
A COMPARISON BETWEEN AVILA-GOUËZEL-YOCCOZ NORM
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1. Introduction

Let X be a compact Riemann surface of genus g. A holomorphic quadratic differential
q on X is a tensor given locally by an expression q = q(z)dz2 where z is a conformal
coordinate on X and q(z) is holomorphic. Such a (nonzero) quadratic differential q

defines a flat metric |q|1/2 on X. This metric has conical singularities at zeroes of q. Its
area is defined by

∥q∥ =

∫
X
|q(z)||dz|2.

Fix g ≥ 2 and let Pg be the principal stratum of the moduli space of quadratic
differentials, consisting of isomorphism classes of holomorphic quadratic differentials
(X, q) with 4g − 4 distinct simple zeroes.

There is a Finsler metric on Pg called AGY metric, which was introduced by Avila-
Gouëzel-Yoccoz [2, §2.2.2]. This norm plays an important role in the study of Teichmüller
flow. See [1, 2, 4].

Let Mg be the moduli space of Riemann surfaces of genus g. Let π : Pg → Mg be
the natural projection, defined by π(X, q) = X. In the note, we consider the derivative
of π and compare the AGY norm with the Teichmüller norm.

Recently, Kahn-Wright [6] derived a comparison between the Hodge norm (another
important norm on Pg) and the Teichmüller norm. Our research is motivated by their
work.

For each (X, q) ∈ Pg, there is a canonical double cover ρ : X̂ → X, ramified at the

odd zeros of q, such that ρ∗q is the square of an Abelian differential ω on X̂. See [3]
or [7, §2] for details. The Abelian differential ω is a −1 eigenvector for the holomorphic

involution τ : X̂ → X̂ that permutes the sheets of the double cover, that is,

τ∗ω = −ω.

We can identify the tangent space of Pg at (X, q) as H1
−1(X̂,C), the −1 eigenspace for

the action of τ on the cohomology group H1(X̂,C).
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Every element of H1(X̂,C) can be represented uniquely by a harmonic one-form.

Consequently, there is a natural decomposition of H1
−1(X̂,C) into H1,0

−1 (X̂) ⊕H0,1
−1 (X̂).

Note that the kernel of Dπ is H1,0
−1 (X̂). See Theorem 2.1 below.

We consider η ∈ H0,1
−1 (X̂) and compare the AGY norm of η with the Teichmüller norm

of Dπ(η). The main result is

Theorem 1.1. Let (X, q) ∈ Pg with area ∥q∥ = 1. Let ρ : X̂ → X be the canonical

double cover such that ρ∗q = ω2. Then for any η ∈ H0,1
−1 (X̂), we have

(1)
r

2
√
2
∥η∥AGY ≤ ∥Dπ(η)∥Teich ≤ 8√

πr
∥η∥AGY,

where 2r is the shortest length of saddle connections on (X̂, ω).

Remark 1.2. Note that the area of ω is 2.

The paper has the following structure. In §2, we present some basic properties of
quadratic differentials. The upper bound in (1) is proved in §3, where we use the
Delaunay triangulation of quadratic differential to construct quasiconformal maps with
explicit Beltrami differentials. In §4, we give an upper bound of the AGY norm in terms
of the Hodge norm, and then we derive the lower bound in (1) from Kahn-Wright[6,
Theorem 1.4].

2. Preliminaries

2.1. The moduli space of quadratic differentials. Let g ≥ 2. We denote by Mg

the moduli space of compact Riemann surfaces of genus g. For X ∈ Mg, the cotangent
space of Mg at X is canonically identified with the space Q(X) of holomorphic quadratic
differentials on X. We define the L1-norm on Q(X) by

∥q∥ =

∫
X
|q|.

A tangent vector of Mg at X is represented by a Beltrami differential µ. There is a
natural pairing between quadratic differentials and Beltrami differentials given by

⟨µ, q⟩ =
∫
X
µq.

The Teichmüller norm of µ is defined by

∥µ∥Teich = sup
∥q∥=1

Re ⟨µ, q⟩.

This gives the infinitesimal form of the Teichmüller metric on Mg.

Let Qg be the moduli space of quadratic differentials, consisting of pairs (X, q) where
X is a compact Riemann surface of genus g and q is a holomorphic quadratic differential
on X. The moduli space Qg has a stratified structure: given a positive integral vector
κ = (κ1, · · · , κn) with

∑
κi = 4g − 4, we let Qg(κ) ⊂ Qg be the set of quadratic

differentials (X, q) where q has n zeros of order κ1, · · · , κn.
In the paper, our study is mainly restricted on the principal stratum, consisting of

those quadratic differentials all of whose zeros are simple. We denote the principal
stratum by Pg. This stratum is both open and dense in Qg.
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2.2. Canonical double cover. LetQg(κ) be a stratum of quadratic differentials. Given

(X, q) ∈ Qg(κ), let ρ : X̂ → X be the canonical double cover such that the pull-back ρ∗q

becomes the square of an Abelian differential ω on X̂. Let τ : X̂ → X̂ be the involution
that permutes the sheets of the double cover. By the construction, τ∗ω = −ω.

Let Σ be the set of zeros of ω. Denote byH1
−1(X̂,Σ,C) the−1 eigenspace for the action

of τ on the relative homology group H1(X̂,Σ,C). Note that the relative cohomology

class of ω is an element of H1
−1(X̂,Σ,C). A neighborhood of ω in H1

−1(X̂,Σ,C) gives a
local chart of q in the stratum, via the period mapping.

In the following, we shall identify the tangent space at (X, q) with the cohomology

H1
−1(X̂,Σ,C). If (X, q) ∈ Pg, then q has no zeros of even order. In this case, since Σ is

the set of fixed points of τ , we have

H1
−1(X̂,Σ,C) ∼= H1

−1(X̂,C).

Thus each element of H1
−1(X̂,C) can be uniquely represented by a harmonic 1-form.

The following result describes the tangent map of π : Pg → Mg in terms of the period
coordinates. It is proved by Kahn-Wright [6, Corollary 1.2].

Theorem 2.1. Consider the projection π : Pg → Mg. Let (X, q) ∈ Pg and let η

be a harmonic 1-form on X̂ that represents an element of H1
−1(X̂,C). Then for any

ϕ ∈ Q(X), we have

⟨Dπ(η), ϕ⟩ = 1

2

∫
X̂
ρ∗(ϕ)

η0,1

ω
,

where η0,1 is the anti-holomorphic part of η.

2.3. The AGY norm. The AGY norm is defined by Avila-Gouëzel-Yoccoz [2] on any
stratum of Abelian differentials.

With the notations in §2.2, we consider the Abelian differential ω as an element of
H1(X̂,Σ,C). A saddle connection of ω is a geodesic segment for the flat metric defined
by |ω| joining two zeros of ω and not passing any zero in its interior. Each saddle

connection γ gives rise to an element [γ] of the homology H1(X̂,Σ,C). And the set of

saddle connections generates the the homology H1(X̂,Σ,C). Denote by {γj} the set of
saddle connections on ω.

For any [η] ∈ H1(X̂,Σ,C), its AGY norm is defined by

∥η∥AGY = sup
γj

∣∣∣∫γj η∣∣∣∣∣∣∫γj ω∣∣∣ ,
where the supremum is taken over all saddle connections.

Avila-Gouëzel-Yoccoz [2, §2.2.2] showed that the AGY norm is continuous and induces
a complete metric on each stratum.

3. The upper bound

In this section, we give an upper bound of ∥Dπ(η)∥Teich in terms of ∥η∥AGY, for

any η ∈ H1
−1(X̂,C). The idea is to triangulate the surface and compute the Beltrami
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differentials of maps that are affine on each triangle. We remark that the proof applies
to any other stratum of quadratic differentials or Abelian differentials.

3.1. Delaunay triangulation. Given a quadratic differential (X, q), there is an asso-

ciated flat metric (with conical singularities) on X, defined by |q|1/2. Denote by Σ the

set of zeros of q. For any x ∈ X, let d(x,Σ) be the minimal |q|1/2-distance from x to Σ.
The next result is proved by Masur-Smillie [8, §4]. See also Farb-Masur [5, Proposition

3.1].

Proposition 3.1. Let (X, q) be a holomorphic quadratic differential of area ∥q∥ ≤ 1.
There is a triangulation ∆ on X with the following properties:

(1) The vertices of ∆ lie in the zero set of q.
(2) The edges of ∆ are saddle connections of q.
(3) Each triangle is inscribed in a circle of radius d(x,Σ) for some x ∈ X.

The above construction is called a Delaunay triangulation of q.

Let s =
√

2
π , and let Bs be the set of points in X with d(x,Σ) ≤ s. By the proof of

[8, Theorem 5.3], the complement of Bs is contained in a union of disjoint maximal flat
cylinders, with the property that their circumference is less than their height.

3.2. The proof of upper bound. Let η ∈ H1
−1(X̂,C). Denote by (X̂t, ωt) the family

of Abelian differentials corresponding to the cohomology classes ω+ tη ∈ H1
−1(X̂,C), for

sufficiently small t > 0.
Let ∆ be a Delaunay triangulation of (X̂, ω). By the construction, the vertices of ∆

are the zeros of ω, and the edges of ∆ are saddle connections of ω. For each t, we can
straighten ∆ to be a triangulation of X̂t (not necessary Delaunay), denoted by ∆t, such
that the edges are saddle connections of ωt.

The next step is to construct quasiconformal mappings ft from X̂ to X̂t that are linear
on each triangle. Denote the Beltrami differentials of ft by µt. Then

Dπ(η) ∼=
dµt

dt
|t=0.

Proposition 3.2. Let 2r be the shortest length of saddle connections on (X̂, ω). Then

∥Dπ(η)∥Teich ≤ 8√
πr

∥η∥AGY.

Proof. Denote by

µ =
dµt

dt
|t=0.

Since ∥µ∥Teich ≤ ∥µ∥∞, it suffices to give the upper bound for ∥µ∥∞.
Let T = △OAB be any triangle of ∆, where O,A,B denotes the vertices. For

simplicity, we consider T as a triangle in the complex plane and put O = 0, A = a > 0
and B = b ∈ C. By definition,

a =

∫
γ
ω, b =

∫
γ′
ω,

where γ and γ′ denote the saddle connection connecting O to A and O to B, respectively.
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For each t sufficiently small, the corresponding triangle in X̂t has vertices given by 0,
a+ tα and b+ tβ, where

α =

∫
γ
η, β =

∫
γ′
η.

Denote the associated affine mapping between the triangles by

ft(z) = Rz + Sz̄.

Then we have
Ra+ Sa = a+ tα,

Rb+ Sb̄ = b+ tβ.

A simple computation shows that the Beltrami coefficient µt is equal to

S

R
= t

α
a − β

b

1− b̄
b

+ o(t).

Now we give an upper bound of

|µ(z)| =

∣∣∣∣∣ αa − β
b

1− b̄
b

∣∣∣∣∣ .
Assume that θ = arg b. Then

|1− b̄

b
| = 2| sin θ|.

To give an upper bound of the quasiconformal dilatation, we discuss sin θ in two cases.

Let s0 =
√

4
π = 2√

π
. We remark that the area of |ω| is 2. Note that for any edge of T ,

it either has length ≤ 2s0 or crosses a maximal flat cylinder C whose height h is greater
than its circumference c.
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Assume that all edges of T has length ≤ 2s0. In this case, the triangle T is inscribed
in a circle of radius d(x,Σ) ≤ 2s0.

Since sin θ = |a− b|/2d(x,Σ), we have

| sin θ| ≥ r

d(x,Σ)
≥

√
πr

4
.

Thus we have ∣∣∣∣∣ αa − β
b

1− b̄
b

∣∣∣∣∣ ≤ 8max{|αa |, |
β
b |}√

πr
≤ 8√

πr
∥η∥AGY.

The remaining case is that some edge of T crosses a maximal flat cylinder C whose
height h is greater than its circumference c. In this case, some other edge of T also
crosses C. Thus the triangle T looks like an isosceles triangle with a short base. As a
result, we may choose the angle θ such that

π

4
≤ θ ≤ π

2
.

Then we have sin θ ≥
√
2
2 . It follows that∣∣∣∣∣ αa − β

b

1− b̄
b

∣∣∣∣∣ ≤ 2max{|αa |, |
β
b |}√

2
≤

√
2∥η∥AGY.

Note that πr2 ≤ 2 and then
√
2 ≤ 2√

πr
. This completes the proof.

□

Remark 3.3. It is known that for any quadratic differential q, in the the direction of
Teichmüller flow, the AGY norm is less than the Teichmüller norm (see [2, Page 152]).

As we have shown in the proof of Proposition 3.2, the order 1
r appears when the triangle

is almost flat. If there is some angle of the triangle which is neither close to 0 or π,
then the Beltrami coefficient should be bounded above by ∥η∥AGY up to a multiplicative
constant.

3.3. The order 1
r in Proposition 3.2 is sharp. We recall the following construction

of Kahn-Wright [6, §3.3].
Let ϵ > 0 be a small constant. We take a square torus of length 1 and make a length ϵ

horizontal slit. Then we identify the endpoints of the slit to make a figure-eight and glue
in a cylinder with circumference ϵ and height ϵ. The construction defines an Abelian
differential (Xϵ, ωϵ) with one double zero, i.e. a translation surface in H(2).

Let γϵ be the core curve of the small cylinder in (Xϵ, ωϵ). Denote the harmonic
differential dual to γϵ by γ∗ϵ .

Remark 3.4. We can write γ∗ϵ = βϵ + β̄ϵ, where βϵ is an Abelian differential. It is
known that the Hodge norm of βϵ is bounded above and below independently of ϵ.

As shown by Kahn-Wright [6, §3.3],

∥Dπ(γ∗ϵ )∥Teich ≥ C

ϵ
for some constant C.
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Figure 1. The examples of Kahn-Wright [6, §3.3].

The path ωϵ + tϵγ∗ϵ is corresponding to a family of translation surfaces, obtained by
twisting along the core curve of the small cylinder. When t = 1, ωϵ+ ϵγ∗ϵ is a Dehn twist
of γϵ.

The length of shortest saddle connections of ωϵ is equal to ϵ. If α0 is the shortest
saddle connection contained in the small cylinder and crossing γϵ, then∣∣∣∫α0

γ∗ϵ

∣∣∣∣∣∣∫α0
ωϵ

∣∣∣ = ϵ

ϵ
= 1.

For any other saddle connection α, which crosses the small cylinder n times, we have∣∣∫
α γ

∗
ϵ

∣∣∣∣∫
α ωϵ

∣∣ ≤ nϵ

nϵ
= 1.

As a result, ∥γ∗ϵ ∥AGY = 1. In conclusion, we have

∥Dπ(γ∗ϵ )∥Teich ≥ C
∥γ∗ϵ ∥AGY

ϵ
,

where ϵ is the length of shortest saddle connections of ωϵ.

4. The lower bound

In this section, we consider tangent vectors to Pg of the form η = β̄, where β ∈
H1,0

−1 (X̂). By Theorem 2.1, the Beltrami differential µ = β̄/ω can be considered as the
tangent vector Dπ(η) via the pairing with holomorphic quadratic differentials∫

X̂
ρ∗(ϕ)

β̄

ω
.

The Hodge norm of β ∈ H1,0
−1 (X̂) is defined by

∥β∥Hodge =

√∫
X̂
|β|2.

We have (see [6, Theorem 3.1]):
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Theorem 4.1. For any η = β̄ ∈ H0,1
−1 (X̂), we have

∥Dπ(η)∥Teich ≥
∥β∥Hodge

∥ω∥Hodge
.

The lower bound in Theorem 1.1. The assumption ∥q∥ = 1 implies ∥ω∥Hodge =
√
2. Ap-

plying Theorem 4.1 and the next proposition , we have

∥Dπ(η)∥Teich ≥
∥η∥Hodge√

2
≥ r

2
√
2
∥η∥AGY.(2)

□

Proposition 4.2. Let 2r be the shortest length of saddle connections. For any saddle
connection γ of ω and any β ∈ H1,0

−1 (X̂), we have∣∣∣∫γ β∣∣∣∣∣∣∫γ ω∣∣∣ ≤ 2
∥β∥Hodge

r
.

As a result, for any η = β̄ ∈ H0,1
−1 (X̂), we have

∥η∥AGY ≤ 2
∥η∥Hodge

r
.

Proof. We shall endow the surface with the metric defined by |ω|. Let Σ be the set of
zeros of ω. Given a saddle connection γ of ω, we can decompose γ into two parts. Either
a segment of γ is contained in the disk D(p, r) of radius r centered at a p ∈ Σ and such
a segment intersects with D(p, r/2); or the segment is outside D(p, r/2) for all p ∈ Σ.
We denote the two parts by γ′ and γ′′.

It is not necessary that γ′ or γ′′ is connected. We write

γ′ =
⋃
i

γ′i and γ′′ =
⋃
j

γ′′j ,

where γ′i, γ
′′
j denote the connected components.

For each γ′i, there is a unique zero (of order 2) zi of ω such that γi is contained in the
disk D(zi, r) and γi intersects with D(zi, r/2). It follows from [6, Lemma 3.2] that, for
z in D(z0, r), ∣∣∣∣∫ z

zi

β

∣∣∣∣ ≤ ∥β∥Hodge.

As a result, ∣∣∣∣∣
∫
γ′
i

β

∣∣∣∣∣ ≤ 2∥β∥Hodge.

Since γ crosses the annulus D(zi, r) \D(zi, r/2),
∣∣∣∫γ′

i
ω
∣∣∣ ≥ r. This implies

(3)

∣∣∣∫γ′
i
β
∣∣∣∣∣∣∫γ′

i
ω
∣∣∣ ≤ 2

∥β∥Hodge

r
.
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Now we consider γ′′j . We have∣∣∣∣∣
∫
γ′′
j

β

∣∣∣∣∣ ≤
∫
γ′′
j

∣∣∣∣βω
∣∣∣∣ |ω| .

We give an upper bound for β
ω . Let x0 ∈ γ′′j . Note that there is a disk D(x0, r/2) of

radius r/2 around x0, which does not contain any zeros of ω.
Let z be the natural coordinate of ω on D(z0, r/2), where z0 = z(x0). In D(z0, r/2),

we have ω = dz. And β
ω (z) defines a holomorphic function on D(z0, r/2).

By the mean-value inequality of subharmonic function, we have∣∣∣∣βω (z0)

∣∣∣∣2 ≤
4
∫
D(z0,r/2)

∣∣∣βω (z)∣∣∣2 dxdy
πr2

.

Thus we have

∣∣∣∣βω (z0)

∣∣∣∣ ≤
2

(∫
D(z0,r/2)

∣∣∣βω (z)∣∣∣2 dxdy)1/2

√
πr

=
2
(∫

D(z0,r/2)
|β|2

)1/2

√
πr

≤
2∥β∥Hodge√

πr
.

As a result, we show

(4)

∣∣∣∫γ′′ β
∣∣∣∣∣∣∫γ′′ ω
∣∣∣ ≤ max

γ′′

∣∣∣∣βω
∣∣∣∣ ≤ 2

∥β∥Hodge√
πr

,

Combining (4) with (3), we have∣∣∣∫γ β∣∣∣∣∣∣∫γ ω∣∣∣ ≤

∑
i

∣∣∣∫γ′
i
β
∣∣∣+∑

j

∣∣∣∫γ′′
j
β
∣∣∣∑

i

∣∣∣∫γ′
i
ω
∣∣∣+∑

j

∣∣∣∫γ′′
j
ω
∣∣∣

≤ max
i,j


∣∣∣∫γ′

i
β
∣∣∣∣∣∣∫γ′

i
ω
∣∣∣ ,

∣∣∣∫γ′′
j
β
∣∣∣∣∣∣∫γ′′

j
ω
∣∣∣


≤ 2max

{
∥β∥Hodge

r
,
∥β∥Hodge√

πr

}
= 2

∥β∥Hodge

r
.

□
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