u)du-

Therefore, fT pt(w)du = n; and the proof is complete.
O

—.

An alternative proof of Proposition[E3. Since a¥ = VN(T), by Theorem 22 {a }o<i<r
converges weakly to {V;(I)}o<i<7 as N — 400, where V(1) follows N (0, Jp #(u)du) and

dVi(T) = Vi(P1(1))dt + d&, + dn

& = ( /0 t A:dzss) (T) and n; = ( /O t(bf;)*dw;) (D).

According to the definition of U2, U! I = 0 and hence 7; = 0. According to the definition of
P1, Plf: ( Z;X())(k — 1)qk> f and

with

400
Vi(Pi(D) = (Z(k - 1)qk> Vi(T).

k=0

According to the definition of Aj,

t
Cov(én, &) = / AT 2ds
0

with
. “+o00o “+o0
A2 = 3 (k- 1)% / po(u)du = 3 (k — 1)2gin,.
k=0 k=0

Therefore, d€, = \/ (25 (k = 1)2ax) nudBy and

k=0 k=0

+o00 too
avi(1) = (Z(k - 1)qk> Vi(T)dt + $ (Z(k — 1)2%) ndB;.

As a result, V;(I) = oy and the proof is complete.
O

An alternative proof of Proposition[6.3. As we have shown in the proof of Proposition [6.1]
ng = [ppi(w)du = py(1). Then B, = 7,7 and B = TiVT. Hence, by Theorem 24
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\/N(ﬁﬁv — BT) converges weakly to N (O, “27737’11)) as N — +o0o. As we have shown
I

in the proof of proposition B2 P;1 = ( ok — 1)qk) T and hence

+o0 too I
e, (PaT) = <Z(k - 1)qk> (1) = <Z(k - l)qk> r= <Z(k . 1)qk> ng,.

k=0 k=0 k=0

VU, T

As a result, to complete the proof we only need to show that ag, follows N (O 62 (T))

+oo -
According to definitions of {a};>0 and ny, n, = noet( iZo(k=Dar) npet11 and

t +oo
ay = (S (=Dar) o _|_/ (t=) (32025 (k=1)ax ) <Z(k_1)2qk> n.dB,.
0

k=0

Hence, ag, follows normal distribution with mean 0 and variance

Br too
du—|——/ nggT5< (k—1)%q )d.

Var(ag,) =

As we have shown in the proof of Proposition [(.2]

UL=9)PI T — (=) T (-Daggl —

and
| Aaeltm9PHT|3 = (el=2) ZasothDan)2)| 4,73
1 = 1 =
= —znf_sns Z(k —1)2q, = —5 Nt s Z(k —1)%q.
"o k=0 ng k=0
Therefore,
2 T, T +o0
0?2 (1) = —L [ (u)du+ — nor s Y (k—1)2quds

As a result, Var(ag,) = 62 (1) follows from 7,7 = Br and the proof is complete.

T
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